
Efficiency versus Convergence of Boolean
Kernels for On-Line Learning Algorithms

Roni Khardon
Tufts University

Medford, MA 02155
roni@eecs.tufts.edu

Dan Roth
University of Illinois

Urbana, IL 61801
danr@cs.uiuc.edu

Rocco Servedio
Harvard University

Cambridge, MA 02138
rocco@deas.harvard.edu

Abstract

We study online learning in Boolean domains using kernels which cap-
ture feature expansions equivalent to using conjunctions over basic fea-
tures. We demonstrate a tradeoff between the computationalefficiency
with which these kernels can be computed and the generalization abil-
ity of the resulting classifier. We first describe several kernel functions
which capture either limited forms of conjunctions or all conjunctions.
We show that these kernels can be used to efficiently run the Percep-
tron algorithm over an exponential number of conjunctions;however we
also prove that using such kernels the Perceptron algorithmcan make
an exponential number of mistakes even when learning simplefunc-
tions. We also consider an analogous use of kernel functionsto run the
multiplicative-update Winnow algorithm over an expanded feature space
of exponentially many conjunctions. While known upper bounds imply
that Winnow can learn DNF formulae with a polynomial mistakebound
in this setting, we prove that it is computationally hard to simulate Win-
now’s behavior for learning DNF over such a feature set, and thus that
such kernel functions for Winnow are not efficiently computable.

1 Introduction

The Perceptron and Winnow algorithms are well known learning algorithms that make pre-
dictions using a linear function in their feature space. Despite their limited expressiveness,
they have been applied successfully in recent years to several large scale real world classifi-
cation problems. The SNoW system [7, 2], for example, has successfully applied variations
of Perceptron [6] and Winnow [4] to problems in natural language processing. The system
first extracts Boolean features from examples (given as text) and then runs learning algo-
rithms over restricted conjunctions of these basic features.

There are several ways to enhance the set of features after the initial extraction. One idea is
to expand the set of basic featuresx

1

; : : : ; x

n

using conjunctions such asx
1

x

3

x

4

and use
these expanded higher-dimensional examples, in which eachconjunction plays the role of
a basic feature, for learning. This approach clearly leads to an increase in expressiveness
and thus may improve performance. However, it also dramatically increases the number of
features (fromn to 3

n if all conjunctions are used) and thus may adversely affect both the
computation time and convergence rate of learning.

This paper studies the computational efficiency and convergence of the Perceptron and
Winnow algorithms over such expanded feature spaces of conjunctions. Specifically, we
study the use of kernel functions to expand the feature spaceand thus enhance the learn-
ing abilities of Perceptron and Winnow; we refer to these enhanced algorithms askernel
Perceptronandkernel Winnow.

1.1 Background: Perceptron and Winnow

Throughout its execution Perceptron maintains a weight vectorw 2 <

N which is initially
(0; : : : ; 0): Upon receiving an examplex 2 <

N the algorithm predicts according to the
linear threshold functionw � x � 0: If the prediction is1 and the label is�1 (false positive
prediction) then the vectorw is set tow � x, while if the prediction is�1 and the label is
1 (false negative) thenw is set tow + x: No change is made if the prediction is correct.

The famous Perceptron Convergence Theorem [6] bounds the number of mistakes which
the Perceptron algorithm can make:

Theorem 1 Let hx1; y
1

i; : : : ; hx

t

; y

t

i be a sequence of labeled examples withx

i

2 <

N

;

kx

i

k � R andy
i

2 f�1; 1g for all i. Letu 2 <

N

; � > 0 be such thaty
i

u � x

i

� � for all

i: Then Perceptron makes at mostR

2

kuk

2

�

2

mistakes on this example sequence.

The Winnow algorithm [4] has a very similar structure. Winnow maintains a hypothesis
vectorw 2 <

N which is initiallyw = (1; : : : ; 1):Winnow is parameterized by a promotion
factor� � 1 and a threshold� > 0; upon receiving an examplex 2 f0; 1g

N Winnow
predicts according to the threshold functionw � x � �: If the prediction is1 and the label is
�1 then for alli such thatx

i

= 1 the value ofw
i

is set tow
i

=�; this is ademotionstep. If
the prediction is�1 and the label is1 then for alli such thatx

i

= 1 the value ofw
i

is set
to�w

i

; this is apromotionstep. No change is made if the prediction is correct.

For our purposes the following mistake bound, implicit in [4], is of interest:

Theorem 2 Let the target function be ak-literal monotone disjunctionf(x
1

; : : : ; x

N

) =

x

i

1

_� � �_x

i

k

: For any sequence of examples inf0; 1gN labeled according tof the number
of prediction mistakes made by Winnow(�; �) is at most �

��1

�

N

�

+ k(�+ 1)(1 + log

�

�):

1.2 Our Results

Our first result in Section 2 shows that it is possible to efficiently run the kernel Perceptron
algorithm over an exponential number of conjunctive features:

Theorem 3 There is an algorithm that simulates Perceptron over the3

n-dimensional fea-
ture space of all conjunctions ofn basic features. Given a sequence oft labeled examples
in f0; 1gn the prediction and update for each example take poly(n; t) time steps.

This result is closely related to one of the main open problems in learning theory: efficient
learnability of disjunctions of conjunctions, or DNF (Disjunctive Normal Form) expres-
sions.1 Since linear threshold elements can represent disjunctions (e.g.x

1

_x

2

_x

3

is true
iff x

1

+ x

2

+ x

3

� 1), Theorems 1 and 3 imply that kernel Perceptron can be used tolearn
DNF. However, in this framework the values ofN andR in Theorem 1 can be exponen-
tially large, and hence the mistake bound given by Theorem 1 is exponential rather than
polynomial inn: The question thus arises whether, for kernel Perceptron, the exponential

1Angluin [1] proved that DNF expressions cannot be learned efficiently using hypotheses which
are themselves DNF expressions from equivalence queries and thus also in the mistake bound model
which we are considering here. However this result does not preclude the efficient learnability of DNF
using a different class of hypotheses such as those generated by the kernel Perceptron algorithm.

upper bound implied by Theorem 1 is essentially tight. We give an affirmative answer, thus
showing that kernel Perceptron cannot efficiently learn DNF:

Theorem 4 There is a monotone DNFf overx
1

; : : : ; x

n

and a sequence of examples la-
beled according tof which causes the kernel Perceptron algorithm to make2

(n) mistakes.

Turning to Winnow, an attractive feature of Theorem 2 is thatfor suitable�; � the bound
is logarithmic in the total number of featuresN (e.g. � = 2 and� = N). Therefore, as
noted by several researchers [5], if a Winnow analogue of Theorem 3 could be obtained
this would imply efficient learnability of DNF. We show that no such analogue can exist:

Theorem 5 There is no polynomial time algorithm which simulates Winnow over expo-
nentially many monotone conjunctive features for learningmonotone DNF, unless every
problem in #P can be solved in polynomial time.

We observe that, in contrast to Theorem 5, Maass and Warmuth have shown that the Win-
now algorithm can be simulated efficiently over exponentially many conjunctive features
for learning some simple geometric concept classes [5].

While several of our results are negative, in practice one can achieve good performance
by using kernel Perceptron (ifn is small) or the limited-conjunction kernel described in
Section 2 (ifn is large). This is similar to common practice with polynomial kernels2 where
typically a small degree is used to aid convergence. These observations are supported by
our preliminary experiments in an NLP domain which are not reported here.

2 Theorem 3: Kernel Perceptron with Exponentially Many Features

It is easily observed, and well known, that the hypothesisw of the Perceptron algorithm
is a� sum of the previous examples on which prediction mistakes were made. If we let
L(x) 2 f�1; 1g denote the label of examplex, thenw =

P

v2M

L(v)v whereM is the
set of examples on which the algorithm made a mistake. Thus the prediction of Perceptron
onx is 1 iff w � x = (

P

v2M

L(v)v) � x =

P

v2M

L(v)(v � x) � 0.

For an examplex 2 f0; 1g

n let �(x) denote its transformation into an enhanced feature
space such as the space of all conjunctions. To run the Perceptron algorithm over the
enhanced space we must predict1 iff w�

� �(x) � 0 wherew� is the weight vector in the
enhanced space; from the above discussion this holds iff

P

v2M

L(v)(�(v) � �(x)) � 0.
DenotingK(v; x) = �(v) � �(x) this holds iff

P

v2M

L(v)K(v; x) � 0.

Thus we never need to construct the enhanced feature space explicitly; we need only be
able to compute the kernel functionK(v; x) efficiently. This is the idea behind all so-called
kernel methods, which can be applied to any algorithm (such as support vector machines)
whose prediction is a function of inner products of examples; see e.g. [3] for a discussion.

The result in Theorem 3 is simply obtained by presenting a kernel function capturing all
conjunctions. We also describe kernels for all monotone conjunctions which allow no
negative literals, and kernels capturing all (monotone) conjunctions of up tok literals.

The general case:When�(�) includes all3n conjunctions (with positive and negative
literals)K(x; y) must compute the number of conjunctions which are true in both x and
y. Clearly, any literal in such a conjunction must satisfy both x andy and thus the cor-
responding bit inx; y must have the same value. Counting all such conjunctions gives
K(x; y) = 2

same(x;y) wheresame(x; y) is the number of original features that have the
same value inx andy. This kernel has been obtained independently by [8].

2Our Boolean kernels are different than standard polynomialkernels in that all the conjunctions
are weighted equally. While expressive power does not change, convergence and behavior, do.

Monotone Monomials: In some applications the total numbern of basic features may
be very large but in any one example only a small number of features take value 1. In
other applications the number of featuresn may not be known in advance (e.g. due to
unseen words in text domains). In these cases it may be usefulto consider only monotone
monomials. To express all monotone monomials we takeK(x; y) = 2

samepos(x;y) where
samepos(x; y) is the number of active features common to bothx andy.

A parameterized kernel: In general, one may want to trade off expressivity against
number of examples and convergence time. Thus we consider a parameterized kernel
which captures all conjunctions of size at mostk for somek < n: The number of
such conjunctions that satisfy bothx andy is K(x; y) =

P

k

l=0

�

same(x;y)

l

�

. This ker-
nel is reported also in [10]. For monotone conjunctions of size at mostk we have
K(x; y) =

P

k

l=0

�

samepos(x;y)

l

�

.

3 Theorem 4: Kernel Perceptron with Exponentially Many Mistakes

We describe a monotone DNF target function and a sequence of labeled examples which
cause the monotone kernel Perceptron algorithm to make exponentially many mistakes.

For x; y 2 f0; 1g

n we write jxj to denote the number of 1’s inx and jx \ yj to denote
samepos(x; y): We use the following lemma (constants have not been optimized):

Lemma 6 There is a setS of n-bit stringsS = fx

1

; : : : ; x

t

g � f0; 1g

n with t = e

n=9600

such thatjxij = n=20 for 1 � i � t andjxi \ xj j � n=80 for 1 � i < j � t:

Proof: The proof uses the probabilistic method. For eachi = 1; : : : ; t let xi 2 f0; 1g

n be
chosen by independently setting each bit to1 with probability 1/10. For anyi it is clear
thatE[jx

i

j℄ = n=10; a Chernoff bound implies thatPr[jxij < n=20℄ � e

�n=80

; and thus
the probability that anyxi satisfiesjxij < n=20 is at mostte�n=80: Similarly, for anyi 6= j

we haveE[jx

i

\ x

j

j℄ = n=100; a Chernoff bound implies thatPr[jxi \ x

j

j > n=80℄ �

e

�n=4800

; and thus the probability that anyxi; xj with i 6= j satisfiesjxi\xj j > n=80 is at
most

�

t

2

�

e

�n=4800

: For t = e

n=9600 the value of
�

t

2

�

e

�n=4800

+ te

�n=80 is less than 1. Thus
for some choice ofx1; : : : ; xt we have eachjxij � n=20 andjxi \ xj j � n=80: For anyxi

which hasjxij > n=20 we can setjxij � n=20 of the 1s to 0s, and the lemma is proved.

The target DNF is very simple: it is the single conjunctionx

1

x

2

: : : x

n

: While the original
Perceptron algorithm over then featuresx

1

; : : : ; x

n

makes at most poly(n) mistakes for
this target function, we now show that the monotone kernel Perceptron algorithm which
runs over all2n monotone monomials can make2 + e

n=9600 mistakes.

Recall that at the beginning of the Perceptron algorithm’s execution all2n coordinates of
w

� are 0. The first example is the negative example0

n

; sincew�

� �(x) = 0 Perceptron
incorrectly predicts 1 on this example. The resulting update causes the coefficientw�

;

corresponding to the empty monomial (satisfied by any examplex) to become�1 but all
2

n

� 1 other coordinates ofw� remain 0. The next example is the positive example1

n

:

For this example we havew�

� �(x) = �1 so Perceptron incorrectly predicts�1: Since
all 2n monotone conjunctions are satisfied by this example the resulting update causes
w

�

;

to become 0 and all2n � 1 other coordinates ofw� to become 1. The nexten=9600

examples are the vectorsx1; : : : ; xt described in Lemma 6. Since each such example has
jx

i

j = n=20 each example is negative; however as we now show the Perceptron algorithm
will predict 1 on each of these examples.

Fix any value1 � i � e

n=9600 and consider the hypothesis vectorw

� just before example
x

i is received. Sincejxij = n=20 the value ofw�

� �(x

i

) is a sum of the2n=20 different

coordinatesw�

T

which correspond to the monomials satisfied byx

i

: More precisely we
havew�

� �(x

i

) =

P

T2A

i

w

�

T

+

P

T2B

i

w

�

T

whereA
i

contains the monomials which are
satisfied byxi andxj for somej 6= i andB

i

contains the monomials which are satisfied
by xi but noxj with j 6= i: We lower bound the two sums separately.

Let T be any monomial inA
i

: By Lemma 6 anyT 2 A

i

contains at mostn=80 variables
and thus there can be at most

P

n=80

r=0

�

n=20

r

�

monomials inA
i

: Using the well known bound
P

�`

j=0

�

`

j

�

� 2

H(�)` where� � 1=2 andH(�) is the binary entropy function there can be

at most20:041n terms inA
i

:Moreover the value of eachw�

T

must be at least�en=9600 since
w

�

T

decreases by at most 1 for each example, and hence
P

T2A

i

w

�

T

� �e

n=9600

2

0:041n

>

�2

0:042n

: On the other hand, for anyT 2 B

i

we clearly havew�

T

= 1: By Lemma 6 for
any r > n=80 everyr-variable monomial satisfied byx

i

must belong toB
i

; and hence
P

T2B

i

w

�

T

�

P

n=20

r=n=80+1

�

n=20

r

�

> 2

0:049n

: Combining these inequalities we havew �

x

i

� �2

0:042n

+ 2

0:049n

> 0 and hence the Perceptron prediction onx

i is 1.

4 Theorem 5: Learning DNF with Kernel Winnow is Hard

In this section, forx 2 f0; 1g

n

�(x) denotes the(2n�1)-element vector whose coordinates
are all nonempty monomials (monotone conjunctions) overx

1

; : : : ; x

n

: A sequence of la-
beled exampleshx1; b

1

i; : : : ; hx

t

; b

t

i is monotone consistentif it is consistent with some
monotone function, i.e.xi

k

� x

j

k

for all k = 1; : : : ; n impliesb
i

� b

j

: If S is monotone
consistent and hast labeled examples then clearly there is a monotone DNF formula con-
sistent withS which contains at mostt conjunctions. We consider the following problem:

KERNEL WINNOW PREDICTION (�; �) (KWP)
Instance: Monotone consistent sequenceS = hx

1

; b

1

i; : : : ; hx

t

; b

t

i of labeled examples
with eachxi 2 f0; 1g

m and eachb
i

2 f�1; 1g; unlabeled examplez 2 f0; 1g

m

:

Question: Isw�

��(z) � �; wherew� is theN = (2

m

�1)-dimensional hypothesis vector
generated by running Winnow(�; �) on the example sequenceh�(x1); b

1

i; : : : h�(x

t

); b

t

i?

In order to run Winnow over all2m� 1 nonempty monomials to learn monotone DNF, one
must be able to solve KWP efficiently. The main result of this section is proved by showing
that KWP is computationally hard for any parameter settingswhich yield a polynomial
mistake bound for Winnow via Theorem 2.

Theorem 7 LetN = 2

m

� 1 and� > 1; � � 1 be such thatmax(

�

��1

�

N

�

; (� + 1)(1 +

log

�

�)) = poly(m): Then KWP(�; �) is #P-hard.

Proof of Theorem 7: For N;� and � as described above it can easily be verified that
1 +

1

poly(m)

< � < poly(m) and 2

m

poly(m)

< � < 2

poly(m)

: The proof of the theorem is a
reduction from the following #P-hard problem [9]: (See [9] also for details on #P.)

MONOTONE 2-SAT (M2SAT)
Instance: Monotone 2-CNF Boolean formulaF =

1

^

2

^ : : :^

r

with

i

= (y

i

1

_ y

i

2

)

and eachy
i

j

2 fy

1

; : : : ; y

n

g; integerK such that1 � K � 2

n

:

Question: Is jF�1

(1)j � K; i.e. doesF have at leastK satisfying assignments inf0; 1gn?

4.1 High-Level Idea of the Proof

The high level idea of the proof is simple: let(F;K) be an instance of M2SAT where
F is defined over variablesy

1

; : : : ; y

n

: The Winnow algorithm maintains a weightw�

T

for each monomialT over variablesx
1

; : : : ; x

n

: We define a 1-1 correspondence between
these monomialsT and truth assignmentsyT 2 f0; 1g

n for F; and we give a sequence of
examples for Winnow which causesw�

T

� 0 if F (y

T

) = 0 andw�

T

= 1 if F (y

T

) = 1:

The value ofw�

� �(z) is thus related tojF�1

(1)j; some additional work ensures that
w

�

� �(z) � � if and only if jF�1

(1)j � K:

In more detail, letU = n+1+ d(dlog

�

4e+1) log�e; V = d

n+1

log�

e+1; W = d

U+2

log �

e+1

andm = n + U + 6V n

2

+ 6UW + 3: We describe a polynomial time transformation
which maps ann-variable instance(F;K) of M2SAT to anm-variable instance(S; z) of
KWP(�; �) whereS = hx

1

; b

1

i; : : : ; hx

t

; b

t

i is monotone consistent, eachxi andz belong
to f0; 1gm andw�

� �(z) � � if and only if jF�1

(1)j � K:

The Winnow variablesx
1

; : : : ; x

m

are divided into three setsA;B andC whereA =

fx

1

; : : : ; x

n

g; B = fx

n+1

; : : : ; x

n+U

g andC = fx

n+U+1

; : : : ; x

m

g: The unlabeled ex-
amplez is 1

n+U

0

m�n�U

; i.e. all variables inA andB are set to 1 and all variables inC
are set to 0. We thus havew�

� �(z) = M

A

+M

B

+M

AB

whereM
A

=

P

;6=T�A

w

�

T

;

M

B

=

P

;6=T�B

w

�

T

andM
AB

=

P

T�A[B;T\A6=;;T\B 6=;

w

�

T

: We refer to monomials
; 6= T � A as type-A monomials, monomials; 6= T � B as type-B monomials, and
monomialsT � A [B; T \A 6= ;; T \ B 6= ; astype-AB monomials.

The example sequenceS is divided into four stages. Stage 1 results inM

A

� jF

�1

(1)j; as
described below then variables inA correspond to then variables in the CNF formulaF:
Stage 2 results inM

A

� �

q

jF

�1

(1)j for some positive integerq: Stages 3 and 4 together
result inM

B

+ M

AB

� � � �

q

K: Thus the final value ofw�

� �(z) is approximately
� + �

q

(jF

�1

(1)j �K); so we havew�

� �(z) � � if and only if jF�1

(1)j � K:

Since all variables inC are 0 inz; if T includes a variable inC then the value ofw�

T

does not affectw�

� �(z): The variables inC are “slack variables” which (i) make Winnow
perform the correct promotions/demotions and (ii) ensure thatS is monotone consistent.

4.2 Details of the Proof

Stage 1: SettingM
A

� jF

�1

(1)j. We define the following correspondence between
truth assignmentsyT 2 f0; 1g

n and monomialsT � A : y

T

i

= 0 if and only if x
i

is not
present inT: For each clausey

i

1

_ y

i

2

in F; Stage 1 containsV negative examples such
thatx

i

1

= x

i

2

= 0 andx
i

= 1 for all otherx
i

2 A: Assuming that (1) Winnow makes a
false positive prediction on each of these examples and (2) in Stage 1 Winnow never does a
promotion on any example which has any variable inA set to 1, then after Stage 1 we will
have thatw�

T

= 1 if F (y

T

) = 1 and0 < w

�

T

� �

�V if F (y

T

) = 0: Thus we will have
M

A

= jF

�1

(1)j+

1

for some0 <

1

< 2

n

�

�V

<

1

2

:

We now show how the Stage 1 examples cause Winnow to make a false positive predic-
tion on negative examples which havex

i

1

= x

i

2

= 0 andx
i

= 1 for all other i in A

as described above. For each such negative example in Stage 1six new slack variables
x

�+1

; : : : ; x

�+6

2 C are used as follows: Stage 1 hasdlog
�

(�=3)e repeated instances of
the positive example which hasx

�+1

= x

�+2

= 1 and all other bits 0. These examples
cause promotions which result in� � w

�

x

�+1

+ w

�

x

�+2

+ w

�

x

�+1

x

�+2

< �� and hence

w

�

x

�+1

� �=3: Two other groups of similar examples (the first withx
�+3

= x

�+4

= 1;

the second withx
�+5

= x

�+6

= 1) causew�

x

�+3

� �=3 andw�

x

�+5

� �=3: The
next example inS is the negative example which hasx

i

1

= x

i

2

= 0; x

i

= 1 for
all otherx

i

in A; x

�+1

= x

�+3

= x

�+5

= 1 and all other bits 0. For this example
w

�

� �(x) > w

�

x

�+1

+ w

�

x

�+3

+ w

�

x

�+5

� � so Winnow makes a false positive prediction.

SinceF has at mostn2 clauses and there areV negative examples per clause, this con-
struction can be carried out using6V n2 slack variablesx

n+U+1

; : : : ; x

n+U+6V n

2

:

Stage 2: SettingM
A

� �

q

jF

�1

(1)j. The first Stage 2 example is a positive example
with x

i

= 1 for all x
i

2 A, x
n+U+6V n

2

+1

= 1 and all other bits 0. Since each of the2n

monomials which containx
n+U+6V n

2

+1

and are satisfied by this example havew

�

T

= 1;

we havew�

� �(x) = 2

n

+ jF

�1

(1)j+

1

< 2

n+1

: Since� > 2

m

=poly(m) > 2

n+1 after
the resulting promotion we havew�

� �(x) = �(2

n

+ jF

�1

(1)j+

1

) < �2

n+1

:

Let q = dlog

�

(�=2

n+1

)e � 1; so�q2n+1 < � � �

q+1

2

n+1

: Stage 2 consists ofq repeated
instances of the positive example described above. After these promotions we havew�

�

�(x) = �

q

(2

n

+ jF

�1

(1)j+

1

) < �

q

2

n+1

< �: Since1 < jF

�1

(1)j+

1

< 2

n we also
have�q < M

A

= �

q

(jF

�1

(1)j+

1

) < �

q

2

n

< �=2:

Stage 3: SettingM
B

� p. At the start of Stage 3 each type-B and type-AB monomial
T hasw�

T

= 1: There aren variables inA andU variables inB so at the start of Stage 2
we haveM

B

= 2

U

� 1 andM
AB

= (2

n

� 1)(2

U

� 1): Since no example in Stages 3 or 4
satisfies anyx

i

in A; at the end of Stage 4M
A

will still be �

q

(jF

�1

(1)j +

1

) andM
AB

will still be (2

n

� 1)(2

U

� 1): Thus ideally at the end of Stage 4 the value ofM

B

would be
��(2

n

�1)(2

U

�1)��

q

(K+

1

); since this would imply thatw�

��(z) = �+�

q

(jF

�1

(1)j�

K) which is at least� if and only if jF�1

(1)j � K: However it is not necessary forM
B

to assume this exact value; sincejF�1

(1)j must be an integer and0 <

1

<

1

2

; as long as
�� (2

n

� 1)(2

U

� 1)� �

q

K �M

B

< �� (2

n

� 1)(2

U

� 1)� �

q

(K �

1

2

) we will have
thatM

A

+M

B

+M

AB

� � if and only if jF�1

(1)j � K:

For ease of notation letD denote��(2

n

�1)(2

U

�1)��

q

K:We now describe the examples
in Stages 3 and 4 and show that they will causeM

B

to satisfyD �M

B

< D +

1

2

�

q

:

Let
 = dlog

�

4e; so�q�
 � 1

4

�

q and hence there is a unique smallest integerp such that
D � p�

q�

< D+

1

4

�

q

: The Stage 3 examples will result inp < M

B

< p+

1

4

: Using the
definition ofD and the fact that1 � K < 2

n it can be verified that�q�
 < D � p�

q�

<

D +

1

4

�

q

� � �

3

4

�

q

� �

q+1

2

n+1

� 3�

q�

= �

q�

� (�

+1

2

n+1

� 3): Hence we have
1 < p � �

+1

2

n+1

� 3 � 2

n+1+d(
+1) log�e

� 3 = 2

U

� 3: We use the following lemma:

Lemma 8 For all ` � 1; for all 1 � p � 2

`

� 1; there is a monotone CNFF
`;p

over
` Boolean variables which has at most` clauses, has exactlyp satisfying assignments in
f0; 1g

`

; and can be constructed from̀andp in poly(`) time.

Proof: The proof is by induction oǹ. For the base casè = 1 we havep = 1 and
F

`;p

= x

1

: Assuming the lemma is true for` = 1; : : : ; k we now prove it for̀ = k + 1 :

If 1 � p � 2

k

�1 then the desired CNF isF
k+1;p

= x

k+1

^F

k;p

: SinceF
k;p

has at mostk
clausesF

k+1;p

has at mostk + 1 clauses. If2k + 1 � p � 2

k+1

� 1 then the desired CNF
is F

k+1;p

= x

k+1

_ F

k;p�2

k : By distributingx
k

over each clause ofF
k;p�2

k we can write
F

k+1;p

as a CNF with at mostk clauses. Ifp = 2

k thenF
k;p

= x

1

:

Let F
U;p

be anr-clause monotone CNF formula over theU variables inB which hasp
satisfying assignments. Similar to Stage 1, for each clauseof F

U;p

, Stage 3 hasW negative
examples corresponding to that clause, and as in Stage 1 slack variables inC are used to
ensure that Winnow makes a false positive prediction on eachsuch negative example. Thus
the examples in Stage 3 causeM

B

= p +

2

where0 <

2

< 2

U

�

�W

<

1

4

: Since six
slack variables inC are used for each negative example and there arerW � UW negative
examples, the slack variablesx

n+U+6V n

2

+2

; : : : ; x

m�2

are sufficient for Stage 3.

Stage 4: SettingM
B

+ M

AB

� � � �

q

K. All that remains is to performq �

promotions on examples which have eachx

i

in B set to 1. This will causeD � p�

q�

<

(p+

2

)�

q�

=M

B

< D +

1

4

�

q

+

2

�

q�

< D +

1

2

�

q which is as desired.

It can be verified from the definitions ofU and
 that U�n
log�

�
: The first q � d

U�n

log�

e

examples inS are all the same positive example which has eachx

i

in B set to 1 and
x

m�1

= 1: The first time this example is receivedw�

��(x) = 2

U

+p+

2

< 2

U+1

: It can

be verified that2U+1 < �; so Winnow performs a promotion; afterq�d

U�n

log�

e occurrences

of this examplew�

� �(x) = �

q�d

U�n

log�

e

(2

U

+ p +

2

) < �

q�d

U�n

log�

e

2

U+1

� �

q

2

n+1

< �

andM
B

= �

q�d

U�n

log�

e

(p+

2

):

The remaining examples in Stage 4 ared

U�n

log�

e �
 repetitions of the positive examplex
which has eachx

i

in B set to 1 andx
m

= 1: If promotions occurred on each repetition of

this example then we would havew�

� �(x) = �

d

U�n

log�

e�

(2

U

+ �

q�d

U�n

log�

e

(p +

2

)); so

we need only show that this is less than�: We reexpress this quantity as�d
U�n

log�

e�

2

U

+

�

q�

(p+

2

):We have�q�
(p+

2

) < p�

q�

+

1

4

�

q�

� ��

3

4

�

q

+

1

16

�

q

< ��

1

2

�

q

:Some

easy manipulations show that�d
U�n

log�

e�

2

U

�

�

2

2

2U�n

<

1

2

�

q

; so indeedw�

� �(x) < �:

Finally, we observe that by construction the example sequenceS is monotone consistent.
Sincem = poly(n) andS contains poly(n) examples the transformation from M2SAT to
KWP(�; �) is polynomial-time computable and the theorem is proved. (Theorem 7)

5 Conclusion

It is necessary to expand the feature space if linear learning algorithms are to learn ex-
pressive functions. This work explores the tradeoff between computational efficiency and
convergence (i.e. generalization ability) when using expanded feature spaces. We have
shown that additive and multiplicative update algorithms differ significantly in this respect;
we believe that this fact could have significant practical implications. Future directions
include the utilization of the kernels developed here and studying convergence issues of
Boolean-kernel Perceptron and Support Vector Machines in the PAC model.

Acknowledgements: R. Khardon was supported by NSF grant IIS-0099446. D. Roth
was supported by NSF grants ITR-IIS-00-85836 and IIS-9984168 and by EPSRC grant
GR/N03167 while visiting University of Edinburgh. R. Servedio was supported by NSF
grant CCR-98-77049 and by a NSF Mathematical Sciences Postdoctoral Fellowship.

References

[1] D. Angluin. Negative results for equivalence queries.Machine Learning, 2:121–150, 1990.

[2] A. Carlson, C. Cumby, J. Rosen, and D. Roth. The SNoW learning architecture. Technical
Report UIUCDCS-R-99-2101, UIUC Computer Science Department, May 1999.

[3] N. Cristianini and J. Shaw-Taylor.An Introduction to Support Vector Machines. Cambridge
Press, 2000.

[4] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm.Machine Learning, 2:285–318, 1988.

[5] W. Maass and M. K. Warmuth. Efficient learning with virtual threshold gates.Information and
Computation, 141(1):378–386, 1998.

[6] A. Novikoff. On convergence proofs for perceptrons. InProceeding of the Symposium on the
Mathematical Theory of Automata, volume 12, pages 615–622, 1963.

[7] D. Roth. Learning to resolve natural language ambiguities: A unified approach. InProc. of the
American Association of Artificial Intelligence, pages 806–813, 1998.

[8] K. Sadohara. Learning of boolean functions using support vector machines. InProc. of the
Conference on Algorithmic Learning Theory, pages 106–118. Springer, 2001. LNAI 2225.

[9] L. G. Valiant. The complexity of enumeration and reliability problems.SIAM Journal of Com-
puting, 8:410–421, 1979.

[10] C. Watkins. Kernels from matching operations. Technical Report CSD-TR-98-07, Computer
Science Department, Royal Holloway, University of London,1999.

