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1 Introduction

In recent years a number of researchers in learning theory have developed and analyzed
computational models of teaching [8, 9, 10, 13, 16, 17, 18]. One motivation for this work is
the hope that stronger and more realistic positive results might be achievable in a setting
where labeled examples are provided by a helpful teacher rather than an omniscient adversary
or a worst-case probability distribution as is usually assumed in learning theory. However,
as discussed in [8, 9, 13, 16], any reasonable teaching model must disallow teacher-learner
collusion which trivializes the learning process — for instance, it should not be possible for the
teacher to simply encode a representation of the target concept in the instances it chooses
for the learner according to a prearranged coding scheme.

Motivated by these considerations, Goldman and Kearns [8] have studied a model in
which the teacher must provide the learner with a teaching sequence, i.e. a sequence of

labeled examples which is consistent with the target concept and with no other concept
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from the class being taught. Goldman and Kearns also defined a combinatorial measure
called the teaching dimension of a concept class, which measures the minimum number of
labeled examples required to uniquely specify any concept in the class (precise definitions
are given in Section 1.1). This measure takes into account the idea that a helpful teacher will
choose the most useful sequence of examples possible, but disallows teacher-learner collusion
in that the examples chosen must provide enough information to identify the target concept
to any learning algorithm, not just a learner who is “in cahoots” with the teacher.

In this note we answer two open questions posed by Goldman and Kearns [8] about this
teaching model. Goldman and Kearns established polynomial upper bounds on the teaching
dimension of monotone monomials, arbitrary monomials, monotone decision lists, monotone
DNF, and read-once DNF, and asked whether the class of polynomial-size monotone circuits
also has polynomial teaching dimension. In Section 2 we give a simple construction which

yields a strong negative answer. The construction in fact shows that
e The class of polynomial-sized monotone formulae has exponential teaching dimension;

e The class of polylogarithmic-sized monotone formulae has superpolynomial teaching

dimension;

e The class of subpolynomial-sized depth-3 monotone formulae has superpolynomial

teaching dimension.

Goldman and Kearns also posed the question of whether there are natural concept classes
for which computing optimal (i.e. shortest) teaching sequences is computationally hard. We
provide a positive answer in Section 3 by showing that the problem of computing the length
of an optimal teaching sequence is NP-hard for the well-studied class of intersections of two
halfspaces. Our results indicate strong limits on efficient teachability in the Goldman-Kearns

model.

1.1 Definitions

Let X be a finite set which is the space of all possible instances. A concept ¢ is a Boolean

function mapping X to {0, 1} and a concept class C C 2% is a collection of concepts. We can



equivalently view a concept ¢ as a subset of X, so “x € ¢” and “c(xz) = 1”7 mean the same
thing. A labeled instance is an ordered pair (x,y) where x € X and y € {0,1}. We say that a
sequence S of labeled instances is consistent with a concept c if ¢(x) = y for every pair (z, y)
belonging to S. Such a sequence S is a teaching sequence for c € C' if S is consistent with no
other concept in C. The name “teaching sequence” is appropriate because a helpful teacher
can use such a sequence to ensure that a learner can uniquely identify the target concept.
A teaching sequence for ¢ € C' is optimal if no other teaching sequence for ¢ contains fewer
examples. We write |S| to denote the number of examples in a teaching sequence S.

Goldman and Kearns [8] defined the teaching dimension of a concept class C' to be
TD(C) = meacgc{|S| : S is an optimal teaching sequence for ¢ € C'}.

The teaching dimension of C'is thus the minimum number of labeled examples which suffice
to uniquely specify any concept in C. A closely related notion was defined and studied by
Shinohara and Miyano [18], who refer to the length of an optimal teaching sequence for ¢ € C
as the specification number of ¢ and say that a concept class C' is teachable by examples if

TD(C) is bounded by a polynomial.

2 Large Teaching Dimension for Small Monotone For-

mulae

2.1 A hard-to-teach class

For x € X the singleton concept ¢, is the concept which takes value 1 on the point z and
value 0 on all other points. Let C be the concept class of cardinality |X |+ 1 which contains
the | X | different singleton concepts and the null concept ¢y which takes value 0 on all points.
Goldman and Kearns [8] have observed that the concept class C has teaching dimension
|C| — 1 = |X|. This is because the shortest teaching sequence for ¢y must contain every
instance in X (if an instance z is not included then the sequence is consistent with both
¢ and ¢;). Jackson and Tomkins [13] have used this observation to show that the teaching

dimension of the class of 1-decision lists is 2", and Anthony et. al. [1] have used it to show



that the teaching dimension of the class of linear threshold functions over {0,1}" is 2".

We will use the following simple variant of this observation: let A, B be disjoint subsets
of X, let ¢4 be the characteristic function of A, and for b € B let ¢, be the characteristic
function of AU {b}. Then the concept class C' of cardinality |B| + 1 which consists of the
|B| different concepts ¢, and the concept c4 has teaching dimension |B|, since a teaching

sequence for ¢4 must include every instance in B.

2.2 The lower bound

We consider the instance space X = {0,1}" with n even. For z € {0,1}" we write |z| to
denote 71 + ...+ x,, i.e. the number of 1s in z. Let A = {z € {0,1}" : |z| > n/2} and
let B = {x € {0,1}" : |z| = n/2 — 1.}. The majority function M AJ, is the characteristic
function of A, and for b € B the characteristic function of AU {b} is M AJ, V Ty, where Ty,

is the monotone monomial
/\ Z;.
bi=1

Valiant [19] has established the existence of an O(n®3)-size monotone formula for M A.J,,.
It follows that each concept ca, ¢, can be expressed as a monotone formula of size O(n®3).

Since |B| = (n/;_l) = 0©(2"//n), the observation of Section 2.1 implies

Theorem 1 Let C; be the class of monotone formulae of size O(n®3) over variables zy, . . ., T,.

Then TD(C) is exponential in n.

By specializing this construction to a small subset of variables we can show that smaller
concept classes also have superpolynomial teaching dimension. For 1 < k < n we define Ay
and By by

Ay ={z € {0,1}" 1+ -+ -+ > k/2}

By ={ze{0,1}" 121 +---+z, =k/2—-1}.

The concept class {ca, } U{cs, }s,en, has teaching dimension at least (k /571). This is because
for every (k/2—1)-element subset of the first £ variables, any teaching sequence for ¢4, must

include some negative example in which the first £ variables have 1s in exactly the positions



corresponding to that subset. These negative examples must be distinct for different subsets,

so the teaching dimension is at least (k/gq) = 0(2F/Vk).

Using Valiant’s construction, each concept c4,, ¢5, can be expressed as a monotone for-

mula of size O(k°?). Taking k = w(logn) yields ( ) =n“0) | and we obtain

k
k/2—1

Theorem 2 Let k(n) be a function which is w(logn) and let Cy be the class of monotone

formulae of size O(k(n)33) over variables x1,...,x,. Then TD(C5) is superpolynomial in n.

A different construction yields a lower bound on the teaching dimension of small constant-
depth circuits. A folklore theorem in circuit complexity states that the function M AJ, can
be expressed as a monotone depth-3 OR-AND-OR formula of size 20(V¥18k) The function
ca, is precisely M AJy; for each ¢, we need only OR the above formula with a monotone
conjunction of £/2 — 1 variables. This can be done without increasing the depth and hence

each ¢, can also be expressed as a depth-3 formula of size 20(Vklogk) e thus have

Theorem 3 Let k(n) be a function which is w(logn) and let Cs be the class of monotone
formulae of size 200V FMIBKM) 4nd depth 3 over x4, ...,z (note that this size bound is no®)

for k(n) = o((logn/loglogn)?)). Then TD(Cs) is superpolynomial in n.

Using different methods Jeff Jackson [12] has given another proof that the class of subpolynomial-

sized constant-depth monotone formulae has superpolynomial teaching dimension.

2.3 Discussion

Goldman and Kearns [8] observed that the number of membership queries needed to exactly
learn any concept class C is at least TD(C). Our results in Section 2.2 thus imply that the
concept classes C7, Cy and C5 are not learnable from a polynomial number of membership
queries. Hellerstein et al. [11] essentially gave a converse to the Goldman-Kearns observation
by proving that for any projection-closed Boolean concept class C, if C' has polynomial
teaching dimension then (' is exactly learnable from a polynomial number of membership
queries.

As an application of their result, Hellerstein et al. showed that the class of logn-CNF N

log n-DNF is learnable from a polynomial number of membership queries (this is the class of



Boolean functions which can be expressed both as a CNF where each clause contains at most
log n literals and as a DNF where each term contains at most logn literals). Our techniques
can be used to give a complementary result showing that ©(logn) is best possible in the
above theorem. It is easy to see that the concepts c4,, ¢y, defined above belong to the class
k-CNF N k-DNF (since each such concept depends on only the first k& variables). Together
with the Goldman-Kearns bound relating the number of membership queries required for

learning to the teaching dimension, our results thus imply

Theorem 4 For any function k(n) = w(logn), the class k(n)-CNF N k(n)-DNF' is not

learnable from a polynomial number of membership queries.

Finally, we also note that various augmentations of the Goldman-Kearns model have
been proposed in the learning theory literature. Jackson and Tomkins [13] allow the teacher
to pass the learner a small amount of “trusted information,” while Goldman and Mathias
[9] study coordinated teacher-learner pairs which are specially tailored to each other, and
Mathias [16] considers an interactive model in which the teacher and learner communicate
over a series of rounds. For each of these more sophisticated teaching models it is known that
any concept class which is learnable by an efficient deterministic algorithm using membership
and equivalence queries can be taught to a polynomial-time learner. Since the class C’ of
Section 2.1 is efficiently learnable from a single equivalence query, our simple lower bound

technique does not apply.

3 Hardness of Computing Optimal Teaching Sequences

We now consider the computational complexity of computing optimal teaching sequences.
The following problem was shown to be NP-hard via reduction from HITTING SET by
Shinohara and Miyano [18] (see also [7]):

SPECIFICATION NUMBER
Instance: A class C of concepts over an n-element instance space (given as a |C| X n
zero/one matrix), a concept ¢ € C, and an integer k& < |C/|.

Question: Is |S| < k, where S is an optimal teaching sequence for ¢ € C?
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Goldman and Kearns [8] gave an alternate proof of hardness by reducing from MINIMUM
COVER, and Anthony et. al [1] showed that the similar problem TEACHING DIMENSION
is NP-hard:

TEACHING DIMENSION
Instance: A class C of concepts over an n-element instance space (given as a |C| x n
zero/one matrix) and an integer k& < |C/.

Question: Is TD(C) < k?

These results demonstrate that computing optimal teaching sequences can be computation-
ally hard. However, in each of the above problems the concept class is part of the problem
instance, and the reductions which establish hardness work by constructing specialized con-
cept classes which correspond to instances of difficult combinatorial problems.

Goldman and Kearns [8] posed the question of whether there are fixed, natural concept
classes for which computing the optimal teaching sequence is hard. In this section we give a

positive answer by showing that the familiar class of intersections of two halfspaces has this

property.

3.1 Intersections of Two Halfspaces

A Boolean function h on {0,1}" is a halfspace if there is a weight vector w € R"™ and
a threshold # € R such that h(z) = 1 iff w -2z > 0. A function g is an intersection of
two halfspaces if there are halfspaces hi, he such that g(z) = 1 iff hi(z) = ho(z) = 1 (i-e.
g = h1Nhy). The concept class of intersections of halfspaces is a natural one which has been
widely studied in computational learning theory [2, 3, 4, 5, 6, 14, 15, 20].

We consider the following problem:

SPECIFICATION NUMBER FOR INTERSECTION OF HALFSPACES (SNIH)
Instance: Two halfspaces h; and hy over {0,1}% (each of which is represented by a
(d + 1)-tuple (w1, ..., we,0) € R and an integer k < 2¢.

Question: Is |S| < k, where S is an optimal teaching sequence for the concept hy N hy?

Our hardness proof for SNIH uses the following lemma which is illustrated in Figure 1.
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Figure 1: Any intersection of two halfspaces which induces this labelling on the three-

dimensional Boolean cube must label 111 with a 0.

Lemma 5 Let g = hy N hy be an intersection of halfspaces over {0,1}3. If
g(100) = ¢(010) = g(001) =1  and  ¢(000) = g(110) = g(101) = ¢(011) =0
then g(111) = 0.

Proof: Let g be defined by the halfspaces v -x > 6 and v - x > 7. The positive examples
100,010,001 imply that i, ug,us > 6 and vy, v9,v3 > 7. One of the two halfspaces must
contain at most one of the negative examples 110,101,011, so without loss of generality we
suppose that u - x > 6 does not contain 110 and 101, i.e. u; + us < € and u; + ug < 6. This

implies that uy, us, us < 0 and thus uy + ug + ug < uy; + us < 6, so g(111) = 0. [ ]

The main result of this section is the following:
Theorem 6 SNIH is NP-hard.
Proof: We reduce from the following well-known NP-hard problem:

PARTITION
Instance: A finite sequence aq, ..., a, of positive integers.

Question: Is there a subset S C {1,...,n} such that ¥;cqa; = Y¢5 a;?
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The reduction maps instances of PARTITION to instances of SNIH in the following way: if
ai,...,ay is an instance of PARTITION and A = 77 , a,, then the corresponding d = n+ 3-

dimensional SNIH instance is

(w-xz %, —w-xz—%, k:2”+3—1>
where the vector w € R""3 is defined as w; = a; for 1 < ¢ < nand w41 = Wpio = Wyy3 = A.
Note that the target concept is equivalent to the hyperplane w -z = 3A4/2.

If a,...,a, is a negative instance of PARTITION, then there is no z € {0, 1}" such that
a-z=A/2,s0 w-x = 3A/2 contains no points of {0, 1}"3. Since the class of intersections of
two halfspaces over {0, 1}"*3 contains all 2"*3 singleton concepts as well as the null concept,
as in Section 2.1 we have that the optimal teaching sequence for the concept w -z = 34/2
is of length 2"*3, so the SNIH instance is negative.

Now suppose that ai,...,a, is a positive instance of PARTITION. Let S C {1,...,n}
be the desired partition and let z € {0,1}" be the characteristic vector of S. If we write
(2,b1,b9,b3) to denote (z1,...,2,,b1,b9,03) € {0,1}"3 then it is clear that (z,1,0,0),
(2,0,1,0), (2,0,0,1) satisfy w-x = 34/2 and that (2,0,0,0), (2, 1,1,0), (2,1,0,1), (2,0,1,1)
do not. By fixing the first n coordinates to be z, any intersection of two halfspaces over
{0,1}™*3 induces an intersection of two halfspaces over {0,1}?. Lemma 5 now implies that
any intersection of halfspaces which labels (z,1,0,0), (2,0,1,0), (2,0,0,1) positively and
(2,0,0,0), (2,1,1,0), (2,1,0,1), (2,0,1,1) negatively must label (z,1,1,1) negatively. Thus
the optimal teaching sequence for the concept w -z = 34/2 is of length at most 2" — 1,

since it need not include the point (z,1,1,1). [ |

Theorem 6 shows that the problem of computing the length of an optimal teaching
sequence can be computationally hard even for fixed natural concept classes. We note in
this context that the teaching models proposed in [9, 13, 16] address this issue by explicitly
considering the time complexity of the teaching algorithm as a model parameter. However,
we also observe that the length of an optimal teaching sequence can be exponential for the
class of intersections of two halfspaces (or even for the simpler class of single halfspaces), and
thus exponential time could be required for a teacher to explicitly transmit such a teaching

sequence. The following question is thus of interest: is there a natural concept class for
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which T'D(C) is polynomially bounded but the problem of constructing a teaching sequence
is computationally hard? A related question, which has also been considered by Anthony et

al. [1], is whether computing the specification number of a single halfspace is NP-hard.
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