Boosting in the Presence of Noise

[Extended Abstract]

Adam Kalai
Laboratory for Computer Science
M.I.T.
Cambridge, MA
akalai@mit.edu

Rocco A. Servedio
Department of Computer Science
Columbia University
New York, NY
rocco@cs.columbia.edu

ABSTRACT

Boosting algorithms are procedures that “boost” low accuracy weak learning algorithms to achieve arbitrarily high accuracy. Over the past decade boosting has been widely used in practice and has become a major research topic in computational learning theory. In this paper we study boosting in the presence of random classification noise, giving both positive and negative results.

We show that a modified version of a boosting algorithm due to Mansour and McAllester [14] can achieve accuracy arbitrarily close to the noise rate. We also give a matching lower bound by showing that no efficient black-box boosting algorithm can boost accuracy\(^1\) beyond the noise rate (assuming that one-way functions exist). Finally, we consider a variant of the standard scenario for boosting in which the “weak learner” satisfies a slightly stronger condition than the usual weak learning guarantee. We give an efficient algorithm in this framework which can boost to arbitrarily high accuracy in the presence of classification noise.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity

General Terms

Algorithms, Theory

1. INTRODUCTION

In Valiant’s Probably Approximately Correct (PAC) learning model, a successful learning algorithm must be able to achieve any arbitrarily low error rate given random examples drawn from any fixed probability distribution. In an early paper, Kearns and Valiant [12] proposed the notion of a weak learning algorithm which need only achieve some error rate bounded away from \(\frac{1}{2}\), and posed the question of whether weak and strong learning are equivalent for efficient (polynomial time) learning algorithms. Soon afterward, in a celebrated result Schapire gave a positive answer to this question [15]. Schapire gave an efficient boosting algorithm which, given access to any weak learning algorithm, uses the weak learner to generate a hypothesis with arbitrarily low error. Since Schapire’s initial result boosting has become one of the biggest successes of computational learning theory; boosting algorithms have been intensively studied from a theoretical perspective and are widely used in practice.

The standard PAC learning model assumes that all examples received by the learner are labeled correctly, i.e. the data has no noise. An important question, which was asked by Schapire in his original paper [15] and by several subsequent researchers [2], is whether it is possible to efficiently perform boosting in the presence of noise. Since real data is frequently noisy, this question is of significant practical as well as theoretical interest.

In this paper we give a detailed study of boosting in the presence of random classification noise. In the random classification noise model, the binary label of each example which the learner receives is independently flipped from the true label \(f(x)\) with probability \(\eta\) for some fixed \(0 < \eta < \frac{1}{2}\); the value \(\eta\) is referred to as the noise rate. Random classification noise is the most standard and widely studied noise model in learning theory. We give both positive and negative results for boosting in this model as described below.

1.1 Our Results

We first demonstrate that decision-tree-like boosting algorithms can boost accuracy arbitrarily close to the noise rate. In particular, we analyze a modified version of the “branching programs” booster of Mansour and McAllester [14], which built on a boosting analysis of decision trees due to Kearns and Mansour [11]. We refer to the boosting algo-
rithm from [14] as the MM boosting algorithm, and to our modified version as the MMM boosting algorithm.

We next show that in general it is not possible to boost to any error rate lower than the noise rate using a “black-box” polynomial time boosting algorithm. This negative result assumes only that one-way functions exist.2

The results described above assume that the boosting algorithm has access to a weak learner as defined by Kearns and Valiant, i.e. an algorithm which, given examples drawn from a distribution \(\mathcal{D} \), produces a hypothesis whose error rate relative to the target function is bounded away from 1/2. For our second positive result we consider a slightly stronger notion of an okay learner (precisely defined in Section 6) which produces a hypothesis whose covariance with the target function is bounded away from 0. We show that if the MMM boosting algorithm has access to an okay learner, then it can boost to achieve arbitrarily low error in the presence of random classification noise.

1.2 Our approach

Recall that a weak learning algorithm must output a hypothesis with error at most \(\frac{1}{2} - \gamma \) when given examples drawn from any distribution \(\mathcal{D} \). A simple but useful observation is the following: if \(\mathcal{D} \) is balanced between positive and negative examples then the hypothesis generated by a weak learner provides some useful information, but if \(\mathcal{D} \) is unbalanced then the weak learner can output a trivial hypothesis and still satisfy the guarantee. For example, if \(\gamma = 0.1 \) and \(\mathcal{D} \) puts probability weight 0.8 on positive examples, then the identically-1 hypothesis is a legitimate output for the weak learner. Thus the only way to ensure that a weak learner gives some useful information is to run it on a distribution which is roughly balanced between positive and negative examples. If the distribution \(\mathcal{D} \) is unbalanced, then some sort of filtering or reweighting must be performed to obtain a balanced distribution \(\mathcal{D}' \); all known boosting algorithms take this approach.

The main idea behind our negative result is that in the presence of classification noise, it can be difficult to obtain a balanced distribution \(\mathcal{D}' \). Consider a scenario where \(\mathcal{D} \) puts weight \(p < \frac{1}{2} \) on positive examples. To make the weak learner do something useful, we would like to reweight to a balanced distribution \(\mathcal{D}' \). Intuitively, the best way to do this is to discard some examples which are labeled 0. However, if \(p < \eta \) then even among examples which are labeled 1, less than half are true positive examples (see Table 1). Thus we cannot construct a new distribution which forces the weak learner to do something useful, so we cannot boost to high accuracy. In Section 5 we make these ideas precise and give a hardness proof.

For our positive results we consider a modified version of the “branching program” boosting algorithm of Mansour and McAllester [14]. Our analysis exploits the fact that their scheme causes the (possibly noisy) label of a given example to play a relatively small role in its reweighting. This is in contrast with several other boosting algorithms, such as AdaBoost [6], in which a noisy label can cause an example to receive exponentially more weight than it would otherwise receive. We note that several researchers [3, 16] have empirically observed that standard boosting algorithms such as AdaBoost can perform poorly on noisy data, and indeed it has been suggested that this poor performance is due to AdaBoost’s tendency to construct distributions which put a great deal of weight on a few noisy examples [5].

1.3 Related Work

The elegant Statistical Query model introduced by Kearns [10] is a model in which the learner does not receive labeled examples but instead can obtain estimates of statistical properties of the distribution of labeled examples. Aslam and Decatur gave an algorithm for boosting any Statistical Query weak learner to arbitrary accuracy [1]. Since every Statistical Query algorithm can be simulated using a noisy example oracle [10], their result seems to imply that any Statistical Query weak learning algorithm can be boosted even with noise.

However, Aslam and Decatur’s result does not allow the Statistical Query weak learner to have access to unlabeled examples from the distribution, which is sometimes considered part of the Statistical Query model. In fact, the “unboostable” weak learning algorithm we present in Section 5 can be viewed as a Statistical Query algorithm that requires access to unlabeled examples. This suggests that it may be impossible, in general, to boost Statistical Query algorithms that have access to unlabeled examples, or that Aslam and Decatur’s result may be the strongest possible.

2. PAC LEARNING PRELIMINARIES

Our results are for the model of PAC learning in the presence of classification noise. For a detailed introduction to PAC learning see [13].

A concept class \(C \) is a class of Boolean functions over some instance space \(X \). We assume throughout that the instance space \(X \) is of dimension \(n \), i.e. \(X = \mathbb{R}^n \) or \(X = \{0,1\}^n \), and we are interested in algorithms whose running time is polynomial in \(n \) (and other parameters).

Let \(f \) be a function in \(C, \mathcal{D} \) a distribution over \(X \), and \(\eta \) a value \(0 \leq \eta < \frac{1}{2} \). A noisy example oracle is an oracle \(EX(f, \mathcal{D}, \eta) \) which works as follows: each time \(EX(f, \mathcal{D}, \eta) \) is invoked, it returns a labeled example \(\langle x, b \rangle \in X \times \{0,1\} \) where \(x \in X \) is drawn from distribution \(\mathcal{D} \) and \(b \) is independently chosen to be \(f(x) \) with probability \(1 - \eta \) and \(1 - f(x) \) with probability \(\eta \).

Let \(f \in C \) be a fixed target function. A noise-tolerant PAC learning algorithm for a concept class \(C \) is an algorithm which has the following property: for any \(\epsilon, \delta > 0 \), any \(0 \leq \eta < \frac{1}{2} \), any target function \(f \in C \), and any distribution \(\mathcal{D} \) over \(X \), if the algorithm is given access to \(EX(f, \mathcal{D}, \eta) \) then with probability \(1 - \delta \) it outputs a hypothesis \(h \) such that

<table>
<thead>
<tr>
<th>true positive example</th>
<th>noise</th>
<th>no noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \eta)</td>
<td>((1 - p) \eta)</td>
<td>(1 - \eta \eta)</td>
</tr>
<tr>
<td>(1 - p \eta)</td>
<td>((1 - p)(1 - \eta))</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Examples labeled 1 are either noisy negative examples or nonnoisy positive examples. Thus the frequency of true positive examples among examples labeled 1 is \(\frac{p(1-q)}{p(1-q)+(1-p)q} \) which is less than \(\frac{1}{2} \) if \(p < \eta < \frac{1}{2} \).
Definition 1. Let $0 < \gamma < \frac{1}{2}$. A noise-tolerant γ-weak learning algorithm for a concept class C is an algorithm A that takes inputs n, δ and is given access to a noisy example oracle O, with the following property. For all n, δ, if O is a noisy example oracle $EX(f, D, \eta)$ where $f \in C, D$ is any distribution on $\{0, 1\}^n$, and $0 \leq \eta < \frac{1}{2}$, then A runs in time $\text{poly}(n, \frac{1}{\delta}, \frac{1}{\eta})$ and with probability at least $1 - \delta$, A outputs a poly$(n, \frac{1}{\delta}, \frac{1}{\eta})$-time evaluable hypothesis h such that $\Pr_{x \in D}[h(x) \neq f(x)] \leq \frac{1}{2} - \gamma$.

A boosting algorithm is an algorithm which, given access to a weak learning algorithm, can generate a hypothesis h with arbitrarily low error. More precisely, we have:

Definition 2. A black-box noise-tolerant booster is an algorithm B that is given access to an oracle O and black-box access to an algorithm A, with the following property. For all concept classes C, for all $0 < \gamma < \frac{1}{2}$, for all $0 \leq \eta < \frac{1}{2}$, for all n, ϵ, δ, we have: if A is a noise-tolerant γ-weak learning algorithm for C and O is a noisy example oracle $EX(f, D, \eta)$ where $f \in C$ and D is any distribution on $\{0, 1\}^n$, then $B^{O,A}$ runs in time $\text{poly}(n, \frac{1}{\delta}, \frac{1}{\eta})$ and with probability at least $1 - \delta$ B outputs a poly$(n, \frac{1}{\delta}, \frac{1}{\eta})$-time evaluable hypothesis h such that $\Pr_{x \in O}[h(x) \neq f(x)] \leq \epsilon$.

We note that in both our positive and negative results, the boosting algorithm B calls the weak learning algorithm A as a black box: B may run A using any oracle O which B is able to provide, but B cannot "read the code" of A. Thus our negative results hold only for boosting algorithms which operate in this black-box way. We feel that this is a minor restriction to put on boosting algorithms since all known boosting algorithms (including the MM boosting algorithm which we analyze) work in a black-box way they call the weak learner and use the hypotheses which it generates, but do not inspect the internal state of the weak learner during its execution.

3. MM: NOISE-FREE BOOSTING

In this section we describe a particular boosting algorithm and analyze its performance in the absence of noise (i.e. when $\eta = 0$). The algorithm we describe here is essentially the branching program booster of Mansour and McAllester [14] (which built on ideas from Kearns and Mansour’s paper [11]), and we henceforth refer to it as the MM boosting algorithm. Our goal here is to set the stage for our analysis of the MMM algorithm (modified MM) in the presence of noise, which we give in Sections 4 and 6. Our presentation and analysis of the MM algorithm are slightly different from [14] in order to facilitate our presentation and analysis of the MMM algorithm in Sections 4 and 6.

3.1 Preliminaries

Throughout this section we let $f \in C$ be a fixed target function and D be a fixed distribution over X. For $\ell \subseteq X$ we write $D|\ell$ to denote D conditioned on $x \in \ell$, i.e. $D|\ell(S) = \Pr_{x \in S}[x \in \ell]$. We write p_{ℓ} to denote $\Pr_{D}[f(x) = 1|x \in \ell]$ and p to denote $\Pr_{D}[f(x) = 1]$.

Definition 3. As in [11], the uncertainty of a distribution D is defined to be $U(D) = 2\sqrt{p(1-p)}$. Let $\Pi = \bigcup_{\ell \subseteq X} \ell$ be a partition of X into disjoint subsets. The uncertainty of Π under D is defined to be $U(D, \Pi) = \sum_{\ell \subseteq X} w_{\ell}U_{\ell}$, where $w_{\ell} = U(D|\ell) = 2\sqrt{p(1-p)}$ is the uncertainty of the conditional distribution $D|\ell$ and $w_{\ell} = \Pr_{D}[x \in \ell]$ is referred to as the weight of leaf ℓ.

Given any partition $\Pi = \bigcup_{\ell \subseteq X} \ell$ of X, there is a natural corresponding predictor for the target function f: on each partition $\ell \subseteq X$, we predict 1 if $p_{\ell} > \frac{1}{2}$; the error of this predictor under D is $\sum_{\ell \subseteq X} w_{\ell}\min(p_{\ell}, 1 - p_{\ell})$: note that this is at most $\frac{1}{2}U(\Pi, D)$ since min is less than geometric mean. Thus, the uncertainty of a partition gives an upper bound on the error of the corresponding predictor.

Definition 4. The balanced distribution \breve{D} is an equal average of the distributions $D[f \to 1]$ and $D[f \to 0]$, i.e. $\breve{D}(S) = \frac{1}{2}\Pr_{D}[x \in S | f(x) = 1] + \frac{1}{2}\Pr_{D}[x \in S | f(x) = 0]$.

Given access to a noise-free oracle $EX(f, D)$, it is easy to simulate the noise-free oracle $EX(f, \breve{D})$: this is done by drawing examples until both a positive and a negative example have been received, and then choosing between them at random.

For our purposes, a branching program is a rooted, directed acyclic graph in which each leaf ℓ is labeled with a bit b_{ℓ} and each internal node v has outdegree 2 and is labeled with a Boolean function h_{v}. Branching programs were introduced into boosting as a generalization of decision tree learning: while decision trees are constructed by splitting nodes, for branching programs nodes can be merged as well.

3.2 The MM Boosting Algorithm

The MM algorithm iteratively constructs a branching program in which each internal node v is labelled with a hypothesis h_{v} generated by the weak learner at some invocation. In such a branching program, any instance $x \in X$ determines a unique directed path from the root to a leaf; at each internal node v the outgoing edge taken depends on the value $h_{v}(x)$. Thus, the set L of leaves ℓ corresponds to a partition Π of X, and for each leaf ℓ we have probabilities $w_{\ell} = \Pr_{D}[x \in \ell]$ and $p_{\ell} = \Pr_{x \in \ell}[f(x) = 1|x \in \ell]$. As described above, each leaf ℓ is labeled 1 if $p_{\ell} > \frac{1}{2}$ and is labeled 0 otherwise; thus a branching program naturally corresponds to a classifier.

The MM algorithm is given below. The branching program initially consists of a single leaf. The algorithm repeatedly performs two basic operations:

1. **Split a leaf** (steps 2-3): The chosen leaf ℓ becomes an internal node which has two new leaves as its children. The label of this new internal node is a hypothesis generated by the weak learning algorithm when run with the oracle $EX(f, \breve{D}|\ell)$ (recall that this distribution is obtained by first conditioning on $x \in \ell$ and then balancing that conditional distribution).

2. **Merge two leaves** (steps 6-7): The two leaves ℓ_{a} and ℓ_{b} chosen for the merge are replaced by a single leaf ℓ. All edges into ℓ_{a} and ℓ_{b} are redirected into ℓ.

This may take a great deal of time if p is very close to 0 or 1, but as we will see these situations do not pose a problem for us since we will abort the simulation after some bounded number of draws.
Intuitively, splitting a leaf should increase the accuracy of our classifier. In the MM algorithm, the leaf to be split is chosen so as to maximally decrease the overall uncertainty of the partition corresponding to the branching program. Conversely, merging two leaves should decrease the accuracy of our classifier. However, we must do merges in order to ensure that the branching program does not get too large; Kearns and Mansour have shown that without merges the size of the resulting decision tree may be exponentially large [11]. The leaves to be merged are chosen so as to minimally increase the overall uncertainty of the partition. The condition in Line 7 ensures that we only perform merges whose accuracy of the partition corresponding to the branching program.

Conversely, merging two leaves should decrease the accuracy of our classifier. In the MM algorithm, the leaf to be split is chosen so as to maximally decrease the overall uncertainty of the partition. The condition in Line 7 ensures that we only perform merges whose accuracy of the partition corresponding to the branching program.

The MM Boosting algorithm

Input: desired final error level \(\epsilon \)
- access to \(\gamma \)-weak learner \(A \)
- access to noise-free example oracle \(EX(f, D) \)

Recall from the definitions: \(w_\ell = \Pr_D[x \text{ reaches leaf } \ell] \), \(p_\ell = \Pr_{D^\ell}[f(x) = 1 | x \text{ reaches } \ell] \), \(u_\ell = 2 \sqrt{p_\ell(1-p_\ell)} \). \(D|_\ell \) is the distribution obtained by conditioning on \(x \in \ell \), and \(\overline{D}|_\ell \) is the balanced version of \(D|_\ell \).

Algorithm:
1. Start with the trivial partition \(\Pi = \{X\} \), so the branching program is a single leaf.
2. Construct candidate splits: For each leaf \(\ell \in \Pi \), run the weak learning algorithm \(A \) on the balanced distribution on this leaf (i.e. oracle \(EX(f, \overline{D}|_\ell) \)) to obtain leaves \(\ell_0 \) and \(\ell_1 \).
3. Choose best split: Perform the split that reduces the overall uncertainty the most. Let \(\Delta_S \) be this reduction, so \(\Delta_S = \max_\ell \{w_\ell u_\ell - w_{\ell_0} u_{\ell_0} - w_{\ell_1} u_{\ell_1}\} \).
4. Stop if the error of the current branching program \(\leq \epsilon \).
5. Set \(\Delta_M := 0 \).
6. Consider candidate merges: Let \(\ell_a \neq \ell_b \) be the two leaves which, if merged into one leaf \(\ell \), would cause the minimum increase in uncertainty. Let \(z \) be this minimum value: \(z := \min_{\ell_a \neq \ell_b} \{w_{\ell_a} u_{\ell_a} + w_{\ell_b} u_{\ell_b} - w_\ell u_\ell\} \).
7. Merge if safe: If \(\Delta_M + z < \Delta_S/2 \) then
 - Merge leaves \(\ell_a, \ell_b \) in the branching program.
 - Set \(\Delta_M := \Delta_M + z \).
 - Go to step 6.
8. Otherwise, go to step 2.

3.3 Correctness and Efficiency of the MM Algorithm

We assume in this section that all probabilities are computed exactly by the MM algorithm. In Section 3.4 we show that our analysis still holds if probabilities are estimated by a polynomial amount of sampling. We also assume that the weak learning algorithm successfully finds a \(\left(\frac{1}{2} - \gamma\right) \)-accurate hypothesis at each invocation, i.e. we ignore the \(\delta \) probability of failure. This failure probability can be handled with standard techniques as discussed in Section 3.4.

The following lemma corresponds to Lemma 2 in [11]. We defer its proof to Appendix C.

Lemma 1. Suppose for distribution \(D \), hypothesis \(h \) satisfies \(\Pr_D[h(x) \neq f(x)] \leq \frac{1}{2} - \gamma \). Let \(\Pi \) be the partition induced by \(h \), i.e. \(\Pi = \{h^{-1}(0), h^{-1}(1)\} \). Then \(U(\Pi, D) \leq (1 - 2\gamma^2)U(\overline{D}) \).

This lemma implies that as long as the MM branching program does not have too many leaves, each split performed in line 3 gives a substantial decrease in the overall uncertainty:

Corollary 2. Suppose that the MM branching program’s partition \(\Pi \) has \(L \) leaves before executing step 3. Then after performing the split in step 3, the new partition \(\Pi' \) satisfies \(U(\Pi', D) \leq (1 - 2\gamma^2/L)U(\Pi, D) \).

Proof. Since \(\Pi \) has \(L \) leaves, some leaf \(\ell \) must have \(w_\ell u_\ell \geq \frac{1}{L} U(\Pi, D) \). If this leaf was chosen for the split then by Lemma 1 the uncertainty \(u_\ell \) would be multiplied by at most \(1 - 2\gamma^2 \), and hence the overall uncertainty \(U(\Pi, D) \) would be multiplied by at least \(1 - 2\gamma^2/L \). Since the actual split chosen is the one which reduces overall uncertainty the most, the corollary holds.

Now we show that if the branching program has many leaves, there are merges it can perform which do not increase uncertainty by too much. We prove the following lemma in Appendix C:

Lemma 3. Suppose that the MM branching program has uncertainty \(U = U(\Pi, D) \) and \(L \geq \frac{2L}{\gamma^2} \log \frac{1}{\epsilon} \) leaves. Then there are two leaves \(\ell_a \) and \(\ell_b \) whose merger would cause the uncertainty to increase by at most \(\gamma^2 U/L \), i.e. the resulting partition \(\Pi_{a,b} \) would satisfy \(U(\Pi_{a,b}, D) \leq (1 + \gamma^2/L)U \).

Now we can establish correctness of the MM boosting algorithm:

Theorem 4. After at most \(\frac{2U}{\gamma^2} \log \frac{2}{\epsilon} \log \frac{1}{\epsilon} \) splits and merges, the MM algorithm will output a hypothesis \(h \) such that \(\Pr_D[h(x) \neq f(x)] \leq \epsilon \).

Proof. First note that since the algorithm halts as soon as the error \(\Pr_D[h(x) \neq f(x)] \) is at most \(\epsilon \), throughout its execution we have \(U(\Pi, D) > 2\epsilon \) (recall that the uncertainty is always at least twice the error rate). We now show that the algorithm halts after the claimed number of steps.

We first note that the number of leaves in the branching program whenever Step 3 is executed is never greater than \(L = \frac{2L}{\gamma^2} \log \frac{1}{\epsilon} \). To see this, note that if there are \(L \) leaves and a split is performed, then by Corollary 2 the uncertainty \(U \) prior to the split decreases by at least \(2\gamma^2/L \). Lemma 3 then implies that there is some merge which would
increase the uncertainty by at most $\gamma^2 U/L$. Thus this merge will be performed in Step 7 and there will again be at most L leaves.

Thus by Corollary 2 and the condition in Step 7, the cumulative effect of a split and the (possibly empty) sequence of merges which follows it before the next split is to multiply the uncertainty by at most $(1 - \gamma^2/L)$. Since the uncertainty of the initial trivial partition is at most 1, we have that immediately before the $(s + 1)$st split takes place the uncertainty is at most $(1 - \gamma^2/L)^s \leq e^{-s\gamma^2/L}$. This is less than 2ϵ for $s = \frac{\log 2}{\gamma^2} \log \frac{1}{(1-2\epsilon)}$, so at most this many splits take place. The total number of merges is clearly at most the total number of splits, so the theorem is proved.

3.4 Approximating MM via sampling

So far we have discussed an idealized version of the MM algorithm in which all probabilities can be computed exactly. In [14] the MM algorithm was run on a fixed sample so this exact computation could in fact be done, but for our extension to the noisy setting it is more convenient to consider a “boosting-by-filtering” version where we do not use a fixed sample. Hence we cannot compute probabilities exactly but instead must use empirical estimates obtained by calling $EX(f, D)$.

Let L be as in Theorem 4. We first note that in Step 2 the algorithm need not run the weak learning algorithm on any leaf ℓ which has $w_{\ell} u_{\ell} \leq \frac{\epsilon}{2\gamma^2}$, since the total contribution of such leaves to the final uncertainty will be at most $\frac{\epsilon}{\gamma^2}$. By the analysis in Section 3.3, for each leaf ℓ it suffices to estimate the quantity $w_{\ell} u_{\ell}$ to additive accuracy $O(\frac{\epsilon}{\gamma^2})$. This accuracy ensures that, as in Theorem 4, before the $(s + 1)$st split the uncertainty is at most $(1 - \Omega(\gamma^2/L))^s$, and that our final estimate of the uncertainty $\sum_{\ell} w_{\ell} u_{\ell}$ will be off by at most $O(\epsilon)$.

How much time is required to estimate $w_{\ell} u_{\ell}$ to a given additive accuracy? We can rewrite $w_{\ell} u_{\ell}$ as $2\sqrt{a_{\ell} b_{\ell}}$ where $a_{\ell} = Pr_D[x \in \ell$ and $f(x) = 1]$ and $b_{\ell} = Pr_D[x \in \ell$ and $f(x) = 0]$. It is easily seen that these probabilities, and hence $w_{\ell} u_{\ell}$ as well, can be estimated to any inverse polynomial additive accuracy from a polynomial of calls to $EX(f, D)$. (Note that from the above discussion, we only need to simulate $EX(f, D[\epsilon])$ in Step 2 if $w_{\ell} u_{\ell}$ is $O(\epsilon/L)$, and if this is the case then we can simulate each call to $EX(f, D[\epsilon])$ in poly(L/ϵ) time with high probability.)

Finally, we note by a standard analysis the total failure probability of all estimates and calls to the weak learner can be bounded by δ at little cost. We thus have:

Theorem 5. For any $\epsilon, \delta > 0$, if the MM boosting algorithm is run using a γ-weak learner and a noise-free example oracle $EX(f, D)$, then it runs for poly($\frac{1}{\epsilon}, \frac{1}{\delta}$) time steps and with probability $1 - \delta$ outputs a hypothesis h satisfying $Pr_D[h(x) \neq f(x)] \leq \epsilon$.

4. MMM: Boosting to the Noise Rate

In this section we modify the MM algorithm to obtain the MMM algorithm which can achieve any accuracy up to the noise rate. The MMM algorithm is given access to a noise-tolerant γ-weak learning algorithm and to a noisy example oracle $EX(f, D, \eta)$ and is given a value $\tau > 0$; its goal is to output a hypothesis h such that $Pr_D[h(x) \neq f(x)] \leq \eta + \tau$. We analyze the algorithm in terms of the true probabilities $p_\ell = Pr_D[f(x) = 1|x \in \ell]$ instead of the “noisy” probabilities $\tilde{p}_\ell = Pr_D[\text{label} = 1|x \in \ell]$. Since $p_\ell = p(1 - \eta) + (1 - p)\eta$, we have

$$p_\ell = \frac{\tilde{p}_\ell - \eta}{1 - 2\eta}. \quad (1)$$

Thus the MMM algorithm can estimate p_ℓ to within an additive error of c by estimating \tilde{p}_ℓ to within an additive $\frac{c}{1 - 2\eta}$. (We assume throughout this section that the MMM algorithm knows the value of η; this assumption can be removed using standard techniques.)

The MMM algorithm differs from the MM algorithm in the following ways:

- In Step 2 the oracle $EX(f, D[\epsilon, \eta])$, i.e. a noisy balanced oracle, is used to run the weak learning algorithm, where $\eta' > \eta$ is some higher noise rate. (Later we will show how to efficiently simulate $EX(f, D, \eta')$ given access to $EX(f, D, \eta)$ and will show that η' is bounded away from $\frac{\epsilon}{2 \gamma^2}$; this ensures that at each stage the noise-tolerant weak learner can construct a weak hypothesis as required.)

- For $\tau > 0$ define L_τ to be the set of leaves ℓ such that $\min(p_\ell, 1 - p_\ell) \geq \eta' + \frac{\tau}{2}$. Each time a leaf ℓ is formed, if $\ell \notin L_\tau$ then we view ℓ as “dead” and never consider it again for splits or merges; so MMM only performs splits and merges on leaves in L_τ.

- In Step 4 the algorithm halts if $Pr_D[h(x) \neq f(x)] \leq \eta + \tau$.

We have the following analogue of Theorem 4:

Theorem 6. After $O(\frac{1}{\epsilon} \log \frac{1}{\delta} \log \frac{1}{\delta})$ splits and merges, the MMM algorithm will output a hypothesis h such that $Pr_D[h(x) \neq f(x)] \leq \eta + \tau$.

Proof. The error $Pr_D[h(x) \neq f(x)]$ has contributions from leaves in L_τ and not in L_τ. By definition of L_τ, the total contribution from leaves not in L_τ is at most $\eta + \tau/2$. Thus it suffices to bound the error contribution from leaves in L_τ by $\tau/2$. The analysis establishing this bound is very similar to that of Theorem 4 with $\tau/2$ in place of ϵ. Let $L_\tau = \sum_{\ell \in L_\tau} w_\ell 2\sqrt{p_\ell(1 - p_\ell)}$ be the total uncertainty of leaves in L_τ. As before, it suffices to reduce U_τ to τ. If we set $L_\tau = |L_\tau|$, then Corollary 2 now holds with $1 - 2\gamma^2/L_\tau$ in place of $1 - 2\gamma^2/L$, because the leaf of largest uncertainty in L_τ can be split and its uncertainty reduced by a factor of $1 - 2\gamma^2$. Lemma 3 applies to the subset of leaves L_τ and the uncertainty U_τ, so as before if there are many leaves in L_τ then merging some pair increases uncertainty by at most $1 + \frac{\gamma^2}{L_\tau}$. Thus, by the same argument as Theorem 4 the value U_τ will be reduced to τ in the same number of splits and merges as in Theorem 4 for $\epsilon = \tau/2$.

We now show how to simulate the noisy balanced example oracle $EX(f, D, \eta')$ using $EX(f, D, \eta)$. Assume without loss of generality that $p = Pr_D[f(x) = 1] \leq \frac{1}{2}$. From the discussion above we may assume that $p \geq \eta + \frac{\tau}{2}$. We filter examples from $EX(f, D, \eta)$ as follows:

- Labeled 0: Reject each example labeled 0 with probability $\frac{1 - p}{1 - p - \eta}$, otherwise keep it.
• **Labeled 1**: Flip to 0 with probability $\frac{(1-2p)(1-\eta)}{(1-\eta)p(p+\eta-2pn)}$, otherwise don’t flip the label.

The idea is that the rejection balances the distribution between true positive and true negative examples, but as a result of this balancing we now have asymmetric noise, i.e. the fraction of negative examples that are mislabelled is greater than the fraction of positive examples that are mislabelled.

To compensate, the flipping causes an equal fraction of positive and negative examples to be mislabelled, so we have true classification noise at a higher rate η'. We prove the following lemma in Appendix D.

Lemma 7. Given access to $EX(f, D, \eta)$, where $p = \Pr[f(x) = 1]$ and $\min\{p, 1 - p\} \geq \eta + \frac{\eta}{2}$, by making $\text{poly}(\frac{1}{\eta}, \log \frac{1}{\eta})$ calls to $EX(f, D, \eta)$ we can simulate a call to $EX(f, \bar{D}, \eta')$ with probability $1 - \delta$, where $\eta' \leq \frac{\eta}{2} - \frac{\eta}{4}$.

As in Section 3.4, to run MMM successfully we need only estimate each w_i, p_i, μ_i to inverse polynomial accuracy. A new issue which arises is that since p_i is an estimate instead of a precise value, the filtering procedure described above to sample from $EX(f, \bar{D}[\ell, \eta])$ will not perfectly simulate this oracle, i.e. the resulting distribution may not be perfectly balanced, and the noise rates on positive and negative examples may not be exactly equal. This is not a problem since the statistical difference between the true distribution and the distribution we simulate can be made arbitrarily (inverse polynomially) small so that any weak learner making polynomially many draws from our distribution cannot distinguish between it and the true distribution with high probability.

We thus have:

Theorem 8. For any $\tau, \delta > 0$, if the MMM boosting algorithm is run using a noise-tolerant γ-weak learner and a noisy source of examples, $EX(f, D, \eta)$, then it runs for $\text{poly}(\frac{1}{\gamma}, \frac{1}{\tau}, \frac{1}{\delta}, \frac{1}{\eta})$ time steps and with probability $1 - \delta$ outputs a hypothesis h satisfying $\Pr[h(x) \neq f(x)] \leq \eta + \tau$.

5. **BOOSTING PAST THE NOISE RATE IS HARD**

The basic approach here is that we suppose we have some distribution with a $p < \eta$ fraction of positive examples. Thus the all 0’s hypothesis is a good weak hypothesis to start. We will describe an “unboostable” weak learner with the following property: whenever possible, it outputs a trivial hypothesis that contains no useful information. In fact, the weak learner only does something interesting if its sample contains a large set of unique (occurring only once in the sample) examples that is nearly 1/2 positive. The motivation for considering this weak learner is that it is difficult for a booster to generate a set of examples that is nearly 1/2 positive, because a random example that is labeled positive is still more than 1/2 likely to be a true negative example, and thus intuitively it is hard for the booster to make the weak learner give any useful information.

Unfortunately, there is a difficulty in that the booster might conceivably be able to learn on its own, without even using the weak learner. Thus, in order to prove that it is hard to boost past the noise rate, we somehow need to ensure that the booster must indeed use the weak learner.

Our approach takes advantage of the fact that since a boosting algorithm must work for any concept class, the booster does not “know” the concept class on which it is being run. We will consider concept classes each containing a single function; for each such concept class there is a corresponding weak learner which knows this function (since the weak learner may be tailored for the particular concept class being learned), but the booster does not. The overall collection of functions considered will be a pseudo-random family of functions, so intuitively the booster should be unable to learn without using the weak learner.

Using this approach, we prove the following:

Theorem 9. If one-way functions exist then black-box noise-tolerant boosters do not exist.

In fact we show (Theorem 11) that for any $\tau > 0$ it is computationally hard to boost to accuracy $\eta - \tau$ in the presence of classification noise at rate η.

We give some more intuition for our construction. The unboostable weak learning algorithm is as follows. Consider a target function f which has only an $\eta - \tau$ fraction of inputs x satisfying $f(x) = 1$. Then under the uniform distribution a weak learner can output the constant-0 hypothesis; in fact the only distributions for which a weak learner must output some other hypothesis are nonuniform ones which put weight at least 1/2 on the small set of positive examples. Thus the only way a boosting algorithm can get anything useful out of such a weak learner is to simulate a distribution which puts weight at least 1/2 on positive examples, and as argued earlier this seems difficult to do since the noise rate is η.

In fact there is a hole in this argument. For example, a boosting algorithm could simulate a distribution which puts weight 1/2 on each of two examples. If the booster is lucky and one of the examples is positive, then the resulting distribution is balanced. Thus, in order to design a maximally unhelpful weak learner which thwarts this boosting strategy, we have our weak learner make a lookup table of examples which it sees many times in its sample. For each example in the table, the weak learner’s output is the majority vote label from its occurrences in the sample; on all other examples the weak learner outputs 0. Intuitively, this hypothesis is sufficient to satisfy the weak learning criterion unless the data set for the weak learner contains a large number of distinct instances many of which are true positive examples; only if this is the case does the weak learner give up some useful information.

Now we give the actual construction. Let $0 < p < 1$. Let \{ $f_s : \{0, 1\}^s \rightarrow \{0, 1\}$ \}_{s \in \{0, 1\}^s}$ be a p-biased pseudorandom function family, i.e. a family of functions which are indistinguishable from truly random p-biased functions. For each $s \in \{0, 1\}^n$ we define a concept class C_s as follows: each class C_s contains exactly one concept, which is f_s.

An alternative approach would instead be to assume that the boosting algorithm cannot use any information about the particulars of the learning problem. Namely, we could assume that the boosting algorithm cannot do anything with examples other than identify whether two are the same or different, examine their labels, and apply the weak hypotheses to them. Under this assumption almost any concept class can be shown to have an unboostable weak learner. In our cryptographic construction described below, we bypass this strong assumption by instead assuming that one-way functions exist.
Fix $0 < \gamma < \frac{1}{2}$. We now define an algorithm A_γ for each concept class C_γ. In the following description the values m_1, k, m_2, are polynomials in n, $\frac{1}{\gamma}, \frac{1}{1-2\eta}, \frac{1}{3}$ whose values will be given later.

Algorithm A_γ:

1. Draw a sequence S_1 of m_1 examples. (Note that a given instance $x \in \{0, 1\}^n$ may occur more than once in S_1.)
2. Let T be the set of instances $x \in \{0, 1\}^n$ which occur at least k times in S_1. For each $x \in T$ let $b_x \in \{0, 1\}$ be the majority vote label of all pairs $\langle x, y \rangle$ in S_1 which have x as the instance.
3. Define h_1 to be the hypothesis $h_1(x) \equiv \text{"if } x \in T \text{ then output } b_x \text{ else output 0."}$
4. Draw a sequence S_2 of m_2 examples. Abort and output the hypothesis h_1 if there is any instance x which occurs more than once in S_2 but is not in T.
5. Let N be the number of occurrences in S_2 of instances x such that $x \notin T$ and $f_s(x) = 1$. If $N \geq \left(\frac{3}{4} - \frac{3\gamma}{8}\right)m_2$ then output f_s, and otherwise output h_1.

Let $m_1 = \Theta\left(\frac{n}{\gamma^2}\right)$, and $m_2 = \Theta\left(\frac{n^2}{\gamma}\right)$.

Theorem 11 gives a lower bound of η on the accuracy level ϵ which any polynomial time black box boosting algorithm can achieve. In Section 4 we analyzed the MMM boosting algorithm (which is black-box) and showed that it matches this lower bound: given any $\epsilon = \eta + \tau$ where $\tau > 0$, the MMM algorithm achieves ϵ-accuracy in the presence of classification noise at rate η in time polynomial in $\frac{1}{\gamma}$ (and the other relevant parameters). Thus the bound of Theorem 11 (and of the MMM algorithm) is the best possible.

6. Boosting an OKAY Learner to Arbitrary Accuracy

In this section we present an alternate notion of weak learning, called okay learning, and show that the MMM algorithm can be used to efficiently boost any okay learner to arbitrary accuracy in the presence of noise.

To motivate our definition of okay learning, we note that the standard definition of weak learning has some counter-intuitive consequences. Consider a scenario in which the target concept f is the Boolean conjunction $x_1 \land x_2 \land \neg x_3$ and our hypothesis $h(x)$ is $\neg x_1 \land \neg x_2 \land \neg x_3$. Under the uniform distribution we have $\Pr[f(x) \neq h(x)] = 1/4$ and hence h is a valid output for a standard weak learner. This is slightly odd since in fact $f(x)$ and $h(x)$ are negatively correlated in a statistical sense, so in some sense a learner which output h as a weak hypothesis for f would be a disappointment.

Recall that the balanced distribution D is obtained by reweighting D' so that $Pr_D[\langle x, y \rangle = 1] = Pr_{D'}[\langle x, y \rangle = 1] = 1/2$. We define the balanced error of an hypothesis h to be

$$\Pr_{D'}[h(x) \neq f(x)] = \frac{1}{2} \Pr_{D'}[f(x) \neq h(x) \mid f(x) = 1] + \frac{1}{2} \Pr_{D'}[f(x) \neq h(x) \mid f(x) = 0].$$

Similarly, a noise tolerant γ-okay learner is an algorithm which, given access to $EX(f, D', \eta)$, outputs a hypothesis h such that $\Pr_{D'}[h(x) \neq f(x)] \leq \frac{1}{2} - \gamma$. The running time is allowed to be polynomial in $n, \frac{1}{\gamma}, \frac{1}{1-2\eta}, \frac{1}{3}$. To prove that $Pr_D[f(x) = 1] > Pr_{D'}[f(x) = 1]$.

While this definition may seem artificially chosen to make our guarantees work, it is actually fairly natural. One observation is that having balanced error $\leq \gamma$ is equivalent to

$$\text{Cov}(f, h) \geq 2\gamma \text{Cov}(f, f),$$

where $\text{Cov}(f, h) = E_D[f(h(x)) - E_D[f(x)]E_D[h(x)]]$ is the covariance of f and h. So it is a guarantee that the covariance is positive (equivalently correlation is positive). Another consequence is that $\Pr_{D'}[h(x) = 1 \mid f(x) = 1] > \Pr_{D'}[h(x) = 1]$. In the absence of noise, an okay learning algorithm can be converted to a weak learning algorithm and vice versa. In the presence of noise, an okay learner can be converted to a weak learner.

We can now state our main result:

Theorem 11. Let $\{f_s\}$ be a p-biased pseudorandom function family. Then, for random s, no black-box boosting algorithm B, given access to $EX(f_s, U, \eta)$ and A_γ, can output a hypothesis whose error is at most $\eta - \gamma$. More precisely: for all polynomials Q and all polynomial time algorithms B, for n sufficiently large,$$
Pr_{s \in U} \left[\Pr_{x \in U} [h(x) \neq f_s(x)] \leq \eta - \gamma \right] < \frac{1}{Q(n)}$$

where h is the hypothesis output by B.

Due to space limitations we do not prove Theorem 11 in this extended abstract; a very brief sketch is presented in Appendix B. The idea of the proof is that B will only succeed if A_γ outputs f_s at some invocation. As above, this can only happen if S_2 contains at least a $\left(\frac{4}{3} - \frac{3\gamma}{8}\right)$ fraction of distinct positive examples. Since f_s is a p-biased pseudorandom function and the noise rate η is sufficiently larger than p, such a set S_2 is difficult to construct.

Theorem 12. For any $\epsilon, \delta > 0$, if the above boosting algorithm is run using a noise-tolerant γ-okay learner and a noisy example oracle $EX(f, D, \eta)$, then it runs for at most $\text{poly}(\frac{1}{\epsilon}, \frac{1}{\delta}, \frac{1}{\gamma}, \frac{1}{\eta})$ time steps and with probability $1 - \delta$ outputs a hypothesis h satisfying $\text{Pr}_D[h(x) \neq f(x)] \leq \epsilon$.

Proof. The analysis for boosting a noise-tolerant γ-okay learner is identical to the original noise-free MM analysis. Each hypothesis generated by our noise-tolerant γ-okay learner using an oracle $EX(f, D, \eta)$ satisfies $\text{Pr}_D[h(x) \neq f(x)] \leq \frac{1}{\gamma} - \gamma$ which is exactly the condition that was used in our noise-free analysis.

7. CONCLUSIONS

We have given matching upper and lower bounds for boosting in the presence of classification noise. Intuitively, the key to our positive results for the MM algorithm is that changing the label of any example does not change its weight by very much. This property also holds for the earlier decision tree boosting algorithm analyzed by Kearns and Mansour [11], but as mentioned earlier the size of the decision tree can be exponential in $\frac{1}{\gamma}$. While the MM algorithm gives a substantial improvement, the $O(\frac{1}{\gamma})$ hypothesis size of the MM algorithm is still larger than the $O(\frac{1}{\gamma})$ which other boosting algorithms such as AdaBoost achieve.

Since boosting algorithms are widely used in practice, and real data is frequently noisy, it is of considerable interest to develop practical boosting algorithms which perform well on noisy data. In a companion paper [9] we have developed and analyzed an improved version of the MM algorithm which has a $O(\frac{1}{\gamma})$ dependence.

Finally, we have defined a noise-tolerant okay learner which can be boosted to arbitrary accuracy in the presence of noise. We hope this will be an aid to designing provably noise-tolerant strong learners, just as the concept of boosting weak learning makes it easier to design provably strong learners.

7.1 Acknowledgments

We would like to thank the anonymous referees and Daphne Koller for helpful comments.

8. REFERENCES

APPENDIX

A. PROOF OF CLAIM 10

The values m_2, m_1 and k are polynomials in n, $\frac{1}{\gamma}$, $\frac{1}{1 - 2\eta} - \frac{1}{\gamma}$ which will be defined later.

We first observe that A_s runs in polynomial time. To see this, note that A_s can have f_s “hard-wired” into it, and f_s is efficiently evaluable, so the number N in Step 5 can be computed exactly in polynomial time.

It remains to show that for any distribution D and any $0 < \eta < \frac{1}{2}$, if A_s is run using $EX(f_s, D, \eta)$ as the oracle, then with probability at least $1 - \delta$, A_s outputs a hypothesis h such that $\text{Pr}_D[h(x) \neq f_s(x)] \leq \frac{1}{\gamma} - \gamma$. We use the following two lemmas which we prove later:

Lemma 13. A_s aborts in line 4 with probability less than $\frac{1}{4}$.

Lemma 14. With probability at least $1 - \frac{4}{\delta}$, we have $b_r = f_s(x)$ for every $x \in T$.

We will analyze an alternate algorithm A_s' in which the test in line 4 is not performed and b_r is defined to equal $f_s(x)$ for every $x \in T$. By Lemmas 13 and 14 it suffices to show that $\text{Pr}_D[h'(x) \neq f(x)] \leq \frac{1}{\gamma} - \gamma$ with probability at least $1 - \frac{4}{\delta}$, where h' is the hypothesis output by A_s'. Consequently, it suffices to show that if $\text{Pr}_D[h(x) \neq f(x)] > \frac{1}{\gamma} - \gamma$ then A_s' outputs f_s with probability $1 - \frac{4}{\delta}$.
To see that this condition holds, note that in line 5 of A', we have that S_2 is a set of independent random draws from $EX(f_s, D, \eta)$. (This is not true in line 5 of A, since in A, we have conditioned on S containing no repeated instances which are not in T.) Thus in A', the value \tilde{N} is an empirical estimate of $Pr_D[x \notin T \text{ and } f_s(x) = 1]$ obtained from m_2 independent samples. As long as $m_2 \geq 2 \log \frac{3}{\gamma}^2$, standard Chernoff bounds tell us that with probability at least $1 - \frac{1}{8}$ the fraction \tilde{N}/m_2 differs from $Pr_D[x \notin T \text{ and } f_s(x) = 1]$ by at most $\frac{1}{8}$. Hence if $Pr_D[x \notin T \text{ and } f_s(x) = 1]$ is greater than $\frac{1}{8}$ we output f_s with probability at least $1 - \frac{1}{8}$. Since in A', hypothesis h_1 is guaranteed to be right on $x \in T$, we have $Pr[h_1(x) \neq f(x)] = Pr_D[x \notin T \text{ and } f(x) = 1]$ and the claim is proved. (Claim 10)

Proof of Lemma 13: For $1 \leq i \leq j \leq m_2$, call positions (i, j) in S_2 a violator if the corresponding elements are equal, i.e. $x_i = x_j$, and the number of occurrences of x_i in S_1 is $< k$. The algorithm aborts in Step 4 only if there is some violator (i, j). We now upper bound the probability that any particular (i, j) is a violator.

Fix (i, j) and also fix x_i. We may imagine that S_1 and x_j were drawn in the following way: First a multiset S' of $m_1 + 1$ labeled examples was drawn from the example oracle, and then a random element of S' was chosen to be x_i and the rest were chosen for S_1. This is equivalent to drawing x_i and all examples in S_1 independently from the example oracle.

Now suppose that there were t occurrences of x_i in S'. If $t > k$, then there is no way that (i, j) can be a violator because there will always be at least k occurrences of x_i in S_1. On the other hand, the probability that that $x_j = x_i$ is exactly $t/(m_1 + 1)$. So if $t \leq k$, the probability that (i, j) is a violator is $t/(m_1 + 1) < k/m_1$.

By the union bound, the probability that any (i, j) is a violator is at most m_2^2k/m_1. This is at most $\delta/3$ provided that $m_1 \geq 3m_2^2k/\delta$. (Lemma 13)

Proof of Lemma 14: Fix any $x \in T$, so x occurs $m \geq k$ times in S_1. The probability that the majority vote of the labels corresponding to instances of $x \in S_1$ is incorrect is precisely the probability that a coin which has probability $\eta < \frac{1}{2}$ of coming up HEADS comes up HEADS more often than TAILS in $m \geq k$ tosses. Using a standard Chernoff bound, as long as $k \geq 2 \log \frac{3}{\gamma^2}/(1 - 2\eta)^2$ this probability is at most $\frac{1}{3m_1}$, so the probability that $b_x \neq f_s(x)$ for any fixed $x \in T$ is at most $\frac{3}{3m_1}$. Since T contains at most m_1 instances, a union bound finishes the proof. (Lemma 14)

So we have seen that the above three lemmas hold as long as $m_2 \geq 2 \log \frac{3}{\gamma^2}, m_1 \geq 3m_2^2k/\delta$, and $k \geq 2 \log \frac{3}{\gamma^2}/(1 - 2\eta)^2$, which is easily achieved for polynomial sized m_1, m_2, and k.

B. PROOF SKETCH OF THEOREM 11

First some terminology: we say that the set S_2 is foolproof if $N \geq \left(\frac{3}{2} - \frac{3\eta}{4}\right)m_2$ and otherwise we say that S_2 is fooleable. We write $B^{D, A}$ to indicate that B has access to the example oracle O and black-box access to the weak learning algorithm A. We say that $B^{D, A}$ hits f_s if at some point during its execution B invokes A, and A draws a foolproof sequence S_2 in Step 4 (so if A_s does not abort in Step 4, it outputs hypothesis f_s in Step 5). We say that a hypothesis h is good if $Pr_{x \in T}[h(x) \neq f_s(x)] \leq \eta - \tau$.

Theorem 11 follows immediately from the following two lemmas. Here and subsequently we write “p.p.t.” as an abbreviation for “probabilistic polynomial time.”

Lemma 15. For all polynomials Q, all p.p.t. algorithms B, and all sufficiently large n,

$$Pr[B^{E_X(f_s, D, \eta), A_s} \text{ hits } f_s \leq \frac{1}{Q(n)}].$$

Lemma 16. For all polynomials Q, all p.p.t. algorithms B, and all sufficiently large n,

$$Pr[B^{E_X(f_s, D, \eta), A_s} \text{ outputs a good } h | \text{ B}^{E_X(f_s, D, \eta), A_s} \text{ misses } f_s \leq \frac{1}{Q(n)}].$$

The proof of these lemmas is omitted due to space limitations.

C. REDUCING UNCERTAINTY

Proof of Lemma 1. Without loss of generality we write

$$P_{\tilde{D}}[f(x) = 1] = p$$

$$P_{\tilde{D}}[h(x) = 1 \land f(x) = 1] = pa$$

$$P_{\tilde{D}}[h(x) = 0 \land f(x) = 1] = q(1 - a)$$

$$P_{\tilde{D}}[f(x) = 0] = q = (1 - p)$$

$$P_{\tilde{D}}[h(x) = 1 \land f(x) = 0] = qb$$

$$P_{\tilde{D}}[h(x) = 0 \land f(x) = 0] = q(1 - b)$$

so the error of h under $D_{[f(x) = 1]} = 1 - a$ and under $D_{[f(x) = 0]} = b$. Since the error under the balanced distribution is at most $\frac{1}{2} - \gamma$, we have $\frac{1}{2} - \gamma \leq \frac{a + b}{2} \leq 2\gamma$. It is easy to see that $U(D) = 2\sqrt{ab}$ and that

$$U(\Pi, D) = 2(pa + qb)\sqrt{\frac{paqb}{(pa + qb)^2}} +$$

$$2(p(1 - a) + q(1 - b))\sqrt{\frac{p(1 - a)q(1 - b)}{(p(1 - a) + q(1 - b))^2}}$$

$$= 2\sqrt{paqb} + 2\sqrt{p(1 - a)q(1 - b)}$$

$$= U(D) \left(\sqrt{a} + \sqrt{(1 - a)(1 - b)}\right).$$

To finish the proof, we observe that

$$\sqrt{a} + \sqrt{(1 - a)(1 - b)}$$

$$= \frac{1}{2}\sqrt{(a + b)^2 - (a - b)^2} + \frac{1}{2}\sqrt{(1 - a + 1 - b)^2 - (a - b)^2}$$

$$\leq \frac{1}{2}\sqrt{(a + b)^2 - 4\gamma^2} + \frac{1}{2}\sqrt{2 - (a + b)^2 - 4\gamma^2}$$

$$\leq \sqrt{1 - 4\gamma^2}$$

$$\leq 1 - 2\gamma^2$$

where the second inequality uses the concavity of the function $\sqrt{x^2 - \gamma}$. □
Proof of Lemma 3. We may assume without loss of generality that there are at least \(L/2 \) leaves \(\ell \) such that \(p_\ell \leq \frac{1}{2} \). Consider what would happen if we were to merge two such leaves \(\ell_1 \) and \(\ell_2 \) which have associated weights \(w_1 \) and \(w_2 \) and uncertainties \(u_1 = U(D(\ell_1)) \leq u_2 = U(D(\ell_2)) \). It is easily verified that this would give a leaf \(\ell \) with weight \(w = w_1 + w_2 \) and uncertainty \(u = U(D(\ell)) \) satisfying \(u_1 \leq u \leq u_2 \) (this uses the fact that \(p_1, p_2 \leq \frac{1}{2} \)). Consequently, the increase in overall uncertainty resulting from such a merge would be

\[
wu - w_1u_1 - w_2u_2 \leq w_1(u - u_1) = w_1u_1\left(\frac{u}{u_1} - 1\right). \tag{3}
\]

Now we imagine putting the uncertainties of these leaves into disjoint buckets. Consider the \(L/8 \) intervals

\[
\left[1 - \left(\frac{\gamma^2}{9}\right)^i, 1 - \left(\frac{\gamma^2}{9}\right)^{i-1} \right]
\]

for \(i = 1, 2, \ldots, L/8 \). (These buckets were used explicitly as part of the algorithm in [14] but our presentation uses them only here in the analysis.) Since \((1 - x)^{1/e} \leq 1/e \) for \(x \in (0, 1] \), we have

\[
\left(1 - \frac{\gamma^2}{9}\right)^{L/8} \leq \left(1 - \frac{\gamma^2}{9}\right)^{\log \frac{\gamma^2}{\gamma^2U}} \leq \gamma^2U \frac{1}{4}
\]

and hence these buckets cover at least the interval \([\gamma^2U/4, 1]\).

Suppose first that at least \(L/4 \) of the \(L/2 \) leaves with \(p_\ell \leq \frac{1}{2} \) have uncertainty \(u_\ell \leq \gamma^2U/4 \). If this is the case then there must be some such leaf with with weight \(w \leq 4/L \). By Equation (3), merging this leaf with any other leaf whose uncertainty is at most \(\gamma^2U/4 \) results in an increase in uncertainty of at most \(\gamma^2U/4 \leq \gamma^2U/\ell \), which suffices to establish the lemma in this case.

So now suppose that at least \(L/4 \) of the \(L/2 \) leaves with \(p_\ell \leq \frac{1}{2} \) have uncertainty \(u_\ell > \gamma^2U/4 \). By the pigeon-hole principle, among these \(L/4 \) values of \(u_\ell \) at least \(L/8 \) fall into buckets in which they are not the unique largest value assigned to that bucket. Among these \(L/8 \) values, let \(\ell' \) be the leaf with lowest \(w_\ell u_\ell \). Since the total uncertainty is \(U \), we must have \(w_\ell u_\ell \leq 8U/L \). Let \(\ell'' \) be a leaf which falls into the same bucket and satisfies

\[
u_{\ell''} \leq u_{\ell''} \leq u_{\ell'}/(1 - \gamma^2/9).
\]

From Equation (3), the increase in uncertainty which would result from merging \(\ell' \) and \(\ell'' \) is at most

\[
\frac{8U}{L} \left(\frac{1}{(1 - \gamma^2/9)} - 1\right) = \frac{8U}{L} \cdot \frac{\gamma^2}{9 - \gamma^2} \leq U\frac{\gamma^2}{L}
\]

so the lemma is proved. \(\square \)

D. Proof of Lemma 7

Recall that we have access to a noisy example oracle \(EX(f, D, \eta) \) where \(D \) is some distribution, \(0 < \eta < \frac{1}{2} \) is the noise rate, and \(p = \Pr_D[f(x) = 1] \) satisfies \(\eta + \frac{\tau}{\eta} \leq p \leq \frac{1}{2} \) for some \(\tau > 0 \). We show how this oracle can be used to simulate the oracle \(EX(f, D, \eta') \). Here \(D \) is the balanced version of distribution \(D \) and \(0 < \eta' < \frac{1}{2} \) is a new noise rate.

We flip examples from \(EX(f, D, \eta) \). For each example,

Labeled 0: Reject with probability \(p_r = \frac{1 - 2\eta}{1 - p - \eta} \), keep with probability \(1 - p_r = \frac{p - \eta}{1 - p - \eta} \).

Labeled 1: Flip its label with probability \(p_f = \frac{(1 - 2\eta)(1 - \eta)}{(1 - p - \eta)(p + \eta - 2p\eta)} \), don’t flip with probability \(1 - p_f \).

We will show that this results in \(EX(f, D, \eta') \) where \(\eta' \leq \frac{\tau}{2} - \frac{\eta}{2} \). In order to verify this, it suffices to check the following two things. First, after step 1,

\[
\Pr[f(x) = 0 \land \text{not rejected} \land \text{label} = 1] = \eta' \Pr[f(x) = 0 \land \text{not rejected}]
\]

and

\[
\Pr[f(x) = 1 \land \text{not rejected} \land \text{label} = 1] = \eta' \Pr[f(x) = 1 \land \text{not rejected}].
\]

In the above, label 1 is the possibly flipped label after step 2. The first LHS can be written as \((1 - p)(1 - \eta)/(1 - p - \eta)\) because the example was negative with probability \(1 - p \) and either the example was not noisy (probability \(1 - \eta \)), thus labeled 0, and kept (probability \(1 - p_n \)), or it was noisy (probability \(\eta \)) and was kept for sure. Similarly, the RHS above can be written as \(p(\eta(1 - p_n) + 1 - \eta) \). One can check that the above two quantities are both \((1 - 2\eta)(1 - \eta)/(1 - p - \eta)\).

Second, we need to check that the noise rates on both positive and negative examples are \(\eta' \). In other words, we need to verify that, after step 2,

\[
\Pr[f(x) = 0 \land \text{not rejected} \land \text{label} = 1] = \eta' \Pr[f(x) = 0 \land \text{not rejected}]
\]

and

\[
\Pr[f(x) = 1 \land \text{not rejected} \land \text{label} = 0] = \eta' \Pr[f(x) = 1 \land \text{not rejected}].
\]

In the above, label 1 is the possibly flipped label after step 2. The first LHS can be written as \((1 - p)(1 - \eta)\) because the example must have been a negative example that was noisy and not flipped. Similarly, the second LHS above is \(p(\eta(1 - p_n)) \). A tedious but straightforward verification shows that these two quantities are both \(\frac{\eta(1 - p)}{p + \eta - 2p\eta} \).

Based on our earlier calculation that

\[
\Pr[f(x) = 0 \land \text{not rejected}] = \frac{(1 - 2\eta)p(1 - p)}{1 - p - \eta},
\]

the effective noise rate is

\[
\eta' = \frac{\eta(1 - p)}{p + \eta - 2p\eta} = \frac{1}{2} - \frac{p - \eta}{2(p + \eta - 2p\eta)}.
\]

It is easy to verify that \(\eta' \leq \frac{\tau}{2} - \frac{\eta}{2} \) because \(p - \eta \geq \frac{\tau}{2} \) and \(p + \eta - 2p\eta < 1 \), so the lemma is proved. \(\square \)