Adaptive Martingale Boosting

Philip M. Long Rocco A. Servedio
Google Columbia University
plong@google.com rocco@cs.columbia.edu
Abstract

In recent work Long and Servedio [LS05] presented a “maati@dpoosting” al-
gorithm that works by constructing a branching program evesk classifiers and
has a simple analysis based on elementary properties obmamalks. [LS05]
showed that this martingale booster can tolerate randossifitzation noise when
it is run with a noise-tolerant weak learner; however, a dravk of the algorithm
is that it is notadaptivei.e. it cannot effectively take advantage of variationhia t
quality of the weak classifiers it receives.

We present an adaptive variant of the martingale boostiggrihm. This adap-

tiveness is achieved by modifying the original algorithmniisat the random walks
that arise in its analysis have different step size depegndimthe quality of the

weak learner at each stage. The new algorithm inherits thieadide properties of
the original [LS05] algorithm, such as random classifiaatimise tolerance, and
has other advantages besides adaptiveness: it requisgspahlly fewer calls to

the weak learner than the original algorithm, and it can leslweith confidence-
rated weak hypotheses that output real values rather thale&o predictions.

1 Introduction

Boosting algorithms are efficient procedures that can bd teseonvert a weak learning algorithm
(one which outputs a weak hypothesis that performs onlyh8lidbetter than random guessing for
a binary classification task) into a strong learning aldponit(one which outputs a high-accuracy
classifier). A rich theory of boosting has been developed the past two decades; see [Sch03,
MRO3] for some overviews. Two important issues for boostilgprithms which are relevant to the
current work areadaptivenesandnoise-tolerancewe briefly discuss each of these issues before
describing the contributions of this paper.

Adaptiveness. “Adaptiveness” refers to the ability of boosting algoriteno adjust to different
accuracy levels in the sequence of weak hypotheses thatatieegiven. The first generation of
boosting algorithms [Sch90, Fre95] required the user tatiap “advantage” parametersuch that
the weak learner was guaranteed to always output a weaktmsgistwvith accuracy at least2 + .
Given an initial setting ofy, even if the sequence of weak classifiers generated by thseofuhe
weak learner included some hypotheses with accuracy (pedignificantly) better thaty/2+-+, the
early boosting algorithms were unable to capitalize onekisa accuracy; thus, these early boosters
were not adaptive. Adaptiveness is an important propantesit is often the case that the advantage
of successive weak classifiers grows smaller and smalles@stibg proceeds.

A major step forward was the development of the AdaBoostrdtyn [FS97]. AdaBoost does
not require a lower bound on the minimum advantage, and the error rate of its final Hygis
depends favorably on the different advantages of the diffieveak classifiers in the sequence. More
precisely, if the accuracy of theth weak classifier i% + ¢, then the AdaBoost final hypothesis

has error at mosif[f:_ol \/1 —4~2. This error rate is usually upper bounded (see [FS97]) by

T-1
exp <—2 > %2) @)
t=0
and indeed (1) is a good approximation if fois too large.

Noise tolerance One drawback of many standard boosting techniques, induéldaBoost, is that
they can perform poorly when run on noisy data [FS96, MO9@é0Dj LS08]. Motivated in part by
this observation, in recent years boosting algorithmswitwak by constructindgranching programs
over the weak classifiers (note that this is in contrast wittaBoost, which constructs a single
weighted sum of weak classifiers) have been developed amndhstmoenjoy some provable noise
tolerance. In particular, the algorithms of [KS05, LS05y&éeen shown to boost to optimally high
accuracy in the presence of random classification noise wirewith a random classification noise
tolerant weak learner. (Recall that “random classificatioise at ratey” means that the true binary
label of each example is independently flipped with prolighil. This is a very well studied noise
model, see e.g. [AL88, Kea98, AD98, BKW03, KS05, RDM06] anaim other references.)

While the noise tolerance of the boosters [KS05, LS05] istaadive feature, a drawback of these
algorithms is that they do not enjoy the adaptiveness ofrdlgos like AdaBoost. The MMM
booster of [KS05] is not known to have any adaptiveness ataalll the “martingale boosting”
algorithm of [LS05] only has the following limited type of agtiveness. The algorithm works in
stagesg = 0, 1, ... where in the-th stage a collection af+ 1 weak hypotheses are obtained;jet
denote the minimum advantage of thesel hypotheses obtained in staggLS05] shows that the
final hypothesis constructed by martingale boosting has etrmost

exp((Zt2(%7t)) .)

(2) is easily seen to always be a worse bound than (1), and iffexetice can be substan-
tial. Consider, for example, a sequence of weak classifiesghich the advantages decrease as
v = 1/4/t+1 (this is in line with the oft-occurring situation, mentiahabove, that advantages
grow smaller and smaller as boosting progresses). Fot ang we can bound (1) from above lay

by takingT' = 1/./¢, whereas for this sequence of advantages the error bourglr(@yer less than
0.5 (which is trivial), and in fact (2) approaches 1tas» co.

Our contributions: adaptive noise-tolerant boosting. We give the first boosting algorithm that
is both adaptive enough to satisfy a bounceefp (Q (Zt o Vi)) and is provably tolerant to

random classification noise. We do this by modifying the imgetle boosting algorithm of [LS05]
to make it adaptive; the modification inherits the noiseitahce of the original [LS05] algorithm. In
addition to its adaptiveness, the new algorithm also imgsan [LS05] by constructing a branching
program with polynomially fewer nodes than the original timeyale boosting algorithm (thus it
requires fewer calls to the weak learner), and it can be uisedtly with weak learners that generate
confidence-rated weak hypotheses (the original martinigadesting algorithm required the weak
hypotheses to be Boolean-valued).

Our approach. We briefly sketch the new idea that lets us achieve adaptgenRecall that the
original martingale booster of Long and Servedio formwdale boosting process as a random walk;
intuitively, as a random example progresses down througletiels of the branching program con-
structed by the [LSO5] booster, it can be viewed as perfograisimple random walk with step size 1
on the real line, where the walk is biased in the directiorsifpe@ or negative) corresponding to the
correct classification of the example. (The quantity traatering the random walk is the difference
between the number of positive predictions and the numbaegétive predictions made by base
classifiers encountered in the braching program up to a gie@rt in time.) This means that after
enough stages, a random positive example will end up todte: of the origin with high probability,
and contrariwise for a random negative example. Thus a adgloracy classifier is obtained simply
by labelling each example according to the signar —) of its final location on the real line.

The new algorithm extends this approach in a simple andtivéuivay, by having examples perform
a random walkwith variable step sizeif the weak classifier at a given internal node has large

advantage, then the new algorithm makes the examples theth that node take a large step in
the random walk. This is a natural way to exploit the fact #xemples reaching such a large-
advantage node usually tend to walk in the right directiohe idea extends straightforwardly to
let us handleconfidence-rateeveak hypotheses (see [SS99]) whose predictions are rasval
[—1, 1] as opposed to Boolean values fr¢ml, 1}. This is done simply by scaling the step size for a
given example: from a given node according to the numerical valije) that the confidence-rated
weak hypothesis at that node assigns to example

While using different step sizes at different levels is aingitidea, it introduces some complications.
In particular, if a branching program is constructed naivelsed on this approach, it is possible for
the number of nodes to increase exponentially with the defatravoid this, we use a randomized
rounding scheme together with the variable-step randork waénsure that the number of nodes
in the branching program grows polynomially rather thanaantially in the number of stages
in the random walk (i.e. the depth of the branching prograi)fact, we actually improve on
the efficiency of the original martingale boosting algamittef [LS05] by a polynomial factor, by
truncating “extreme” nodes in the branching program that“tar” from the origin. Our analysis
shows that this truncation has only a small effect on ther@oywof the final classifier, while giving
a significant asymptotic savings in the size of the final binamg program (roughlyt /42 nodes as
opposed to theé /v* nodes of [KS05, LS05]).

2 Preliminaries

We make the following assumptions and notational convestthroughout the paper. There is an
initial distribution D over a domain of example$. There is a target function: X — {—1, 1} that
we are trying to learn. Given the target functioand the distributiorD, we write D to denote
the distributionD restricted to the positive examplés € X : ¢(z) = 1}. Thus, for any event
S C{z € X :c(x) =1} we havePrp+ [z € S] = Prplx € S|/Prp[c(z) = 1]. Similarly, we
write D~ to denoteD restricted to the negative examplese X : ¢(z) = —1}.

As usual, our boosting algorithms work by repeatedly pagaidistributionD’ derived fromD to

a weak learner, which outputs a classifter The future behavior will be affected by how wéill
performs on data distributed according®. To keep the analysis clean, we will abstract away
issues of sampling fror®’ and estimating the accuracy of the resultingThese issues are trivial

if D is uniform over a moderate-sized domain (since all proligsiican be computed exactly), and
otherwise they can be handled via the same standard estimiathniques used in [LSO5].

Martingale boosting. We briefly recall some key aspects of the martingale boostiggrithm of
[LSO05] which are shared by our algorithm (and note some diffees). Both boosters work by
constructing a leveled branching program. Each node intttuedhing program haslacation; this

is a pair(3,t) whereg is a real value (a location on the line) ah@t 0 is an integer (the level of the
node; each level corresponds to a distinct stage of bogstirtee initial node, where all examples
start, is at(0, 0). In successive stages= 0, 1,2, ... the booster constructs nodes in the branching
program at level®), 1,2, For a location(3,t) where the branching program has a node, let
Ds, be the distributiorD conditioned on reaching the node(@t ¢). We sometimes refer to this
distributionDg ; as thedistribution induced by nodés, ¢).

As boosting proceeds, in stageeach nod€j,t) at levelt is assigned a hypothesis which we
call hg . Unlike [LSO5] we shall allow confidence-rated hypotheseseach weak hypothesis is a
mapping fromX to [—1, 1]. Once the hypothesiss ;, has been obtained, out-edges are constructed
from (5,) to its child nodes at level + 1. While the original martingale boosting algorithm of
[LS05] had two child nodes &3 — 1,¢ + 1) and(5 + 1,¢ + 1) from each internal node, as we
describe in Section 3 our new algorithm will typically hdeer child nodes for each node (but may,
for a confidence-rated base classifier, have as many as.eight)

Our algorithm. To fully specify our new boosting algorithm we must describe

(1) How the weak learner is run at each ng@et) to obtain a weak classifier. This is straight-
forward for the basic case of “two-sided” weak learners thatdescribe in Section 3 and
somewhat less straightforward in the usual (non-two-gisexhk learner setting. In Sec-
tion 5.1 we describe how to use a standard weak learner, amdchbandle noise — both
extensions borrow heavily from earlier work [LS05, KS05].

(2) What function is used to label the no@# ¢), i.e. how to route subsequent examples that
reach(3, t) to one of the child nodes. It turns out that this function iaradomized version
of the weak classifier mentioned in point (1) above.

(3) Where to place the child nodes at levet 1; this is closely connected with (2) above.

As in [LS05], once the branching program has been fully aoieséd down through some leveél
the final hypothesis it computes is very simple. Given an tigxamplez, the output of the final
hypothesis onx: is sgn(3) where(3,T) is the location in level” to whichz is ultimately routed as
it passes through the branching program.

3 Boosting a two-sided weak learner

In this section we assume that we hawava-sided weak learneiThis is an algorithm which, given
a distributionD, can always obtain hypotheses that hiave-sided advantages defined below:

Definition 1 A hypothesi: : X — [—1,1] hastwo-sided advantage with respect toD if it
satisfies bottE,cp+[h(z)] > v andE,cp- [h(z)] < —.

As we explain in Section 5.1 we may apply methods of [LSO5Fiuuce the typical case, in which
we only receive “normal” weak hypotheses rather than tvdegiweak hypotheses, to this case.

The branching program starts off with a single node at locafd, 0). Assuming the branching
program has been constructed up through leweke now explain how it is extended in tihéh stage
up through levet + 1. There are two basic steps in each stage: weak training andHirey.

Weak training. Consider a given node at locati¢fi, ¢) in the branching program. As in [LS05] we
construct a weak hypothedisg , simply by running the two-sided weak learner on examplesdra
fromDg ; and lettinghg + be the hypothesis it generates. Let us wiite to denote

def .
V.t = min{Ee(p,)+ [h5.t(2)], Boe(py) [ho.e(@)]}-

We callvys , theadvantageat node(3, t).

We do this for all nodes at level Now we define thadvantage at levelto be

def .
Yt = n%ln VBt (3

Branching. Intuitively, we would like to usey, as a scaling factor for the “step size” of the random
walk at levelt. Since we are using confidence-rated weak hypotheses, [gasnatural to have
the step that example takes at a given node be proportional to the value of the cemndie-rated
hypothesis at that node an The most direct way to do this would be to label the n¢ég) with

the weak classifieh s, and to route each exampieto a node at locatiofd + y:hg . (z),t + 1).
However, there are obvious difficulties with this approdohpne thing a single node 8, t) could
give rise to arbitrarily many (infinitely many, fX| = co) nodes at level+1. Even if the hypotheses
hg, were all guaranteed tp—1, 1}-valued, if we were to construct a branching program in trag w
then it could be the case that by theth stage there arz” —! distinct nodes at level.

We get around this problem by creating nodes at level only at integer multiples o¥-. Note that
this “granularity” that is used is different at each levadpednding on the advantage at each level (we
shall see in the next section that this is crucial for theysis). This keeps us from having too many
nodes in the branching program at level 1. Of course, we only actually create those nodes in the
branching program that have an incoming edge as describbed fater we will give an analysis to
bound the number of such nodes).

We simulate the effect of having an edge frgmt) to (8 + ~v:hg(z),t + 1) by usingtwo edges
from (8,¢) to (i - v,/2,t + 1) and to((i + 1) - v./2,t + 1), wherei is the unique integer such that
i-v/2 < B+vhgi(x) < (i+1)-7¢/2. To simulate routing an exampteto (8 +y:hs (x), t+1),
the branching program routesandomly along one of these two edges so that the expectatidoc
atwhichz ends up i5 +v:hg, (), t +1). More precisely, i3 + v.hg, () = (i+p) -7 /2 where

0 < p < 1, then the rule used at nodg, ¢) to route an example is “with probability p sendz to
((z+1)-7¢/2,t+ 1) and with probability(1 — p) sendz to (i - v;/2,¢ + 1)."

Since|hg,(z)| < 1 for all z by assumption, it is easy to see that at most eight outgoiggsd
are required from each nodg, t). Thus the branching program that the booster constructs use
a randomized variant of each weak hypothésjs to route examples along one of (at most) eight
outgoing edges.

4 Proof of correctness for boosting a two-sided weak learner

The following theorem shows that the algorithm describealalis an effective adaptive booster for
two-sided weak learners:

Theorem 2 Consider running the above booster férstages. Fort = 0,...,T7 — 1 let the val-
uesno,-..,yr—1 > 0 be defined as described above, so each invocation of theitled-sieak
learner on distributiorDg ; yields a hypothesigg ; that hasys ; > ~:. Then the final hypothesis
constructed by the booster satisfies

T-1
1
Proeph(z) # c(z)] < exp <—§ 3 ﬁ) . @)
t=0
The algorithm makes at modt < O(1) - ZtT;Ol % Z;;é ~; calls to the weak learner (i.e. con-

structs a branching program with at ma&f nodes).

Proof: We will show thatPr,.p+[h(z) # 1] < exp (—% ZtT:’Ol %2); a completely symmetric

argument shows a similar bound for negative examples, wgias (4).

Fort = 1,...,T we define the random variabl¢; as follows: given a draw aof from D+ (the
original distributionD restricted to positive examples), the valueAfis ~v._1hs +—1(z), where
(8,t — 1) is the location of the node thatreaches at level of the branching program. Intuitively
Ay captures the direction and size of the move that we wouldilike make during the branching
step that brings it to level

We defineB; to be the random variable that captures the direction arel gfizhe move that
actuallymakes during the branching step that brings it to lév®ore precisely, let be the integer
such thati - (v,—1/2) < 8+ v—1hg—1(x) < (i +1) - (v—1/2), and letp € [0,1) be such that
B+t-1hgi—1(x) = (i 4+ p) - (v¢-1/2). Then

B — ((i +1) - (1t—1/2) — B) with probability p, and

PTG (1e-1/2) = B) with probability1 — p.

We have thaE[B;] (where the expectation is taken only over thprobability in the definition of
By) equals((i + p) - (ve—1/2) — B)hpi1(x) = vi_1hp i 1(x) = A;. Let X; denote} '_, By, SO
the value ofX;, is the actual location on the real line wharends up at level.

Fix 1 < ¢ < T and let us consider the conditional random varigbfg| X;_;). Conditioned on
X:_ taking any particular value (i.e. anreaching any particular locatiq®, ¢t — 1)), we have that
x is distributed according t@Ds ;1) ", and thus we have

E[X¢|X¢1] = Xi—1 + Epe(py o+ e-1hpie—1(2)] > Xeo1 +ve1vp-1 > Xeo1 + V71, (5)
where the first inequality follows from the two-sided adzye ofhig ;1.

Fort =0,...,T, define the random variabl asY; = X; — Z’;;é 72 (soYy = Xo = 0). Since
conditioning on the value df;_; is equivalent to conditioning on the value &f_;, using (5) we
get

ElY}|Y;-1] = E

t—1
X =Y ¥ |Yia
=0

so the sequence of random variabigs. . ., Y7 is a sub-martingalé To see that this sub-martingale
has bounded differences, note that we have

Y, = Y| =X — Xo1 — 27| = [Be — 77l

t—1 t—2
=EX)[Yia] =D W > Xi1— Y W =Y,
1=0 1=0

The more common definition of a sub-martingale requiresit#t|Yo, ..., Y;—1] > Yi_1, but the weaker
assumption thaE[Y:|Yz—1] > Y:—1 suffices for the concentration bounds that we need (see [A3E8y05]).

The value ofB; is obtained by first moving by;_1hs :—1(z), and then rounding to a neighboring
multiple ofv;_1/2, so|B;| < (3/2)y:—1, which implies|Y; — Y;_1| < (3/2)y—1 + 771 < 27—1.

Now recall Azuma'’s inequality for sub-martingales:

Let0 = Yp,...,Yr be a sub-martingale which hd¥; — Y;_1| < cl for each
i=1,...,T. Thenforany\ > 0 we havePr[Y; < —)] < eXp(22)
i=1 1

We apply this with eacly; = 2v,_; and\ = Zt o V7. This gives us that the error rate bfon
positive exampleRr,cp+[h(z) = —1], equals

PrXr <0]=Pr[Yr < —-) < exp (—7_> = exp <—— 73) . (6)
SZtT:ol V7 8 ;

So we have established (4); it remains to bound the numbemdﬂsnconstructed in the branching
program. Let us writé/; to denote the number of nodes at letjedo M = Zt 0 Mt

The ¢-th level of boosting can cause the rightmost (leftmost)entalbe at mos®y,_; distance
farther away from the origin than the rightmost (leftmosijia at the(t — 1)-st level. This means
that at levelt, every node is at a positioff, t) W|th 18] <2 ZJ 0% Since nodes are placed at

integer multiples ofy; /2, we have thaf\/ = t:O M <0(1) - Zt 0 ¥ ZJ 0% O

Remark. Consider the case in which each advantagis justy and we are boosting to accuracy
e. As usual takingl’ = O(log(1/¢)/~?) gives an error bound af With these parameters we have
thatM < O(log?(1/€)/~*), the same asymptotic bound achieved in [LS05]. In the nestiewe
describe a modification of the algorithm that improves thiard by essentially a factor (%f

4.1 Improving efficiency by freezing extreme nodes

Here we describe a variant of the algorithm from the previsetion that constructs a branching
program with fewer nodes.

The algorithm requires an input parameterhich is an upper bound on the desired final error of the
aggregate classifier. For> 1, after the execution of step— 1 of boosting, when all nodes at level

t have been created, each nqdet) with |a| > \/(82 075) (2Int +1In2) is “frozen.” The

algorithm commits to classifying any test examples routedrty such nodes accordingsdgn(a),
and these nodes are not used to generate weak hypothegegttiernext round of training.

We have the following theorem about the performance of tigisrdahm:

Theorem 3 Consider running the modified booster férstages. Fort = 0,...,7 — 1 let the
valuesvi, ...,y > 0 be defined as described above, so each invocation of the waaker on
distributionDg ; yields a hypothesisg ; that hasys: > 7. Then the final output hypothedisof
the booster satisfies

Proeplh(x) # c(x)] < 5 + exp (_%Tg %2) _ -

The algorithm make® (\/(Zt o 'yt) (InT+mnl) - S %) calls to the weak learner.

Proof: As in the previous proof it suffices to boulRt,cp+ [h(z) # 1]. The proof of Theorem 2
gives us that if we never did any freezing, thBn,cp+[h(z) # 1] < exp (—— Zt 0 %) . Now
let us analyze the effect of freezing in a given stage 7. Let A; be the distance from the origin

past which examples are frozen in rounde. A; = \/(8 ZS 072)(2Int +1n %). Nearly exactly
the same analysis as proves (6) can be used here: for a pasitvnpler to be incorrectly frozen

in roundt, it must be the cas&; < —A;, or equivalentlyy; < —A; — Zf;é 2. Thus our choice

of A; gives us thaPr,p+ [z incorrectly frozen in round] is at most
t—1
2 €
Pr[Y; < —4; — ;%] <Prly; < -4 <
so consequently we har, .+ [z ever incorrectly frozef <
[LSO05]: we have thaPr,p+[h(z) = 0] equals

. From here we may argue as in

Nl

T-1
Pr,cp+[h(x = 0 andz is frozeny + Pr, cp+ [h(z) = 0 andz is not frozeh < % + exp (—% Z 73)

t=0
which gives (7). The bound on the number of calls to the weaknler follows from the
fact that there are)(A;/~:) such calls in each stage of boosting, and the fact that <

\/(8 S)T +1Ind)forall t. O

It is easy to check that if, = ~ for all ¢, takingT = O(log(1/¢)/~?) the algorithm in this section
will construct ane-accurate hypothesis that is @tlog(1/¢)/~*)-node branching program.

5 Extensions

5.1 Standard weak learners

In Sections 3 and 4, we assumed that the boosting algoritidradzess to a two-sided weak learner,
which is more accurate than random guessing on both theymoaiid the negative examples sepa-
rately. To make use of a standard weak learner, which is merete accurate than random guessing
on average, we can borrow ideas from [LS05].

The idea is to force a standard weak learner to provide a hggat with two-sided accuracy by (a)
balancing the distribution so that positive and negativagxes are accorded equal importance, (b)
balancing the predictions of the output of the weak learndhat it doesn’t specialize on one kind
of example.

Definition 4 Given a probability distributiorD over examples, leD be the distribution thained
by rescaling the positive and negative examples so thathbeg equal weight: i.e., |[eD[S] =

D[S+ 5D~ [S].

Definition 5 Given a confidence-rated classifier. X — [—1, 1] and a probability distributiorD
over X, let the balanced variant df with respect tdD be the functiork : X — [—1, 1] defined as
follows: (a) ifE,ep[h(z)] > 0, then, for allz € X, h(z) = g—atirs — 1. (b) if Byeplh(2)] <

X zep[h(x)
0, then, for allx € X, h(z) = % + 1.

The analysis is the natural generalization of Section 5 8] to confidence-rated classifiers.

Lemma 6 If D is balanced with respect to, and h is a confidence-rated classifier such that

Eqeplh(z)c(z)] = v, thenEeep|h(z)c(z)] > v/2.

Proof. Assume without loss of generality thBt.cp[h(z)] > 0 (the other case can be handled
symmetrically). By linearity of expectation

E.cplh(z)c(z)] (1)
———— 4+ E, - — 1.
Eocoha)]+1 1 oe?l@N g man

Eep[h(z)c(z)]
Ef;[h(m)]ﬂ , so the

Eeplh(a)e(z)] =

SinceD is balanced we havB, cp[c(z)] = 0, and henc@®, cp[h(z)c(z)] =
lemma follows from the fact th&,cp[h(z)] < 1.0
We will use a standard weak learner to simulate a two-sideakviearner as follows. Given a

distributionD, the two-sided weak learner will pagsto the standard weak learner, take its output
g, and returmh = §. Our next lemma analyzes this transformation.

Lemma 7 If E,_plg(x)c(z)] > 7, thenE,cp: [A(z)] > 7/2 andB,cp [~h(z)] > 7/2.

Proof: Lemma 6 implies thakE _5[h(z)c(z)] > /2. Expanding the definition aD, we have
E.cp+[h(z)] — Epep-[h(z)] = 7. 8)
Sinceh balancedy with respect toD and ¢, we haveE _5[h(z)] = 0. Once again expanding

the definition ofD, we get tha, c p+ [h(z)] + Eycp- [h(x)] = 0 which impliesE,cp- [h(z)] =
—E, cp+[h(z)] andE cp+[h(x)] = —E cp+[h(x)]. Substituting each of the RHS for its respec-
tive LHS in (8) completes the prodi.

Lemma 7 is easily seen to imply counterparts of Theorems 23andvhich the requirement of a
two-sided weak learner is weakened to require only standesek learning, but each is replaced
with ~y, /2.

5.2 Tolerating random classification noise

As in [LS05], noise tolerance is facilitated by the fact titfa¢ path through the network is not
affected by altering the label of an example. On the othedhbalancing the distribution before
passing it to the weak learner, which was needed to use aasthmekak learner, may disturb the
independence between the event that an example is noisyhamendom draw of. This can be
repaired exactly as in [KS05, LS05]; because of space ainstrwe omit the details.

References
[AD98] J. Aslam and S. Decatur. Specification and simulatibsetatistical query algorithms for efficiency
and noise tolerancel. Comput & Syst. S¢i56:191-208, 1998.

[AL88] Dana Angluin and Philip Laird. Learning from noisy @&xples.Machine Learning2(4):343-370,
1988.

[ASE92] N. Alon, J. Spencer, and P. Erdoshe Probabilistic Method (1st ed.)Wiley-Interscience, New
York, 1992.

[BKWO3] A.Blum, A. Kalai, and H. Wasserman. Noise-tolerédrning, the parity problem, and the statisti-
cal query modelJ. ACM 50(4):506-519, 2003.

[Die00] T.G. Dietterich. An experimental comparison ofdarmethods for constructing ensembles of deci-
sion trees: bagging, boosting, and randomizatMachine Learning40(2):139-158, 2000.

[Fre95] VY. Freund. Boosting a weak learning algorithm by oniéy. Information and Computatign
121(2):256-285, 1995.

[FS96] V. Freund and R. Schapire. Experiments with a newtimmpsalgorithm. InICML, pages 148-156,
1996.

[FS97] Y. Freund and R. E. Schapire. A decision-theoretiiegalization of on-line learning and an appli-
cation to boostingJCS$55(1):119-139, 1997.

[HayO5] T. P.Hayes. A large-deviation inequality for veet@lued martingales. 2005.

[Kea98] M. Kearns. Efficient noise-tolerant learning frotatstical queriesJACM, 45(6):983—1006, 1998.
[KS05] A. Kalai and R. Servedio. Boosting in the presencea$e. JCSS 71(3):266—290, 2005.

[LSO5] P.Long and R. Servedio. Martingale boostingPhoc. 18th Annual COL;Ipages 79-94, 2005.

[LS08] P. Long and R. Servedio. Random classification noefeats all convex potential boosters. In
ICML, 2008.

[MO97] R. Maclin and D. Opitz. An empirical evaluation of liigg and boosting. IRMAAI/IAAIL pages
546-551, 1997.

[MRO3] R. Meirand G. Ratsch. An introduction to boostingldeveraging. ILNAI Advanced Lectures on
Machine Learningpages 118-183, 2003.

[RDMO06] L. Ralaivola, F. Denis, and C. Magnan. CN=CNNN.I@ML, pages 265-272, 2006.
[Sch90] R. Schapire. The strength of weak learnabilifachine Learning5(2):197-227, 1990.
[Sch03] R. SchapireThe boosting approach to machine learning: An overvi8gringer, 2003.

[SS99] R. Schapire and Y. Singer. Improved boosting allgorit using confidence-rated predictiohéa-
chine Learning37:297-336, 1999.

