
Boosting in the Presence of Noise

[Extended Abstract]

Adam Kalai
∗

Laboratory for Computer Science
M.I.T.

Cambridge, MA

akalai@mit.edu

Rocco A. Servedio
†

Department of Computer Science
Columbia University

New York, NY

rocco@cs.columbia.edu

ABSTRACT
Boosting algorithms are procedures that “boost” low accu-
racy weak learning algorithms to achieve arbitrarily high ac-
curacy. Over the past decade boosting has been widely used
in practice and has become a major research topic in com-
putational learning theory. In this paper we study boosting
in the presence of random classification noise, giving both
positive and negative results.

We show that a modified version of a boosting algorithm
due to Mansour and McAllester [14] can achieve accuracy
arbitrarily close to the noise rate. We also give a matching
lower bound by showing that no efficient black-box boosting
algorithm can boost accuracy1 beyond the noise rate (as-
suming that one-way functions exist). Finally, we consider
a variant of the standard scenario for boosting in which the
“weak learner” satisfies a slightly stronger condition than
the usual weak learning guarantee. We give an efficient al-
gorithm in this framework which can boost to arbitrarily
high accuracy in the presence of classification noise.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Theory

∗Supported by an NSF postdoc.
†Supported by an NSF postdoc. Work done while the author
was at the Division of Engineering and Applied Sciences,
Harvard University.
1We are referring to accuracy relative to a noiseless test
distribution. No predictor can have error less than the noise
rate on a noisy distribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro®t or commercial advantage and that copies
bear this notice and the full citation on the ®rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci®c
permission and/or a fee.
STOC’03, June 9±11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Keywords
Boosting, Machine Learning

1. INTRODUCTION
In Valiant’s Probably Approximately Correct (PAC) learn-

ing model, a successful learning algorithm must be able to
achieve any arbitrarily low error rate given random exam-
ples drawn from any fixed probability distribution. In an
early paper, Kearns and Valiant [12] proposed the notion
of a weak learning algorithm which need only achieve some
error rate bounded away from 1

2
, and posed the question of

whether weak and strong learning are equivalent for efficient
(polynomial time) learning algorithms. Soon afterward, in
a celebrated result Schapire gave a positive answer to this
question [15]. Schapire gave an efficient boosting algorithm
which, given access to any weak learning algorithm, uses the
weak learner to generate a hypothesis with arbitrarily low
error. Since Schapire’s initial result boosting has become
one of the biggest successes of computational learning the-
ory; boosting algorithms have been intensively studied from
a theoretical perspective and are widely used in practice.

The standard PAC learning model assumes that all ex-
amples received by the learner are labeled correctly, i.e. the
data has no noise. An important question, which was asked
by Schapire in his original paper [15] and by several subse-
quent researchers [2], is whether it is possible to efficiently
perform boosting in the presence of noise. Since real data is
frequently noisy, this question is of significant practical as
well as theoretical interest.

In this paper we give a detailed study of boosting in
the presence of random classification noise. In the random
classification noise model, the binary label of each example
which the learner receives is independently flipped from the
true label f(x) with probability η for some fixed 0 < η < 1

2
;

the value η is referred to as the noise rate. Random classi-
fication noise is the most standard and widely studied noise
model in learning theory. We give both positive and nega-
tive results for boosting in this model as described below.

1.1 Our Results
We first demonstrate that decision-tree-like boosting al-

gorithms can boost accuracy arbitrarily close to the noise
rate. In particular, we analyze a modified version of the
“branching programs” booster of Mansour and McAllester
[14], which built on a boosting analysis of decision trees due
to Kearns and Mansour [11]. We refer to the boosting algo-

rithm from [14] as the MM boosting algorithm, and to our
modified version as the MMM boosting algorithm.

We next show that in general it is not possible to boost to
any error rate lower than the noise rate using a “black-box”
polynomial time boosting algorithm. This negative result
assumes only that one-way functions exist.2

The results described above assume that the boosting al-
gorithm has access to a weak learner as defined by Kearns
and Valiant, i.e. an algorithm which, given examples drawn
from a distribution D, produces a hypothesis whose error
rate relative to the target function is bounded away from
1/2. For our second positive result we consider a slightly
stronger notion of an okay learner (precisely defined in Sec-
tion 6) which produces a hypothesis whose covariance with
the target function is bounded away from 0. We show that if
the MMM boosting algorithm has access to an okay learner,
then it can boost to achieve arbitrarily low error in the pres-
ence of random classification noise.

1.2 Our approach
Recall that a weak learning algorithm must output a hy-

pothesis with error at most 1
2
−γ when given examples drawn

from any distribution D. A simple but useful observation is
the following: if D is balanced between positive and negative
examples then the hypothesis generated by a weak learner
provides some useful information, but if D is unbalanced
then the weak learner can output a trivial hypothesis and
still satisfy the guarantee. For example, if γ = 0.1 and D
puts probability weight 0.8 on positive examples, then the
identically-1 hypothesis is a legitimate output for the weak
learner. Thus the only way to ensure that a weak learner
gives some useful information is to run it on a distribution
which is roughly balanced between positive and negative ex-
amples. If the distribution D is unbalanced, then some sort
of filtering or reweighting must be performed to obtain a bal-
anced distribution D′; all known boosting algorithms take
this approach.

The main idea behind our negative result is that in the
presence of classification noise, it can be difficult to obtain
a balanced distribution D′. Consider a scenario where D
puts weight p < 1

2
on positive examples. To make the weak

learner do something useful, we would like to reweight to a
balanced distribution D′. Intuitively, the best way to do this
is to discard some examples which are labeled 0. However,
if p < η then even among examples which are labeled 1, less
than half are true positive examples (see Table 1). Thus we
cannot construct a new distribution which forces the weak
learner to do something useful, so we cannot boost to high
accuracy. In Section 5 we make these ideas precise and give
a hardness proof.

For our positive results we consider a modified version
of the “branching program” boosting algorithm of Mansour
and McAllester [14]. Our analysis exploits the fact that
their scheme causes the (possibly noisy) label of a given
example to play a relatively small role in its reweighting.
This is in contrast with several other boosting algorithms,
such as AdaBoost [6], in which a noisy label can cause an
example to receive exponentially more weight than it would

2Some computational hardness assumption is required since
in exponential time any weak learner can be boosted to arbi-
trary accuracy in the presence of noise. (Draw a polynomial
size noisy data set, exhaustively guess which labels are noisy,
and run a standard boosting algorithm.)

noise no noise
true positive example pη p(1 − η)
true negative example (1 − p)η (1 − p)(1 − η)

Table 1: Examples labeled 1 are either noisy nega-
tive examples or nonnoisy positive examples. Thus
the frequency of true positive examples among ex-
amples labeled 1 is p(1−η)

p(1−η)+(1−p)η
which is less than 1

2
if p < η < 1

2
.

otherwise receive. We note that several researchers [3, 16]
have empirically observed that standard boosting algorithms
such as AdaBoost can perform poorly on noisy data, and
indeed it has been suggested that this poor performance is
due to AdaBoost’s tendency to construct distributions which
put a great deal of weight on a few noisy examples [3].

1.3 Related Work
The elegant Statistical Query model introduced by Kearns

[10] is a model in which the learner does not receive la-
beled examples but instead can obtain estimates of statisti-
cal properties of the distribution of labeled examples. Aslam
and Decatur gave an algorithm for boosting any Statistical
Query weak learner to arbitrary accuracy [1]. Since every
Statistical Query algorithm can be simulated using a noisy
example oracle [10], their result seems to imply that any
Statistical Query weak learning algorithm can be boosted
even with noise.

However, Aslam and Decatur’s result does not allow the
Statistical Query weak learner to have access to unlabeled
examples from the distribution, which is sometimes consid-
ered part of the Statistical Query model. In fact, the “un-
boostable” weak learning algorithm we present in Section 5
can be viewed as a Statistical Query algorithm that requires
access to unlabeled examples. This suggests that it may be
impossible, in general, to boost Statistical Query algorithms
that have access to unlabeled examples, or that Aslam and
Decatur’s result may be the strongest possible.

2. PAC LEARNING PRELIMINARIES
Our results are for the model of PAC learning in the pres-

ence of classification noise. For a detailed introduction to
PAC learning see [13].

A concept class C is a class of Boolean functions over some
instance space X. We assume throughout that the instance
space X is of dimension n, i.e. X = Rn or X = {0, 1}n,
and we are interested in algorithms whose running time is
polynomial in n (and other parameters).

Let f be a function in C, D a distribution over X, and
η a value 0 ≤ η < 1

2
. A noisy example oracle is an oracle

EX(f,D, η) which works as follows: each time EX(f,D, η)
is invoked, it returns a labeled example 〈x, b〉 ∈ X × {0, 1}
where x ∈ X is drawn from distribution D and b is indepen-
dently chosen to be f(x) with probability 1−η and 1−f(x)
with probability η.

Let f ∈ C be a fixed target function. A noise-tolerant
PAC learning algorithm for a concept class C is an algorithm
which has the following property: for any ε, δ > 0, any 0 ≤
η < 1

2
, any target function f ∈ C, and any distribution D

over X, if the algorithm is given access to EX(f,D, η) then
with probability 1 − δ it outputs a hypothesis h such that

Prx∈D[h(x) 6= f(x)] < ε. We refer to Prx∈D[h(x) 6= f(x)] as
the error of h under D.

A noise-tolerant weak learning algorithm is an algorithm
which satisfies the PAC criterion only for sufficiently large
ε. More precisely, we have:

Definition 1. Let 0 < γ < 1
2
. A noise-tolerant γ-weak

learning algorithm for a concept class C is an algorithm A
that takes inputs n, δ and is given access to a noisy example
oracle O, with the following property. For all n, δ, if O is
a noisy example oracle EX(f,D, η) where f ∈ C, D is any
distribution on {0, 1}n, and 0 ≤ η < 1

2
, then A runs in

time poly(n, 1
1−2η

, 1
δ
) and with probability at least 1 − δ,

A outputs a poly(n, 1
δ
, 1

γ
, 1

1−2η
)-time evaluable hypothesis h

such that Prx∈D[h(x) 6= f(x)] ≤ 1
2
− γ.

A boosting algorithm is an algorithm which, given access
to a weak learning algorithm, can generate a hypothesis h
with arbitrarily low error. More precisely, we have:

Definition 2. A black-box noise-tolerant booster is an al-
gorithm B that is given access to an oracle O and black-box
access to an algorithm A, with the following property. For
all concept classes C, for all 0 < γ < 1

2
, for all 0 ≤ η < 1

2
, for

all n, ε, δ, we have: if A is a noise-tolerant γ-weak learning
algorithm for C and O is a noisy example oracle EX(f,D, η)
where f ∈ C and D is any distribution on {0, 1}n, then BO,A

runs in time poly(n, 1
ε
, 1

δ
, 1

γ
, 1

1−2η
) and with probability at

least 1− δ B outputs a poly(n, 1
ε
, 1

δ
, 1

γ
, 1

1−2η
)-time evaluable

hypothesis h such that Prx∈D[h(x) 6= f(x)] ≤ ε.

We note that in both our positive and negative results,
the boosting algorithm B calls the weak learning algorithm
A as a black box; B may run A using any oracle O which B
is able to provide, but B cannot “read the code” of A. Thus
our negative results hold only for boosting algorithms which
operate in this black-box way. We feel that this is a minor
restriction to put on boosting algorithms since all known
boosting algorithms (including the MM boosting algorithm
which we analyze) work in a black-box way – they call the
weak learner and use the hypotheses which it generates, but
do not inspect the internal state of the weak learner during
its execution.

3. MM: NOISE-FREE BOOSTING
In this section we describe a particular boosting algo-

rithm and analyze its performance in the absence of noise
(i.e. when η = 0). The algorithm we describe here is es-
sentially the branching program booster of Mansour and
McAllester [14] (which built on ideas from Kearns and Man-
sour’s paper [11]), and we henceforth refer to it as the MM
boosting algorithm. Our goal here is to set the stage for
our analysis of the MMM algorithm (modified MM) in the
presence of noise, which we give in Sections 4 and 6. Our
presentation and analysis of the MM algorithm are slightly
different from [14] in order to facilitate our presentation and
analysis of the MMM algorithm in Sections 4 and 6.

3.1 Preliminaries
Throughout this section we let f ∈ C be a fixed target

function and D be a fixed distribution over X. For ` ⊆ X
we write D|` to denote D conditioned on x ∈ `, i.e. D|`(S) =
PrD[x ∈ S | x ∈ `]. We write p` to denote PrD[f(x) = 1|x ∈
`] and p to denote PrD[f(x) = 1].

Definition 3. As in [11], the uncertainty of a distribution

D is defined to be U(D) = 2
√

p(1 − p). Let Π =
⋃

`∈L ` be
a partition of X into disjoint subsets. The uncertainty of Π
under D is defined to be U(D, Π) =

∑
`∈L w`u`, where u` =

U(D|`) = 2
√

p`(1 − p`) is the uncertainty of the conditional
distribution D|` and w` = PrD[x ∈ `] is referred to as the
weight of leaf `.

Given any partition Π =
⋃

`∈L ` of X, there is a natural
corresponding predictor for the target function f : on each
partition ` ⊆ X, we predict 1 iff p` > 1

2
. The error of this

predictor under D is
∑

` w` min(p`, 1 − p`); note that this
is at most 1

2
U(Π,D) since min is less than geometric mean.

Thus, the uncertainty of a partition gives an upper bound
on the error of the corresponding predictor.

Definition 4. The balanced distribution D̂ is an equal av-

erage of the distributions D|f−1(1) and D|f−1(0), i.e. D̂(S) =
1
2

PrD[x ∈ S | f(x) = 1] + 1
2

PrD[x ∈ S | f(x) = 0].

Given access to a noise-free oracle EX(f,D), it is easy

to simulate the noise-free oracle EX(f, D̂); this is done by
drawing examples until both a positive and a negative ex-
ample have been received, and then choosing between them
at random3.

For our purposes, a branching program is a rooted, di-
rected acyclic graph in which each leaf ` is labeled with a
bit b` and each internal node v has outdegree 2 and is la-
beled with a Boolean function hv . Branching programs were
introduced into boosting as a generalization of decision tree
learning: while decision trees are constructed by splitting
nodes, for branching programs nodes can be merged as well.

3.2 The MM Boosting Algorithm
The MM algorithm iteratively constructs a branching pro-

gram in which each internal node v is labelled with a hypoth-
esis hv generated by the weak learner at some invocation.
In such a branching program, any instance x ∈ X deter-
mines a unique directed path from the root to a leaf; at
each internal node v the outgoing edge taken depends on
the value hv(x). Thus, the set L of leaves ` corresponds to
a partition Π of X, and for each leaf ` we have probabilities
w` = Pr[x reaches `] and p` = Prx∈D[f(x) = 1|x reaches `].
As described above, each leaf ` is labeled 1 if p` > 1

2
and

is labeled 0 otherwise; thus a branching program naturally
corresponds to a classifier.

The MM algorithm is given below. The branching pro-
gram initially consists of a single leaf. The algorithm re-
peatedly performs two basic operations:

• Split a leaf (steps 2-3): The chosen leaf ` becomes
an internal node which has two new leaves as its chil-
dren. The label of this new internal node is a hypoth-
esis generated by the weak learning algorithm when

run with the oracle EX(f, D̂|`) (recall that this distri-
bution is obtained by first conditioning on x ∈ ` and
then balancing that conditional distribution).

• Merge two leaves (steps 6-7): The two leaves `a

and `b chosen for the merge are replaced by a single
leaf `. All edges into `a and `b are redirected into `.

3This may take a great deal of time if p is very close to 0 or
1, but as we will see these situations do not pose a problem
for us since we will abort the simulation after some bounded
number of draws.

Intuitively, splitting a leaf should increase the accuracy of
our classifier. In the MM algorithm, the leaf to be split is
chosen so as to maximally decrease the overall uncertainty
of the partition corresponding to the branching program.
Conversely, merging two leaves should decrease the accu-
racy of our classifier. However, we must do merges in order
to ensure that the branching program does not get too large;
Kearns and Mansour have shown that without merges the
size of the resulting decision tree may be exponentially large
[11]. The leaves to be merged are chosen so as to minimally
increase the overall uncertainty of the partition. The condi-
tion in Line 7 ensures that we only perform merges whose
cumulative uncertainty increase is substantially less than the
uncertainty decrease of the most recently performed split,
and thus we make progress. The final output hypothesis of
the MM booster is the final branching program.

The MM Boosting algorithm

Input: desired final error level ε
access to γ-weak learner A
access to noise-free example oracle EX(f,D)

Recall from the definitions: w` = PrD[x reaches leaf `],

p` = PrD[f(x) = 1|x reaches `], u` = 2
√

p`(1 − p`), D|`
is the distribution obtained by conditioning on x ∈ `, and

D̂|` is the balanced version of D|`.
Algorithm:

1. Start with the trivial partition Π = {X}, so the
branching program is a single leaf.

2. Construct candidate splits: For each leaf ` ∈ Π,
run the weak learning algorithm A on the balanced

distribution on this leaf (i.e. oracle EX(f, D̂|`)) to
obtain leaves `0 and `1.

3. Choose best split: Perform the split that reduces
the overall uncertainty the most. Let ∆S be this re-
duction, so

∆S = max
`

{w`u` − w`0u`0 − w`1u`1}.

4. Stop if the error of the current branching program
≤ ε.

5. Set ∆M := 0.

6. Consider candidate merges: Let `a 6= `b be the
two leaves which, if merged into one leaf `, would
cause the minimum increase in uncertainty. Let z be
this minimum value:

z := min
`a 6=`b

{w`au`a + w`b
u`b

− w`u`}.

7. Merge if safe: If ∆M + z < ∆S/2 then

• Merge leaves `a, `b in the branching program.

• Set ∆M := ∆M + z.

• Go to step 6.

8. Otherwise, go to step 2.

3.3 Correctness and ef®ciency of the MM al-
gorithm

We assume in this section that all probabilities are com-
puted exactly by the MM algorithm. In Section 3.4 we show
that our analysis still holds if probabilities are estimated by
a polynomial amount of sampling. We also assume that the
weak learning algorithm successfully finds a (1

2
−γ)-accurate

hypothesis at each invocation, i.e. we ignore the δ probabil-
ity of failure. This failure probability can be handled with
standard techniques as discussed in Section 3.4.

The following lemma corresponds to Lemma 2 in [11]. We
defer its proof to Appendix C.

Lemma 1. Suppose for distribution D, hypothesis h sat-

isfies PrD̂[h(x) 6= f(x)] ≤ 1
2
− γ. Let Π be the partition

induced by h, i.e. Π = {h−1(0), h−1(1)}. Then U(Π,D) ≤
(1 − 2γ2)U(D).

This lemma implies that as long as the MM branching pro-
gram does not have too many leaves, each split performed in
line 3 gives a substantial decrease in the overall uncertainty:

Corollary 2. Suppose that the MM branching program’s

partition Π has L leaves before executing step 3. Then after

performing the split in step 3, the new partition Π′ satisfies

U(Π′,D) ≤ (1 − 2γ2/L)U(Π,D).

Proof. Since Π has L leaves, some leaf ` must have
w`u` ≥ 1

L
U(Π,D). If this leaf were chosen for the split then

by Lemma 1 the uncertainty u` would be multiplied by at
most 1 − 2γ2, and hence the overall uncertainty U(Π,D)
would be multiplied by at most 1− 2γ2/L. Since the actual
split chosen is the one which reduces overall uncertainty the
most, the corollary holds.

Now we show that if the branching program has many
leaves, there are merges it can perform which do not increase
uncertainty by too much. We prove the following lemma in
Appendix C:

Lemma 3. Suppose that the MM branching program has

uncertainty U = U(Π,D) and L ≥ 72
γ2 log 4

Uγ2 leaves. Then

there are two leaves `a and `b whose merger would cause the

uncertainty to increase by at most γ2U/L, i.e. the resulting

partition Πa,b would satisfy U(Πa,b,D) ≤ (1 + γ2/L)U.

Now we can establish correctness of the MM boosting al-
gorithm:

Theorem 4. After at most 144
γ4 log 2

εγ2 log 1
2ε

splits and

merges, the MM algorithm will output a hypothesis h such

that PrD[h(x) 6= f(x)] ≤ ε.

Proof. First note that since the algorithm halts as soon
as the error PrD[h(x) 6= f(x)] is at most ε, throughout its
execution we have U(Π,D) > 2ε (recall that the uncertainty
is always at least twice the error rate). We now show that
the algorithm halts after the claimed number of steps.

We first note that the number of leaves in the branching
program whenever Step 3 is executed is never greater than
L = 72

γ2 log 2
εγ2 . To see this, note that if there are L leaves

and a split is performed, then by Corollary 2 the uncertainty
U prior to the split decreases by at least 2γ2U/L. Lemma
3 then implies that there is some merge which would would

increase the uncertainty by at most γ2U/L. Thus this merge
will be performed in Step 7 and there will again be at most
L leaves.

Thus by Corollary 2 and the condition in Step 7, the cu-
mulative effect of a split and the (possibly empty) sequence
of merges which follows it before the next split is to multi-
ply the uncertainty by at most (1− γ2/L). Since the uncer-
tainty of the initial trivial partition is at most 1, we have
that immediately before the (s + 1)st split takes place the

uncertainty is at most
(
1 − γ2

L

)s

≤ e−sγ2/L. This is less

than 2ε for s = L
γ2 log 1

2ε
, so at most this many splits take

place. The total number of merges is clearly at most the
total number of splits, so the theorem is proved.

3.4 Approximating MM via sampling
So far we have discussed an idealized version of the MM

algorithm in which all probabilities can be computed ex-
actly. In [14] the MM algorithm was run on a fixed sample
so this exact computation could in fact be done, but for
our extension to the noisy setting it is more convenient to
consider a “boosting-by-filtering” version where we do not
use a fixed sample. Hence we cannot compute probabilities
exactly but instead must use empirical estimates obtained
by calling EX(f,D).

Let L be as in Theorem 4. We first note that in Step 2
the algorithm need not run the weak learning algorithm on
any leaf ` which has w`u` ≤ ε

2L
, since the total contribution

of such leaves to the final uncertainty will be at most ε
2
. By

the analysis in Section 3.3, for each leaf ` it suffices to es-

timate the quantity w`u` to additive accuracy O(γ2ε
L

). This
accuracy ensures that, as in Theorem 4, before the (s+1)st
split the uncertainty is at most (1−Ω(γ2/L))s, and that our
final estimate of the uncertainty

∑
` w`u` will be off by at

most O(ε).
How much time is required to estimate w`u` to a given ad-

ditive accuracy? We can rewrite w`u` as 2
√

a`b` where a` =
PrD[x ∈ ` and f(x) = 1] and b` = PrD[x ∈ ` and f(x) = 0].
It is easily seen that these probabilities, and hence w`u` as
well, can be estimated to any inverse polynomial additive
accuracy from a polynomial number of calls to EX(f,D).
(Note that from the above discussion, we only need to sim-

ulate EX(f, D̂|`) in Step 2 if w`u` is Ω(ε/L), and if this is

the case then we can simulate each call to EX(f, D̂|`) in
poly(L/ε) time with high probability.)

Finally, we note by a standard analysis the total failure
probability of all estimates and calls to the weak learner can
be bounded by δ at little cost. We thus have:

Theorem 5. For any ε, δ > 0, if the MM boosting algo-

rithm is run using a γ-weak learner and a noise-free example

oracle EX(f,D), then it runs for poly(1
γ
, 1

ε
, 1

δ
) time steps

and with probability 1 − δ outputs a hypothesis h satisfying

PrD[h(x) 6= f(x)] ≤ ε.

4. MMM: BOOSTING TO THE NOISE RATE
In this section we modify the MM algorithm to obtain the

MMM algorithm which can achieve any accuracy up to the
noise rate. The MMM algorithm is given access to a noise-
tolerant γ-weak learning algorithm and to a noisy example
oracle EX(f,D, η) and is given a value τ > 0; its goal is to
output a hypothesis h such that PrD[h(x) 6= f(x)] ≤ η + τ.
We analyze the algorithm in terms of the true probabilities

p` = PrD[f(x) = 1|x ∈ `] instead of the “noisy” probabilities
p̃` = PrD[label = 1|x ∈ `]. Since p̃` = p`(1 − η) + (1 − p`)η,
we have

p` =
p̃` − η

1 − 2η
. (1)

Thus the MMM algorithm can estimate p` to within an addi-
tive error of c by estimating p̃` to within an additive c

1−2η
.

(We assume throughout this section that the MMM algo-
rithm knows the value of η; this assumption can be removed
using standard techniques.)

The MMM algorithm differs from the MM algorithm in
the following ways:

• In Step 2 the oracle EX(f, D̂|`, η′), i.e. a noisy bal-
anced oracle, is used to run the weak learning algo-
rithm, where η′ > η is some higher noise rate. (Later

we will show how to efficiently simulate EX(f, D̂, η′)
given access to EX(f,D, η) and will show that η′ is
bounded away from 1

2
; this ensures that at each stage

the noise-tolerant weak learner can construct a weak
hypothesis as required.)

• For τ > 0 define Lτ to be the set of leaves ` such that
min{p`, 1 − p`} ≥ η + τ

2
. Each time a leaf ` is formed,

if ` /∈ Lτ then we view ` as “dead” and never consider
it again for splits or merges; so MMM only performs
splits and merges on leaves in Lτ .

• In Step 4 the algorithm halts if PrD[h(x) 6= f(x)] ≤
η + τ.

We have the following analogue of Theorem 4:

Theorem 6. After O(1
γ4 log 1

τγ
log 1

τ
) splits and merges,

the MMM algorithm will output a hypothesis h such that

PrD[h(x) 6= f(x)] ≤ η + τ.

Proof. The error PrD[h(x) 6= f(x)] has contributions
from leaves in Lτ and not in Lτ . By definition of Lτ the
total contribution from leaves not in Lτ is at most η + τ/2.
Thus it suffices to bound the error contribution from leaves
in Lτ by τ/2. The analysis establishing this bound is very
similar to that of Theorem 4 with τ/2 in place of ε. Let Uτ =∑

`∈Lτ
w`2

√
p`(1 − p`) be the total uncertainty of leaves in

Lτ . As before, it suffices to reduce Uτ to τ . If we set Lτ =
|Lτ |, then Corollary 2 now holds with 1 − 2γ2/Lτ in place
of 1 − 2γ2/L, because the leaf of largest uncertainty in Lτ

can be split and its uncertainty reduced by a factor of 1 −
2γ2. Lemma 3 applies to the subset of leaves Lτ and the
uncertainty Uτ , so as before if there are many leaves in Lτ

then merging some pair increases uncertainty by at most
1 + γ2/Lτ . Thus, by the same argument as Theorem 4 the
value Uτ will be reduced to τ in the same number of splits
and merges as in Theorem 4 for ε = τ/2.

We now show how to simulate the noisy balanced exam-

ple oracle EX(f, D̂, η′) using EX(f,D, η). Assume without
loss of generality that p = PrD[f(x) = 1] ≤ 1

2
. From the

discussion above we may assume that p ≥ η + τ
2
. We filter

examples from EX(f,D, η) as follows:

• Labeled 0: Reject each example labeled 0 with prob-
ability 1−2p

1−p−η
, otherwise keep it.

• Labeled 1: Flip to 0 with probability (1−2p)η(1−η)
(1−η−p)(p+η−2pη)

,

otherwise don’t flip the label.

The idea is that the rejection balances the distribution be-
tween true positive and true negative examples, but as a re-
sult of this balancing we now have asymmetric noise, i.e. the
fraction of negative examples that are mislabelled is greater
than the fraction of positive examples that are mislabelled.
To compensate, the flipping causes an equal fraction of pos-
itive and negative examples to be mislabelled, so we have
true classification noise at a higher rate η′. We prove the
following lemma in Appendix D.

Lemma 7. Given access to EX(f,D, η), where p = Pr[f(x) =
1] and min{p, 1− p} ≥ η + τ

2
, by making poly(1

τ
, log 1

δ
) calls

to EX(f,D, η) we can simulate a call to EX(f, D̂, η′) with

probability 1 − δ, where η′ ≤ 1
2
− τ

4
.

As in Section 3.4, to run MMM successfully we need only
estimate each w`, p`, u` to inverse polynomial accuracy. A
new issue which arises is that since p` is an estimate instead
of a precise value, the filtering procedure described above to

sample from EX(f, D̂|`, η′) will not perfectly simulate this
oracle, i.e. the resulting distribution may not be perfectly
balanced, and the noise rates on positive and negative ex-
amples may not be exactly equal. This is not a problem
since the statistical difference between the true distribution
and the distribution we simulate can be made arbitrarily
(inverse polynomially) small so that any weak learner mak-
ing polynomially many draws from our distribution cannot
distinguish between it and the true distribution with high
probability.

We thus have:

Theorem 8. For any τ, δ > 0, if the MMM boosting al-

gorithm is run using a noise-tolerant γ-weak learner and

a noisy source of examples, EX(f,D, η), then it runs for

poly(1
γ
, 1

τ
, 1

δ
, 1

1−2η
) time steps and with probability 1− δ out-

puts a hypothesis h satisfying PrD[h(x) 6= f(x)] ≤ η + τ.

5. BOOSTING PAST THE NOISE RATE IS
HARD

The basic approach here is that we suppose we have some
distribution with a p < η fraction of positive examples. Thus
the all 0’s hypothesis is a good weak hypothesis to start.
We will describe an “unboostable” weak learner with the
following property: whenever possible, it outputs a trivial
hypothesis that contains no useful information. In fact, the
weak learner only does something interesting if its sample
contains a large set of unique (occuring only once in the
sample) examples that is nearly 1/2 positive. The motiva-
tion for considering this weak learner is that it is difficult for
a booster to generate a set of examples that is nearly 1/2
positive, because a random example that is labeled positive
is still more than 1/2 likely to be a true negative example,
and thus intuitively it is hard for the booster to make the
weak learner give any useful information.

Unfortunately, there is a difficulty in that the booster
might conceivably be able to learn on its own, without even
using the weak learner. Thus, in order to prove that it is
hard to boost past the noise rate, we somehow need to en-
sure that the booster must indeed use the weak learner.

Our approach takes advantage of the fact that since a
boosting algorithm must work for any concept class, the
booster does not “know” the concept class on which it is
being run.4 We will consider concept classes each contain-
ing a single function; for each such concept class there is a
corresponding weak learner which knows this function (since
the weak learner may be tailored for the particular concept
class being learned), but the booster does not. The overall
collection of functions considered will be a pseudo-random
family of functions, so intuitively the booster should be un-
able to learn without using the weak learner.

Using this approach, we prove the following:

Theorem 9. If one-way functions exist then black-box

noise-tolerant boosters do not exist.

In fact we show (Theorem 11) that for any τ > 0 it is cryp-
tographically hard to boost to accuracy η−τ in the presence
of classification noise at rate η.

We give some more intuition for our construction. The
unboostable weak learning algorithm is as follows. Consider
a target function f which has only an η−τ fraction of inputs
x satisfying f(x) = 1. Then under the uniform distribution
a weak learner can output the constant-0 hypothesis; in fact
the only distributions for which a weak learner must output
some other hypothesis are nonuniform ones which put weight
at least 1/2 on the small set of positive examples. Thus the
only way a boosting algorithm can get anything useful out
of such a weak learner is to simulate a distribution which
puts weight at least 1/2 on positive examples, and as argued
earlier this seems difficult to do since the noise rate is η.

In fact there is a hole in this argument. For example, a
boosting algorithm could simulate a distribution which puts
weight 1/2 on each of two examples. If the booster is lucky
and one of the examples is positive, then the resulting dis-
tribution is balanced. Thus, in order to design a maximally
unhelpful weak learner which thwarts this boosting strategy,
we have our weak learner make a lookup table of examples
which it sees many times in its sample. For each example
in the table, the weak learner’s output is the majority vote
label from its occurrences in the sample; on all other exam-
ples the weak learner outputs 0. Intuitively, this hypothesis
is sufficient to satisfy the weak learning criterion unless the
data set for the weak learner contains a large number of dis-
tinct instances many of which are true positive examples;
only if this is the case does the weak learner give up some
useful information.

Now we give the actual construction. Let 0 < p < 1. Let
{fs : {0, 1}|s| → {0, 1}}s∈{0,1}∗ be a p-biased pseudorandom
function family, i.e. a family of functions which are indistin-
guishable from truly random p-biased functions. For each
s ∈ {0, 1}n we define a concept class Cs as follows: each
class Cs contains exactly one concept, which is fs.

4An alternative approach would instead be to assume that
the boosting algorithm cannot use any information about
the particulars of the learning problem. Namely, we could
assume that the boosting algorithm cannot do anything with
examples other than identify whether two are the same or
different, examine their labels, and apply the weak hypothe-
ses to them. Under this assumption almost any concept class
can be shown to have an unboostable weak learner. In our
cryptographic construction described below, we bypass this
strong assumption by instead assuming that one-way func-
tions exist.

Fix 0 < γ < 1
4
. We now define an algorithm As for each

concept class Cs. In the following description the values
m1, k, m2, are polynomials in n, 1

γ
, 1

1−2η
, 1

δ
whose values will

be given later.

Algorithm As:

1. Draw a sequence S1 of m1 examples. (Note that a
given instance x ∈ {0, 1}n may occur more than once
in S1.)

2. Let T be the set of instances x ∈ {0, 1}n which occur
at least k times in S1. For each x ∈ T let bx ∈ {0, 1} be
the majority vote label of all pairs 〈x, y〉 in S1 which
have x as the instance.

3. Define h1 to be the hypothesis h1(x) ≡ “if x ∈ T then
output bx else output 0.”

4. Draw a sequence S2 of m2 examples. Abort and out-
put the hypothesis h1 if there is any instance x which
occurs more than once in S2 but is not in T.

5. Let N be the number of occurrences in S2 of instances
x such that x /∈ T and fs(x) = 1. If N ≥ (1

2
− 3γ

2
)m2

then output fs, and otherwise output h1.

Note that the hypothesis h1 is quite uninformative since any
algorithm with access to the example oracle can generate
this hypothesis for itself without using As. Steps 4 and 5
ensure that the informative fs hypothesis is output only if
S2 contains many distinct positive examples.

The following claim (proved in Appendix A) shows that
As is indeed a noise-tolerant weak learning algorithm:

Claim 10. As is a noise-tolerant γ-weak learning algo-

rithm for concept class Cs.

5.1 Proof of Theorem 9
Let U denote the uniform distribution on {0, 1}n. Fix any

noise rate 0 < η < 1
2

and any 0 < τ < η. Fix p = η − τ
2
.

Let the parameter in algorithm As be γ = η−p
4(η+p−2ηp)

< 1
4
.

We prove Theorem 9 by establishing the following stronger
theorem, which bounds the accuracy level that black-box
boosting algorithms can achieve in the presence of noise at
rate η.

Theorem 11. Let {fs} be a p-biased pseudorandom func-

tion family. Then, for random s, no black-box boosting algo-

rithm B, given access to EX(fs,U , η) and As, can output a

hypothesis whose error is at most η − τ. More precisely: for

all polynomials Q and all polynomial time algorithms B, for

n sufficiently large,

Pr
s∈U

[Pr
x∈U

[h(x) 6= fs(x)] ≤ η − τ] <
1

Q(n)

where h is the hypothesis output by B.

Due to space limitations we do not prove Theorem 11 in
this extended abstract; a very brief sketch is presented in
Appendix B. The idea of the proof is that B will only suc-
ceed if As outputs fs at some invocation. As above, this
can only happen if S2 contains at least a (1

2
− 3γ

2
) fraction

of distinct positive examples. Since fs is a p-biased pseudo-
random function and the noise rate η is sufficiently larger
than p, such a set S2 is difficult to construct.

Theorem 11 gives a lower bound of η on the accuracy level
ε which any polynomial time black box boosting algorithm
can achieve. In Section 4 we analyzed the MMM boosting
algorithm (which is black-box) and showed that it matches
this lower bound: given any ε = η + τ where τ > 0, the
MMM algorithm achieves ε-accuracy in the presence of clas-
sification noise at rate η in time polynomial in 1

τ
(and the

other relevant parameters). Thus the bound of Theorem 11
(and of the MMM algorithm) is the best possible.

6. BOOSTING AN OKAY LEARNER
TO ARBITRARY ACCURACY

In this section we present an alternate notion of weak
learning, called okay learning, and show that the MMM al-
gorithm can be used to efficiently boost any okay learner to
arbitrary accuracy in the presence of noise.

To motivate our definition of okay learning, we note that
the standard definition of weak learning has some counterin-
tuitive consequences. Consider a scenario in which the tar-
get concept f(x) is the Boolean conjunction x1∧x2∧x3 and
our hypothesis h(x) is ¬x1 ∧¬x2 ∧ ¬x3. Under the uniform
distribution we have Pr[f(x) 6= h(x)] = 1/4 and hence h is
a valid output for a standard weak learner. This is slightly
odd since in fact f(x) and h(x) are negatively correlated in
a statistical sense, so in some sense a learner which output
h as a weak hypothesis for f would be a disappointment.

Recall that the balanced distribution D̂ is obtained by
reweighting D so that PrD̂[f(x) = 1] = PrD̂[f(x) = 0] =
1/2. We define the balanced error of an hypothesis h to be

Pr
D̂

[f(x) 6= h(x)] =
1

2
Pr
D

[f(x) 6= h(x) | f(x) = 1] +

1

2
Pr
D

[f(x) 6= h(x) | f(x) = 0]. (2)

Similarly, a noise tolerant γ-okay learner is an algorithm
which, given access to EX(f,D, η), outputs a hypothesis h
such that PrD̂[h(x) 6= f(x)] ≤ 1

2
− γ. The running time is

allowed to be polynomial in n, 1
1−2η

, 1
δ
, 1

γ
, 1

PrD [f(x)=1]
and

1
PrD[f(x)=0]

.

While this definition may seem artificially chosen to make
our guarantees work, it is actually fairly natural. One ob-
servation is that having balanced error ≤ γ is equivalent
to

Cov(h, f) ≥ 2γCov(f, f),

where, Cov(f, h) = ED[f(x)h(x)]−ED[f(x)]ED[h(x)] is the
covariance of f and h. So it is a guarantee that the covariance
is positive (equivalently correlation is positive). Another
consequence is that PrD[h(x) = 1|f(x) = 1] > PrD[h(x) =
1]. In the absence of noise, an okay learning algorithm can
be converted to a weak learning algorithm and vice versa.
In the presence of noise, an okay learner can be converted
to a weak learner.

Given access to a noise tolerant okay learner, we modify
the MM algorithm in the following ways:

• As before we calculate p` according to (1).

• In Step 2 we run the noise-tolerant γ-okay learner using
the unbalanced conditional distribution EX(f,D|`, η).

As in the MM algorithm we boost until we obtain an h
which satisfies PrD[h(x) 6= f(x)] ≤ ε. We obtain:

Theorem 12. For any ε, δ > 0, if the above boosting al-

gorithm is run using a noise-tolerant γ-okay learner and a

noisy example oracle EX(f,D, η), then it runs for at most

poly(1
γ
, 1

ε
, 1

δ
, 1

1−2η
) time steps and with probability 1− δ out-

puts a hypothesis h satisfying PrD[h(x) 6= f(x)] ≤ ε.

Proof. The analysis for boosting a noise-tolerant γ-okay
learner is identical to the original noise-free MM analysis.
Each hypothesis generated by our noise-tolerant γ-okay learner
using an oracle EX(f,D, η) satisfies PrD̂[h(x) 6= f(x)] ≤
1
2
− γ which is exactly the condition that was used in our

noise-free analysis.

7. CONCLUSIONS
We have given matching upper and lower bounds for boost-

ing in the presence of classification noise. Intuitively, the key
to our positive results for the MM algorithm is that chang-
ing the label of any example does not change its weight by
very much. This property also holds for the earlier decision
tree boosting algorithm analyzed by Kearns and Mansour
[11], but as mentioned earlier the size of the decision tree
could be exponential in 1

γ
. While the MM algorithm gives a

substantial improvement, the O(1
γ4) hypothesis size of the

MM algorithm is still larger than the O(1
γ2) which other

boosting algorithms such as AdaBoost achieve.
Since boosting algorithms are widely used in practice, and

real data is frequently noisy, it is of considerable interest to
develop practical boosting algorithms which perform well on
noisy data. In a companion paper [9] we have developed and
analyzed an improved version of the MM algorithm which
has a O(1

γ2) dependence.

Finally, we have defined a noise-tolerant okay learner which
can be boosted to arbitrary accuracy in the presence of
noise. We hope this will be an aid to designing provably
noise-tolerant strong learners, just as the concept of boost-
ing weak learning makes it easier to design provably strong
learners.

7.1 Acknowledgments
We would like to thank the anonymous referees and Daphne

Koller for helpful comments.

8. REFERENCES
[1] J. Aslam and S. Decatur. Specification and simulation

of statistical query algorithms for efficiency and noise
tolerance. Journal of Computer and System Sciences,
56:191–208, 1998.

[2] A. Blum, A. Frieze, R. Kannan, and S. Vempala. A
polynomial time algorithm for learning noisy linear
threshold functions. Algorithmica, 22(1/2):35–52,
1997.

[3] T.G. Dietterich. An experimental comparison of three
methods for constructing ensembles of decision trees:
bagging, boosting, and randomization. Machine

Learning, 40(2):139–158, 2000.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: A statistical view of boosting. The
Annals of Statistics, 28:337 – 374, 2000.

[5] Y. Freund. Boosting a weak learning alogrithm by
majority. Information and Computation,
121(2),256–285, 1995.

[6] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[7] O. Goldreich, S. Goldwasser, and S. Micali. How to
construct random functions. Journal of the

Association for Computing Machinery, 33(4):792–807,
1986.

[8] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A
pseudorandom generator from any one-way function.
SIAM J. Comput., 28(4):1364–1396, 1999.

[9] A. Kalai and R. Servedio. On the boosting ability of
oblivious decision graphs. Unpublished manuscript,
2003.

[10] M. Kearns. Efficient noise-tolerant learning from
statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[11] M. Kearns and Y. Mansour. On the boosting ability of
top-down decision tree learning algorithms. Journal of

Computer and System Sciences, 58(1):109–128, 1999.

[12] M. Kearns and L. Valiant. Cryptographic limitations
on learning boolean formulae and finite automata.
Journal of the ACM, 41(1):67–95, 1994.

[13] M. Kearns and U. Vazirani. An introduction to

computational learning theory. MIT Press, Cambridge,
MA, 1994.

[14] Y. Mansour and D. McAllester. Boosting using
branching programs. Journal of Computer and System

Sciences, 64(1):103–112, 2002.

[15] R. Schapire. The strength of weak learnability.
Machine Learning, 5(2):197–227, 1990.

[16] R. Schapire. Theoretical views of boosting. In
Proceedings of the Tenth International Conference on

Algorithmic Learning Theory, pages 12–24, 1999.

APPENDIX

A. PROOF OF CLAIM 10
The values m2, m1 and k are polynomials in n, 1

γ
, 1

1−2η
, 1

δ
which will be defined later.

We first observe that As runs in polynomial time. To see
this, note that As can have fs “hard-wired” into it, and fs

is efficiently evaluable, so the number N in Step 5 can be
computed exactly in polynomial time.

It remains to show that for any distribution D and any
0 < η < 1

2
, if As is run using EX(fs,D, η) as the oracle, then

with probability at least 1 − δ, As outputs a hypothesis h
such that PrD[h(x) 6= fs(x)] ≤ 1

2
− γ. We use the following

two lemmas which we prove later:

Lemma 13. As aborts in line 4 with probability less than
δ
3
.

Lemma 14. With probability at least 1− δ
3
, we have bx =

fs(x) for every x ∈ T.

We will analyze an alternate algorithm A′
s in which the test

in line 4 is not performed and bx is defined to equal fs(x) for
every x ∈ T . By Lemmas 13 and 14 it suffices to show that
PrD[h′(x) 6= f(x)] ≤ 1

2
− γ with probability at least 1 − δ

3
,

where h′ is the hypothesis output by A′
s. Consequently, it

suffices to show that if PrD[h′
1(x) 6= f(x)] > 1

2
− γ then A′

s

outputs fs with probability 1 − δ
3
.

To see that this condition holds, note that in line 5 of A′
s

we have that S2 is a set of independent random draws from
EX(fs,D, η). (This is not true in line 5 of As since in As

we have conditioned on S containing no repeated instances
which are not in T.) Thus in A′

s the value N is an empirical
estimate of PrD[x /∈ T and fs(x) = 1] obtained from m2

independent samples. As long as m2 ≥ 2 log 3
δ
/γ2, standard

Chernoff bounds tell us that with probability at least 1 − δ
3

the fraction N/m2 differs from PrD[x /∈ T and fs(x) = 1]
by at most γ

2
. Hence if PrD[x /∈ T and fs(x) = 1] is greater

than 1
2
−γ we output fs with probability at least 1− δ

3
. Since

in A′
s hypothesis h′

1 is guaranteed to be right on x ∈ T, we
have PrD[h′

1(x) 6= f(x)] = PrD[x /∈ T and f(x) = 1] and the
claim is proved. (Claim 10)

Proof of Lemma 13: For 1 ≤ i < j ≤ m2, call positions
(i, j) in S2 a violator if the corresponding elements are equal,
i.e. xi = xj , and the number of occurrences of xi in S1 is
< k. The algorithm aborts in Step 4 only if there is some
violator (i, j). We now upper bound the probability that
any particular (i, j) is a violator.

Fix (i, j) and also fix xi. We may imagine that S1 and
xj were drawn in the following way: First a multiset S′ of
m1+1 labeled examples was drawn from the example oracle,
and then a random element of S′ was chosen to be xj and
the rest were chosen for S1. This is equivalent to drawing
xj and all examples in S1 independently from the example
oracle.

Now suppose that there were t occurrences of xi in S′.
If t > k, then there is no way that (i, j) can be a violator
because there will always be at least k occurrences of xi in
S1. On the other hand, the probability that that xj = xi is
exactly t/(m1 + 1). So if t ≤ k, the probability that (i, j) is
a violator is t/(m1 + 1) < k/m1.

By the union bound, the probability that any (i, j) is a
violator is at most m2

2k/m1. This is at most δ/3 provided
that m1 ≥ 3m2

2k/δ. (Lemma 13)

Proof of Lemma 14: Fix any x ∈ T, so x occurs m ≥ k
times in S1. The probability that the majority vote of the
labels corresponding to instances of x in S1 is incorrect is
precisely the probability that a coin which has probability
η < 1

2
of coming up HEADS comes up HEADS more often

than TAILS in m ≥ k tosses. Using a standard Chernoff
bound, as long as k ≥ 2 log 3m1

δ
/(1 − 2η)2 this probability

is at most δ
3m1

, so the probability that bx 6= fs(x) for any

fixed x ∈ T is at most δ
3m1

. Since T contains at most m1

instances, a union bound finishes the proof. (Lemma 14)

So we have seen that the above three lemmas hold as long
as m2 ≥ 2 log 3

δ
/γ2, m1 ≥ 3m2

2k/δ, and k ≥ 2 log 3m1

δ
/(1 −

2η)2, which is easily achieved for polynomial sized m1, m2,
and k.

B. PROOF SKETCH OF THEOREM 11
First some terminology: we say that the set S2 is fool-

proof if N ≥ (1
2
− 3γ

2
)m2 and otherwise we say that S2 is

foolable. We write BO,A to indicate that B has access to the
example oracle O and black-box access to the weak learning
algorithm A. We say that BO,As hits fs if at some point
during its execution B invokes As and As draws a foolproof

sequence S2 in Step 4 (so if As does not abort in Step 4, it
outputs hypothesis fs in Step 5). We say that a hypothesis
h is good if Prx∈U [h(x) 6= fs(x)] ≤ η − τ.

Theorem 11 follows immediately from the following two
lemmas. Here and subsequently we write “p.p.t.” as an
abbreviation for “probabilistic polynomial time.”

Lemma 15. For all polynomials Q, all p.p.t. algorithms

B, and all sufficiently large n,

Pr[BEX(fs,U,η),As hits fs] <
1

Q(n)
.

Lemma 16. For all polynomials Q, all p.p.t. algorithms

B, and all sufficiently large n,

Pr[BEX(fs,U,η),As outputs a good h |

BEX(fs,U,η),As misses fs] <
1

Q(n)
.

The proof of these lemmas is omitted due to space limi-
tations.

C. REDUCING UNCERTAINTY

Proof of Lemma 1. Without loss of generality we write

PD[f(x) = 1] = p

PD[h(x) = 1 ∧ f(x) = 1] = pa

PD[h(x) = 0 ∧ f(x) = 1] = p(1 − a)

PD[f(x) = 0] = q = (1 − p)

PD[h(x) = 1 ∧ f(x) = 0] = qb

PD[h(x) = 0 ∧ f(x) = 0] = q(1 − b)

so the error of h under D|f(x)=1 is 1− a and under D|f(x)=0

is b. Since the error under the balanced distribution is at
most 1

2
− γ, we have 1−a+b

2
≤ 1

2
− γ and hence a − b ≥ 2γ.

It is easy to see that U(D) = 2
√

pq and that

U(Π,D) = 2(pa + qb)

√
paqb

(pa + qb)2
+

2(p(1 − a) + q(1 − b))

√
p(1 − a)q(1 − b)

(p(1 − a) + q(1 − b))2

= 2
√

paqb + 2
√

p(1 − a)q(1 − b)

= U(D)
(√

ab +
√

(1 − a)(1 − b)
)

.

To finish the proof, we observe that
√

ab +
√

(1 − a)(1 − b)

=
1

2

√
(a + b)2 − (a − b)2 +

1

2

√
(1 − a + 1 − b)2 − (a − b)2

≤ 1

2

√
(a + b)2 − 4γ2 +

1

2

√
(2 − (a + b))2 − 4γ2

≤
√

1 − 4γ2

≤ 1 − 2γ2

where the second inequality uses the concavity of the func-
tion

√
x2 − τ .

Proof of Lemma 3. We may assume without loss of gen-
erality that there are at least L/2 leaves ` such that p` ≤ 1

2
.

Consider what would happen if we were to merge two such
leaves `1 and `2 which have associated weights w1 and w2

and uncertainties u1 = U(D|`1) ≤ u2 = U(D|`2). It is easily
verified that this would give a leaf ` with weight w = w1+w2

and uncertainty u = U(D`) satisfying u1 ≤ u ≤ u2 (this
uses the fact that p1, p2 ≤ 1

2
). Consequently, the increase in

overall uncertainty resulting from such a merge would be

wu − w1u1 − w2u2 ≤ w1(u − u1) = w1u1(
u

u1
− 1). (3)

Now we imagine putting the uncertainties of these leaves
into disjoint buckets. Consider the L/8 intervals

[(
1 − γ2

9

)i

,

(
1 − γ2

9

)i−1
]

for i = 1, 2, . . . , L/8. (These buckets were used explicitly
as part of the algorithm in [14] but our presentation uses

them only here in the analysis.) Since (1 − x)1/x ≤ 1/e for
x ∈ (0, 1], we have

(
1 − γ2

9

)L/8

≤
(

1 − γ2

9

) 9

γ2
log 4

Uγ2

≤ γ2U

4

and hence these buckets cover at least the interval [γ2U/4, 1].
Suppose first that at least L/4 of the L/2 leaves with

p` ≤ 1
2

have uncertainty u` ≤ γ2U/4. If this is the case
then there must be some such leaf with with weight w` ≤
4/L. By Equation (3), merging this leaf with any other leaf
whose uncertainty is at most γ2U/4 results in an increase in
uncertainty of at most w`γ

2U/4 ≤ γ2U/L, which suffices to
establish the lemma in this case.

So now suppose that at least L/4 of the L/2 leaves with
p` ≤ 1

2
have uncertainty u` > γ2U/4. By the pigeon-hole

principle, among these L/4 values of u` at least L/8 fall
into buckets in which they are not the unique largest value
assigned to that bucket. Among these L/8 values, let `′ be
the leaf with lowest w`′u`′ . Since the total uncertainty is U,
we must have w`′u`′ ≤ 8U/L. Let `′′ be a leaf which falls
into the same bucket and satisfies

u`′ ≤ u`′′ ≤ u`′/(1 − γ2/9).

From Equation (3), the increase in uncertainty which would
result from merging `′ and `′′ is at most

8U

L

(
1

(1 − γ2/9)
− 1

)
=

8U

L
· γ2

9 − γ2
≤ Uγ2

L

so the lemma is proved.

D. PROOF OF LEMMA 7
Recall that we have access to a noisy example oracle EX(f,D, η)

where D is some distribution, 0 < η < 1
2

is the noise rate,

and p = PrD[f(x) = 1] satisfies η + τ
2

≤ p ≤ 1
2

for some
τ > 0. We show how this oracle can be used to simulate
the oracle EX(f, D̂, η′). Here D̂ is the balanced version of
distribution D and 0 < η′ < 1

2
is a new noise rate.

We filter examples from EX(f,D, η). For each example,

Labeled 0: Reject with probability pr = 1−2p
1−p−η

, keep with

probability 1 − pr = p−η
1−p−η

.

Labeled 1: Flip its label with probability pf = (1−2p)η(1−η)
(1−p−η)(p+η−2pη)

,

don’t flip with probability 1 − pf .

We will show that this results in EX(f, D̂, η′) where η′ ≤
1
2
− τ

4
.

In order to verify this, it suffices to check the following
two things. First, after step 1,

Pr
D

[f(x) = 0 ∧ not rejected] = Pr
D

[f(x) = 1 ∧ not rejected].

This would show that at least the resulting distribution is
balanced but says nothing about the labels or apparent noise
rates. The LHS above can be written as (1− p)((1− η)(1−
pr) + η) because the example was negative with probability
1−p and either the example was not noisy (probability 1−η),
thus labeled 0, and kept (probability 1−pr), or it was noisy
(probability η) and was kept for sure. Similarly, the RHS
above can be written as p(η(1− pr)+1− η). One can check

that the above two quantities are both (1−2η)p(1−p)
1−p−η

.
Second, we need to check that the noise rates on both

positive and negative examples are η′. In other words, we
need to verify that, after step 2,

Pr
D

[f(x) = 0 ∧ not rejected ∧ label′ = 1]

= η′ Pr
D

[f(x) = 0 ∧ not rejected]

and

Pr
D

[f(x) = 1 ∧ not rejected ∧ label′ = 0]

= η′ Pr
D

[f(x) = 1 ∧ not rejected].

In the above, label′ is the possibly flipped label after step
2. The first LHS can be written as (1− p)η(1− pf) because
the example must have been a negative example that was
noisy and not flipped. Similarly, the second LHS above is
p(η(1−pr)+(1−η)pf). A tedious but straightforward veri-

fication shows that these two quantities are both η(1−p)
(p+η−2pη)

·
(1−2η)p(1−p)

(1−p−η)
.

Based on our earlier calculation that

Pr[f(x) = 0 ∧ not rejected] =
(1 − 2η)p(1 − p)

1 − p − η
,

the effective noise rate is

η′ =
η(1 − p)

p + η − 2pη
=

1

2
− p − η

2(p + η − 2pη)
.

It is easy to verify that η′ ≤ 1
2
− τ

4
because p − η ≥ τ

2
and

p + η − 2pη < 1, so the lemma is proved.

