Efficiency versus Convergence of Boolean
Kernels for On-Line Learning Algorithms

Roni Khardon Dan Roth Rocco Servedio
Tufts University University of Illinois Harvard University
Medford, MA 02155 Urbana, IL 61801 Cambridge, MA 02138
roni@eecs.tufts.edu danr@cs.uiuc.edu rocco@deas.harvard.edu
Abstract

We study online learning in Boolean domains using kernelefvbap-
ture feature expansions equivalent to using conjunctiees basic fea-
tures. We demonstrate a tradeoff between the computatidiiciency
with which these kernels can be computed and the geneializabil-
ity of the resulting classifier. We first describe severahkéfunctions
which capture either limited forms of conjunctions or alhgunctions.
We show that these kernels can be used to efficiently run theepe
tron algorithm over an exponential number of conjunctidrsyever we
also prove that using such kernels the Perceptron algoritammake
an exponential number of mistakes even when learning sifysie-
tions. We also consider an analogous use of kernel functmnsn the
multiplicative-update Winnow algorithm over an expandeatéire space
of exponentially many conjunctions. While known upper badsirmply
that Winnow can learn DNF formulae with a polynomial mistékeind
in this setting, we prove that it is computationally harditaate Win-
now’s behavior for learning DNF over such a feature set, &ind that
such kernel functions for Winnow are not efficiently comin¢a

1 Introduction

The Perceptron and Winnow algorithms are well known leayaigorithms that make pre-

dictions using a linear function in their feature space.fitesgheir limited expressiveness,
they have been applied successfully in recent years toadaage scale real world classifi-

cation problems. The SNoW system [7, 2], for example, hasessfully applied variations

of Perceptron [6] and Winnow [4] to problems in natural laage processing. The system
first extracts Boolean features from examples (given a3 &éaxd then runs learning algo-
rithms over restricted conjunctions of these basic feature

There are several ways to enhance the set of features aftigitibl extraction. One idea is
to expand the set of basic features. . ., z,, using conjunctions such aszsx4 and use
these expanded higher-dimensional examples, in which @aglanction plays the role of
a basic feature, for learning. This approach clearly leadmtincrease in expressiveness
and thus may improve performance. However, it also dramiitimcreases the number of
features (fromm to 3™ if all conjunctions are used) and thus may adversely affettt the
computation time and convergence rate of learning.

This paper studies the computational efficiency and comrerg of the Perceptron and
Winnow algorithms over such expanded feature spaces otinotipns. Specifically, we
study the use of kernel functions to expand the feature spaddhus enhance the learn-
ing abilities of Perceptron and Winnow; we refer to theseagaed algorithms asernel
Perceptrorandkernel Winnow

1.1 Background: Perceptron and Winnow

Throughout its execution Perceptron maintains a weightiovee € R~ which is initially
(0,...,0). Upon receiving an example € R" the algorithm predicts according to the
linear threshold functiow - z > 0. If the prediction isl and the label is-1 (false positive
prediction) then the vectap is set tow — z, while if the prediction is-1 and the label is
1 (false negative) thew is set tow + x. No change is made if the prediction is correct.

The famous Perceptron Convergence Theorem [6] bounds théeruof mistakes which
the Perceptron algorithm can make:

Theorem 1 Let (z!,y,),..., (z', y;) be a sequence of labeled examples withe R*,
|lz¥|] < Randy; € {-1,1} for all i. Letu € R, ¢ > 0 be such thay;u - 2* > ¢ for all

.. Th k sdlull” mistak hi |
3. Then Perceptron makes at m 5 mistakes on this example sequence.

The Winnow algorithm [4] has a very similar structure. Wimnmaintains a hypothesis
vectorw € RV whichis initiallyw = (1,...,1). Winnow is parameterized by a promotion
factora > 1 and a threshold > 0; upon receiving an exampte € {0,1}® Winnow
predicts according to the threshold functionz > 6. If the prediction isl and the label is
—1 then for alli such thatz; = 1 the value ofw; is set tow; /«; this is ademotionstep. If
the prediction is-1 and the label i4 then for alli such thatz; = 1 the value ofw; is set
to aw;; this is apromotionstep. No change is made if the prediction is correct.

For our purposes the following mistake bound, implicit if, j4 of interest:

Theorem 2 Let the target function be &-literal monotone disjunctiorf (z1, ..., zn) =
x;, V- -Va;, . For any sequence of exampleg[ih 1}V labeled according tgf the number
of prediction mistakes made by Winn@w?) is at most25 - % + k(a+ 1)(1 +log, 0).

1.2 Our Results

Our first result in Section 2 shows that it is possible to effitly run the kernel Perceptron
algorithm over an exponential number of conjunctive feadur

Theorem 3 There is an algorithm that simulates Perceptron over3halimensional fea-
ture space of all conjunctions efbasic features. Given a sequence tdbeled examples
in {0, 1}™ the prediction and update for each example take fpol¥) time steps.

This result is closely related to one of the main open problentearning theory: efficient
learnability of disjunctions of conjunctions, or DNF (Disictive Normal Form) expres-
sions? Since linear threshold elements can represent disjursct@g.z; V z, V 3 is true

iff 1 + x2 + 23 > 1), Theorems 1 and 3 imply that kernel Perceptron can be udedrto
DNF. However, in this framework the values df and R in Theorem 1 can be exponen-
tially large, and hence the mistake bound given by Theoremekponential rather than
polynomial inn. The question thus arises whether, for kernel Perceptremgtponential

1Angluin [1] proved that DNF expressions cannot be learnédiefitly using hypotheses which
are themselves DNF expressions from equivalence queriethas also in the mistake bound model
which we are considering here. However this result doesneotyde the efficient learnability of DNF
using a different class of hypotheses such as those geddratae kernel Perceptron algorithm.

upper bound implied by Theorem 1 is essentially tight. We gim affirmative answer, thus
showing that kernel Perceptron cannot efficiently learn DNF

Theorem 4 There is a monotone DNJF overzy, ..., z, and a sequence of examples la-
beled according t¢f which causes the kernel Perceptron algorithm to m2iké) mistakes.

Turning to Winnow, an attractive feature of Theorem 2 is floatsuitablea, # the bound
is logarithmic in the total number of featurds (e.g. « = 2 andfd = N). Therefore, as
noted by several researchers [5], if a Winnow analogue obfidra 3 could be obtained
this would imply efficient learnability of DNF. We show thab such analogue can exist:

Theorem 5 There is no polynomial time algorithm which simulates Wimnraver expo-
nentially many monotone conjunctive features for learnmimgnotone DNF, unless every
problem in #P can be solved in polynomial time.

We observe that, in contrast to Theorem 5, Maass and Warnawth$hown that the Win-
now algorithm can be simulated efficiently over exponehtialany conjunctive features
for learning some simple geometric concept classes [5].

While several of our results are negative, in practice omeazieve good performance
by using kernel Perceptron (if is small) or the limited-conjunction kernel described in
Section 2 (ifn is large). This is similar to common practice with polynohkiarnel$ where
typically a small degree is used to aid convergence. Theseradtions are supported by
our preliminary experiments in an NLP domain which are npbreed here.

2 Theorem 3: Kernel Perceptron with Exponentially Many Feaures

It is easily observed, and well known, that the hypothesisf the Perceptron algorithm
is a+ sum of the previous examples on which prediction mistakerxewmde If we let
L(z) € {—1,1} denote the label of example thenw = v whereM is the

set of examples on which the algorithm made a mistake. T?mprkkdlctmn of Perceptron

onzisliffw-z= (3, cp Lv)v) -z =3) L(v)(v-z) > 0.

For an example: € {0,1}" let ¢(z) denote its transformation into an enhanced feature
space such as the space of all conjunctions. To run the Resneggorithm over the
enhanced space we must predidff w? - ¢(z) > 0 wherew? is the weight vector in the
enhanced space; from the above discussion this holds jff,, L(v)(¢(v) - ¢(x)) > 0.
DenotingK (v, z) = ¢(v) - ¢(x) this holds iffy >, L(v)K (v,z) > 0.

Thus we never need to construct the enhanced feature sppligitx we need only be
able to compute the kernel functidf(v, «) efficiently. This is the idea behind all so-called
kernel methods, which can be applied to any algorithm (sscsugport vector machines)
whose prediction is a function of inner products of exampes e.g. [3] for a discussion.

The result in Theorem 3 is simply obtained by presenting adddunction capturing all
conjunctions. We also describe kernels for all monotonguwations which allow no
negative literals, and kernels capturing all (monotonejwoctions of up td literals.

The general case:When ¢(-) includes all3™ conjunctions (with positive and negative
literals) K (z,y) must compute the number of conjunctions which are true ih baind

y. Clearly, any literal in such a conjunction must satisfytb@tandy and thus the cor-
responding bit inc,y must have the same value. Counting all such conjunctiorssgiv
K(z,y) = 2%me(=:¥) wheresame(z, y) is the number of original features that have the
same value i andy. This kernel has been obtained independently by [8].

20ur Boolean kernels are different than standard polynokegtels in that all the conjunctions
are weighted equally. While expressive power does not ahazanvergence and behavior, do.

Monotone Monomials: In some applications the total numberof basic features may
be very large but in any one example only a small number olfeattake value 1. In
other applications the number of featuresnay not be known in advance (e.g. due to
unseen words in text domains). In these cases it may be usafahsider only monotone
monomials. To express all monotone monomials we ke, y) = 252mePos(+:¥) where
samepos(z, y) is the number of active features common to hetmndy.

A parameterized kernel: In general, one may want to trade off expressivity against
number of examples and convergence time. Thus we considaraanpterized kernel
which captures all conjunctions of size at mdsfor somek < n. The number of
such conjunctions that satisfy bothandy is K (z,y) = Y1, (***¥)). This ker-

nel is reported also in [10]. For monotone conjunctions @esat mostk we have

K(w,y) — Zf:o (samep;)s(amy)).

3 Theorem 4: Kernel Perceptron with Exponentially Many Mistakes

We describe a monotone DNF target function and a sequenabelield examples which
cause the monotone kernel Perceptron algorithm to makenexpially many mistakes.

Forz,y € {0,1}" we write |z| to denote the number of 1's in and|z N y| to denote
samepos(z, y). We use the following lemma (constants have not been optitjize

Lemma 6 There is a sef of n-bit stringsS = {z!,..., 2!} C {0,1}" with t = /9600
such thafz'| =n/20for1 <i<tand|z'Naz?| <n/80forl <i<j<t.

Proof: The proof uses the probabilistic method. For eaehl,... tletz? € {0,1}" be
chosen by independently setting each bit taith probability 1/10. For any it is clear
that E[|z|] = n/10; a Chernoff bound implies thatr[|«?| < n/20] < e~"/%0 and thus
the probability that any’ satisfiegz?| < n/20is at mostte /%0, Similarly, for anyi # j
we haveE[|z' N z’|] = n/100; a Chernoff bound implies tha@r[|z* N 27| > n/80] <
e~"/4890 ‘and thus the probability that amy, =7 with i # j satisfiedz? Nz7| > n/80is at
most(%)e"/4800 Fort = /9% the value of(})e /489 + te~"/80 s less than 1. Thus
for some choice of*, ..., z* we have each:’| > n/20 and|z’ N 27| < n/80. For anyz’
which hasz*| > n/20 we can sefz’| — n/20 of the 1s to 0s, and the lemma is provdl.

The target DNF is very simple: it is the single conjunctian, . . . z,,. While the original
Perceptron algorithm over thefeaturesz,, ..., z, makes at most poly:) mistakes for
this target function, we now show that the monotone kernetdfgron algorithm which
runs over alR™ monotone monomials can maRet /2% mistakes.

Recall that at the beginning of the Perceptron algorithméscation all2™ coordinates of
w? are 0. The first example is the negative exantplesincew? - ¢(x) = 0 Perceptron

incorrectly predicts 1 on this example. The resulting updzduses the coefficie 4
corresponding to the empty monomial (satisfied by any examjplo become-1 but all
2" — 1 other coordinates ab® remain 0. The next example is the positive exanigle
For this example we have? - ¢(x) = —1 so Perceptron incorrectly predictsl. Since
all 2 monotone conjunctions are satisfied by this example thdtmegwpdate causes
wg’ to become 0 and all® — 1 other coordinates ab? to become 1. The next/?600

examples are the vectar$, . . ., 2" described in Lemma 6. Since each such example has
|z*| = n/20 each example is negative; however as we now show the Pesoeglgorithm
will predict 1 on each of these examples.

Fix any valuel < i < ¢/?6%0 and consider the hypothesis vectet just before example
#* is received. Sincér?| = n/20 the value ofw? - ¢(z?) is a sum of the”/?° different

coordinateau# which correspond to the monomials satisfieda8y More precisely we
havew? - ¢(z') = Y- ;¢ 4, wh + > res, w§. whereA; contains the monomials which are

satisfied byz’ andz’ for somej # i and B; contains the monomials which are satisfied
by z* but noz? with j # i. We lower bound the two sums separately.

Let T" be any monomial ir4;. By Lemma 6 anyl" € A; contains at most /80 variables
and thus there can be at m(Zsjﬁi%O (”/Tm) monomials ind;. Using the well known bound
Zjio (f) < 2H(@)t wherea < 1/2 andH () is the binary entropy function there can be

at most20-%41" terms in4;. Moreover the value of eaah{‘; must be at least /9690 since
w. decreases by at most 1 for each example, and hghge,, w}. > —e™/200020-041n >

—20-042n_On the other hand, for arly € B; we clearly havav? = 1. By Lemma 6 for
anyr > n/80 everyr-variable monomial satisfied hy; must belong taB;, and hence

S ren, W > Zfﬁf/goﬂ (/20) > 20-049 Combining these inequalities we have

xt > —20:042n 4 90.049n -) and hence the Perceptron predictiorudrns 1.

4 Theorem 5: Learning DNF with Kernel Winnow is Hard

In this section, for: € {0, 1}"™ ¢(x) denotes th¢2™ — 1)-element vector whose coordinates
are all nonempty monomials (monotone conjunctions) aver. ., z,,. A sequence of la-
beled examplegz!, b)), ..., (a:t', b:) is monotone consisteiiftit is consistent with some

monotone function, i.ez} < z] forallk = 1,...,n impliesb; < b;. If S is monotone

consistent and haslabeled examples then clearly there is a monotone DNF famoth-
sistent withS which contains at mostconjunctions. We consider the following problem:

KERNEL WINNOW PREDICTION («,6) (KWP)

Instance: Monotone consistent sequense= (z!,b), ..., (z!,b;) of labeled examples
with eachz? € {0,1}™ and eaclh; € {—1,1}; unlabeled example € {0, 1}™.

Question: Isw? - ¢(z) > 6, wherew? is theN = (2™ — 1)-dimensional hypothesis vector
generated by running Winndw, #) on the example sequenég(z?),b1), ... (d(x?), b)?

In order to run Winnow over alt” — 1 nonempty monomials to learn monotone DNF, one
must be able to solve KWP efficiently. The main result of tleist®n is proved by showing
that KWP is computationally hard for any parameter settwich yield a polynomial
mistake bound for Winnow via Theorem 2.

Theorem 7 Let N = 2™ —1anda > 1,0 > 1 be such thamax(=2; - &, (e + 1)(1 +
log, 6)) = poly(m). Then KWRq, 8) is #P-hard.

Proof of Theorem 7: For N,a and# as described above it can easily be verified that
1+ ity < @ < poly(in) and% < 0 < 2°%(m)_The proof of the theorem is a

reduction from the following #P-hard problem [9]: (See [#afor details on #P.)

MONOTONE 2-SAT (M2SAT)

Instance: Monotone 2-CNF Boolean formull = ¢; Aca A ... Ac, With ¢; = (y4i, Vyi,)
and eacly;; € {y1,...,yn}; integerk suchthat < K <2".

Question: Is |[F~1(1)| > K, i.e. doess" have at leask satisfying assignments if9, 1}7?

4.1 High-Level Idea of the Proof

The high level idea of the proof is simple: I&F, K') be an instance of M2SAT where

F is defined over variableg,, . .., y,. The Winnow algorithm maintains a Weighl;fi
for each monomidl” over variables:,, . .., z,. We define a 1-1 correspondence between
these monomialg’ and truth assignmentg’ € {0,1}" for F, and we give a sequence of

examples for Winnow which causes) ~ 0 if F(y7) = 0 andw} = 1if F(y7) = 1.

The value ofw? - ¢(z) is thus related tdF—*(1)|; some additional work ensures that
w? - ¢(z) > @ ifand only if |[F~1(1)| > K.

In more detail, leU = n+ 1+ [([log, 4] + 1) loga], V = [{ZL1+ 1, W = [g£2] +1
andm = n + U + 6Vn? + 6UW + 3. We describe a polynomial time transformation
which maps am-variable instancéF, K') of M2SAT to anm-variable instancgs, z) of
KWP(«, §) whereS = (z1,b1), ..., (xt, b;) is monotone consistent, eachandz belong

to {0,1}™ andw? - ¢(z) > @ if and only if |F~1(1)| > K.

The Winnow variables:, ..., z,, are divided into three setd, B and C where A =
{z1,... 2}, B =A{&ny1,...,enrv} @andC = {&pt1u41,. .., 2n}. The unlabeled ex-
amplez is 1"V om—"=U je. all variables ind and B are set to 1 and all variables @
are set to 0. We thus have’ - ¢(z) = M + Mp + Map whereMa = 370 4 w$,
Mp = Y gupcpwh andMap = 30 4op rnazornp2 We- We refer to monomials

) £ T C A astypeA monomials, monomial # T C B astype8 monomials, and
monomialsT’ C AUB, TN A # (,T N B # () astype-AB monomials.

The example sequenckis divided into four stages. Stage 1 resultdin, ~ |F~1(1)[; as
described below the variables inA correspond to the variables in the CNF formul#.
Stage 2 results inf4 ~ «?|F~1(1)| for some positive integey. Stages 3 and 4 together
result inMp + Map ~ 6 — a?K. Thus the final value ofv? - ¢(z) is approximately
6+ a?(|F~1(1)] — K), so we havev? - ¢(z) > @ ifand only if |F~1(1)| > K.

Since all variables irC' are 0 inz, if T includes a variable i’ then the value ofugi

does not affectv? - ¢(z). The variables irC' are “slack variables” which (i) make Winnow
perform the correct promotions/demotions and (ii) enshae$ is monotone consistent.

4.2 Details of the Proof

Stage 1: SettingM ~ |F~1(1)|. We define the following correspondence between
truth assignmentg? € {0,1}" and monomiald” C A : y! = 0if and only if z; is not
present inl’. For each clauseg;, V y;, in F, Stage 1 contain¥ negative examples such
thatz;, = z;, = 0 andz; = 1 for all otherz; € A. Assuming that (1) Winnow makes a
false positive prediction on each of these examples and @)dge 1 Winnow never does a
promotion on any example which has any variableliget to 1, then after Stage 1 we will
have thatw?, = 1if F(y”) = 1and0 < w) < o~V if F(yT) = 0. Thus we will have
My = |F~(1)| 4+ 7 forsomed <, < 2"a™" < 3.
We now show how the Stage 1 examples cause Winnow to makeeapfatstive predic-
tion on negative examples which havg = z;, = 0 andz; = 1 for all otheri in A

as described above. For each such negative example in Stsigenéw slack variables
zg+1,-.-,2p+6 € C are used as follows: Stage 1 hidsg,, (0/3)] repeated instances of
the positive example which has;1; = zg4+2 = 1 and all other bits 0. These examples

cause promotions which result th < w? . +w? +w? . . < o and hence

“’fﬂl > 0/3. Two other groups of similar examples (the first with,3 = z544 = 1,

the second withes, s = 2546 = 1) causewy = > 6/3 andwg . > 6/3. The
next example inS is the negative example which has, = z;, = 0, z; = 1 for
all otherz; in A, 341 = 2343 = zs4s = 1 and all other bits 0. For this example

w? - p(x) >wy, +wy +wf >0 soWinnow makes a false positive prediction.

Since F' has at most? clauses and there aké negative examples per clause, this con-
struction can be carried out usifyn? slack variables:,, 11, - -, Tpivrevn2-

Stage 2: SettingM 4 ~ a?|F~1(1)|. The first Stage 2 example is a positive example
with «; = 1 forall z; € A, z,, yievn2+1 = 1 and all other bits 0. Since each of the

monomials which contaim,, ;71 61,241 and are satisfied by this example ham% =1,
we havew? - ¢(z) = 2" + |[F~L(1)| + 11 < 2"FL. Sinced > 2™ /poly(m) > 2"+1 after
the resulting promotion we have? - ¢(z) = a(2" + |[F~1(1)] + 711) < a2"tL.

Letq = [log,(8/2"1)] — 1,s0042"t! < § < @4T127F! Stage 2 consists gfrepeated
instances of the positive example described above. Afesetipromotions we hawe? -
d(z) = al(2" + |F71(1)| + 1) < a?2" < 4. Sincel < |[F~1(1)] + v < 2" we also
havea? < My = a?(JF71(1)| +71) < a?2™ < 0/2.

Stage 3: SettingMp = p. At the start of Stage 3 each typge-and typeA B monomial

T hasw§ = 1. There aren variables inA andU variables inB so at the start of Stage 2
we haveMp = 2V — 1andMsp = (2" — 1)(2Y — 1). Since no example in Stages 3 or 4
satisfies any; in A, at the end of Stage & 4 will still be a?(|F~1(1)| + 1) andMap
will still be (2" —1)(2Y —1). Thus ideally at the end of Stage 4 the valué\6f would be
6—(2"—1)(2Y —1)—a4(K+v), since this would imply thab?-¢(z) = 6+a4(|F~1(1)|—

K) which is at leas® if and only if |F~1(1)] > K. However it is not necessary fad g

to assume this exact value; sindé*(1)| must be an integer ariil< v; < 1, as long as
f—(2"-1)2Y 1) —a'K < Mp <8 —(2"—-1)(2Y — 1) — a?(K — 1) we will have
thatMa + Mp + Map > @ ifandonly if |[F~1(1)| > K.

For ease of notation I¢? denoted — (2" —1)(2Y —1) —a? K. We now describe the examples
in Stages 3 and 4 and show that they will cali$g to satisfyD < Mp < D + %aq.

Letc = [log, 4], s0a?7 ¢ < ioﬂ and hence there is a unique smallest intggguch that
D < pa? ¢ < D + +a?. The Stage 3 examples will resultjn< Mp < p + 1. Using the
definition of D and the fact that < K < 2" it can be verified tha&?=¢ < D < pa?~° <
D+ 1a? <0 — 31 < aif12nFl — 3047¢ = 17¢ . (@ct127H! — 3). Hence we have
1 <p<actiontl 3 < ontltl(ctlogal _ 3 = 9U _ 3 We use the following lemma:

Lemma8 Forall ¢ > 1,forall 1 < p < 2¢ — 1, there is a monotone CNFy, over
¢ Boolean variables which has at madstlauses, has exactly satisfying assignments in
{0,1}¢, and can be constructed frofrandp in poly(¢) time.

Proof: The proof is by induction orf. For the base casé = 1 we havep = 1 and
F;, = x1. Assuming the lemma is true fér=1, ...,k we now prove itfol = k + 1 :

If 1 < p < 2k —1thenthe desired CNF By, = zt11 A Fi . SinceF}, , has at mosk
clauses}.+1 , has at mosk + 1 clauses. I2% +1 < p < 2¥+1 — 1 then the desired CNF
iS Fry1,p = Try1 V F, p_ox. By distributingz,, over each clause df, ,_,« we can write
F11,, as a CNF with at most clauses. I = 2* thenFy, , = ;. u

Let Fy,, be anr-clause monotone CNF formula over thevariables inB which hasp
satisfying assignments. Similar to Stage 1, for each clatisg ,,, Stage 3 hadl’ negative
examples corresponding to that clause, and as in StageKl\sldables inC' are used to
ensure that Winnow makes a false positive prediction on sach negative example. Thus
the examples in Stage 3 causf; = p + 7. where0 < 7, < 2Ya=" < 1. Since six
slack variables i’ are used for each negative example and thereldre< UW negative
examples, the slack variableg, g 6vn242, - - -, Tm—2 are sufficient for Stage 3.

Stage 4: SettingMp + Map =~ 68 — a?K. All that remains is to perforng — ¢
promotions on examples which have eaghn B set to 1. This will caus® < pa?=°¢ <
(p+72)a?™¢ = Mp < D + a% + 12a?"¢ < D + La? which is as desired.

It can be verified from the definitions &f andc that {{)ﬁ > ¢. The firstq — %;Z

examples inS are all the same positive example which has eacin B set to 1 and
rm_1 = 1. The first time this example is received - ¢(z) = 2V + p+» < 2U*1 Itcan

be verified thaR+! < 6, so Winnow performs a promotion; after- [Y=2] occurrences

log
of this examplas? - ¢(x) = o~ [T51(2U 4 p 4 75) < ot~ [EEa12U+1 < quantl < g
andMB = Oéqihl"ﬁ] (p + ’}/2).

The remaining examples in Stage 4 a%;—;’] — ¢ repetitions of the positive exampie
which has eacly; in B setto 1 and:,,, = 1. If promotions occurred on each repetition of

this example then we would have? - ¢(z) = a[%]’C(QU + ot e (p+ 72)), so

we need only show that this is less thrWe reexpress this quantity adiosa |=cQU +
a?™¢(p+2). We haven?=¢(p+2) < poﬂ“#ioﬂ‘c < 9—%oﬂ+11—60ﬂ < 0—%(14. Some

easy manipulations show thatz= 172U < 222U—n < 144, so indeeds? - ¢(z) < 6.

Finally, we observe that by construction the example secpi8ris monotone consistent.
Sincem = poly(n) andS contains polyn) examples the transformation from M2SAT to
KWP(«, #) is polynomial-time computable and the theorem is proved. hefrem 71

5 Conclusion

It is necessary to expand the feature space if linear legraligorithms are to learn ex-
pressive functions. This work explores the tradeoff betwa@mputational efficiency and
convergence (i.e. generalization ability) when using exieal feature spaces. We have
shown that additive and multiplicative update algorithnrffedsignificantly in this respect;
we believe that this fact could have significant practicgblications. Future directions
include the utilization of the kernels developed here andyshg convergence issues of
Boolean-kernel Perceptron and Support Vector MachingsaiPAC model.

Acknowledgements: R. Khardon was supported by NSF grant 11S-0099446. D. Roth
was supported by NSF grants ITR-11S-00-85836 and 11S-98844nd by EPSRC grant
GR/N03167 while visiting University of Edinburgh. R. Sedie was supported by NSF
grant CCR-98-77049 and by a NSF Mathematical Sciences éuietdl Fellowship.

References

[1] D. Angluin. Negative results for equivalence queribtachine Learning2:121-150, 1990.

[2] A. Carlson, C. Cumby, J. Rosen, and D. Roth. The SNoW legrarchitecture. Technical
Report UIUCDCS-R-99-2101, UIUC Computer Science Depantpiday 1999.

[3] N. Cristianini and J. Shaw-TaylorAn Introduction to Support Vector Machine€ambridge
Press, 2000.

[4] N. Littlestone. Learning quickly when irrelevant abuites abound: A new linear-threshold
algorithm. Machine Learning2:285-318, 1988.

[5] W. Maass and M. K. Warmuth. Efficient learning with virtuhreshold gatesinformation and
Computation141(1):378-386, 1998.

[6] A. Novikoff. On convergence proofs for perceptrons. Aroceeding of the Symposium on the
Mathematical Theory of Automataolume 12, pages 615-622, 1963.

[7] D. Roth. Learning to resolve natural language ambigsitiA unified approach. IRroc. of the
American Association of Artificial Intelligencpages 806—-813, 1998.

[8] K. Sadohara. Learning of boolean functions using suppector machines. IProc. of the
Conference on Algorithmic Learning Theppages 106-118. Springer, 2001. LNAI 2225.

[9] L. G. Valiant. The complexity of enumeration and reliliiproblems. SIAM Journal of Com-
puting 8:410-421, 1979.

[10] C. Watkins. Kernels from matching operations. TechhReport CSD-TR-98-07, Computer
Science Department, Royal Holloway, University of Londd899.

