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ABSTRACT
We give new upper and lower bounds on the degree of real

multivariate polynomials whi
h sign-represent Boolean fun
-

tions. Our upper bounds for Boolean formulas yield the �rst

known subexponential time learning algorithms for formu-

las of super
onstant depth. Our lower bounds for 
onstant-

depth 
ir
uits and interse
tions of halfspa
es are the �rst

new degree lower bounds sin
e 1968, improving results of

Minsky and Papert. The lower bounds are proved 
onstru
-

tively; we give expli
it dual solutions to the ne
essary linear

programs.
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1. INTRODUCTION
Let f be a Boolean fun
tion f : f�1; 1g

n

! f�1; 1g and

let p be a degree d multilinear polynomial in n variables

with real 
oeÆ
ients. If the sign of p(x) equals f(x) for

every x 2 f�1; 1g

n

; then we say that f is 
omputed by a

polynomial threshold fun
tion of degree d; equivalently we

say that p sign-represents f:

�
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Polynomial threshold fun
tions are an interesting and nat-

ural representation for Boolean fun
tions whi
h have many

appli
ations in 
omplexity theory and learning theory, see,

e.g., [2, 5, 6, 4, 22, 14, 13℄. Positive results showing that

fun
tions have low degree polynomial threshold fun
tions


an be used to obtain eÆ
ient learning algorithms via linear

programming; see, e.g., [14, 13℄. Negative results showing

that a fun
tion requires threshold polynomials of large de-

gree and/or large 
oeÆ
ients 
an be used to obtain ora
les

separating PP from smaller 
lasses; see, e.g., [5, 25℄.

In this paper we give new upper and lower bounds on

polynomial threshold fun
tion degree for several interesting

and natural 
lasses of fun
tions whi
h have been previously


onsidered (but not resolved) in the literature. It seems

likely that both the upper and lower bound te
hniques we

use will prove useful for broader 
lasses of fun
tions.

1.1 Previous work
The study of polynomial threshold fun
tions began with

Minsky and Papert in their 1968 book on per
eptrons [18℄.

Minsky and Papert gave three lower bounds on the degree

of polynomial threshold fun
tions:

� Any polynomial threshold fun
tion whi
h 
omputes

parity on n variables must have degree at least n: This

result has sin
e been reproved many times, see, e.g.,

[2, 7℄.

� Any polynomial threshold fun
tion whi
h 
omputes a

parti
ular linear-size CNF formula, the \one-in-a-box"

fun
tion on n variables, must have degree 
(n

1=3

): By

Boolean duality this lower bound also holds for a 
or-

responding DNF formula.

� Any polynomial threshold fun
tion whi
h 
omputes

the AND of two majorities ea
h on n variables must

have degree !(1):

Despite the fa
t that many resear
hers in learning the-

ory and 
omplexity theory have studied polynomial thresh-

old fun
tions, relatively little progress has been made on

improving these lower bounds sin
e 1968. In parti
ular,

Veresh
hagin [25℄ has a lower bound for a promise-problem

extension of one-in-a-box and Beigel [5℄ has a lower bound

for a 
ertain linear threshold fun
tion; however, both of

these show degree lower bounds for polynomial threshold

fun
tions only under the added assumption that the poly-

nomials have small integer 
oeÆ
ients. (Krause and Pudlak



[15℄ have given lower bounds on the number of nonzero 
oef-

�
ients whi
h must be present in any polynomial threshold

fun
tion for a parti
ular depth-3 Boolean 
ir
uit, but their

lower bounds are not strong enough to imply new lower

bounds on polynomial threshold fun
tion degree.) More

progress has been made on upper bounds; Beigel, Reingold,

and Spielman [6℄ proved that there is a polynomial threshold

fun
tion of degree O(log n) whi
h 
omputes the AND of two

n-bit majorities. More re
ently, Klivans and Servedio [14℄

showed that any polynomial-size DNF formula (equivalently,

CNF formula) has a polynomial threshold fun
tion of de-

gree O(n

1=3

log n), and Klivans et al. [13℄ showed that any

Boolean fun
tion of a polylogarithmi
 number of halfspa
es

with quasipolynomially-bounded weights has a polynomial

threshold fun
tion of polylogarithmi
 degree.

1.2 Our results
We give new upper and lower bounds on polynomial thresh-

old fun
tions for several interesting and natural 
lasses of

fun
tions. Our main results are:

� We prove that any Boolean formula of depth d and

size s is 
omputed by a polynomial threshold fun
-

tion of degree

p

s(log s)

O(d)

: This gives us the �rst

known upper bound for Boolean formulas of super-


onstant depth. In parti
ular, any Boolean formula

of size o(n

2

) and depth o(

log n

log log n

) has a polynomial

threshold of nontrivial (sublinear) degree. We use our

upper bound to provide the �rst known subexponential

learning algorithm for su
h formulas. Note that sin
e

parity on

p

s variables 
an be 
omputed by a formula

of size s; the best possible degree upper bound whi
h

depends only on s is

p

s:

� We give an 
(

log n

log logn

) lower bound on the degree of

any polynomial threshold fun
tion whi
h 
omputes the

AND of two n-bit majorities. Equivalently, this lower

bound holds for the degree of any bivariate real poly-

nomial p(x; y) whi
h is positive on the latti
e points

in the upper-right quadrant with 
oordinates bounded

by n, and is negative on the latti
e points in the other

three quadrants with 
oordinates bounded in magni-

tude by n. This result (and our next) is the �rst new

un
onditional lower bound for polynomial threshold

degree sin
e 1968; it improves on Minsky and Papert's

lower bound of !(1) and nearly mat
hes the O(log n)

upper bound of Beigel, Reingold and Spielman.

� We prove an \XOR lemma" for polynomial thresh-

old fun
tion degree and use this lemma to obtain an


(n

1=3

log

2d=3

n) lower bound on the degree of an ex-

pli
it Boolean 
ir
uit of polynomial size and depth

d + 2: This is the �rst improvement on Minsky and

Papert's 
(n

1=3

) lower bound for any 
onstant-depth


ir
uit.

1.3 Our techniques
Perhaps surprisingly, our lower bounds are a
hieved 
on-

stru
tively. The question of whether a given fun
tion has

a polynomial threshold fun
tion of degree d 
an be formu-

lated as the feasibility question for a 
ertain linear program.

By duality, we 
an show the linear program is infeasible |

and hen
e the fun
tion has polynomial threshold degree ex-


eeding d | by showing that the dual linear program is fea-

sible. We 
onstru
t expli
it dual solutions. (Interestingly,

Veres
hagin's lower bound [25℄ involves showing that a 
er-

tain linear program is feasible by expli
itly demonstrating

the infeasibility of the dual.)

Our upper bounds build on ideas from [14, 13℄ and use

tools from real approximation theory.

1.4 Organization
Se
tion 2 gives preliminaries on polynomial threshold fun
-

tions and des
ribes the duality te
hnique we use for our

lower bounds. In Se
tion 3 we give our upper bounds for

Boolean formulas and the appli
ation to learning. In Se
-

tion 4 we prove our XOR lemma for polynomial threshold

fun
tions using the duality te
hnique, and use this lemma

to obtain new lower bounds for 
onstant depth 
ir
uits. In

Se
tion 5 we apply the lower bound te
hnique to prove our


(

log n

log log n

) lower bound for the AND of two majorities. Fi-

nally, in Se
tion 6 we make some 
onje
tures and sket
h

possible future appli
ations of our upper and lower bound

te
hniques.

2. PRELIMINARIES
We make the following standard de�nitions of sign-

representing polynomials (see [2℄). Let f : f�1; 1g

n

!

f�1; 1g be a Boolean fun
tion. Let p : f�1; 1g

n

! R be

a multilinear polynomial of degree at most n whi
h is not

identi
ally 0. De�ne the support of p to be the set of mono-

mials S � 2

[n℄

on whi
h p has nonzero 
oeÆ
ients.

Definition 1. We say that p weakly (sign-)represents

f if f(x) = sgn(p(x)) for all x su
h that p(x) 6= 0. If

p(x) 6= 0 for every x 2 f�1; 1g we say that p strongly (sign-)

represents (or simply (sign-)represents) f . We let thr(f)

denote the minimum degree of a polynomial strongly rep-

resenting f , and thr

w

(f) denote the minimum degree of a

polynomial weakly representing f .

On o

asion we will view the domain of f as f0; 1g

n

in-

stead of f�1; 1g

n

; it is easy to see that this does not 
hange

the degree of any sign-representing polynomial.

There is a sense in whi
h sign-representing polynomials

are equivalent to distributions over f�1; 1g

n

.

Definition 2. We 
all a map w : f�1; 1g

n

! R

�0

whi
h

is not identi
ally 0 a distribution. The set of points fx :

w(x) 6= 0g is 
alled the support of w. If the support of w is

all of f�1; 1g

n

we 
all w a total distribution. If

P

x2f�1;1g

n

w(x) = 1 we 
all w a probability distribution.

If w is a map w : f�1; 1g

n

! R, not identi
ally 0, whi
h

takes on at least one negative value, we 
all w an improper

distribution. Given a monomial x

S

, S � [n℄, we say that

the 
orrelation of x

S

with f under w is E

w

[f(x)x

S

℄ :=

P

x2f�1;1g

n

f(x)x

S

w(x). (Here x

S

denotes

Q

i2S

x

i

.)

Noti
e that multilinear polynomials of degree at most n

are given by ve
tors of 2

n

real 
oeÆ
ients. Improper dis-

tributions too are given by ve
tors of 2

n

real weights. The


onne
tion between sign-representations and distributions is

this:

Proposition 3. For any Boolean fun
tion f : f�1; 1g

n

!

f�1; 1g, there is an (orthogonal) linear bije
tion A

f

between

weak representations of f and distributions. If p and w are

in 
orresponden
e then p(x) = jw(x)j and hen
e strong rep-

resentations are in bije
tive 
orresponden
e with total dis-

tributions. Further, the S 
oeÆ
ient of p is proportional to



the 
orrelation of x

S

with f under w. Hen
e p is supported

on S i� f has zero 
orrelation with x

S

under w for every

monomial S 62 S. (Finally, sign-representations whi
h make

mistakes 
orrespond to improper distributions.)

Proof. The bije
tion maps 
olumn ve
tors of polynomial


oeÆ
ients indexed by monomials S � [n℄ to 
olumn ve
tors

of distribution weights indexed by points x 2 f�1; 1g

n

. The

map is given by the matrix A

f

with rows indexed by x 2

f�1; 1g

n

and 
olumns indexed by monomials S � [n℄; the

entry A

f

[x; S℄ is equal to f(x)x

S

. This matrix is orthogonal,

being a Hadamard matrix.

Our main tool for proving polynomial threshold degree

lower bounds is the following so-
alled \Theorem of the Al-

ternative." It 
an be proved immediately using linear pro-

gramming duality, as was essentially done by Aspnes et al.

in [2℄; a 
ompletely di�erent proof based on the distribu-

tion perspe
tive 
an be given by 
ombining the \Dis
rimi-

nator Lemma" of [11℄ with the learning-theoreti
 te
hnique

of boosting, see [9, 10℄.

Theorem 4. Let f : f�1; 1g

n

! f�1; 1g be a Boolean

fun
tion. Let S � 2

[n℄

be any set of monomials. Then ex-

a
tly one of the following holds:

� f has a strong representation with support in S; or,

� f has a weak representation with support in 2

[n℄

n S.

Given the equivalen
e of sign-representations and distri-

butions, there are three other ways of restating Theorem 4.

We will need one more:

Theorem 5. Let f : f�1; 1g

n

! f�1; 1g be a Boolean

fun
tion. Let S � 2

[n℄

be any set of monomials. Then ex-

a
tly one of the following holds:

� f has a strong representation with support in S; or,

� there is a distribution on f�1; 1g

n

under whi
h f has

zero 
orrelation to every monomial in S.

3. UPPER BOUNDS FOR BOOLEAN FOR-
MULAS

In this se
tion we 
onsider Boolean formulas 
omposed of

NOT gates and unbounded fan-in AND and OR gates. The

depth of a formula is the length of the longest path from the

root to any leaf, and the size is the number of o

urren
es

of variables.

We will also 
onsider variants of polynomial threshold

fun
tions in whi
h the polynomial is subje
t to a stri
ter

requirement than just sign-representing f: Following Nisan

and Szegedy [20℄, we write

g

deg(f) to denote the minimum

degree of any polynomial whi
h approximates f to within

1=3 on all inputs; i.e., su
h a polynomial p(x) must satisfy:

8x 2 f0; 1g

n

jf(x)� p(x)j �

1

3

:

Clearly we have

g

deg(f) � thr(f) for all f: We write jp�f j

1

to denote max

x2f0;1g

n

jp(x) � f(x)j: Thus if jp � f j

1

�

1

3

we have deg(p) �

g

deg(f) � thr(f):

We prove two similar theorems bounding the polynomial

threshold degree of Boolean formulas:

Theorem 6. Let f be 
omputed by a Boolean formula of

depth d and size s: Then there is a polynomial p(x

1

; : : : ; x

n

)

of degree at most 2

O(d)

(log s)

5d=2

p

s su
h that jp�f j

1

�

1

s

:

Theorem 7. Let f be 
omputed by a Boolean formula of

depth d and size s: Then there is a polynomial p(x

1

; : : : ; x

n

)

of degree at most 2

O(d)

(log s)

5d

s

1

2

�

1

2

d+1

�2

su
h that

sgn(p(x)) = f(x):

The proof te
hnique in both 
ases is to �rst manipulate

the formula to get a more stru
tured form, and then to apply

real approximating fun
tions (Chebyshev polynomials, the

rational fun
tions of [6℄) at ea
h gate.

Some preliminary notes: Throughout this se
tion we let

0 represent FALSE and 1 represent TRUE, and thus we

view Boolean fun
tions as mappings from f0; 1g

n

to f0; 1g:

Without loss of generality we may assume that our formulas


ontain no NOT gates; i.e., they 
onsist only of AND and

OR gates. This is be
ause any negations in a formula F


an be pushed to the leaves using DeMorgan's laws with no

in
rease in size or depth. On
e all negations are at the leaves

we 
an repla
e ea
h negated variable :x

i

with a variable y

i

to obtain a formula F

0

whi
h has no negations. Given a

polynomial whi
h sign-represents or approximates F

0

; we


an obtain a 
orresponding polynomial for F by repla
ing

ea
h y

i

with 1� x

i

; and this will not in
rease the degree.

3.1 Proof of Theorem 6
Hen
eforth the variables 


1

; 


2

; : : : refer to �xed universal


onstants.

Theorem 6 Let f be 
omputed by a Boolean formula of

depth d and size s: Then there is a polynomial p(x

1

; : : : ; x

n

)

of degree at most 


d

1

(log s)

5d=2

p

s su
h that jp� f j

1

�

1

s

:

We will use the following lemma:

Lemma 8. Let f =

V

`

i=1

f

i

be a Boolean formula where

` � 2: For 1 � i � ` let p

i

be a polynomial with deg(p

i

) � r

su
h that jp

i

� f

i

j

1

� �; where 0 < � <

1

8`

: Then there is a

polynomial p with deg(p) � (4

p

` log

1

�

)r su
h that jp�f j

1

�

(


2

` log

1

�

)�:

Proof. The following 
onvention will be useful: for P a

polynomial we write \P (x) 2

f

([a; b℄; [
; d℄)" as shorthand

for

\8x 2 f0; 1g

n

: if f(x) = 0 then P (x) 2 [a; b℄

and if f(x) = 1 then P (x) 2 [
; d℄:"

Thus by assumption we have p

i

(x) 2

f

i

([��; �℄; [1� �; 1+ �℄)

for ea
h i:

Let P (x) denote p

1

(x)+ � � �+p

`

(x)+`�: It is easy to verify

that we have

P (x) 2

f

([0; `� 1 + 2`�℄; [`; `+ 2`�℄):

Let Q(x) denote P (x)=(`� 1 + 2`�): We then have

Q(x) 2

f

([0; 1℄; [1 +

1� 2`�

`� 1 + 2`�

; 1 +

1

`� 1 + 2`�

℄):

Let k =

1�2`�

`�1+2`�

:We 
an rewrite and say Q(x) 2

f

([0; 1℄; [1+

k; 1 + k +

2`�

`�1+2`�

℄): Sin
e

2`�

`�1+2`�

<

2`�

`�1

� 4� we have

Q(x) 2

f

([0; 1℄; [1 + k; 1 + k + 4�℄):

Re
all that the Chebyshev polynomial of the �rst kind

C

d

(t) is a univariate polynomial of degree d: The following



fa
t is straightforward to prove; we omit the proof from this

extended abstra
t.

Fa
t 9. For all d � 1 we have:

1. C

d

(t) 2 [�1; 1℄ for t 2 [0; 1℄:

2. Let t

d

denote C

d

p

de

(1 + 1=d): Then t

d

> 2:

3. For all 0 < � <

1

d

we have C

d

p

de

(1 + 1=d + � ) 2

[t

d

; t

d

+ 26d� ℄:

Let R(x) denote C

dk

�1=2

e

(Q(x)): Sin
e 4� <

1

2`

< k; by

parts 1 and 3 of Fa
t 9 we have thatR(x) 2

f

([�1; 1℄; [t

k

; t

k

+

104�

k

℄): Let S(x) denote (

1

t

k

R(x))

dlog

1

�

e

: Using part 2 of Fa
t

9 we �nd that S(x) 2

f

([��; �℄; [1; (1+

104�

t

k

k

)

dlog

1

�

e

℄):We now

use the fa
t that �

r

� 1�(1��)r for all 0 � r � 1 and � > 0

(this 
an be proved using a simple 
onvexity argument). We

thus �nd that

�

1 +

104�

t

k

k

�

dlog

1

�

e

� 1 +

104�dlog

1

�

e

t

k

k

� 1 +

208 log

1

�

t

k

k

�:

Using our bounds on t

k

and k, this is at most 1+(


2

` log

1

�

)�

as desired.

It remains only to bound deg(S): From our 
onstru
-

tion it is 
lear that deg(S) � r � dk

�1=2

e � dlog

1

�

e: We have

that dk

�1=2

e � d

p

2`e � 2

p

` and dlog

1

�

e < 2 log

1

�

: Thus

deg(S) � 4r

p

` log

1

�

and the lemma is proved.

It is easy to see that an identi
al result holds if f =

W

`

i=1

f

i

; i.e. f 's top-level gate is an OR instead of an AND.

The following lemma is now easy to establish:

Lemma 10. Let f be 
omputed by a Boolean formula F

of depth d and size s: Suppose that for any path from the

root of F to a leaf, the produ
t of the fanins of the gates

on the path is at most t: Then there is a polynomial p with

deg(p) � (


3

log s)

d

p

t su
h that jp� f j

1

�

1

s

:

Proof. Note �rst that for any Boolean formula of size s;

there is a multilinear interpolating polynomial whi
h 
om-

putes the formula exa
tly and is of degree at most s: Con-

sequently if (


3

log s)

d

p

t � s the lemma is trivially true, so

we assume that (


3

log s)

d

p

t < s:

Consider the formula F: Ea
h leaf 
ontains some variable

x

i

; so 
learly there is a degree-1 polynomial whi
h exa
tly


omputes the fun
tion at ea
h leaf. Now apply Lemma 8

su

essively to every gate in F; going up from the leaves to

the root. At ea
h leaf we may take � in Lemma 8 to be

any positive value; we take � =

1

s

3

: Ea
h time we go up

through a gate of fanin ` the value of � whi
h we may use

in Lemma 8 is multiplied by at most 


2

` log(s

3

) = 


3

` log s:

An easy indu
tion on the depth of F shows that at the root

we obtain a polynomial p su
h that

deg(p) � (4 log(s

3

))

d

p

t < (


3

log s)

d

p

t

and

jp� f j

1

�

1

s

3

� (


3

log s)

d

t <

1

s

3

� s

2

=

1

s

as desired.

With Lemmas 8 and 10 in hand, in order to prove Theo-

rem 6 it suÆ
es to bound the produ
t of the fanins on any

path from the root to a leaf. In an arbitrary formula this

produ
t 
an be quite large; it is easy to 
onstru
t a formula

of size s and depth d in whi
h there is a path 
omposed of

d gates ea
h of fanin

s

d

: Thus in general this produ
t 
an be

as large as (

s

d

)

d

; however we 
an remedy this situation as

des
ribed below.

Lemma 11. Let F be a formula of size s and depth d:

There is a formula G of size s and depth 2d 
omputing the

same fun
tion as F su
h that the produ
t of the fanins on

any root-to-leaf path in G is at most (4 log s)

d

s:

Proof. We prove the following slightly stronger state-

ment: for any formula F of size s and depth d; there is a

formula G of size s and depth 2d 
omputing F su
h that

the produ
t of the fanins on any root-to-leaf path in G is at

most (2dlog se)

d

s: The lemma follows sin
e 2 log s � dlog se

for all s:

The proof is by indu
tion on d: For d = 0 the formula

must be a single variable so s = 1 and the 
laim is trivially

true. Suppose without loss of generality that F =

V

`

i=1

F

i

where ` � 2; ea
h F

i

has depth at most d� 1; and the sum

of the sizes of F

1

; : : : ; F

`

is s: Let jF

i

j denote the size of

F

i

: We partition the formulas F

1

; : : : ; F

`

into disjoint 
lasses

C

1

; : : : ; C

dlog se

where the 
lass C

j


ontains exa
tly those F

i

su
h that 2

j�1

� jF

i

j < 2

j

: By the indu
tion hypothesis ea
h

formula F

i

2 C

j

has an equivalent formula G

i

of size jF

i

j and

depth at most 2d�2 su
h that the produ
t of the fanins along

any root-to-leaf path in G

i

is at most (2dlog se)

d�1

jF

i

j <

2

d+j�1

dlog se

d�1

: Let G =

V

dlog se

j=1

H

j

where the formula H

j

is de�ned as H

j

=

V

i:F

i

2C

j

G

i

:

To see that this works, �rst observe that ea
h C

j


ontains

at most s=2

j�1

formulas F

i

: Thus the fanin at the root of H

j

is at most s=2

j�1

; and hen
e the produ
t of the fanins along

any path in H

j

is at most 2

d

sdlog se

d�1

: Thus the produ
t

of the fanins along any path in G is at most (2dlog se)

d

s as

desired and the lemma is proved.

Theorem 6 follows from 
ombining Lemmas 10 and 11.

3.2 Proof of Theorem 7
Re
all Theorem 7:

Theorem 7 Let f be 
omputed by a Boolean formula of

depth d and size s: Then there is a polynomial p(x

1

; : : : ; x

n

)

of degree at most 


d

4

(log s)

5d

s

1

2

�

1

2

d+1

�2

su
h that sgn(p(x)) =

f(x):

This bound is asymptoti
ally superior to the one in The-

orem 6, for any 
onstant d. However, Theorem 7 only pro-

du
es a polynomial whi
h sign-represents the formula's val-

ues, not one that 
losely approximates them. The proof of

Theorem 7 builds on the proof of Theorem 6 and uses the

rational fun
tions 
onstru
ted by Beigel et al. [6℄ for ap-

proximating the sgn fun
tion. We omit the proof from this

extended abstra
t.

3.3 Discussion
In earlier work Klivans and Servedio [14℄ showed that

any Boolean formula of 
onstant depth d and size s has a

polynomial threshold fun
tion of degree

~

O(s

1�

1

3�2

d�3

): For

even moderately large 
onstant values of d, this bound is

not far from the trivial upper bound of s: In 
ontrast, our

new bounds are 
onsiderably stronger. Theorem 7 gives an



o(s

1=2

) bound for some d = 
(log log s); and Theorems 6

and 7 both give a bound of O(s

1=2+�

) for any d = o(

log s

log log s

):

To our knowledge Theorems 6 and 7 are the �rst nontrivial

upper bounds on polynomial threshold fun
tion degree for

formulas of super
onstant depth.

In other earlier work, Buhrman, Cleve and Wigderson

[3℄ gave an O(s

1=2

log

d�1

(s)) upper bound on the degree of

polynomials that approximate (in the sense of Theorem 6)


ertain Boolean formulas of size s and depth d. Their bound

applies only to \balan
ed formulas," namely to formulas in

whi
h all of the gates at any given depth have the same fanin

(the fanin 
an be di�erent for gates at di�erent depths). Our

Theorem 6 thus generalizes their bound on the degree of ap-

proximating polynomials to a substantially broader 
lass of

formulas. The motivation for the upper bounds of Buhrman

et al. was to obtain upper bounds on the bounded-error

quantum 
omplexity of predi
ates 
orresponding to balan
ed

formulas. Our Theorem 6 immediately implies 
orrespond-

ing upper bounds on the bounded-error quantum 
omplex-

ity of a broader 
lass of predi
ates 
orresponding to general

formulas.

1

3.4 Learning Boolean formulas of supercon-
stant depth in subexponential time

We 
lose this se
tion by des
ribing some 
onsequen
es of

our results in 
omputational learning theory. It is known

(see [14, 13℄) that if a 
lass C of Boolean fun
tions has

thr(f) � r for all f 2 C; then C 
an be learned in time

n

O(r)

in either of two well-studied and demanding learning

models, the Probably Approximately Corre
t (PAC) model

of learning from random examples [12, 24℄ and the online

model of learning from adversarially generated examples [1,

16℄. Thus our polynomial threshold fun
tion upper bounds

from Theorems 6 and 7 immediately give a range of new

subexponential time learning results for various 
lasses of

Boolean formulas. For example, we immediately obtain:

Theorem 12. The 
lass of linear-size Boolean formulas

of depth o(

log n

log log n

) 
an be learned in time 2

n

1=2+�

for all

� > 0:

This is the �rst subexponential time learning algorithm for

linear size formulas of super
onstant depth.

We emphasize that the PAC learning results whi
h fol-

low from our upper bounds hold for the general PAC model

of learning from random examples whi
h are drawn from

an arbitrary probability distribution over f0; 1g

n

: This is in


ontrast with many results in learning theory (su
h as the

quasipolynomial time algorithm of Linial et al. [17℄ for learn-

ing 
onstant-depth 
ir
uits) whi
h require the random exam-

ples to be drawn from the uniform distribution on f0; 1g

n

:

4. AN XOR LEMMA FOR PTF DEGREE
Let f be any Boolean fun
tion f�1; 1g

n

! f�1; 1g de�ned

on variables x

1

; : : : ; x

n

and let g be any Boolean fun
tion

f�1; 1g

n

! f�1; 1g de�ned on variables y

1

; : : : ; y

n

: Let f �

1

We note in passing that an easy argument shows that any

balan
ed formula of size s has a polynomial threshold fun
-

tion approximator of degree at most s

1=2

; the proof is based

on the observation that either the produ
t of the odd-depth

fanins or the even-depth fanins in any balan
ed formula must

be at most s

1=2

.

g denote the XOR (parity) of f and g: We will prove the

following \XOR lemma:"

Theorem 13. Let f and g be Boolean fun
tions on dis-

joint sets of variables. Then thr(f � g) = thr(f) + thr(g):

We note that Theorem 13 is similar in spirit (though in
om-

parable) to a re
ent result of Sieling [23℄ whi
h shows that

DT (f � g) = DT (f) �DT (g); where DT (f) is the minimum

de
ision tree size of f:

Proof of Theorem 13: The upper bound is easy; if p

f

(x) is

a strong sign-representation of f of degree thr(f) and p

g

(y)

is a strong sign-representation of g with degree thr(g) then

p

f

(x)p

g

(y) is easily seen to be a strong sign-representation

of f � g, and deg(p

f

(x)p

g

(y)) = thr(f) + thr(g).

For the lower bound, sin
e f has no strong representation

on the set of monomials of degree stri
tly less than thr(f),

Theorem 4 tells us that f has a weak representation q

f

(x)

supported on the monomials x

S

with jSj � thr(f). Simi-

larly, g has a weak representation q

g

(y) supported on the

monomials y

T

with jT j � thr(g). Now q

f

(x)q

g

(y) is a weak

representation of f � g; in parti
ular, it is not identi
ally

zero be
ause there is at least one x for whi
h q

f

(x) 6= 0 and

at least one y for whi
h q

g

(y) 6= 0, so q

f

(x)q

g

(y) 6= 0 for

these inputs. Note that q

f

(x)q

g

(y) is supported on the set

of monomials whi
h have degree at least thr(f) in x and

at least thr(g) in y. Applying Theorem 4 again we 
on-


lude that any strong representation for f � g must use

some monomial with degree at least thr(f) in x and at

least thr(g) in y; this is more than suÆ
ient to prove that

thr(f � g) � thr(f) + thr(g).

For f a Boolean fun
tion let �

k

f denote the XOR of k


opies of f on disjoint sets of variables. From Theorem 13

we obtain:

Corollary 14. thr(�

k

f) = k � thr(f):

This 
orollary thus in
ludes Minsky and Papert's lower bound

of n for the parity fun
tion as a spe
ial 
ase.

Corollary 14 also yields the following lower bound for 
on-

stant depth 
ir
uits:

Theorem 15. For all d � 1 there is an AND/OR/NOT


ir
uit C of depth d+2 and size poly(n) whi
h has polynomial

threshold fun
tion degree 
(n

1=3

(log n)

2d=3

):

Proof. The 
ir
uit C 
omputes the parity of (log n)

d

dis-

joint 
opies of Minsky and Papert's \one-in-a-box" fun
tion,

where ea
h one-in-a-box fun
tion is de�ned on n=(log n)

d

variables. It is well known that for any 
onstant d; parity

on (log n)

d

variables 
an be 
omputed by an AND/OR/NOT


ir
uit of depth d+1 and size poly(n): Sin
e the one-in-a-box

fun
tion on n=(log n)

d

variables is a depth-2 
ir
uit of size

O(n=(log n)

d

); by substituting the appropriate one-in-a-box

fun
tion for ea
h input to the parity we see that C is a 
ir
uit

of poly(n) size and depth d+2 (we save one on depth by 
ol-

lapsing gates of the same kind on the next to bottom layer).

By Minsky and Papert's lower bound, we know that any

polynomial threshold fun
tion for one-in-a-box on n=(log n)

d

variables must have degree 
((n=(log n)

d

)

1=3

): Consequently

Corollary 14 implies that thr(C) = 
(n

1=3

(log n)

2d=3

) and

the theorem is proved.



In fa
t, we 
an a
tually give an alternate proof of Min-

sky and Papert's lower bound for one-in-a-box by using our

lower bound of te
hnique of applying the Theorem of the Al-

ternative (Theorem 5) and 
onstru
ting the ne
essary distri-

bution expli
itly. The proof will appear in the �nal version

of this extended abstra
t.

Theorem 15 is of interest sin
e it gives the �rst !(n

1=3

)

lower bound for any fun
tion in AC

0

:We note that Theorem

15 also shows that the n

1=3

log n upper bound of Klivans and

Servedio for depth-2 AC

0


ir
uits does not hold for depth-4

AC

0

:

5. A LOWER BOUND FOR THE AND OF
TWO MAJORITIES

Let n be odd, and let AND-MAJ

n

: f�1; 1g

n

�f�1; 1g

n

!

f�1; 1g be the fun
tion whi
h on input (x; y), x; y 2 f�1; 1g

n

,

outputs 1 if both MAJ

n

(x) = 1 and MAJ

n

(y) = 1. Here

MAJ

n

is the majority fun
tion on n bits, x 7! sgn(

P

n

i=1

x

i

).

In this se
tion we show that thr(AND-MAJ

n

) = 
(

logn

log logn

),

improving on the !(1) lower bound of Minsky and Papert.

Note that O(log n) is an upper bound, by Beigel, Reingold,

and Spielman [6℄.

We begin by applying a simple symmetrization due to

Minsky and Papert. Suppose p is a polynomial threshold

fun
tion for AND-MAJ

n

where n is odd. Let Z

odd

n

denote

the set f�n;�(n � 2); : : : ;�1; 1; : : : ; n � 2; ng � Z. Let

AND-sgn

n

: Z

odd

n

� Z

odd

n

! f�1; 1g be the fun
tion whi
h

on input (x; y) is 1 i� x > 0 and y > 0. Minsky and Papert

show:

Claim 16. There exists a polynomial threshold fun
tion

for AND-MAJ

n

of degree d if and only if there exists a bivari-

ate polynomial of degree d whi
h sign-represents AND-sgn

n

.

It follows that if we prove a lower bound on the degree

of a bivariate polynomial whi
h sign-represents AND-sgn

n

,

we get a lower bound on thr(AND-MAJ

n

). Following Theo-

rem 5, we shall show that there is a probability distribution

over Z

odd

n

� Z

odd

n

under whi
h every bivariate monomial of

degree at most d = 
(

log n

log log n

) has zero 
orrelation with

AND-sgn

n

. To see that this is enough, suppose that ~q is a

bivariate polynomial of degree d sign-representing AND-sgn

n

and w is a probability distribution over Z

odd

n

� Z

odd

n

with

the stated property. Then on one hand,

E

w

[AND-sgn

n

(x; y)~q(x; y)℄ = 0;

by linearity of expe
tation, sin
e ea
h monomial in ~q has zero


orrelation with AND-sgn

n

under w. But on the other hand,

sin
e ~q strongly sign-represents AND-sgn

n

,

AND-sgn

n

(x; y)~q(x; y) > 0 for all (x; y), hen
e,

E

w

[AND-sgn

n

(x; y)~q(x; y)℄ > 0;

whi
h gives a 
ontradi
tion.

The problem is now set up to our satisfa
tion. Fix an

integer d. We shall try to �nd a support (set of points)

Z � Z

odd

�Z

odd

and a probability distribution w over these

points su
h that AND-sgn

n

has zero 
orrelation under w

with every monomial x

i

y

j

of total degree at most d. That

is, we want w : Z ! R

�0

with

P

z2Z

w(z) = 1 su
h that:

8 0 � i + j � d;

E

w

[f(x; y) x

i

y

j

℄ =

X

(x;y)2Z

w(x; y)f(x; y) x

i

y

j

= 0:

In addition we would like to �nd a solution in whi
h size(Z)

is as small as possible, where size(Z) is de�ned to be

max

(x;y)2Z

fmaxfjxj; jyjgg. On
e we have su
h a Z and w,

we get a lower bound of d + 1 for the degree of a polyno-

mial threshold fun
tion 
omputing AND-MAJ

size(Z)

. In the

remainder of this se
tion we give a 
onstru
tion in whi
h

size(Z) = d

O(d)

: This gives us the main result of this se
-

tion:

Theorem 17. thr(AND-MAJ

n

) = 
(

log n

log log n

):

5.1 Proof of Theorem 17
Our 
onstraints are all bivariate monomials x

i

y

j

of total

degree at most d. We will refer to x

i

y

j

as the \(i; j) 
on-

straint monomial." There are a total of D =

(d+1)(d+2)

2


onstraint monomials, and for de�niteness we will 
onsider

them to be ordered as follows: 1, x, y, x

2

, xy, y

2

, x

3

, et
.

Our support will be:

Z = f((�1)

`

h

k

; (�1)

k

h

`

) : 0 � k + ` � dg [ f(�1;�1)g;

where here h is a large quantity to be 
hosen later (eventu-

ally we will take h = �(d

9

)). The support Z is symmetri


about the line y = x and 
ontains exa
tly D + 1 points.

We will refer to ((�1)

`

h

k

; (�1)

k

h

`

) as the \(k; `) sup-

port point" and 
onsider the points to be ordered in the

same order as the monomials (i.e., (1; 1), (h;�1), (�1; h),

(h

2

; 1), (�h;�h), (1; h

2

), (h

3

;�1), et
.), with the spe
ial

point (�1;�1) 
oming last. Note that the value of f on the

(k; `) support point is (�1)

k`+k+`

.

Let

~

A be a D�(D+1) matrix whose 
olumns are indexed

by the support points and whose rows are indexed by the


onstraint monomials. De�ne

~

A[(i; j); (k; `)℄ to be the value

of the (i; j)th 
onstraint monomial at the (k; `)th support

point, times the value of f at the (k; `)th support point.

This de�nition shall in
lude the 
ase of the spe
ial (�1;�1)

support point, to whose 
olumn we assign the index (0

0

; 0

0

)

for reasons that will be
ome 
lear soon. Let A be the (D +

1) � (D + 1) matrix given by adding a row of 1's to the

bottom of

~

A. For notational 
onvenien
e we will also give

this row the index (0

0

; 0

0

). So for (i; j); (k; `) 6= (0

0

; 0

0

) we

have:

A[(i; j); (k; `)℄ = (�1)

k(j+1)+`(i+1)+k`

h

ik+j`

: (1)

Re
all that we want to �nd values w : Z ! R su
h that

P

(x;y)2Z

w(x; y)f(x; y) x

i

y

j

= 0 for all 
onstraints and su
h

that

P

(x;y)2Z

w(x; y) = 1: By 
onstru
tion these values are

uniquely given by the solution to the following system of

linear equations:

A

2

6

6

6

6

6

6

6

6

6

4

w

(0;0)

w

(1;0)

w

(0;1)

w

(2;0)

.

.

.

w

(0;d)

w

(�1;�1)

3

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

4

0

0

0

0

.

.

.

0

1

3

7

7

7

7

7

7

7

7

7

5

: (2)



In the remainder of the proof we show that by taking h =

�(d

9

); we 
an ensure that the solution to Equation (2) 
on-

sists entirely of nonnegative numbers, and hen
e w 
orre-

sponds to a true probability distribution as desired. Sin
e

h = O(d

9

) means that size(Z) = d

O(d)

; and we may take h

to be odd, this proves Theorem 17.

We shall 
onsider solving Equation (2) via Cramer's rule.

Cramer's rule tells us that Equation (2) implies:

w

(u;v)

=

detA

(u;v)

detA

;

where A

(u;v)

denotes the matrix A with the (u; v) 
olumn

repla
ed by the right hand side of Equation (2), namely

�

0 0 0 � � � 0 1

�

T

. To show that ea
h w

(u;v)

is non-

negative we will show that detA

(u;v)

and detA have the

same sign.

Let � 2 f+1;�1g be the sign of the produ
t of the diag-

onal entries in A: We will prove the following two lemmas

and thus prove Theorem 17:

Lemma 18. sign(detA) = �:

Lemma 19. sign(detA

(u;v)

) = � for all (u; v):

5.1.1 Proof of Lemma 18
To prove Lemma 18 we view detA as a polynomial in h:

Let T := deg(detA) be the degree of detA: We show that

the leading term of detA (
orresponding to h

T

) dominates

all the other terms for h suÆ
iently large, and thus the sign

of detA is the same as the sign of the leading term. More

pre
isely, we establish the following two fa
ts:

Claim 20. The 
oeÆ
ient of h

T

in detA is 2�:

Claim 21. For all u � 1 the 
oeÆ
ient of h

T�u

in detA

is at most 2(D + 2)

4u

in magnitude.

Claim 21 implies that the sum of the absolute values of the

lower-order terms in detA is at most

P

T

u=1

2(D+2)

4u

h

T�u

�

h

T

P

T

u=1

(2(D+2)

4

=h)

u

. If we take h to be �(d

9

) then this

quantity will be stri
tly smaller than h

T

. But by Claim

20 we have that the leading term of detA is 2�h

T

. Thus

sgn(detA) = � and Lemma 18 holds.

We set the stage before proving Claims 20 and 21 with

some notation and some observations. Let S denote the

permutation group on the indi
es (0; 0), (1; 0), (0; 1), (2; 0),

: : : , (0; d), (0

0

; 0

0

). Then:

detA =

X

�2S

sgn(�)

Y

(i;j)

A[(i; j); �(i; j)℄: (3)

Re
all that for (i; j); (k; `) 6= (0

0

; 0

0

), the entry A[(i; j); (k; `)℄

is �h

ik+j`

, whi
h we will write as � exp

h

((i; j) � (k; `)), with

exp

h

(t) denoting h

t

and � being the usual dot produ
t. In

the 
ase that (i; j) = (0

0

; 0

0

) or (k; `) = (0

0

; 0

0

), the entry

A[(i; j); (k; `)℄ is �1 = �h

0

. If we de�ne (0

0

; 0

0

) � (a; b) to be

0, then we have that for any permutation � 2 S,

Y

(i;j)

A[(i; j); �(i; j)℄ = � exp

h

0

�

X

(i;j)

(i; j) � �(i; j)

1

A

:

Given a permutation � 2 S, write t(�) =

P

(i;j)

(i; j) �

�(i; j); so the permutation � 
ontributes �1 to the 
oeÆ-


ient of h

t(�)

in detA: Then the absolute value of the 
oeÆ-


ient of h

u

in detA is at most jf� 2 S : t(�) = ugj. We will

use this fa
t to bound all the lower-order terms in detA; for

the leading term we will pay more attention to the signs.

To 
al
ulate t(�) from �, we de
ompose the permutation �

as a produ
t of 
y
les. For ea
h 
y
le �

0

= ((i

1

; j

1

) (i

2

; j

2

) � � �

(i

m

; j

m

)) we have by simple arithmeti
:

m

X

r=1

(i

r

; j

r

) � (i

r

; j

r

)�

m

X

r=1

(i

r

; j

r

) � �

0

(i

r

; j

r

)

=

1

2

m

X

r=1

(i

r

� i

r�1

)

2

+ (j

r

� j

r�1

)

2

; (4)

where we use the notation (i

0

; j

0

) = (i

m

; j

m

). (Note that

a geometri
 interpretation of this quantity is that it is half

the sum of the squares of the lengths of the line segments

whi
h make up the 
y
le in the two-dimensional plane from

(i

1

; j

1

) to (i

2

; j

2

) to (i

3

; j

3

) to : : : to (i

m

; j

m

) to (i

1

; j

1

):)

In parti
ular, this quantity is at least 1 for every nontriv-

ial 
y
le, where a trivial 
y
le for us is either a 
y
le of

length 1 or the transposition ex
hanging (0; 0) and (0

0

; 0

0

):

The quantity in Equation (4) is 0 for trivial 
y
les. Thus

we have that the identity permutation and the transposition

((0; 0); (0

0

; 0

0

)) are the only two permutations whi
h a
hieve

the maximum value t(�) = T: It is easy to see that this

maximum value T is

P

(i;j)

i

2

+ j

2

, whi
h one easily 
al
u-

lates to be T := d(d + 1)

2

(d + 2)=6. We further see that

every other permutation \pays a penalty" in its t value for

ea
h nontrivial 
y
le it 
ontains, and this penalty is given

by the right-hand side of Equation (4). Hen
e to 
al
ulate

t(�) from � we simply sum up the penalties for ea
h 
y
le

in its 
y
le de
omposition and subtra
t the total from T .

Proof of Claim 20: As des
ribed above, we have that there

are exa
tly two permutations whi
h lead to the maximum

power h

T

in Equation (3): the identity permutation whi
h

takes all the diagonal elements, and the ((0; 0); (0

0

; 0

0

)) trans-

position whi
h takes the top-right entry of A, the bottom-

left entry of A, and the diagonal elements otherwise. The

produ
t of the top-left and bottom-right entries of A is 1.

The produ
t of the top-right and bottom-left entries is �1;

however this gets 
ipped to +1 by the sign of the permu-

tation (it is a transposition so its sign is �1). We 
on
lude

that leading term of detA is 2�h

T

where � 2 f�1; 1g is the

sign of the produ
t of the diagonal entries in A.

Proof of Claim 21: To bound the 
oeÆ
ient on the lower-

order term h

T�u

in detA we simply 
ount the number of

permutations � whi
h have t(�) = T � u. This 
ount gives

an upper bound on the magnitude of the 
oeÆ
ient. If

t(�) = T�u then the penalty a

ounting s
heme from Equa-

tion (4) tells us that � has at most u nontrivial 
y
les. In

fa
t we 
an say more: any nontrivial 
y
le of length m must

in
ur a penalty of at least bm=2
. (This 
an be veri�ed us-

ing the geometri
 interpretation des
ribed earlier, together

with the fa
t that any nontrivial 
y
le of length m � 3 
an

in
lude at most one segment of length 0 between (0; 0) and

(0

0

; 0

0

):) Consequently, if t(�) = T�u then the lengths of the

nontrivial 
y
les in �'s 
y
le de
omposition must sum to at

most 3u (in the worst 
ase all its 
y
les may be 3-
y
les ea
h



of whi
h in
urs a penalty of 1). Now observe that there are

at most (D + 2)

4u

permutations on D + 1 elements whi
h

de
ompose into at most u 
y
les whose total length is at

most 3u: (Any su
h sequen
e of 
y
les 
an be written as a

string of length 4u over a D+2 element alphabet, where the

extra symbol is used to mark the end of ea
h 
y
le.) Dou-

bling this upper bound 
overs the optional addition of the

trivial ((0; 0); (0

0

; 0

0

)) transposition. We thus may 
on
lude

that there are at most 2(D+2)

4u

permutations � 2 S whi
h

have t(�) = T � u.

5.1.2 Proof of Lemma 19
It now remains to show that sgn(detA

(u;v)

) = � for ea
h

(u; v): By the nature of 
ofa
tor expansion, detA

(u;v)

is

equal to a 
ertain sign �, times the determinant of A with

the bottom row and the (u; v) 
olumn deleted. In the 
ase

(u; v) = (0

0

; 0

0

) we have � = 1 and we shall write A

0

(0

0

;0

0

)

for the matrix A with its last row and 
olumn deleted. For

all (u; v) 6= (0

0

; 0

0

), let us write A

0

(u;v)

for the matrix got-

ten by �rst deleting the bottom row and (u; v) 
olumn from

A, and then moving the (0

0

; 0

0

) 
olumn leftward until it is

in the pla
e where the old (u; v) used to be. Shifting the

(0

0

; 0

0

) 
olumn like this in
urs a sign 
hange equal to ��;

we 
on
lude that detA

(u;v)

= �detA

0

(u;v)

. Hen
e it is suf-

�
ient for us to show that sgn(detA

0

(0

0

;0

0

)

) = � and that

sgn(detA

0

(u;v)

) = �� for all (u; v) 6= (0

0

; 0

0

).

Let us begin by dispensing with the 
ases (u; v) = (0

0

; 0

0

)

or (0; 0). In both of these 
ases A

0

(u;v)

is very similar to A

with the last row and 
olumn deleted; when (u; v) = (0

0

; 0

0

)

this is exa
tly what A

0

(u;v)

is, and when (u; v) = (0; 0) some

of the signs in the �rst 
olumn are 
hanged. Hen
e the

analysis of detA

0

(u;v)

is virtually identi
al to the above anal-

ysis of detA, ex
ept that (0

0

; 0

0

) is no longer present. The

leading term will therefore be equal to the top-left entry of

A

0

(u;v)

times �h

T

; this entry is 1 when (u; v) = (0

0

; 0

0

) and is

�1 when (u; v) = (0; 0); as desired. The analysis bounding

the lower-order terms goes through in essentially the same

way as before (again without (0

0

; 0

0

)) and we 
on
lude that

sgn(detA

0

(0

0

;0

0

)

) = � and sgn(detA

0

(0;0)

) = �� as desired.

Throughout the rest of this se
tion we assume that (u; v) 6=

(0

0

; 0

0

); (0; 0): Let T

(u;v)

denote the degree of det(A

0

(u;v)

):We

will prove the following two 
laims:

Claim 22. The 
oeÆ
ient of h

T

(u;v)

in det(A

0

(u;v)

) is �2�C:

Claim 23. For all s � 1 the 
oeÆ
ient of h

T

(u;v)

�s

in

det(A

0

(u;v)

) is at most 4C(D + 2)

4s

in magnitude.

As in the previous subse
tion, these two 
laims show that

we may take h = �(d

9

) to obtain sgn(det(A

0

(u;v)

)) = ��; so

they suÆ
e to prove the lemma.

Studying detA

0

(u;v)

is slightly more 
omplex than studying

detA be
ause its rows and 
olumns no longer have the same

names; the rows of A

0

(u;v)

are named (0; 0), (1; 0), (0; 1),

(2; 0), : : : , (u; v), : : : , (0; d), whereas the 
olumns are named

(0; 0), (1; 0), (0; 1), (2; 0), : : : , (0

0

; 0

0

), : : : , (0; d). To deal

with this, we will let S

0

denote the permutation group on

the D row indi
es of A

0

(u;v)

, and we will view (u; v) as (0

0

; 0

0

)

whenever it is the \output" of a permutation. To be pre
ise,

let � be a mapping whi
h maps (i; j) to (i; j) for ea
h (i; j) 6=

(u; v), and maps (u; v) to (0

0

; 0

0

). Then our determinant

equation be
omes:

detA

0

(u;v)

=

X

�2S

sgn(�)

Y

(i;j)

A[(i; j); �(�(i; j))℄: (5)

We may write t(�) =

P

(i;j)

(i; j) � �(�(i; j)); so we have

Q

(i;j)

A[(i; j); �(�(i; j))℄ = �h

t(�)

.

As before we will 
al
ulate t(�) by 
onsidering the 
y-


le de
omposition of � and 
omputing the penalty di�er-

en
e from T = d(d + 1)

2

(d + 2)=6 for ea
h 
y
le. Sin
e

now the \identity" permutation does not exist, the permu-

tations maximizing t(�) may not a
hieve T ; indeed, sin
e

(u; v) 6= (0

0

; 0

0

) it is the 
ase that maximizing permutations

will not a
hieve t(�) = T: Let us now �nd the new high-

est value for t(�). The 
y
le de
omposition of � 
ontains a

unique 
y
le (whi
h may be a 1-
y
le) 
ontaining (u; v); and

perhaps other 
y
les whi
h do not 
ontain (u; v): For the 
y-


les not 
ontaining (u; v), � does not enter into the pi
ture

in 
al
ulating t(�

0

); hen
e Equation (4) still holds and we


on
lude that any � with maximal t(�) has no nontrivial


y
les involving (u; v). Thus, in order to �nd all maximiz-

ing �'s, it is suÆ
ient to determine whi
h 
y
les 
ontaining

(u; v) give the smallest penalty.

Let �

�

be a 
y
le 
ontaining (u; v); say �

�

=

((u; v) (i

1

; j

1

) (i

2

; j

2

) � � � (i

m

; j

m

)), so a

ording to our 
on-

ventions �

�

maps (u; v) to (i

1

; j

1

);maps (i

r

; j

r

) to (i

r+1

; j

r+1

)

for 1 � r � m � 1; and maps (i

m

; j

m

) to �(u; v) = (0

0

; 0

0

):

Write (i

0

; j

0

) = (u; v). Then akin to Equation (4) we have:

m

X

r=0

(i

r

; j

r

) � (i

r

; j

r

)�

m

X

r=0

(i

r

; j

r

) � �(�

�

(i

r

; j

r

))

=

m

X

r=0

(i

r

; j

r

) � (i

r

; j

r

)�

m

X

r=0

(i

r

; j

r

) � (i

r+1 mod m+1

; j

r+1 mod m+1

) + i

r

u+ j

r

v

=

1

2

  

m

X

r=1

(i

r

� i

r�1

)

2

+ (j

r

� j

r�1

)

2

!

+(u� i

r

)

2

+ (v � j

r

)

2

�

+ i

r

u+ j

r

v (as in (4))

=

1

2

  

m

X

r=1

(i

r

� i

r�1

)

2

+ (j

r

� j

r�1

)

2

!

+ i

2

m

+ j

2

m

+ u

2

+ v

2

�

: (6)

The geometri
 interpretation of the quantity on the right-

hand side of Equation (6) is that it is half the sum of the

squares of the path segments on the 
losed path from (u; v)

to (i

1

; j

1

) to (i

2

; j

2

) to � � � to (i

m

; j

m

) to (0; 0) to (u; v). It

is immediate that in a 
y
le minimizing this quantity, there

should be no path step whi
h has either x or y displa
ement

greater than 1 in magnitude (aside from the step from (0; 0)

to (u; v) whi
h is for
ed). Consequently, the permutations

� whi
h maximize t(�) are pre
isely those 
y
les �

�

su
h

that (1) i

r+1

� i

r

2 f�1; 0g and j

r+1

� j

r

2 f�1; 0g for

0 � r < m, and (2) i

m

; j

m

2 f0; 1g: It is easy to see that

ea
h su
h maximizing permutation has t(�) = T

(u;v)

= T �

1

2

(u+ v + u

2

+ v

2

).

Proof of Claim 22: Now we 
an 
ompute the 
oeÆ
ient

of h

T

(u;v)

in detA

0

(u;v)

. Given a permutation � maximiz-

ing t(�), let �(�) denote the sign of �'s 
ontribution to



the determinant 
omputation of Equation (5), i.e. �(�) =

sgn(�)

Q

(i;j)

sgn(A[(i; j); �(�(i; j))℄). Then the leading 
oef-

�
ient of detA

0

(u;v)

is just the sum of �(�) over all maximiz-

ing �.

Let � = ((u; v) (i

1

; j

1

) (i

2

; j

2

) � � � (i

m

; j

m

)) be a maximiz-

ing permutation; as before we write (i

0

; j

0

) = (u; v). By the

de�nition of � as the produ
t of the signs of A's diagonal

elements, we get that ��(�) is equal to sgn(�) times:

 

m�1

Y

r=0

sgn(A[(i

r

; j

r

); (i

r

; j

r

)℄)sgn(A[(i

r

; j

r

); (i

r+1

; j

r+1

)℄)

!

� sgn(A[(i

m

; j

m

); (i

m

; j

m

)℄)sgn(A[(i

m

; j

m

); (0

0

; 0

0

)℄):

We 
laim that for ea
h 0 � r � m� 1 we have:

sgn(A[(i

r

; j

r

); (i

r

; j

r

)℄)sgn(A[(i

r

; j

r

); (i

r+1

; j

r+1

)℄) = �1;

independent of (i

r

; j

r

). For from Equation (1) we know that:

sgn(A[(i

r

; j

r

); (i

r

; j

r

)℄)sgn(A[(i

r

; j

r

); (i

r+1

; j

r+1

)℄)

= exp

�1

(i

r

(j

r

+ 1) + j

r

(i

r

+ 1) + i

r

j

r

)

� exp

�1

(i

r+1

(j

r

+ 1) + j

r+1

(i

r

+ 1) + i

r+1

j

r+1

)

= exp

�1

(i

r

j

r

+ i

r+1

j

r

+ i

r

j

r+1

+ i

r+1

j

r+1

+i

r

+ i

r+1

+ j

r

+ j

r+1

)

= exp

�1

((i

r

+ i

r+1

+ 1)(j

r

+ j

r+1

+ 1)� 1);

whi
h is always �1 as 
laimed, be
ause (i

r

; j

r

)�(i

r+1

; j

r+1

) 2

f(1; 0); (0; 1); (1; 1)g.

Thus we have:

��(�) = sgn(�)(�1)

m

sgn(A[(i

m

; j

m

); (i

m

; j

m

)℄)

� sgn(A[(i

m

; j

m

); (0

0

; 0

0

)℄)

= +sgn(A[(i

m

; j

m

); (i

m

; j

m

)℄)sgn(A[(i

m

; j

m

); (0

0

; 0

0

)℄) (�);

be
ause � is a 
y
le of lengthm+1. If (i

m

; j

m

) = (1; 1) then

(�) = �1; otherwise, (�) = +1. Hen
e we 
on
lude that

�(�) = � if (i

m

; j

m

) = (1; 1) and �(�) = �� if (i

m

; j

m

) 2

f(0; 0); (1; 0); (0; 1)g. For ea
h maximizing 
y
le � of length

m+ 1 with (i

m

; j

m

) 6= (0; 0); there is a 
orresponding max-

imizing 
y
le �

0

of length m + 2 obtained by appending

(i

m+1

; j

m+1

) = (0; 0) to �: Thus we have �(�) + �(�

0

) =

0 when (i

m

; j

m

) = (1; 1) and �(�) + �(�

0

) = �2� when

(i

m

; j

m

) = (1; 0) or (0; 1). In 
on
lusion, the leading term

in detA

0

(u;v)

is exa
tly �2�Ch

T

(u;v)

, where C is the number

of paths from (u; v) to (1; 0) plus the number of paths from

(u; v) to (0; 1), where ea
h path uses steps (�1; 0), (0;�1),

and (�1;�1). (Su
h paths are known as Delannoy paths,

and the number of su
h paths between a pair of points is a

Delannoy number; hen
e C is a sum of two Delannoy num-

bers.) Sin
e (u; v) 6= (0; 0) we have C � 1; and the 
laim is

proved.

Proof of Claim 23: We must upper-bound the magnitude

of the lower-order terms in detA

0

(u;v)

. We do this as in the

analysis of detA by upper-bounding the number of permu-

tations � with t(�) = T

(u;v)

� s. To ea
h � 2 S

0

we will

asso
iate a maximizing permutation �

�

(i.e., one for whi
h

t(�

�

) = T

(u;v)

), and a \deviation des
ription." We will show

that the longer the deviation des
ription, the smaller t(�) is


ompared to t(�

�

). Thus the number of permutations � with

t(�) 
lose to T

(u;v)

will be upper-bounded by the number of

optimal permutations times the number of short deviation

des
riptions.

Let � be an arbitrary permutation in S

0

and write � as

the produ
t of a 
y
le �

0

involving (u; v), and some other


y
les �

1

; : : : ; �

s

. The maximizing permutation �

�

we asso-


iate with � will depend only on �

0

. View �

0

geometri
ally

as a path from (u; v) to �

�1

0

(u; v). Call a path \optimal" if

it only uses steps (�1; 0), (0;�1), and (�1;�1), so in parti
-

ular every maximizing permutation 
ontains one nontrivial


y
le 
ontaining (u; v) whose 
orresponding path is optimal.

We will split �

0

up into its optimal and nonoptimal seg-

ments. Spe
i�
ally, a

i

; b

i

; 


i

; d

i

; : : : ; a

r

; b

r

; 


r

; d

r

are de�ned

as follows: �

0

pro
eeds optimally from (u; v) to (a

1

; b

1

), at

whi
h point it takes a nonoptimal step. Let (


1

; d

1

) be the

�rst point it pro
eeds to subsequently with the property that




1

� a

1

, d

1

� b

1

. Then �

0

pro
eeds optimally from (


1

; d

1

)

to (a

2

; b

2

), at whi
h point it makes a nonoptimal step. Let

(


2

; d

2

) be the �rst point it pro
eeds to subsequently with




2

� a

2

, d

2

� b

2

: Continuing in this fashion, let (a

r

; b

r

)

be the last point rea
hed in the last optimal segment of �

0

;

�

0

may optionally go on and rea
h �

�1

0

(u; v) We will let

the maximizing permutation �

�

asso
iated with � be any

optimal path that agrees with �

0

on all steps from (u; v)

to (a

1

; b

1

), all steps from (


1

; d

1

) to (a

2

; b

2

), : : : ; all steps

from (


r�1

; d

r�1

) to (a

r

; b

r

), and then ends by pro
eeding

optimally to (0; 0):

The deviation des
ription of � will simply be a list of all

of the 
y
les �

1

; : : : ; �

s

not 
ontaining (u; v); along with a

des
ription of �

0

's deviation from �

�

: This deviation 
onsists

of the path from (a

1

; b

1

) to (


1

; d

1

), from (a

2

; b

2

) to (


2

; d

2

),

et
., possibly ending with some path from (a

r

; b

r

) to a point

not in f0; 1g

2

. Note that � 
an be re
overed from �

�

and

the deviation des
ription.

Now let us 
ompute t(�

�

)� t(�). This di�eren
e is equal

to (T � t(�)) � (T � t(�

�

)), and Equations (4) and (6) tell

us how to 
ompute these quantities. By Equation (4), t(�)

pays an extra penalty over t(�

�

) for ea
h of its 
y
les not

involving (u; v), �

1

; : : : ; �

s

. As in the analysis of detA we

know that su
h a 
y
le of length m in
urs a penalty of at

least bm=2
. Equation (6) allows us to 
ompare the penalties

against T that ea
h of t(�

�

) and t(�) pays. Every time

�

0

deviates from �

�

it pays an extra penalty of at least

1. Indeed, just as in the analysis of extraneous 
y
les, a

deviation path from (a

i

; b

i

) to (


i

; d

i

) whi
h tou
hesm nodes

must in
ur an extra penalty of at least bm=2
. This holds

also for a �nal deviation path whi
h does not end up in

f0; 1g

2

, sin
e it must pay for half the squared distan
e from

the origin of its endpoint. Both �

�

and �

0

pay equally for

the �nal

1

2

(k

2

+ `

2

) term.

In 
on
lusion, if the total length of the 
y
les and devia-

tion paths in �'s deviation des
ription is m then (T�t(�))�

(T � t(�

�

)) is at least bm=2
; i.e., t(�) � T

(u;v)

� bm=2
.

Hen
e as in the analysis of detA we 
an get an upper bound

of (D + 2)

4s

�#fnumber of maximizing �

0

g for the number

of permutations � with t(�) = T

(u;v)

� s. But note that

the leading 
oeÆ
ient in detA

0

(u;v)

has magnitude 2C, and

2C is at least half the number of maximizing permutations

�

0

. To see this, re
all that C 
ounts the number of optimal

paths from (u; v) to either (1; 0) or (0; 1), and ea
h maxi-

mizing permutation 
orresponds to an optimal path to one

of (0; 0); (0; 1); (1; 0); (1; 1): The number of optimal paths to

(1; 1) is at most C (ea
h su
h path 
an be extended to a path

ending in (1; 0) or (0; 1)), and hen
e the number of optimal

paths to (0; 0) is at most 2C (sin
e the next to last point

on any su
h path is either (1; 0); (0; 1) or (1; 1)): It follows



that the magnitude of the sum of all lower-order terms in

detA

0

(u;v)

is at most

P

T

(u;v)

s=1

4C(D + 2)

4s

h

T

(u;v)

�s

; and the


laim is proved.

6. CONJECTURES AND FUTURE WORK
Many questions remain for further resear
h on the polyno-

mial threshold degree of Boolean fun
tions. We believe the

new te
hniques introdu
ed in this paper will lead to the so-

lution of some of them. Below we give some open problems

and 
onje
tures whi
h we hope will spur further resear
h.

� Can lower bounds of 
(n

1=3+�

) for some � > 0 be

proved for 
onstant depth 
ir
uits of depth 3 or greater?

In parti
ular, let f be the fun
tion 
omputed by the

following depth-3 read-on
e formula: the top gate is

an AND of fan-in n

1=5

, the middle gates are ORs of

fan-in n

2=5

, and the bottom gates are ANDs of fan-

in n

2=5

. We 
onje
ture that f requires PTF degree


(n

2=5

); and believe that this may be provable via our

lower bound te
hniques. (Krause and Pudlak [15℄ have

given lower bounds on the number of nonzero 
oeÆ-


ients in any polynomial threshold fun
tion for this


ir
uit, but as mentioned earlier their results do not

imply new degree lower bounds.)

� Does every Boolean formula of size s have a polynomial

threshold fun
tion of degree O(

p

s) independent of its

depth? This is the best possible upper bound sin
e

parity on

p

s variables is 
omputed by a formula of

size s and depth O(log s).

One parti
ular fun
tion that seems diÆ
ult is the fol-

lowing: Let B be an integer and 
onsider the fun
tion

g(x

1

; : : : ; x

B

; y

1

; : : : ; y

B

) = (OR(x

1

; : : : ; x

B

)) OR

(AND(y

1

; : : : ; y

B

)). Let f be the Boolean formula

given by a tree of 
opies of g. Let f be on n to-

tal variables and let B = log n, so that f has depth

�(log n= log log n). We do not know how to show that

this fun
tion has PTF degree O(

p

n).

� Can our 
(

log n

log log n

) lower bound for the AND of two

majorities be strengthened to 
(log n)? We 
onje
ture

that 
(log n) is the true lower bound and that hen
e

the Beigel et al. 
onstru
tion is optimal.
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