
Learning Juntas

Elchanan Mossel
∗

CS and Statistics, U.C.
Berkeley

Berkeley, CA

mossel@stat.berkeley.edu

Ryan O’Donnell
†

MIT Department of
Mathematics

Cambridge, MA

odonnell@theory.lcs.mit.edu

Rocco A. Servedio
‡

Computer Science
Department,

Columbia University
New York, NY

rocco@cs.columbia.edu

ABSTRACT
We consider a fundamental problem in computational learn-
ing theory: learning an arbitrary Boolean function which
depends on an unknown set of k out of n Boolean variables.
We give an algorithm for learning such functions from uni-

form random examples which runs in time roughly (nk)
ω

ω+1 ,
where ω < 2.376 is the matrix multiplication exponent. We
thus obtain the first polynomial factor improvement on the
naive nk time bound which can be achieved via exhaustive
search. Our algorithm and analysis exploit new structural
properties of Boolean functions.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-

ity]: Miscellaneous

General Terms
Theory, Algorithms

Keywords
learning, juntas, relevant variables, uniform distribution,
Fourier

1. INTRODUCTION

1.1 Background and motivation
∗Supported by a Miller Fellowship. Most of this research was
conducted when the first author was a postdoc at Microsoft
Research.
†Supported by NSF grant 99-12342.
‡Supported by an NSF Mathematical Sciences Postdoctoral
Research Fellowship and by NSF grant CCR-98-77049. Most
of this research was conducted when the third author was a
postdoc at Harvard University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro®t or commercial advantage and that copies
bear this notice and the full citation on the ®rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci®c
permission and/or a fee.
STOC ’03 San Diego, CA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

One of the most important and challenging issues in ma-
chine learning is how to learn efficiently and effectively in the
presence of irrelevant information. Many real-world learn-
ing problems can be modeled in the following way: we are
given a set of labeled data points and we wish to find some
hypothesis which accurately predicts the label of each data
point. An oft-encountered situation in this framework is
that each data point contains a large amount of information
(i.e., each data point is a high dimensional vector of at-
tribute values over a fixed large set of attributes), but only
a small unknown portion of this information is relevant to
the label of the data point (i.e., the label is determined by
a function which only depends on a few of the attributes).
For example, in a computational biology scenario each data
point may correspond to a long DNA sequence, and the la-
bel may be some property which depends only on a small
unknown active part of this sequence.

In this paper we consider the following learning problem
which Blum [3] and Blum and Langley [4] proposed as a
clean formulation of learning in the presence of irrelevant
information: Let f be an unknown Boolean function over an
n-bit domain which depends only on an unknown subset of
k � n variables. Such a function is called a k-junta. Given a
data set of labeled examples 〈x, f(x)〉, where the points x are
independently and uniformly chosen random n-bit strings,
can the function f be learned by a computationally efficient
algorithm? (We give a precise description of what it means
to “learn f” in Section 2.) Note that a naive brute force
search over all possible subsets of k relevant variables can
be performed in time roughly nk; we would like to have an
algorithm which runs faster than this.

We believe that the problem of efficiently learning k-juntas
is the single most important open question in uniform dis-
tribution learning. In addition to being natural and elegant,
learning juntas is at the heart of the most notorious open
problems in uniform distribution learning, namely learn-
ing DNF formulas and decision trees of superconstant size.
Since every k-junta can be expressed as a decision tree or
DNF formula of size 2k, it is clear that efficient algorithms
for learning 2k-size decision trees or DNFs would also be
efficient algorithms for learning k-juntas. But in fact more
is true: obtaining efficient algorithms for decision trees or
DNFs requires that we be able to efficiently learn juntas.
Specifically, any size-k decision tree is also a k-junta, and
any k-term DNF is ε-indistinguishable (under the uniform
distribution) from a k log(k/ε)-junta. Thus, learning ω(1)-
size decision trees or ω(1)-term DNFs in polynomial time is

equivalent to learning ω(1)-juntas in polynomial time.
We note that learning from uniform random examples

seems to be the model in which this problem has the right
amount of difficulty. As described in Section 5, allowing the
learner to make membership queries makes the problem too
easy, while restricting the learner to the statistical query
model makes the problem provably hard.

1.2 Our results
We give the first learning algorithm for the problem of

learning k-juntas which achieves a polynomial factor im-
provement over brute force exhaustive search. Under the
uniform distribution, our algorithm exactly learns an un-
known k-junta with confidence 1 − δ in time

n
ω

ω+1
k ·poly(2k, n, log(1/δ)), where ω is the exponent in the

time bound for matrix multiplication. Since Coppersmith
and Winograd [7] have shown that ω < 2.376, our algorithm
runs in time roughly N .704 where N ≈ nk is the running
time of a naive brute force approach. Our algorithm and
analysis exploit new structural properties of Boolean func-
tions which may be of independent interest.

We note that since this learning problem was first posed
by Blum in 1994, little progress has been made. The first
improvement over the trivial nk time bound of which we are
aware is a recent algorithm due to A. Kalai and Mansour

[12] which runs in time roughly nk−Ω(k1/4). Mansour [18]

later improved this to nk−Ω(k1/2). (In recent work Fischer
et al. have studied the problem of testing k-juntas [8], but
the learning and testing problems seem to require different
techniques.)

1.3 Organization
In Section 2 we formally define the learning problem and

give some background on polynomial representations of
Boolean functions. In Section 3 we present the learning
algorithms which allow us to reduce the learning problem
to some questions about representing Boolean functions as
polynomials. In Section 4 we prove the necessary new struc-
tural properties of Boolean functions and thus obtain our
learning result. Finally, in Section 5 we use the developed
machinery to analyze several variants of the juntas problem.

2. PRELIMINARIES
The learning model we consider is a uniform distribution

version of Valiant’s Probably Approximately Correct (PAC)
model [19] which has been studied by many researchers, e.g.,
[6, 10, 11, 14, 15, 17, 20, 21]. In this model a concept class
C is a collection ∪n≥1Cn of Boolean functions, where each
c ∈ Cn is a function on n bits. Let f ∈ Cn be an unknown
target function. A learning algorithm A for C takes as input
an accuracy parameter 0 < ε < 1 and a confidence parameter
0 < δ < 1. During its execution A has access to an exam-
ple oracle EX(f) which, when queried, generates a random
labeled example 〈x, f(x)〉 where x is drawn uniformly from
{0, 1}n. A outputs a hypothesis h which is a Boolean func-
tion over {0, 1}n; the error of this hypothesis is defined to be
error(h, f) = Pr[h(x) 6= f(x)]. (Here and in the remainder
of the paper, unless otherwise indicated all probabilities are
taken over x chosen uniformly at random from {0, 1}n.) We
say that A is a uniform-distribution PAC learning algorithm
for C if the following condition holds: for every f ∈ C and
every ε, δ, with probability at least 1−δ algorithm A outputs

a hypothesis h which has error(h, f) ≤ ε. For the purposes
of this paper the accuracy parameter ε will always be 0, so
our goal is to exactly identify the unknown function.

A Boolean function f : {0, 1}n → {0, 1} is said to depend
on the ith variable if there exist inputs x, y ∈ {0, 1}n which
differ only in the ith coordinate and which have f(x) 6= f(y).
Equivalently, we say that such a variable is relevant to f . If
the function f has at most k relevant variables then we call
f a k-junta. The concept class we consider in this paper is
the set of k-juntas over n variables, i.e., Cn = {f : {0, 1}n →
{0, 1} s.t. f is a k-junta}. Equivalently, each function f ∈
Cn is defined by a subset R = {i1, . . . , ik′} ⊂ {1, . . . , n}

of k′ ≤ k relevant variables and a truth table of 2k′

bits
corresponding to all possible settings of these variables.

We are most interested in the case where k is O(log n)
or even a large constant value. For such k the number
of possible sets of relevant variables is n(1−o(1))k. Hence
the naive learning algorithm which performs an exhaustive
search over all possible subsets of relevant variables will take
time n(1−o(1))k.

2.1 Representing Boolean functions as poly-
nomials

A Boolean function g on n bits is a mapping {F,T}n →
{F,T}. There are many possible ways to represent g as a
multilinear polynomial. Since our analysis will use several
different representations, we give a general definition which
encompasses all of the cases we will need:

Definition 1. Let F be a field and let f, t ∈ {−1, 0, 1}
be distinct elements of F. We say that a multilinear polyno-
mial p 〈F, f, t〉-represents g if p : Fn → F has the following
properties:

• for all inputs in {f, t}n, p outputs a value in {f, t};
and,

• p and g induce the same mapping when F and T are
identified with f and t in the input and output.

Note that since f2, t2 ∈ {0, 1}, the assumption that p is
multilinear is without loss of generality. It is well known that
the 〈F, f, t〉-representation of g always exists and is unique;
for completeness we give a simple proof below.

Proposition 2. Every Boolean function g has a unique
multilinear 〈F, f, t〉-representation.

Proof. The condition that p is a multilinear polynomial
which represents g is equivalent to a system of 2n linear
equations in 2n unknowns, where the unknowns are the co-
efficients on the 2n multilinear monomials. Let An denote
the 2n × 2n matrix arising from this linear system, so the
columns of An correspond to monomials and the rows cor-
respond to truth assignments. It suffices to prove that An

has full rank; we now prove this by induction.

In the case n = 1 we have A1 =
(

1 f

1 t

)
which has full

rank over any field since f 6= t. In the general case, one
can rearrange the rows and columns of An to get An =(

An−1 fAn−1

An−1 tAn−1

)
, where the columns on the left correspond

to monomials not containing xn and the others correspond
to monomials containing xn. By performing elementary row

operations on this matrix, one can get
(

An−1 fAn−1

0 (t− f)An−1

)
.

Since f 6= t and An−1 has full rank by induction, this has
full rank.

The fields we will consider in this paper are the two-
element field F2 and the field R of real numbers. In F2

we will represent bits by f = 0, t = 1, and in R we will
usually represent bits by f = 1, t = −1.

Definition 3. Given a Boolean function g on n bits:

• We write gF2
for the multilinear polynomial which

〈F2, 0, 1〉-represents g, and we say that gF2
F2-represents

g. Note that gF2
can be viewed as a parity of ANDs

since F2 multiplication corresponds to AND and F2

addition corresponds to parity.

• We write gR for the multilinear polynomial which
〈R, +1,−1〉-represents g, and we say that gR R-represents
g. Note that gR is precisely the “Fourier representa-
tion” of g. As is standard, we write ĝ(S) for the co-
efficient of xS in gR, where xS denotes the monomial∏

i∈S xi. We call ĝ(S) the “S Fourier coefficient of
g.”

As an example, if g = PARITYn then we have
gF2

= x1 + x2 + · · · + xn and gR = x1x2 · · ·xn. Note that
there is a huge difference in the degrees of these two polyno-
mial representations; we will be very interested in the degree
of Boolean functions under various representations. We ob-
serve that for a given field this degree is independent of the
exact choice of f, t. This is because we can pass back and
forth between any two such choices by nonconstant linear
transformations on the inputs and outputs, and under such
transformations the monomials of highest degree can never
vanish. Thus we can make the following definition:

Definition 4. deg
F
(g) is defined to be deg(p) where p is

any 〈F, f, t〉-representation of g.

Hence we have deg
F2

(PARITYn) = 1 and deg
R

(PARITYn) =
n. In general deg

F2
(g) ≤ deg

R
(g):

Fact 5. For any Boolean function g, deg
F2

(g) ≤ deg
R

(g).

Proof. Let p be the 〈R, 0, 1〉-representation of g and let
gF2

be the F2-representation of g. We have

p(x) =
∑

z∈{0,1}n

[
p(z)

(∏

i:zi=1

xi

)(∏

i:zi=0

(1 − xi)

)]
.

This polynomial clearly has integer coefficients; gF2
is ob-

tained by reducing the coefficients of p mod 2, and this op-
eration can only decrease degree.

3. LEARNING TOOLS
In this section we give the learning algorithms we will use

for solving the junta problem. We first show that it suffices
to give a learning algorithm which can identify a single rel-
evant variable. We then give two learning algorithms that
look for relevant variables. Our algorithm for learning k-
juntas will end up trying both algorithms and we shall prove
in Section 4 that at least one of them always works.

Throughout this section, f will denote a k-junta on n bits,
R will denote the set of variables on which f depends, k′ will
denote |R| (so 0 ≤ k′ ≤ k), and f ′ will denote the function

{F,T}k′

→ {F,T} given by restricting f to R.

3.1 Finding a single relevant variable is enough

Proposition 6. Suppose that A is an algorithm running
in time nα · poly(2k, n, log(1/δ)) which can identify at least
one variable relevant to f with confidence 1 − δ (assuming
f is nonconstant). Then there is an algorithm for exactly
learning f which runs in time nα · poly(2k, n, log(1/δ)).

Proof. First note that if f is nonconstant then for uni-
form random inputs each output value occurs with frequency
at least 1/2k. Hence we can decide whether or not f is
a constant function with confidence 1 − δ in time in time
poly(2k, n, log(1/δ)).

Next, suppose ρ is any restriction fixing at most k bits.
We claim that we can run any learning algorithm on f |ρ
with a slowdown of at most poly(2k). To do so, we only
need to transform the example oracle for f into one for f |ρ;
this is easily done by rejecting all samples 〈x, f(x)〉 for which
x does not agree with ρ. Since ρ fixes at most k bits, the
probability that a random x agrees with ρ is at least 2−k.
Hence with probability 1 − δ we can get M samples for f |ρ
by taking M ·poly(2k) log(M/δ) samples from the oracle for
f .

We now show how to identify all the variables R on which
f depends in the requisite amount of time. By induction,
suppose we have identified some relevant variables R′ ⊆ R.

For each of the 2|R′| possible restrictions ρ which fix the
bits in R′, consider the function f |ρ. Since f |ρ is also a k-
junta, A can identify some variables relevant to f |ρ (or else
we can check that f |ρ is constant). By running A (with the
slowdown described above) for each possible ρ, we will iden-
tify new variables to add into R′. We repeatedly add new
variables to R′, testing all restrictions on these variables,
until all of the restricted subfunctions are constant. It is
clear that at this point we will have identified all variables
relevant to f .

Note that R′ grows by at least one variable per stage, and
so we will never run A more than k2k times. Further, we can
get confidence 1−δ/k2k for each run — even after rejection-
sampling slowdown — in time nα · poly(2k, n, log(1/δ)).
Hence we can identify R in time nα · poly(2k, n, log(1/δ))
with confidence 1 − δ.

Finally, once R is identified it is easy to learn f exactly.
Simply draw poly(2k, log(1/δ)) samples; with probability 1−
δ we will see every possible bit setting for R so we can build
f ’s truth table and output this as our hypothesis.

3.2 The Fourier-based learning algorithm
We describe a simple Fourier-based algorithm for trying

to identify a variable relevant to f . The algorithm is based
on the “Low Degree” learning algorithm of Linial, Mansour,
and Nisan [15] (see also [16]). As with the Low Degree al-
gorithm, our Fourier-based algorithm tries to learn the un-
known function f by estimating all of f ’s Fourier coefficients
f̂ (S) with 1 ≤ |S| ≤ α. Unlike the Low Degree algorithm,
our algorithm can stop as soon as it finds a nonzero coef-
ficient, since all variables in the associated monomial must
be relevant to f .

We first show how to compute the exact value of any de-
sired Fourier coefficient:

Proposition 7. We can exactly calculate any Fourier co-
efficient f̂ (S) with confidence 1−δ in time poly(2k, n, log(1/δ)).

Proof. We view bits as being ±1, as in the R-representation.
After multilinear reduction we see that the polynomial xSfR(x)

has f̂(S) as its constant coefficient. Since E[xT] = 0 for all
nonempty subsets T , linearity of expectation lets us con-
clude that E[xSfR(x)] = f̂(S). We can clearly compute
the value of xSfR(x) in linear time given a labeled example
〈x, f(x)〉. By standard Chernoff bounds, poly(2k, log(1/δ))
independent samples of the ±1 random variable xSfR(x) are
sufficient for computing the expectation to within ±1/2k+1

with confidence 1− δ. Since f and f ′ have the same Fourier
expansion and f ′ is a function on at most k variables, f̂(S)
must be of the form a/2k for some integer a ∈ [−2k, 2k].
Hence by rounding the empirical expectation to the nearest
integer multiple of 1/2k we will get the exact value of f̂(S)
with confidence 1 − δ.

The next proposition says that if f ′ has a nonzero Fourier
coefficient of small (but nonzero) degree, then we can effi-
ciently identify some variables relevant to f .

Proposition 8. If f̂ ′(S) 6= 0 for some S with 1 ≤ |S| ≤
α, then we can identify at least one relevant variable for f
with confidence 1 − δ in time nα · poly(2k, n, log(1/δ)).

Proof. We use Proposition 7 to compute each Fourier
coefficient f̂(S), 1 ≤ |S| ≤ α, with confidence 1 − δ/nα.
Since there are at most nα possible sets S, with confidence
1−δ we will obtain the exact values of all the desired Fourier
coefficients in time at most nα · poly(2k, n, log(1/δ)). Since
f and f ′ have the same Fourier coefficients, we will find
an S with f̂ (S) 6= 0. It is easy to see that every variable
in S must be relevant to f ; for if f is does not depend
on xi then f̂(S) = E[xSfR(x)] = E[xi]E[xS−ifR(x)] = 0 ·
E[xS−ifR(x)] = 0.

3.3 The F2-based learning algorithm
In this subsection we show that if f ′ is a low-degree poly-

nomial over F2, then in fact we can learn f ′ exactly. Here
we view True and False as 1 and 0 respectively.

Recall the following well-known result from computational
learning theory [9]:

Theorem 9. Let g : {0, 1}N → {0, 1} be a parity function
on an unknown subset of the N Boolean variables x1, . . . , xN .
There is a learning algorithm B which, given access to la-
beled examples 〈x, g(x)〉 drawn from any probability distribu-
tion D on {0, 1}N , outputs a hypothesis h (which is a parity
of some subset of x1, . . . , xN) such that with probability 1−δ
we have Prx∈D[h(x) 6= g(x)] ≤ ε. Algorithm B runs in time

O((N
ε

+ log 1/δ
ε

)ω) where ω < 2.376 is the exponent for matrix
multiplication.

The idea behind Theorem 9 is simple: since g is a parity
function, each labeled example 〈x, g(x)〉 corresponds to a lin-
ear equation over F2 where the ith unknown corresponds to

whether xi is present in g. Algorithm B draws O(N
ε

+ log 1/δ
ε

)
examples and solves the resulting system of linear equations
to find some parity over x1, . . . , xN which is consistent with
all of the examples. Well-known results in PAC learning
theory [5] imply that such a consistent parity will satisfy
the ε, δ criterion.

Now suppose deg
F2

(f ′) = α ≤ k. Then f ′ is a F2-linear
combination (i.e., a parity) over the set of monomials (con-
junctions) in x1, . . . , xn of degree up to α. This lets us learn
f ′ in time roughly nωα:

Proposition 10. If deg
F2

(f ′) = α, then we can learn

f exactly in time nωα · poly(2k, n, log(1/δ)) with confidence
1 − δ. (Hence we can certainly identify a variable on which
f depends.)

Proof. Consider the expanded variable space consisting
of all monomials over x1, . . . , xn of degree at most α. There
are at most N = nα variables in this space. Run algo-
rithm B from Theorem 9 on this variable space, with ε set
to 2−(k+1). That is, given an example 〈x, f(x)〉, translate
it to the example 〈(xS)|S|≤α, f(x)〉, and run B using this
new example oracle. Simulating a draw from this new or-
acle takes time N · poly(n), so constructing all the neces-
sary examples for B takes time N2 · poly(2k, n, log(1/δ)).
Solving the resulting system of equations takes time Nω ·
poly(2k, n, log(1/δ)). Hence the total time for the algorithm
is nωα · poly(2k, n, log(1/δ)) as claimed.

We now argue that B’s output hypothesis is precisely the
F2-representation of f. Let D be the distribution over the
expanded variable space induced by the uniform distribution
on x1, . . . , xn. Since f ′ (equivalently f) is a parity over the
expanded variable space, the output of B will be a parity
hypothesis h over the expanded variable space which sat-
isfies Prx∈D[h(x) 6= f(x)] ≤ 2−(k+1). View both f and h
as F2-polynomials of degree α over the original variables
x1, . . . , xn.

If f and h are not identical, then f + h 6≡ 0 and we have
Pr[f(x) 6= h(x)] = Pr[f(x)+h(x) 6= 0]. Now since deg

F2
(f +

h) ≤ α and f + h is not identically 0, the polynomial f + h
must be nonzero on at least a 2−α ≥ 2−k fraction of the
points in (F2)

n. (This is a slightly nonstandard form of the
Schwartz-Zippel Lemma.) But this contradicts the fact that

Prx∈D[h(x) 6= f(x)] ≤ 2−(k+1).

4. LEARNING JUNTAS VIA STRUCTURAL
PROPERTIES OF BOOLEAN FUNCTIONS

With our learning tools in hand we are ready to give the
algorithm for learning k-juntas. The basic idea is to show
that every Boolean function f ′ must either have a nonzero
Fourier coefficient of “not too large” positive degree, or must
be a polynomial over F2 of “not too large” degree. Then by
Propositions 8 and 10, in either case we can find a relevant
variable for f ′ without performing a full-fledged exhaustive
search.

The Fourier learning algorithm described earlier fails only
on functions whose low-degree Fourier coefficients are all
zero (except for possibly the constant coefficient; if this is
nonzero the Fourier algorithm can still fail). Let us make a
definition for such functions:

Definition 11. Suppose that g satisfies ĝ(S) = 0 for all
1 ≤ |S| < t. If ĝ(∅) is also 0 then we say that g is strongly
balanced up to size t. If ĝ(∅) is nonzero we say that g is
strongly biased up to size t.

These definitions were essentially first made by Bernasconi
in [2]. The justification of the terminology is this: if g is
strongly balanced up to size t, then it is easy to show that
every subfunction of g obtained by fixing 0 ≤ ` ≤ t − 1
bits is balanced (i.e. is true with probability exactly 1/2).
Similarly, if g is strongly biased up to size t then it is easy
to show that every such subfunction has the same bias as g
itself.

We now show that strongly balanced functions have low
F2-degree:

Theorem 12. Let g /∈ {PARITYn,¬PARITYn} be a Boolean
function on n bits which is strongly balanced up to size t.
Then deg

F2
(g) ≤ n − t.

Proof. Given such a g, let h = g ⊕ PARITYn. Then
hR = gR·x1x2 · · ·xn. By assumption, gR has zero coefficient
on all monomials xS with |S| < t. By multilinear reduction
(x2

i = 1) we see that hR has zero coefficient on all monomials
xS with |S| > n − t. Hence deg

R
(h) ≤ n − t, so by Fact 5,

deg
F2

(h) ≤ n − t. But since g = h ⊕ PARITYn, the F2-
representation of g is simply gF2

(x) = hF2
(x)+x1+· · ·+xn.

Adding a degree 1 polynomial to hF2
does not increase de-

gree (since g is neither PARITYn nor its negation, h is not
a constant function and hence deg

F2
(h) ≥ 1), and conse-

quently deg
F2

(g) ≤ n − t.

The bound n− t in Theorem 12 is best possible. To see this,
consider the function

g(x) = (x1 ∧ · · · ∧ xn−t) ⊕ xn−t+1 ⊕ · · · ⊕ xn.

This function has F2-representation gF2
(x) = x1 · · ·xn−t +

xn−t+1+· · ·+xn so deg
F2

(g) = n−t. Moreover, g is balanced
and every subfunction of g fixing fewer than t bits is also
balanced, since to make g unbalanced one must restrict all
of xn−k+1, . . . , xn.

It remains to deal with strongly biased functions. Our
next theorem shows that no Boolean function can be strongly
biased up to too large a size:

Theorem 13. If g is a Boolean function on n bits which
is strongly biased up to size t, then t ≤ 2

3
n.

Proof. Let gR(x) =
∑

S cSxS be the R-representation
of g. Since g is strongly biased up to size t we have 0 < |c∅| <
1 and cS = 0 for all 0 < |S| < t. As in Theorem 12, we let
h = g⊕PARITYn so hR(x) = c∅x1x2 · · · xn+

∑
|S|≤n−t c′SxS,

where c′S = c[n]\S.
Let h′ : {+1,−1}n → {1+c∅, 1−c∅,−1+c∅,−1−c∅} be the

real-valued function given by h′(x) = hR(x)− c∅x1x2 · · ·xn;
note that deg(h′) ≤ n − t. Furthermore, for x ∈ {+1,−1}n

we have h′(x) ∈ {1+ c∅, 1− c∅} iff hR(x) = +1, and h′(x) ∈
{−1 + c∅,−1 − c∅} iff hR(x) = −1. Since 0 < |c∅| < 1 we
have that {1+ c∅, 1− c∅} and {−1+ c∅,−1− c∅} are disjoint
two-element sets.

Let p : R → R be the degree 3 polynomial which maps
1 + c∅ and 1 − c∅ to +1 and −1 − c∅ and −1 + c∅ to −1.
Now consider the polynomial p ◦ h′. By construction p ◦ h′

maps {+1,−1}n → {+1,−1}, and p ◦ h′ R-represents h.
But the R-representation of h is unique, so after multilinear
reduction p ◦ h′ must be identical to hR. Since c∅ 6= 0, we
know that deg

R
(h) is exactly n. Since p has degree exactly

3 and deg(h′) ≤ n−t, we conclude that 3(n−t) ≥ n, whence
t ≤ 2

3
n.

The bound 2
3
n in Theorem 13 is best possible. To see this,

let n = 3m and consider the function

f(x1, . . . , xn) =

(
2m⊕

i=1

xi

)∧(
n⊕

i=m+1

xi

)
.

It is easy to see that this function is unbalanced, and also
that its bias cannot change under any restriction of fewer
than 2m bits (to change the bias, one must set bits 1 . . . 2m
or m + 1 . . . 3m or 1 . . . m, 2m + 1 . . . 3m).

We can now prove our main theorem:

Theorem 14. The class of k-juntas over n bits can be ex-
actly learned under the uniform distribution with confidence

1 − δ in time n
ω

ω+1
k · poly(2k, n, log(1/δ)).

Proof. Let f be a k-junta on n bits and f ′ be the func-
tion on at most k bits given by restricting f to its relevant
variables. Let t = ω

ω+1
k > 2

3
k. If f ′ is strongly balanced

up to size t then by Theorem 12 f ′ is an F2-polynomial of
degree at most k − t = k/(ω + 1). By Proposition 10 f ′ can

be learned in time (nk/(ω+1))ω ·poly(2k, n, log(1/δ)). On the
other hand, suppose f ′ is not strongly balanced up to size
t. By Theorem 13, f ′ cannot be strongly biased up to size
t, since t > 2

3
k. Hence f ′ has a nonzero Fourier coefficient

of degree less than t and greater than 0. So by Proposi-
tion 8, some relevant variable for f can be identified in time
nt · poly(2k, n, log(1/δ)).

In either case, we can identify some relevant variable for

f in time n
ω

ω+1
k · poly(2k, n, log(1/δ)). Proposition 6 com-

pletes the proof.

5. VARIANTS OF THE JUNTA LEARNING
PROBLEM

We can use the ideas developed thus far to analyze some
variants and special cases of the juntas learning problem.

5.1 Some easier special cases
For various subclasses of k-juntas, the learning problem is

more easily solved.

Monotone juntas: It is easy to verify that if f ′ is a
monotone function, then f̂ ′({i}) > 0 for every relevant vari-

able xi. (Use the fact that f̂ ′({i}) = E[xif
′(x)] = Pr[f(x) =

xi]−Pr[f(x) 6= xi].) Hence monotone juntas can be learned
in time poly(2k, n, log(1/δ)) using the Fourier learning algo-
rithm of Proposition 8.

Random juntas: As observed in [4], almost every
k-junta on n variables can be learned in time
poly(2k, n, log(1/δ)). To see this, observe that if a func-
tion f ′ on k bits is chosen uniformly at random, then for
every S we have f̂ ′(S) = 0 only if exactly half of all inputs

have f ′(x) = xS. This occurs with probability
(

2k

2k−1

)
/22k

=

O(1)/2k/2. Consequently, with overwhelming probability in

terms of k — at least 1 − O(k)/2k/2 — a random function
on k variables will have every Fourier coefficient of degree 1
nonzero, and hence we can learn using Proposition 8.

Symmetric juntas: A symmetric k-junta is a junta whose
value depends only on how many of its k relevant variables
are set to 1. We can learn any symmetric k-junta in time

n
2
3

k ·poly(2k, n, log(1/δ)), which somewhat improves on our
bound for arbitrary k-juntas. To prove this, we show that
every symmetric function f ′ on k variables, other than parity
and its negation, has a nonzero Fourier coefficient f̂ ′(S) for
1 ≤ |S| < 2

3
k. Hence we can identify at least one relevant

variable in time n
2
3

k · poly(2k, n, log(1/δ)) using Proposi-
tion 8, and we can use the algorithm of Proposition 6 since

the class of symmetric functions is closed under subfunc-
tions.

To prove this claim about the Fourier coefficients of sym-
metric functions, first note that if f ′ is not balanced then by
Theorem 13 it must have a nonzero Fourier coefficient of pos-
itive degree less than 2

3
k. Otherwise, if f ′ is balanced and is

neither parity nor its negation, then g := f ′ ⊕PARITYk is a
symmetric nonconstant function and deg

R
(g) < k; this last

fact follows because the x1x2 · · ·xk coefficient of g is the con-
stant coefficient of f ′, and f ′ is balanced. By a result of von
zur Gathen and Roche [22], every nonconstant symmetric
function g on k variables has deg

R
(g) ≥ k−O(k.548). Hence

ĝ(S) 6= 0 for some k − O(k.548) ≤ |S| < k, so f̂ ′([k] \ S) 6= 0
and 1 ≤ |[k] \ S| ≤ O(k.548) ≤ 2

3
k.

In [22] von zur Gathen and Roche conjecture that ev-
ery nonconstant symmetric Boolean function f ′ on k vari-
ables has deg

R
(f) ≥ k − O(1). We note that if a some-

what stronger conjecture were true – that every noncon-
stant symmetric function has a nonzero Fourier coefficient
of degree d for some k − O(1) ≤ d ≤ k − 1 – then us-
ing the above approach we could learn symmetric juntas in
poly(2k, n, log(1/δ)) time. (The von zur Gathen/Roche con-
jecture does not appear to suffice since f ′ could conceivably
have a nonzero Fourier coefficient of degree 0 and yet have
no nonzero Fourier coefficients of positive degree O(1).)

5.2 Other learning models
Blum and Langley observed [4] that if the learning algo-

rithm is allowed to make membership queries for the value of
the target junta at points of its choice, then any k-junta can
be learned in time poly(2k, n, log(1/δ). By drawing random
examples, the learner will either determine that the func-
tion is constant or it will obtain two inputs x and y with
f(x) 6= f(y). In the latter case the learner then selects a
path in the Hamming cube between x and y and queries f
on all points in the path. The learner will thus find two
neighboring points z and z′ on which f has different values,
so the coordinate in which z and z′ differ is relevant. The
learner then recurses as in Proposition 6.

While membership queries make the problem of learning
juntas easy, casting the problem in the more restrictive sta-
tistical query learning model of Kearns (see [13] for back-
ground on this model) makes the problem provably hard.
The class of k-juntas over n variables contains at least

(
n
k

)

distinct parity functions, and for any two distinct parity
functions xS 6= xT we have that E[xSxT] = 0. Consequently,
an information-theoretic lower bound of Bshouty and Feld-
man [1] implies that any statistical query algorithm for learn-
ing k-juntas under the uniform distribution must have q/τ 2 ≥(

n
k

)
, where q is the number of statistical queries which the

algorithm makes and τ ∈ (0, 1) is the additive error toler-
ance required for each query. Thus, as noted earlier, the
PAC model of learning from random examples seems to be
the right framework for the juntas problem.

We close by observing that if the uniform distribution is
replaced by a product measure in which Pr[xi = T] = pi,
then for almost every choice of (p1, . . . , pn) ∈ [0, 1]n, k-
juntas are learnable in time poly(2k, n, log(1/δ)). In partic-
ular, we claim that for every product distribution except for
a set of measure zero in [0, 1]n, every k-junta f has nonzero
correlation with every variable on which it depends, and
consequently a straightforward variant of the Fourier-based
learning algorithm will identify all relevant variables in the

claimed time bound. This is a consequence of the following
easily verified fact:

Fact 15. If f ′ is the Fourier represntation of a Boolean
function, then Ep1,...,pn [f ′(x)xi], when viewed formally as
a multivariable polynomial in p1, . . . , pn, is not identically
zero.

Consequently, the set of points (p1, . . . , pn) ∈ [0, 1]n on
which this polynomial takes value 0 has measure 0. The
union of all such sets for all (finitely many) choices of i and
f ′ still has measure 0, and the claim is proved.

6. CONCLUSION
A major goal for future research is to give an algorithm

which runs in polynomial time for k = log n or even k =
ω(1). We hope that further study of the structural prop-
erties of Boolean functions will lead to such an algorithm.
Right now, the bottleneck preventing an improved runtime
for our algorithm is the case of strongly balanced juntas. A.
Kalai has asked the following question:

Question: Is it true that for any Boolean function f on
k bits which is strongly balanced up to size 2

3
k, there is a

restriction fixing at most 2
3
k bits under which f becomes a

parity function?

If the answer were yes, then it would be straightforward to

give a learning algorithm for k-juntas running in time n
2
3

k.
(Of course, another way to get such an algorithm would be
to give a quadratic algorithm for matrix multiplication!)

Finally, we close by observing that there are still several
important generalizations of the k-junta problem for which
no algorithm with running time better than n(1−o(1))k is
known. Can we learn juntas under any fixed nonuniform
product distribution? Can we learn ternary juntas (i.e.
functions on {0, 1, 2}n with k relevant variables) under uni-
form?

7. ACKNOWLEDGEMENTS
We would like to thank Adam Kalai and Yishay Mansour

for helpful discussions and for telling us about [12, 18].

8. REFERENCES
[1] N. Bshouty andV. Feldman. On using extended

statistical queries to avoid membership queries.
Journal of Machine Learning Research, 2:359–395,
2002.

[2] A. Bernasconi. On a hierarchy of boolean functions
hard to compute in constant depth. Discrete
Mathematics & Theoretical Computer Science,
4:2:79–90, 2001.

[3] A. Blum. Relevant examples and relevant features:
Thoughts from computational learning theory. In
AAAI Fall Symposium on ‘Relevance’, 1994.

[4] A. Blum and P. Langley. Selection of relevant features
and examples in machine learning. Artificial
Intelligence, 97(1-2):245–271, 1997.

[5] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M. Warmuth. Occam’s razor. Information Processing
Letters, 24:377–380, 1987.

[6] N. Bshouty, J. Jackson, and C. Tamon. More efficient
PAC learning of DNF with membership queries under
the uniform distribution. In Proceedings of the Twelfth
Annual Conference on Computational Learning
Theory, pages 286–295, 1999.

[7] D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions. In
Proceedings of the Nineteenth Symposium on Theory
of Computing, pages 1–6, 1987.

[8] E. Fischer, G. Kindler, D. Ron, S. Safra, and
A. Samorodnitsky. Testing juntas. In Proceedings of
the 43rd IEEE Symposium on Foundations of
Computer Science, 2002.

[9] D. Helmbold, R. Sloan, and M. Warmuth. Learning
integer lattices. SIAM Journal on Computing,
21(2):240–266., 1992.

[10] J. Jackson. An efficient membership-query algorithm
for learning DNF with respect to the uniform
distribution. Journal of Computer and System
Sciences, 55:414–440, 1997.

[11] J. Jackson, A. Klivans, and R. Servedio. Learnability
beyond AC0. In Proceedings of the 34th ACM
Symposium on Theory of Computing, 2002.

[12] A. Kalai and Y. Mansour. Personal communication.,
2001.

[13] M. Kearns. Efficient noise-tolerant learning from
statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[14] L. Kucera, A. Marchetti-Spaccamela, and M. Protassi.
On learning monotone DNF formulae under uniform
distributions. Information and Computation,
110:84–95, 1994.

[15] N. Linial, Y. Mansour, and N. Nisan. Constant depth
circuits, Fourier transform and learnability. Journal of
the ACM, 40(3):607–620, 1993.

[16] Y. Mansour. Learning Boolean functions via the
Fourier transform, pages 391–424. 1994.

[17] Y. Mansour. An o(nlog log n) learning algorithm for
DNF under the uniform distribution. Journal of
Computer and System Sciences, 50:543–550, 1995.

[18] Y. Mansour. Personal communication., 2001.

[19] L. Valiant. A theory of the learnable. Communications
of the ACM, 27(11):1134–1142, 1984.

[20] K. Verbeurgt. Learning DNF under the uniform
distribution in quasi-polynomial time. In Proceedings
of the Third Annual Workshop on Computational
Learning Theory, pages 314–326, 1990.

[21] K. Verbeurgt. Learning sub-classes of monotone DNF
on the uniform distribution. In Proceedings of the
Ninth Conference on Algorithmic Learning Theory,
pages 385–399, 1998.

[22] J. von zur Gathen and J. Roche. Polynomials with
two values. Combinatorica, 17(3):345–362, 1997.

