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ABSTRACT

We give new upper and lower bounds on the degree of real
multivariate polynomials which sign-represent Boolean func-
tions. Our upper bounds for Boolean formulas yield the first
known subexponential time learning algorithms for formu-
las of superconstant depth. Our lower bounds for constant-
depth circuits and intersections of halfspaces are the first
new degree lower bounds since 1968, improving results of
Minsky and Papert. The lower bounds are proved construc-
tively; we give explicit dual solutions to the necessary linear
programs.
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1. INTRODUCTION

Let f be a Boolean function f: {—1,1}" — {—1,1} and
let p be a degree d multilinear polynomial in n variables
with real coefficients. If the sign of p(z) equals f(z) for
every x € {—1,1}", then we say that f is computed by a
polynomial threshold function of degree d; equivalently we
say that p sign-represents f.
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Polynomial threshold functions are an interesting and nat-
ural representation for Boolean functions which have many
applications in complexity theory and learning theory, see,
e.g., [2, 5, 6, 4, 22, 14, 13]. Positive results showing that
functions have low degree polynomial threshold functions
can be used to obtain efficient learning algorithms via linear
programming; see, e.g., [14, 13]. Negative results showing
that a function requires threshold polynomials of large de-
gree and/or large coefficients can be used to obtain oracles
separating PP from smaller classes; see, e.g., [5, 25].

In this paper we give new upper and lower bounds on
polynomial threshold function degree for several interesting
and natural classes of functions which have been previously
considered (but not resolved) in the literature. It seems
likely that both the upper and lower bound techniques we
use will prove useful for broader classes of functions.

1.1 Previous work

The study of polynomial threshold functions began with
Minsky and Papert in their 1968 book on perceptrons [18].
Minsky and Papert gave three lower bounds on the degree
of polynomial threshold functions:

e Any polynomial threshold function which computes
parity on n variables must have degree at least nn. This
result has since been reproved many times, see, e.g.,
2, 7].

e Any polynomial threshold function which computes a
particular linear-size CNF formula, the “one-in-a-box”
function on n variables, must have degree Q(n'/?). By
Boolean duality this lower bound also holds for a cor-
responding DNF formula.

e Any polynomial threshold function which computes
the AND of two majorities each on n variables must
have degree w(1).

Despite the fact that many researchers in learning the-
ory and complexity theory have studied polynomial thresh-
old functions, relatively little progress has been made on
improving these lower bounds since 1968. In particular,
Vereshchagin [25] has a lower bound for a promise-problem
extension of one-in-a-box and Beigel [5] has a lower bound
for a certain linear threshold function; however, both of
these show degree lower bounds for polynomial threshold
functions only under the added assumption that the poly-
nomials have small integer coefficients. (Krause and Pudlak



[15] have given lower bounds on the number of nonzero coef-
ficients which must be present in any polynomial threshold
function for a particular depth-3 Boolean circuit, but their
lower bounds are not strong enough to imply new lower
bounds on polynomial threshold function degree.) More
progress has been made on upper bounds; Beigel, Reingold,
and Spielman [6] proved that there is a polynomial threshold
function of degree O(log n) which computes the AND of two
n-bit majorities. More recently, Klivans and Servedio [14]
showed that any polynomial-size DNF formula (equivalently,
CNF formula) has a polynomial threshold function of de-
gree O(n'/?log n), and Klivans et al. [13] showed that any
Boolean function of a polylogarithmic number of halfspaces
with quasipolynomially-bounded weights has a polynomial
threshold function of polylogarithmic degree.

1.2 Ourresults

We give new upper and lower bounds on polynomial thresh-
old functions for several interesting and natural classes of
functions. Our main results are:

e We prove that any Boolean formula of depth d and
size s is computed by a polynomial threshold func-
tion of degree /s(logs)?¥. This gives us the first
known upper bound for Boolean formulas of super-
constant depth. In particular, any Boolean formula
of size o(n®) and depth o(%og—n) has a polynomial
threshold of nontrivial (sublinear) degree. We use our
upper bound to provide the first known subexponential
learning algorithm for such formulas. Note that since
parity on /s variables can be computed by a formula
of size s, the best possible degree upper bound which
depends only on s is /s.

e We give an Q(ﬁog—n) lower bound on the degree of
any polynomial threshold function which computes the
AND of two n-bit majorities. Equivalently, this lower
bound holds for the degree of any bivariate real poly-
nomial p(z,y) which is positive on the lattice points
in the upper-right quadrant with coordinates bounded
by n, and is negative on the lattice points in the other
three quadrants with coordinates bounded in magni-
tude by n. This result (and our next) is the first new
unconditional lower bound for polynomial threshold
degree since 1968; it improves on Minsky and Papert’s
lower bound of w(1) and nearly matches the O(logn)
upper bound of Beigel, Reingold and Spielman.

e We prove an “XOR lemma” for polynomial thresh-
old function degree and use this lemma to obtain an
Q(n*/®1og?¥/? n) lower bound on the degree of an ex-
plicit Boolean circuit of polynomial size and depth
d 4 2. This is the first improvement on Minsky and
Papert’s Q(n'/?) lower bound for any constant-depth
circuit.

1.3 Our techniques

Perhaps surprisingly, our lower bounds are achieved con-
structively. The question of whether a given function has
a polynomial threshold function of degree d can be formu-
lated as the feasibility question for a certain linear program.
By duality, we can show the linear program is infeasible —
and hence the function has polynomial threshold degree ex-
ceeding d — by showing that the dual linear program is fea-
sible. We construct explicit dual solutions. (Interestingly,

Vereschagin’s lower bound [25] involves showing that a cer-
tain linear program is feasible by explicitly demonstrating
the infeasibility of the dual.)

Our upper bounds build on ideas from [14, 13] and use
tools from real approximation theory.

1.4 Organization

Section 2 gives preliminaries on polynomial threshold func-
tions and describes the duality technique we use for our
lower bounds. In Section 3 we give our upper bounds for
Boolean formulas and the application to learning. In Sec-
tion 4 we prove our XOR lemma for polynomial threshold
functions using the duality technique, and use this lemma
to obtain new lower bounds for constant depth circuits. In
Section 5 we apply the lower bound technique to prove our
Q(ﬁog—n) lower bound for the AND of two majorities. Fi-
nally, in Section 6 we make some conjectures and sketch
possible future applications of our upper and lower bound
techniques.

2. PRELIMINARIES

We make the following standard definitions of sign-
representing polynomials (see [2]). Let f : {-1,1}" —
{—1,1} be a Boolean function. Let p : {—1,1}" — R be
a multilinear polynomial of degree at most n which is not
identically 0. Define the support of p to be the set of mono-
mials & C 2" on which p has nonzero coefficients.

DEFINITION 1. We say that p weakly (sign-)represents
fif f(x) = sgn(p(x)) for all x such that p(x) # 0. If
p(x) # 0 for every x € {—1, 1} we say that p strongly (sign-)
represents (or simply (sign-)represents) f. We let thr(f)
denote the minimum degree of a polynomial strongly rep-
resenting f, and thr”(f) denote the minimum degree of a
polynomial weakly representing f.

On occasion we will view the domain of f as {0,1}" in-
stead of {—1,1}"; it is easy to see that this does not change
the degree of any sign-representing polynomial.

There is a sense in which sign-representing polynomials
are equivalent to distributions over {—1,1}".

DEFINITION 2. We call a map w : {—1,1}" — RZ% which
is not identically 0 o distribution. The set of points {z :
w(z) # 0} is called the support of w. If the support of w is
all of {-1,1}" we call w a total distribution. If
2eei—1,13n w(x) =1 we call w a probability distribution.
If wis a map w : {—1,1}" — R, not identically 0, which
takes on at least one negative value, we call w an improper
distribution. Given a monomial s, S C [n], we say that
the correlation of zs with f under w is Ey[f(z)rs] =

Yeci—1yn f(@)zsw(z). (Here xs denotes [[;cq i)

Notice that multilinear polynomials of degree at most n
are given by vectors of 2" real coefficients. Improper dis-
tributions too are given by vectors of 2" real weights. The
connection between sign-representations and distributions is
this:

PROPOSITION 3. For any Boolean function f : {—1,1}" —
{—1,1}, there is an (orthogonal) linear bijection As between
weak representations of f and distributions. If p and w are
in correspondence then p(z) = |w(z)| and hence strong rep-
resentations are in bijective correspondence with total dis-
tributions. Further, the S coefficient of p is proportional to



the correlation of xs with f under w. Hence p is supported
on S iff f has zero correlation with xs under w for every
monomial S ¢ S. (Finally, sign-representations which make
mistakes correspond to improper distributions.)

Proor. The bijection maps column vectors of polynomial
coefficients indexed by monomials S C [n] to column vectors
of distribution weights indexed by points € {—1,1}". The
map is given by the matrix Ay with rows indexed by z €
{—1,1}" and columns indexed by monomials S C [n]; the
entry A¢[z, S]is equal to f(z)zs. This matrix is orthogonal,
being a Hadamard matrix. [

Our main tool for proving polynomial threshold degree
lower bounds is the following so-called “Theorem of the Al-
ternative.” It can be proved immediately using linear pro-
gramming duality, as was essentially done by Aspnes et al.
in [2]; a completely different proof based on the distribu-
tion perspective can be given by combining the “Discrimi-
nator Lemma” of [11] with the learning-theoretic technique
of boosting, see [9, 10].

THEOREM 4. Let f : {-1,1}" — {—1,1} be a Boolean
function. Let S C 2™ be any set of monomials. Then ex-
actly one of the following holds:

e f has a strong representation with support in S; or,

o f has a weak representation with support in 20" \S.

Given the equivalence of sign-representations and distri-
butions, there are three other ways of restating Theorem 4.
We will need one more:

THEOREM 5. Let f : {—1,1}" — {—1,1} be a Boolean
function. Let S C 2™ be any set of monomials. Then ex-
actly one of the following holds:

e f has a strong representation with support in S; or,

e there is a distribution on {—1,1}" under which f has
zero correlation to every monomial in S.

3. UPPER BOUNDS FOR BOOLEAN FOR-
MULAS

In this section we consider Boolean formulas composed of
NOT gates and unbounded fan-in AND and OR gates. The
depth of a formula is the length of the longest path from the
root to any leaf, and the size is the number of occurrences
of variables.

We will also consider variants of polynomial threshold
functions in which the polynomial is subject to a stricter
requirement than just sign-representing f. Following Nisan
and Szegedy [20], we write deg(f) to denote the minimum
degree of any polynomial which approximates f to within
1/3 on all inputs; i.e., such a polynomial p(x) must satisfy:

Ve € {0,1)" If() ~p(e)| < 5.
Clearly we have agé(f) > thr(f) for all f. We write |p— f|eo
to denote max,eo,1}» [p(¢) — f(z)|. Thus if |p — fleo < %
we have deg(p) > a_é_é(f) > thr(f).

We prove two similar theorems bounding the polynomial
threshold degree of Boolean formulas:

THEOREM 6. Let f be computed by a Boolean formula of
depth d and size s. Then there is a polynomial p(z1,...,Txn)
of degree at most 2°(D (log 5)°%/2\/5 such that |p — flee < 1

THEOREM 7. Let f be computed by a Boolean formula of
depth d and size s. Then there is a polynomial p(z1,...,Tn)

I__ 1
of degree at most 2°@(logs)®¢s2 212 such that

sgn(p(z)) = f().

The proof technique in both cases is to first manipulate
the formula to get a more structured form, and then to apply
real approximating functions (Chebyshev polynomials, the
rational functions of [6]) at each gate.

Some preliminary notes: Throughout this section we let
0 represent FALSE and 1 represent TRUE, and thus we
view Boolean functions as mappings from {0,1}" to {0, 1}.
Without loss of generality we may assume that our formulas
contain no NOT gates; i.e., they consist only of AND and
OR gates. This is because any negations in a formula F
can be pushed to the leaves using DeMorgan’s laws with no
increase in size or depth. Once all negations are at the leaves
we can replace each negated variable —z; with a variable y;
to obtain a formula F’ which has no negations. Given a
polynomial which sign-represents or approximates F’, we
can obtain a corresponding polynomial for F' by replacing
each y; with 1 — z;, and this will not increase the degree.

3.1 Proof of Theorem 6

Henceforth the variables ci,c2, . ..
constants.

refer to fixed universal

Theorem 6 Let f be computed by a Boolean formula of
depth d and size s. Then there is a polynomial p(z1,...,Txn)
of degree at most ¢{(log s)°¥/%\/s such that |p — f|eo < 1

We will use the following lemma:

LEmmA 8. Let f = /\f=1 fi be a Boolean formula where
£>2. For 1 <i</{letp; be a polynomial with deg(p;) <r
such that |pi — filoo <€, where 0 < € < é. Then there is a
polynomial p with deg(p) < (4v/log L)r such that |p—fle <
(c2llog 2 )e.

Proor. The following convention will be useful: for P a
polynomial we write “P(z) €5 ([a,b],[c,d])” as shorthand
for

“Yz € {0,1}" : if f(x) = 0 then P(z) € [a,b]
and if f(z) =1 then P(z) € [¢,d].”

Thus by assumption we have p;(z) €y, ([—€,€],[1 —€,1+¢€])
for each <.

Let P(z) denote p1(z)+---+pe(x)+Le. It is easy to verify
that we have

P(z) €5 ([0,€— 1+ 2£e], [£, £ + 2Le]).
Let Q(z) denote P(z)/(¢ — 1 + 2€e). We then have

1—2¢e 1
1],[1 1 .
Q) &7 (01,114 o oo 14 )
Let k = Zi;_f_z;le We can rewritc‘a and say Q(m) er ([0,1],[1+
k,1+k+ Z_fﬁlee]). Since Z_fﬁlee < ;fel < 4e we have

Q(z) €5 ([0,1],[1 + k,1 + k + 4€]).
Recall that the Chebyshev polynomial of the first kind
Cq(t) is a univariate polynomial of degree d. The following



fact is straightforward to prove; we omit the proof from this
extended abstract.

Fact 9. For all d > 1 we have:
1. Cq(t) € [-1,1] for t € [0, 1].
2. Let tq denote Cp (1 +1/d). Then tq > 2.

8. For all 0 < 7 < % we have Cryal+1/d+ 1) €

[ta,tq + 26dT].

Let R(z) denote C'j—1/21(Q(z)). Since 4e < & < k, by
parts 1 and 3 of Fact 9 we have that R(z) €5 ([—1,1], [tk, tx+
10%]). Let S(z) denote (iR(a:))[bg%]. Using part 2 of Fact
9 we find that S(z) € ([—e, €], [1, (1+124) % 21]). We now
use the fact that " < 1—(1—a)rforall0 <r <landa >0

(this can be proved using a simple convexity argument). We
thus find that

[log 1] 1 1
104¢ € 104¢[log =1 2081log =

1 <l4+4 —— <14 ——F«.
( + tkk> s+ trk s+ trk ¢

Using our bounds on ¢4 and k, this is at most 14 (c2¢log £ )e
as desired.

It remains only to bound deg(S). From our construc-
tion it is clear that deg(S) < r - [k™'/?] - [log 1]. We have
that [k~'/?] < [\/2€] < 2V/¢ and [log 1] < 2log L. Thus
deg(S) < 4rv/2log L and the lemma is proved. [J

It is easy to see that an identical result holds if f =
szl fi, i.e. f’s top-level gate is an OR instead of an AND.
The following lemma is now easy to establish:

LEmmA 10. Let f be computed by a Boolean formula F
of depth d and size s. Suppose that for any path from the
root of F' to a leaf, the product of the fanins of the gates
on the path is at most t. Then there is a polynomial p with
deg(p) < (calog s)4\/t such that |p — fleo < L.

PRrROOF. Note first that for any Boolean formula of size s,
there is a multilinear interpolating polynomial which com-
putes the formula exactly and is of degree at most s. Con-
sequently if (c3log s)?v/t > s the lemma is trivially true, so
we assume that (c3log s)?V¢ < s.

Consider the formula F. Each leaf contains some variable
x;, so clearly there is a degree-1 polynomial which exactly
computes the function at each leaf. Now apply Lemma 8
successively to every gate in F, going up from the leaves to
the root. At each leaf we may take ¢ in Lemma 8 to be
any positive value; we take € = ;13 Each time we go up
through a gate of fanin ¢ the value of € which we may use
in Lemma 8 is multiplied by at most c2£log(s®) = c3flog s.
An easy induction on the depth of F' shows that at the root
we obtain a polynomial p such that

deg(p) < (4log(s*))?Vt < (cslog s)*Vt

and
1 1 1
[p— floo < 8—3'(0310gs)dt< = e
as desired. [

With Lemmas 8 and 10 in hand, in order to prove Theo-
rem 6 it suffices to bound the product of the fanins on any

path from the root to a leaf. In an arbitrary formula this

product can be quite large; it is easy to construct a formula

of size s and depth d in which there is a path composed of
S

d gates each of fanin 5. Thus in general this product can be
as large as (g)d; however we can remedy this situation as

described below.

LEMMA 11. Let F be a formula of size s and depth d.
There is a formula G of size s and depth 2d computing the
same function as F such that the product of the fanins on
any root-to-leaf path in G is at most (4logs)?s.

PrOOF. We prove the following slightly stronger state-
ment: for any formula F of size s and depth d, there is a
formula G of size s and depth 2d computing F' such that
the product of the fanins on any root-to-leaf path in G is at
most (2[log s])%s. The lemma follows since 2log s > [log s]
for all s.

The proof is by induction on d. For d = 0 the formula
must be a single variable so s = 1 and the claim is trivially
true. Suppose without loss of generality that F' = /\f=1 F;
where ¢ > 2, each F; has depth at most d — 1, and the sum
of the sizes of F1,...,Fy is s. Let |F;| denote the size of
F;. We partition the formulas F1, ..., F; into disjoint classes
C1,...,Cogs1 Where the class C; contains exactly those F;
such that 2/~! < |Fj| < 27. By the induction hypothesis each
formula F; € C; has an equivalent formula G; of size |F;| and
depth at most 2d—2 such that the product of the fanins along
any root-to-leaf path in G; is at most (2[logs])? *|Fi| <
29" og s]*7*. Let G = /\]“:0% *| H; where the formula H,
is defined as H; = /\i:FieCj Gi.

To see that this works, first observe that each C; contains
at most /277! formulas F;. Thus the fanin at the root of H;
is at most s/2j_17 and hence the product of the fanins along
any path in H; is at most 2?s[log s]%!. Thus the product
of the fanins along any path in G is at most (2[log s])%s as
desired and the lemma is proved. [

Theorem 6 follows from combining Lemmas 10 and 11.

3.2 Proof of Theorem 7
Recall Theorem 7:

Theorem 7 Let f be computed by a Boolean formula of
depth d and size s. Then there is a polynomial p(z1,...,Txn)

11
of degree at most c4(log 5)°*s2 ™ 277 1=2 such that sgn(p(x)) =
f(=).

This bound is asymptotically superior to the one in The-
orem 6, for any constant d. However, Theorem 7 only pro-
duces a polynomial which sign-represents the formula’s val-
ues, not one that closely approximates them. The proof of
Theorem 7 builds on the proof of Theorem 6 and uses the
rational functions constructed by Beigel et al. [6] for ap-
proximating the sgn function. We omit the proof from this
extended abstract.

3.3 Discussion

In earlier work Klivans and Servedio [14] showed that
any Boolean formula of constant depth d and size s has a

polynomial threshold function of degree 0(51_3-2@+—3). For
even moderately large constant values of d, this bound is
not far from the trivial upper bound of s. In contrast, our
new bounds are considerably stronger. Theorem 7 gives an



o(s/?) bound for some d = Q(loglog s), and Theorems 6
and 7 both give a bound of O(s'/?*7¢) for any d = o(%o;—s).
To our knowledge Theorems 6 and 7 are the first nontrivial
upper bounds on polynomial threshold function degree for
formulas of superconstant depth.

In other earlier work, Buhrman, Cleve and Wigderson
[3] gave an O(s'/?log?~'(s)) upper bound on the degree of
polynomials that approximate (in the sense of Theorem 6)
certain Boolean formulas of size s and depth d. Their bound
applies only to “balanced formulas,” namely to formulas in
which all of the gates at any given depth have the same fanin
(the fanin can be different for gates at different depths). Our
Theorem 6 thus generalizes their bound on the degree of ap-
proximating polynomials to a substantially broader class of
formulas. The motivation for the upper bounds of Buhrman
et al. was to obtain upper bounds on the bounded-error
quantum complexity of predicates corresponding to balanced
formulas. Our Theorem 6 immediately implies correspond-
ing upper bounds on the bounded-error quantum complex-
ity of a broader class of predicates corresponding to general
formulas.®

3.4 Learning Boolean formulas of supercon-
stant depth in subexponential time

We close this section by describing some consequences of
our results in computational learning theory. It is known
(see [14, 13]) that if a class C' of Boolean functions has
thr(f) < r for all f € C, then C can be learned in time
n°) in either of two well-studied and demanding learning
models, the Probably Approximately Correct (PAC) model
of learning from random examples [12, 24] and the online
model of learning from adversarially generated examples [1,
16]. Thus our polynomial threshold function upper bounds
from Theorems 6 and 7 immediately give a range of new
subexponential time learning results for various classes of
Boolean formulas. For example, we immediately obtain:

THEOREM 12. The class of linear-size Boolean formulas

of depth o(lolﬁog—n) can be learned in time 2" for all
€e>0.

This is the first subexponential time learning algorithm for
linear size formulas of superconstant depth.

We emphasize that the PAC learning results which fol-
low from our upper bounds hold for the general PAC model
of learning from random examples which are drawn from
an arbitrary probability distribution over {0,1}". This is in
contrast with many results in learning theory (such as the
quasipolynomial time algorithm of Linial et al. [17] for learn-
ing constant-depth circuits) which require the random exam-
ples to be drawn from the uniform distribution on {0,1}".

4. AN XOR LEMMA FOR PTF DEGREE

Let f be any Boolean function {—1,1}" — {—1,1} defined
on variables z1,...,z, and let g be any Boolean function
{-1,1}" — {-1,1} defined on variables y1,...,yn. Let f @

'We note in passing that an easy argument shows that any
balanced formula of size s has a polynomial threshold func-
tion approximator of degree at most s'/2; the proof is based
on the observation that either the product of the odd-depth
fanins or the even-depth fanins in any balanced formula must

be at most s'/2.

g denote the XOR (parity) of f and g. We will prove the
following “XOR lemma:”

THEOREM 13. Let f and g be Boolean functions on dis-
joint sets of variables. Then thr(f @ g) = thr(f) + thr(g).

We note that Theorem 13 is similar in spirit (though incom-
parable) to a recent result of Sieling [23] which shows that
DT(f®g) = DI(f)- DT(g), where DT(f) is the minimum
decision tree size of f.

Proof of Theorem 13: The upper bound is easy; if p;(x) is
a strong sign-representation of f of degree thr(f) and py(y)
is a strong sign-representation of g with degree thr(g) then
py(z)pg(y) is easily seen to be a strong sign-representation
of f &g, and deg(ps(z)py(y)) = thr(f) + thr(g).

For the lower bound, since f has no strong representation
on the set of monomials of degree strictly less than thr(f),
Theorem 4 tells us that f has a weak representation g (x)
supported on the monomials zs with |S| > thr(f). Simi-
larly, g has a weak representation g4(y) supported on the
monomials yr with |T'| > thr(g). Now gf(z)gy(y) is a weak
representation of f & g; in particular, it is not identically
zero because there is at least one x for which gf(z) # 0 and
at least one y for which g4(y) # 0, so gr(z)ge(y) # 0 for
these inputs. Note that gf(x)g,(y) is supported on the set
of monomials which have degree at least thr(f) in z and
at least thr(g) in y. Applying Theorem 4 again we con-
clude that any strong representation for f @& g must use
some monomial with degree at least thr(f) in z and at
least thr(g) in y; this is more than sufficient to prove that
thr(f @ g) > thr(f) + thr(g). O

For f a Boolean function let @ f denote the XOR of k
copies of f on disjoint sets of variables. From Theorem 13
we obtain:

COROLLARY 14. thr(®kf) =k - thr(f).

This corollary thus includes Minsky and Papert’s lower bound
of n for the parity function as a special case.

Corollary 14 also yields the following lower bound for con-
stant depth circuits:

THEOREM 15. For all d > 1 there is an AND/OR/NOT
circuit C of depth d+2 and size poly(n) which has polynomial
threshold function degree Q(n'/®(logn)*?/3).

PROOF. The circuit C computes the parity of (logn)? dis-
joint copies of Minsky and Papert’s “one-in-a-box” function,
where each one-in-a-box function is defined on n/(logn)?
variables. It is well known that for any constant d, parity
on (log n)? variables can be computed by an AND/OR/NOT
circuit of depth d+1 and size poly(n). Since the one-in-a-box
function on n/(logn)? variables is a depth-2 circuit of size
O(n/(log n)?), by substituting the appropriate one-in-a-box
function for each input to the parity we see that C'is a circuit
of poly(n) size and depth d+ 2 (we save one on depth by col-
lapsing gates of the same kind on the next to bottom layer).
By Minsky and Papert’s lower bound, we know that any
polynomial threshold function for one-in-a-box on n/(log n)?
variables must have degree Q((n/(logn)?)*/?). Consequently
Corollary 14 implies that thr(C) = Q(n*/3(log n)?*/3) and
the theorem is proved. [



In fact, we can actually give an alternate proof of Min-
sky and Papert’s lower bound for one-in-a-box by using our
lower bound of technique of applying the Theorem of the Al-
ternative (Theorem 5) and constructing the necessary distri-
bution explicitly. The proof will appear in the final version
of this extended abstract.

Theorem 15 is of interest since it gives the first w(n'/%)
lower bound for any function in AC°. We note that Theorem
15 also shows that the n'/? log n upper bound of Klivans and
Servoedio for depth-2 AC® circuits does not hold for depth-4
AC”.

5. A LOWER BOUND FOR THE AND OF
TWO MAJORITIES

Let n be odd, and les AND-MAJ,, : {-1,1}" x{-1,1}" —
{—1, 1} be the function which on input (z,y), z,y € {—1,1}",
outputs 1 if both MAJ,(z) = 1 and MAJ,(y) = 1. Here
MAJ, is the majority function on n bits, & — sgn(3_7_ | ).
In this section we show that thr(AND-MAJ,,) = Q(lolﬁog—n),
improving on the w(1) lower bound of Minsky and Papert.
Note that O(logn) is an upper bound, by Beigel, Reingold,
and Spielman [6].

We begin by applying a simple symmetrization due to
Minsky and Papert. Suppose p is a polynomial threshold
function for AND-MAJ,, where n is odd. Let Z3% denote
the set {—n,—(n —2),...,-1,1,...,n —2,n} C Z. Let
AND-sgn,, : Z2% x Z2%% — {~1,1} be the function which
on input (z,y) is 1 iff z > 0 and y > 0. Minsky and Papert
show:

CrLAM 16. There exists a polynomial threshold function
for AND-MAJ,, of degree d if and only if there exists a bivari-
ate polynomial of degree d which sign-represents AND-sgn,, .

It follows that if we prove a lower bound on the degree
of a bivariate polynomial which sign-represents AND-sgny,
we get a lower bound on thr(AND-MAJ,,). Following Theo-
rem 5, we shall show that there is a probability distribution
over Z2% x 7244 under which every bivariate monomial of
degree at most d = Q(%) has zero correlation with
AND-sgn,,. To see that this is enough, suppose that ¢ is a
bivariate polynomial of degree d sign-representing AND-sgn,,
and w is a probability distribution over Z°% x Z°9 with
the stated property. Then on one hand,

E.[AND-sgn.(z, y)q(z,y)] =0,

by linearity of expectation, since each monomial in ¢ has zero
correlation with AND-sgn, under w. But on the other hand,
since q strongly sign-represents AND-sgn,,,
AND-sgn,, (z,y)d(z,y) > 0 for all (z,y), hence,

Ew [AN D—Sgnn(wy y)q(wi y)] > 0’

which gives a contradiction.

The problem is now set up to our satisfaction. Fix an
integer d. We shall try to find a support (set of points)
Z C Z°99 x Z° and a probability distribution w over these
points such that AND-sgn, has zero correlation under w
with every monomial z'y’ of total degree at most d. That

is, we want w : Z — R2% with > .cz W(z) = 1 such that:
Vo<i+j<d,

Bu[f(z,) 'y = Y wlzy)f(zy) o'y =0.
(z,y)€Z

In addition we would like to find a solution in which size(Z)
is as small as possible, where size(Z) is defined to be
max(, ez {max{|z|, |y|}}. Once we have such a Z and w,
we get a lower bound of d + 1 for the degree of a polyno-
mial threshold function computing AND-MAJ,e(z). In the
remainder of this section we give a construction in which
size(Z) = d°@. This gives us the main result of this sec-
tion:

THEOREM 17. thr(AND-MAJ,) = Q(5285).
5.1 Proof of Theorem 17

Our constraints are all bivariate monomials z'y’ of total
degree at most d. We will refer to z'y’ as the “(i,j) con-
straint monomial.” There are a total of D = W
constraint monomials, and for definiteness we will consider
them to be ordered as follows: 1, x, y, =2, zy, y°, 3, etc.

Our support will be:
Z={((-1)" " (=)' r) 0 <k +L<dyU{(-1,-1)},

where here h is a large quantity to be chosen later (eventu-
ally we will take h = ©(d”)). The support Z is symmetric
about the line y = x and contains exactly D + 1 points.
We will refer to ((—1)° h*,(=1)F R%) as the “(k,£) sup-
port point” and consider the points to be ordered in the
same order as the monomials (i.e., (1,1), (h,—1), (—1,h),
(h?,1), (=h,—=h), (1,h%), (k% —1), etc.), with the special
point (—1, —1) coming last. Note that the value of f on the
(k, £) support point is (—1)F+r+E,

Let A be a D x (D+1) matrix whose columns are indexed
by the support points and whose rows are indexed by the
constraint monomials. Define A[(i, j), (k, £)] to be the value
of the (i,7)th constraint monomial at the (k,¢)th support
point, times the value of f at the (k,¢)th support point.
This definition shall include the case of the special (—1, —1)
support point, to whose column we assign the index (0’,0")
for reasons that will become clear soon. Let A be the (D +
1) x (D + 1) matrix given by adding a row of 1’s to the
bottom of A. For notational convenience we will also give
this row the index (0',0"). So for (3,7), (k,£) # (0',0") we
have:

AlG, §), (k, 0)] = (=1)FO DD TR ikt ()

Recall that we want to find values w : Z — R such that
Z(z ez w(z,y)f(z,y) 'y’ = 0 for all constraints and such
that Z(z,y)ez w(z,y) = 1. By construction these values are
uniquely given by the solution to the following system of
linear equations:

w(oyo) 0
w(l,o) 0
w(oyl) 0
Al weo | =|0]. 2)
W(o,d) 0
L wer-n 1 L1 ]




In the remainder of the proof we show that by taking h =
©(d”), we can ensure that the solution to Equation (2) con-
sists entirely of nonnegative numbers, and hence w corre-
sponds to a true probability distribution as desired. Since
h = O(d®) means that size(Z) = d°?, and we may take h
to be odd, this proves Theorem 17.

We shall consider solving Equation (2) via Cramer’s rule.
Cramer’s rule tells us that Equation (2) implies:

det A(u,v)
detA

where A, ,y denotes the matrix A with the (u,v) column
replaced by the right hand side of Equation (2), namely
[0 00 0 1 ]T. To show that each w(,_,) is non-
negative we will show that det A¢, ,) and det A have the
same sign.

Let o € {+1,—1} be the sign of the product of the diag-
onal entries in A. We will prove the following two lemmas
and thus prove Theorem 17:

W(u,v) =

LeMMA 18. sign(det A) = o.
LEMMA 19. sign(det A(y,y)) = o for all (u,v).

5.1.1 Proof of Lemma 18

To prove Lemma 18 we view det A as a polynomial in h.
Let T := deg(det A) be the degree of det A. We show that
the leading term of det A (corresponding to h”) dominates
all the other terms for h sufficiently large, and thus the sign
of det A is the same as the sign of the leading term. More
precisely, we establish the following two facts:

CLAIM 20. The coefficient of hT in det A is 20.

CLAIM 21. For all w > 1 the coefficient of h¥ =" in det A
is at most 2(D + 2)*" in magnitude.

Claim 21 implies that the sum of the absolute values of the
lower-order terms in det A is at most Y., 2(D+2)*"hT " <
KT SST_ (2(D +2)*/h)“. If we take h to be ©(d”) then this
quantity will be strictly smaller than k7. But by Claim
20 we have that the leading term of det A is 20h”. Thus
sgn(det A) = o and Lemma 18 holds.

We set the stage before proving Claims 20 and 21 with
some notation and some observations. Let S denote the
permutation group on the indices (0, 0), (1,0), (0,1), (2,0),
..., (0,d), (0',0"). Then:

det A= sgn(m) [T AlG,5), = (i, 5)]- (3)

TES (2,5)

Recall that for (7, 7), (k, £) # (0',0"), the entry A[(4, ), (k, €)]
is £h*+7 which we will write as + exp,, ((i,4) - (k, £)), with
expy,(t) denoting h* and - being the usual dot product. In
the case that (i,5) = (0',0") or (k,£) = (0',0'), the entry
Al(3,5), (k, €)] is £1 = £h°. If we define (0',0) - (a,b) to be
0, then we have that for any permutation 7 € S,

HA[('L’])77T(7'7.])] = kexp, Z(’L’])ﬂ_(z’])

(2,3) (%,4)

Given a permutation m € S, write t(m) = 3, ;(4,]) -
w(%,j), so the permutation 7 contributes +1 to the coeffi-
cient of A*™ in det A. Then the absolute value of the coeffi-
cient of h* in det A is at most |[{m € S : t(7w) = u}|. We will
use this fact to bound all the lower-order terms in det A; for
the leading term we will pay more attention to the signs.

To calculate ¢(7) from 7, we decompose the permutation 7
as a product of cycles. For each cycle mo = ((i1, j1) (32,72) - -
(4m, Jm)) we have by simple arithmetic:

M=

(ir;jr) : 7"'O(iT‘:jT‘)

Z(ihjr) ’ (iT:jT) -

1

1
Il

(ir = ir=1)* + (r = Jr-1)®, (4)

I
N —
NgE

Il
—

T

where we use the notation (ig,jo) = (im,Jjm). (Note that
a geometric interpretation of this quantity is that it is half
the sum of the squares of the lengths of the line segments
which make up the cycle in the two-dimensional plane from
(i1, j1) to (i2,j2) to (i3,j3) to ... t0 (im,jm) to (i1, J1).)
In particular, this quantity is at least 1 for every nontriv-
ial cycle, where a trivial cycle for us is either a cycle of
length 1 or the transposition exchanging (0,0) and (0',0).
The quantity in Equation (4) is 0 for trivial cycles. Thus
we have that the identity permutation and the transposition
((0,0), (0",0")) are the only two permutations which achieve
the maximum value ¢(w) = T. It is easy to see that this
maximum value T is Z(i,j) i? + 72, which one easily calcu-

lates to be T := d(d + 1)?(d + 2)/6. We further see that
every other permutation “pays a penalty” in its ¢ value for
each nontrivial cycle it contains, and this penalty is given
by the right-hand side of Equation (4). Hence to calculate
t(w) from 7 we simply sum up the penalties for each cycle
in its cycle decomposition and subtract the total from 7'

Proof of Claim 20: As described above, we have that there
are exactly two permutations which lead to the maximum
power AT in Equation (3): the identity permutation which
takes all the diagonal elements, and the ((0, 0), (0’,0")) trans-
position which takes the top-right entry of A, the bottom-
left entry of A, and the diagonal elements otherwise. The
product of the top-left and bottom-right entries of A is 1.
The product of the top-right and bottom-left entries is —1;
however this gets flipped to +1 by the sign of the permu-
tation (it is a transposition so its sign is —1). We conclude
that leading term of det A is 20h” where o € {—1,1} is the
sign of the product of the diagonal entries in A. [

Proof of Claim 21: To bound the coefficient on the lower-
order term h”~* in det A we simply count the number of
permutations m which have ¢(w) = T — u. This count gives
an upper bound on the magnitude of the coefficient. If
t(w) = T—u then the penalty accounting scheme from Equa-
tion (4) tells us that 7 has at most « nontrivial cycles. In
fact we can say more: any nontrivial cycle of length m must
incur a penalty of at least |m/2]|. (This can be verified us-
ing the geometric interpretation described earlier, together
with the fact that any nontrivial cycle of length m > 3 can
include at most one segment of length 0 between (0,0) and
(0',0").) Consequently, if t(r) = T—u then the lengths of the
nontrivial cycles in 7’s cycle decomposition must sum to at
most 3u (in the worst case all its cycles may be 3-cycles each



of which incurs a penalty of 1). Now observe that there are
at most (D + 2)** permutations on D + 1 elements which
decompose into at most u cycles whose total length is at
most 3u. (Any such sequence of cycles can be written as a
string of length 4u over a D+ 2 element alphabet, where the
extra symbol is used to mark the end of each cycle.) Dou-
bling this upper bound covers the optional addition of the
trivial ((0,0), (0',0")) transposition. We thus may conclude
that there are at most 2(D +2)*" permutations 7 € S which
have t(m) =T —u. O

5.1.2 Proof of Lemma 19

It now remains to show that sgn(det A, ,)) = o for each
(u,v). By the nature of cofactor expansion, det A, ,) is
equal to a certain sign p, times the determinant of A with
the bottom row and the (u,v) column deleted. In the case
(u,v) = (0',0") we have p = 1 and we shall write Afq g,
for the matrix A with its last row and column deleted. For
all (u,v) # (0',0), let us write A{, ,, for the matrix got-
ten by first deleting the bottom row and (u, v) column from
A, and then moving the (0',0") column leftward until it is
in the place where the old (u,v) used to be. Shifting the
(0',0") column like this incurs a sign change equal to —p;
we conclude that det A, ,) = —det Af, .. Hence it is suf-
ficient for us to show that sgn(det Ay o)) = o and that
sgn(det A{, ,)) = —o for all (u,v) # (0',0).

Let us begin by dispensing with the cases (u,v) = (0',0")

r (0,0). In both of these cases A{, ,, is very similar to A
with the last row and column deleted; when (u,v) = (0',0")
this is exactly what Af, ., is, and when (u,v) = (0,0) some
of the signs in the first column are changed. Hence the
analysis of det A{, ) is virtually identical to the above anal-
ysis of det A, except that (0’,0") is no longer present. The
leading term will therefore be equal to the top-left entry of
A, times ok this entry is 1 when (u,v) = (0,0) and is
—1 when (u,v) = (0,0), as desired. The analysis bounding
the lower-order terms goes through in essentially the same
way as before (again without (0',0")) and we conclude that
sgn(det Ay o)) = o and sgn(det A 4)) = —o as desired.

Throughout the rest of this section we assume that (u,v) #
(0',0"),(0,0). Let T, ) denote the degree of det(Af, ,)). We
will prove the following two claims:

Cramv 22. The coefficient of hT(+») in det (A, ) is —20C.

CrAM 23. For all s > 1 the coefficient of hT(x.2) ™% in
det(Af, ) is at most 4C(D + 2)* in magnitude.

As in the previous subsection, these two claims show that
we may take h = ©(d®) to obtain sgn(det(A{, ,))) = —0, s0
they suffice to prove the lemma.

Studying det A'(uﬂ)) is slightly more complex than studying
det A because its rows and columns no longer have the same
names; the rows of A'(u,v) are named (0,0), (1,0), (0,1),
(2,0), ..., (u,v),...,(0,d), whereas the columns are named
(0:0)7 (1:0): (07 1): (270)7 ) (0,:01)7 ’ (Oyd) To deal
with this, we will let S’ denote the permutation group on
the D row indices of A{,, ., and we will view (u,v) as (0',0")
whenever it is the “output” of a permutation. To be precise,
let ¢ be a mapping which maps (i, 7) to (7, j) for each (7, ) #
(u,v), and maps (u,v) to (0’,0"). Then our determinant

equation becomes:

det Af, ) = Z sgn(m H Al(3, 5), s IN]- (5)

mes (i:4)
We may write t(r) = 3 (i,4) - t(w(i, 7)), so we have
H(i,j) Al(3,7), (7 (i, 4))] = L ptm)

As before we will calculate ¢(w) by considering the cy-
cle decomposition of 7w and computing the penalty differ-
ence from T = d(d + 1)*(d + 2)/6 for each cycle. Since
now the “identity” permutation does not exist, the permu-
tations maximizing ¢(7w) may not achieve T'; indeed, since
(u,v) # (0',0") it is the case that maximizing permutations
will not achieve t(w) = 7. Let us now find the new high-
est value for ¢(m). The cycle decomposition of 7 contains a
unique cycle (which may be a 1-cycle) containing (u,v), and
perhaps other cycles which do not contain (u,v). For the cy-
cles not containing (u,v), ¢ does not enter into the picture
in calculating ¢(mo); hence Equation (4) still holds and we
conclude that any m with maximal #(7) has no nontrivial
cycles involving (u,v). Thus, in order to find all maximiz-
ing «’s, it is sufficient to determine which cycles containing
(u,v) give the smallest penalty.

Let ©* be a cycle containing (u,v); say w° =
((u,v) (i1,41) (i2,72) -+ (im,Jm)), so according to our con-
ventions 7" maps (u, v) to (i1, j1), maps (ir, jr) t0 (ir+1, jr+1)
for 1 <r <m—1, and maps (im, jm) to t(u,v) = (0',0).
Write (4o, jo) = (u,v). Then akin to Equation (4) we have:

NgE

m
(irs 3r) - (Ers Jr) Z iy Jr) - 7T (&, Jr))
0 =0

i
Il

I
NE

(iT:jT) ’ (ir:jr) -

ﬁ
I

ik

(%, Jr) - (4r41 mod m+1, Jr+1 mod m+1) + trt + jrv

\]
Il
<

I
N | =
/
NE

(ir - ir—l)z + (]7‘ - jr—l)z)

+(uw—1i)" + (v —jr)?) +iru+ v (asin (4))
= % ((2::1(1 —ir—1)” + (Jr —jr1)2>
it G+ 407 ©)

The geometric interpretation of the quantity on the right-
hand side of Equation (6) is that it is half the sum of the
squares of the path segments on the closed path from (u,v)
to (41,71) to (i2,72) to --- to (im,Jm) to (0,0) to (u,v). It
is immediate that in a cycle minimizing this quantity, there
should be no path step which has either x or y displacement
greater than 1 in magnitude (aside from the step from (0, 0)
to (u,v) which is forced). Consequently, the permutations
7« which maximize t(m) are precisely those cycles ©* such
that (1) lry1 — Uy € {—1,0} and jr41 — jr € {—1,0} for
0 <r <m,and (2) im,jm € {0,1}. It is easy to see that
each such maximizing permutation has ¢t(m) = T(y,,) =T —
L(u+v+u®+0%).

Proof of Claim 22: Now we can compute the coefficient
of ATx») in det A}, Given a permutation 7 maximiz-
ing ¢(m), let e(m) denote the sign of 7’s contribution to



the determinant computation of Equation (5), i.e. e(mw) =
sgn(m) [1(; ;) sen(A[(E, ), ¢(w (¢, 5))]). Then the leading coef-
ficient of det A, , is just the sum of () over all maximiz-
ing .

Let m = ((u,v) (i1,51) (i2,72) - (im,Jm)) be a maximiz-
ing permutation; as before we write (4o, jo) = (u,v). By the
definition of ¢ as the product of the signs of A’s diagonal
elements, we get that oe(m) is equal to sgn(m) times:

( 1:[ sgu(A[(ir, jr), (ir, jr)]))sgn(A[(ir, jr), (Zﬂl:]ﬂl)]))

58 (A[(im; Jm), (im, jm)])sgn(A[(im, jm), (0", 07)]).

We claim that for each 0 < r < m — 1 we have:

sgn(A[(ir, jr), (ir, jr)D)sgn(A[(ir, jr), (ir41, jr+1)]) = =1,
independent of (i, j»). For from Equation (1) we know that:
sgu(A[(ir, jr), (ir, 3r)])sgn(A[(ir, jr), (ir+1, 4r+1)])
exp_y (ir (jr + 1) + jr (ir +1) +4rjir)

~exp_y (ir+1(Jr +1) + jr1(ir + 1) + drpafrs1)
= exp_;(trjr +irs1dr +irfre1 +irr1drt1

+ir +ir+1 + Jr + Jri1)

= exp i ((ir +irp1 + D(r +Jr1 +1) — 1),

which is always —1 as claimed, because (ir, jr)—(ir+1, jr+1) €

{(1,0),(0,1), (1, 1)}.

Thus we have:

oe(m) = sgn(m)(=1)" sgn(A[(im, jm), (im, jm )])
- sgn(A[(im, jm), (0", 0)])
= +Sgn(A[(im7jm): (im,jm)])SgH(A[(im,jm), (0,7 0,)]) (*):

because 7 is a cycle of length m+1. If (i, jm) = (1,1) then
(¥) = —1; otherwise, (¥x) = +1. Hence we conclude that
e(r) = o if (im,Jm) = (1,1) and e(m) = —0o if (im,jm) €
{(0,0), (1,0),(0,1)}. For each maximizing cycle 7 of length
m + 1 with (4, jm) 7 (0,0), there is a corresponding max-
imizing cycle 7' of length m + 2 obtained by appending
(4m+1,Jm+1) = (0,0) to w. Thus we have e(m) + e(x') =
0 when (im,jm) = (1,1) and e(w) + e(n’) = —20 when
(¢m,Jm) = (1,0) or (0,1). In conclusion, the leading term
in det A{, ,) is exactly —20ChT ) | where C is the number
of paths from (u,v) to (1,0) plus the number of paths from
(u,v) to (0,1), where each path uses steps (—1,0), (0, —1),
and (—1,—1). (Such paths are known as Delannoy paths,
and the number of such paths between a pair of points is a
Delannoy number; hence C' is a sum of two Delannoy num-
bers.) Since (u,v) # (0,0) we have C > 1, and the claim is
proved. [

Proof of Claim 23: We must upper-bound the magnitude
of the lower-order terms in det Af, ,,. We do this as in the
analysis of det A by upper-bounding the number of permu-
tations 7 with ¢(m) = T(y,) —s. To each w € S’ we will
associate a mazimizing permutation = (i.e., one for which
t(7") = T(y,v)), and a “deviation description.” We will show
that the longer the deviation description, the smaller ¢(m) is
compared to t(7"). Thus the number of permutations 7 with
t(m) close to T(, .y will be upper-bounded by the number of
optimal permutations times the number of short deviation
descriptions.

Let 7 be an arbitrary permutation in S’ and write 7 as
the product of a cycle mo involving (u,v), and some other
cycles m,...,ms. The maximizing permutation 7° we asso-
ciate with 7 will depend only on m. View mg geometrically
as a path from (u,v) to my ' (u,v). Call a path “optimal” if
it only uses steps (—1,0), (0, —1), and (—1, —1), so in partic-
ular every maximizing permutation contains one nontrivial
cycle containing (u, v) whose corresponding path is optimal.
We will split mo up into its optimal and nonoptimal seg-
ments. Specifically, a;, bi,ci,d;,...,ar, by, cr,d, are defined
as follows: mg proceeds optimally from (u,v) to (a1,b1), at
which point it takes a nonoptimal step. Let (c1,d1) be the
first point it proceeds to subsequently with the property that
c1 < a1, di <bi. Then mo proceeds optimally from (ci1,d1)
to (az,b2), at which point it makes a nonoptimal step. Let
(c2,d2) be the first point it proceeds to subsequently with
c2 < a2, d2 < b2. Continuing in this fashion, let (ar,b,)
be the last point reached in the last optimal segment of m;
7o may optionally go on and reach w5 '(u,v) We will let
the maximizing permutation 7" associated with 7 be any
optimal path that agrees with mo on all steps from (u,v)
to (a1,b1), all steps from (c1,d1) to (az,b2), ..., all steps
from (¢r—1,dr—1) to (ar,b,), and then ends by proceeding
optimally to (0, 0).

The deviation description of 7 will simply be a list of all
of the cycles =1,...,ms not containing (u,v), along with a
description of mp’s deviation from 7*. This deviation consists
of the path from (a1,b1) to (c1,d1), from (az,b2) to (c2,d2),
etc., possibly ending with some path from (a,, b,) to a point
not in {0,1}>. Note that m can be recovered from 7" and
the deviation description.

Now let us compute ¢(7*) — t(7). This difference is equal
to (T — t(m)) — (T — t(n*)), and Equations (4) and (6) tell
us how to compute these quantities. By Equation (4), ¢(m)
pays an extra penalty over ¢(n*) for each of its cycles not
involving (u,v), m1,...,7s. As in the analysis of det A we
know that such a cycle of length m incurs a penalty of at
least |m/2]. Equation (6) allows us to compare the penalties
against 7' that each of ¢(7") and ¢(7) pays. Every time
mo deviates from 7" it pays an extra penalty of at least
1. Indeed, just as in the analysis of extraneous cycles, a
deviation path from (a;, b;) to (ci, d;) which touches m nodes
must incur an extra penalty of at least |m/2]|. This holds
also for a final deviation path which does not end up in
{0,1}?, since it must pay for half the squared distance from
the origin of its endpoint. Both 7™ and m pay equally for
the final 1 (k” + ¢*) term.

In conclusion, if the total length of the cycles and devia-
tion paths in 7’s deviation description is m then (T'—t(w)) —
(T —t(m")) is at least [m/2]; ie., t(m) < T(y,0) — Mm/2].
Hence as in the analysis of det A we can get an upper bound
of (D + 2)* - #{number of maximizing 7o} for the number
of permutations m with ¢(m) = T(,,,) — s. But note that
the leading coefficient in det Af, ,, has magnitude 2C, and
2C is at least half the number of maximizing permutations
mo. To see this, recall that C' counts the number of optimal
paths from (u,v) to either (1,0) or (0,1), and each maxi-
mizing permutation corresponds to an optimal path to one
of (0,0),(0,1),(1,0),(1,1). The number of optimal paths to
(1,1) is at most C (each such path can be extended to a path
ending in (1,0) or (0,1)), and hence the number of optimal
paths to (0,0) is at most 2C (since the next to last point
on any such path is either (1,0),(0,1) or (1,1)). It follows



that the magnitude of the sum of all lower-order terms in
det A{, ) is at most ZST(Z"I’”) 4C(D + 2)**hT» % and the
claim is proved. [

6.

CONJECTURES AND FUTURE WORK

Many questions remain for further research on the polyno-
mial threshold degree of Boolean functions. We believe the
new techniques introduced in this paper will lead to the so-
lution of some of them. Below we give some open problems
and conjectures which we hope will spur further research.

7.
1]
[2]

[3]

[4]
[5]

[6]

e Can lower bounds of Q(n

1/3+¢) for some € > 0 be

proved for constant depth circuits of depth 3 or greater?
In particular, let f be the function computed by the
following depth-3 read-once formula: the top gate is
an AND of fan-in n'/®, the middle gates are ORs of
fan-in n?/®, and the bottom gates are ANDs of fan-
in n?/°. We conjecture that f requires PTF degree
Q(n*?), and believe that this may be provable via our
lower bound techniques. (Krause and Pudlak [15] have
given lower bounds on the number of nonzero coeffi-
cients in any polynomial threshold function for this
circuit, but as mentioned earlier their results do not
imply new degree lower bounds.)

Does every Boolean formula of size s have a polynomial
threshold function of degree O(+/s) independent of its
depth? This is the best possible upper bound since
parity on 4/s variables is computed by a formula of
size s and depth O(log s).

One particular function that seems difficult is the fol-
lowing: Let B be an integer and consider the function
g(z1,...,zB,y1,...,yB) = (OR(z1,...,zB)) OR
(AND(y1,...,yB)). Let f be the Boolean formula
given by a tree of copies of g. Let f be on n to-
tal variables and let B = logn, so that f has depth
©(log n/loglogn). We do not know how to show that
this function has PTF degree O(v/n).

Can our Q(%O'g’—n) lower bound for the AND of two
majorities be strengthened to Q(logn)? We conjecture
that Q(logn) is the true lower bound and that hence

the Beigel et al. construction is optimal.
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