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Abstract. This paper connects hard-core set construction, a type of hardness
amplification from computational complexity, and boosting, a technique from com-
putational learning theory. Using this connection we give fruitful applications of
complexity-theoretic techniques to learning theory and vice versa. We show that the
hard-core set construction of Impagliazzo (Impagliazzo, 1995), which establishes the
existence of distributions under which boolean functions are highly inapproximable,
may be viewed as a boosting algorithm. Using alternate boosting methods we give an
improved bound for hard-core set construction which matches known lower bounds
from boosting and thus is optimal within this class of techniques. We then show
how to apply techniques from (Impagliazzo, 1995) to give a new version of Jackson’s
celebrated Harmonic Sieve algorithm for learning DNF formulae under the uniform
distribution using membership queries. Our new version has a significant asymptotic
improvement in running time. Critical to our arguments is a careful analysis of the
distributions which are employed in both boosting and hard-core set constructions.
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1. Introduction

1.1. BoOoOSTING AND HARD-CORE SETS

This paper connects two fundamental ideas from theoretical computer
science: hard-core set construction, a type of hardness amplification
from computational complexity, and boosting, a technique from com-
putational learning theory.

We refer to a hardness amplification as a result of the following
form: given a Boolean function f that is mildly inapproximable by
circuits of some bounded size g, construct from f a new function f’
that is highly inapproximable by all circuits of size closely related to
g. Here “mildly inapproximable” means roughly that no circuit can
agree with f on a fraction of inputs very close to 1, while “highly
inapproximable” means that no circuit can agree with f on a fraction of
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2 A. Klivans and R. Servedio

Table I. Comparison of known hard-core set constructions.

Reference Set size parameter  Circuit size parameter
Impagliazzo (Impagliazzo, 1995) Q(e) O(v*e*)g

Nisan (Impagliazzo, 1995) Q(e) O(y?*(log(1/(ve)))™ g
This paper Qe) O(y*(log(1/€))™")g

inputs significantly greater than 1/2. Hardness amplification results are
a crucial component of recent attempts to derandomize the complexity
class BPP (Babai et al., 1993; Impagliazzo and Widgerson, 1997; Nisan
and Wigderson, 1994). Perhaps the most famous hardness amplification
result is Yao’s XOR-lemma (Goldreich et al., 1995), which states that if
a Boolean function f is mildly inapproximable by circuits of size g then
the XOR of several independent copies of f is highly inapproximable
for circuits of size closely related to g.

While the goal of hardness amplification is to amplify some small ini-
tial “hardness” of a boolean function, the goal of boosting is to “boost”
some small initial advantage over random guessing that a learner can
achieve in Valiant’s PAC (Probabilistically Approximately Correct)
model of learning. Roughly speaking, a strong learning algorithm in this
model is an algorithm which, given access to random labelled examples
(z, f(x)) drawn from any distribution D, can generate a hypothesis
h such that Pryep[f(z) = h(z)] > 1 — € for any € > 0, while a
weak learning algorithm (Kearns and Valiant, 1994) can only do this
for some 1/2 > € > 0. Schapire (Schapire, 1990) and then Freund
(Freund, 1990; Freund, 1992) gave boosting algorithms which convert
weak learners into strong learners, thus proving the equivalence of weak
and strong learnability. Since then, boosting has been applied in a wide
variety of contexts and continues to be an active area of research, see
e.g. (Drucker and Cortes, 1996; Drucker et al., 1994; Drucker et al.,
1993b; Drucker et al., 1993a; Freund and Schapire, 1997; Jackson and
Craven, 1996; Schapire and Singer, 1998). All known boosting algo-
rithms work by using the weak learning algorithm several times on a
sequence of carefully constructed distributions.

Superficially, boosting and hardness amplification seem to have op-
posite goals— boosting constructs a hypothesis which closely approx-
imates a function f while hardness amplification results prove that
certain functions are hard to approximate. The proof techniques em-
ployed in both areas, however, have a similar structure. All known
hardness amplification results go by contradiction: assuming there ex-
ists a circuit C capable of mildly approximating f’, one proves the
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Boosting and Hard-Core Set Construction 3

existence of a slightly larger circuit which closely approximates f. From
this perspective, a hardness amplification proof resembles a type of
boosting procedure: circuits which mildly approximate a function f'
(these correspond to the hypotheses output by the weak learner) are
combined to form a new circuit computing f on a large fraction of
inputs.

In an important paper, Impagliazzo (Impagliazzo, 1995) reduces the
problem of amplifying the hardness of a function f to the problem of
constructing a distribution D such that f is highly inapproximable by
small circuits for inputs chosen according to D. He then constructs such
a distribution and uses it to prove an XOR lemma. Impagliazzo also
shows that the existence of such a distribution implies the existence
of a “hard-core set” as defined in Section 2; we thus refer to Impagli-
azzo's method of constructing such a distribution as a hard-core set
construction. Schapire (Schapire, 1990) was the first to point out that
the existence of a boosting algorithm implies the existence of such a
distribution.

1.2. OUr RESULTS

We give an explicit correspondence between the distributions that arise
in Impagliazzo’s hard-core set construction and the distributions con-
structed by boosting algorithms. This observation allows us to prove
that the hard-core set construction of Impagliazzo is a boosting al-
gorithm when the initial distribution is uniform. As we will show,
there are two important parameters which boosting and hard-core set
constructions share: the number of “stages” required and the “bound-
edness” of the distributions which are constructed. Interestingly, the
procedures which have been used for hard-core set construction have
better “boundedness” and can be used to improve algorithms in com-
putational learning theory, while boosting algorithms require fewer
“stages” and can be used to improve hard-core set construction.

We first show how to use known boosting algorithms to obtain new
hard-core set constructions. In (Impagliazzo, 1995) Impagliazzo proves
the following theorem: given a function f such that no circuit of size
less than g correctly computes f on more than (1—¢)2" inputs, then for
any vy < 1/2 there exists a set S of size €2" such that no circuit of size
O(72€?)g can correctly compute f on more than a (1/2 + ) fraction
of the inputs in S. By letting known boosting algorithms dictate the
construction of the distributions in Impagliazzo’s proof, we improve on
previous results with respect to the circuit size parameter with only
a small constant factor loss in the set size parameter. As explained in
Section 4.5, we believe our parameters to be optimal up to constant
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factors with respect to this class of techniques. Table 1 summarizes our
hard-core set construction results.

We then show how to use Impagliazzo’s hard-core set construction to
obtain a more efficient version of Jackson’s Harmonic Sieve algorithm
(Jackson, 1997) for learning DNF formulae under the uniform distri-
bution using membership queries. Jackson’s original algorithm learns
using the hypothesis class of threshold-of-parity functions and runs
in time essentially O(ns'?/e!?), where n is the number of variables
in the DNF formula, s is the number of terms, and € is the accuracy
Earameter.l Our variant uses the same hypothesis class and runs in time
O(ns'%/¢'%). We can further improve the running time to O(ns'?/e®)
at the cost of learning using a more complex class of hypotheses.

In recent work Bshouty, Jackson and Tamon (Bshouty et al., 1999)
have improved the running time of the Harmonic Sieve to O(ns®/e*).2
Our results improve the running time of their new algorithm to
O(ns%/€%) time steps, which is the fastest known algorithm for PAC
learning DNF with membership queries under the uniform distribution.

Our main technical contribution is a careful analysis of the distribu-
tions constructed during the boosting process. We show that boosting
procedures which construct distributions with high minimum entropy
are desirable for good hard-core set constructions.

1.3. RELATED WORK

Boneh and Lipton (Boneh and Lipton, 1993) have applied Yao’s XOR-
lemma to prove the equivalence of weak and strong learnability for
certain types of concept classes under the uniform distribution. Their
result applies to concept classes closed under a polynomial number of
XOR operations.

1.4. ORGANIZATION

In Section 2 we give an overview of the hard-core set construction found
in (Impagliazzo, 1995). In Section 3 we outline the structure of all
known boosting algorithms. In Section 4 we give an explicit connection
between the constructions detailed in Sections 2 and 3 and show how to
apply boosting techniques to obtain new hard-core set constructions.
In Section 5 we show how the techniques described in section 2 can be
used to improve the running time of Jackson’s algorithm for learning

! In (Jackson, 1997) a running time of O(ns®/e'?) is claimed but this is in error
as described in Section 5.2 (Jackson, 2002).

% In (Bshouty et al., 1999) a running time of O(ns*/e*) is claimed but this is in
error as described in Section 5.4 (Jackson, 2002).
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DNF formulae. We also describe related algorithms in learning theory
where our techniques can be applied.

2. Hard-Core Set Construction Overview

2.1. DEFINITIONS

Our first definition, taken from (Impagliazzo, 1995), formalizes the
notion of a function which is hard to approximate. (Readers who are
familiar with the notation of (Impagliazzo, 1995) will notice that we
are using different variables; the reasons for this will become clear in
Section 4.)

Definition 1. Let f be a boolean function on {0,1}" and D a distri-
bution on {0,1}". Let 0 < € < 1/2 and let n < g < 2"/n. We say that
f is e-hard for size g under D if for any boolean circuit C with at most
g gates, we have Prp[f(z) =C(z)] <1 —e.

In other words, any circuit of size at most g must disagree with f
with probability at least € for z drawn according to D. (Throughout the
paper we use “circuit” to refer to a fanin-2 circuit composed of AND,
OR and NOT gates. Also, throughout the paper we use U to denote
the uniform distribution on {0,1}".)

Definition 2. A measure on {0,1}" is a function M : {0,1}" —
[0, 1]. The absolute size of a measure M is denoted by |M| and equals
Y M (x); the relative size of M is denoted (M) and equals |M|/2™.

Definition 3. For a real valued function £, Ly (§) denotes max; |€(z)|.

The quantity log(Leo(D) ') is often referred to as the minimum
entropy of D. There is a natural correspondence between measures and
distributions: the distribution Dj; induced by a measure M is defined
by Dum(z) = M(z)/|M|. Conversely, if D is a distribution then the
measure Mp induced by D is defined by Mp(z) = D(z)/Ls (D). Thus
Mp is the largest measure which is a constant-multiple rescaling of D
(note that D itself is a measure, though typically one which has much
smaller size than Mp). It is clear that |Mp| =1/Lu (D) and u(Mp) =
1/Lso(2™"D). Thus, large measures correspond to distributions which do
not assign large weight to any point (i.e., have high minimum entropy).

The next definition is also from (Impagliazzo, 1995):
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6 A. Klivans and R. Servedio

Input: real numbers 0<e<1,0<vy<1/2
Boolean function f
Output: circuit h such that Pry[h(z) = f(z)] >1—¢€

1. seti<+0
2. set My(z) =1
3. until u(M;) < e do
4. let C; be a circuit of size g’ with Prp,, [C(z) = f(z)] > 1/2+7
5. set Ro,(z) = 1if f(z) = Ci(z), Re,(z) = —1 otherwise
6. set Ni(z) = > o< ;<i R, (2)

{ 1 if NZ(SL') <0
7. set M;11(z) =< 1—eyN;(x) if 0 < N;(z) <1/(ey)

0 if N;(z) > 1/(ey)

8. set i ¢+1

9. return h= MAJ(Cy,C4,...,Ci_1)

Figure 1. The IHA algorithm.

Definition 4. We say that f is y-hard-core on M for size g if we have
Prp,,[f(z) = C(z)] < 1/2 + v for every circuit C of size at most g.
For S C {0,1}™ we say that f is y-hard-core on S for size g if f is 7-
hard-core on Mg for size g, where Mg(z) is the characteristic function
of S.

2.2. EXISTENCE OF HARD-CORE MEASURES

The following theorem due to Impagliazzo is the starting point of all
our results:

Theorem 5. (Impagliazzo, 1995) Let f be e-hard for circuits of size
g under Y and let 0 < v < 1/2. Then there is a measure M with
p(M) > e such that f is y-hard-core on M for size ¢’ = O(e24?)g.

Proof: Assume by way of contradiction that for every measure M with
p(M) > e there is a circuit Cjy of size at most g’ such that Prp,, [f(z) =
Cum(z)] > 1/2 + 7. Now consider the algorithm IHA which is given in
Figure 2.1. This algorithm iteratively modifies M until its relative size
is less than e. After each modification we obtain a circuit Cjs as above.
Once the relative size of M becomes less than € we combine the circuits
obtained during the process to contradict the original assumption. The
following easily verifiable claims are useful for understanding how IHA
works:
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— Nj(z) is the margin by which the majority vote of Cy,...,C;
correctly predicts the value of f(z).

— The measure M;,; assigns weight 0 to points where the margin
of correctness is large, weight 1 to points where the margin is
negative, and intermediate weight to points where the margin is
positive but small.

Impagliazzo proves the following claim in (Impagliazzo, 1995):

Claim 6. After at most ig = O(1/(¢274?)) cycles through the loop in
IHA, p(M;) must be less than e.

Once this happens and we exit the loop, it is easy to see that h =
MAJ(Cy,...,Ci_1) agrees with f on all inputs except those which
have N;(z) < 0 and hence M;(z) = 1. Since u(M;) < €, this implies
that Pry[f(z) = h(z)] > 1 —p(M;) > 1 —e. But h is a majority circuit
over at most ig circuits each of size at most ¢’, and majority over i
inputs can be computed by a circuit of size O(ig) (see e.g. (Muller and
Preparata, 1975)). It follows that h has at most g'ip + O(ip) < g gates,
which contradicts the original assumption that f is e-hard for circuits
of size g under U. O

Using a non-constructive proof technique, Nisan has established a
similar result which is reported in (Impagliazzo, 1995). In Nisan’s the-
orem the circuit size parameter is slightly worse as a function of vy but
substantially better as a function of € :

Theorem 7. (Impagliazzo, 1995) Let f be e-hard for circuits of size g
under ¢ and let 0 < v < 1/2. Then there is a measure M with (M) > €
such that f is y-hard-core on M for size ¢’ = O(y?(log(2/ve))™1)g.

In Section 4.2 we will establish results of this type which have a
better circuit size parameter than either Theorem 5 or Theorem 7.

We note that Theorems 5 and 7 assert the existence of a large mea-
sure, not a large set as was promised in Section 1. Using a probabilistic
argument which we give in Section 4.4 Impagliazzo has shown that the
existence of a large measure M on which f is hard-core implies the
existence of a large set S on which f is also hard-core (with slightly
different parameters).
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3. Boosting Overview

In this section we define the learning model, weak and strong learning,
and boosting, which converts a weak learner to a strong one.

3.1. DEFINITIONS

We take as our learning framework Valiant’s widely studied PAC (Prob-
ably Approximately Correct) model of concept learning (Valiant, 1984).
In this model a concept class is a collection C' = Up>1Cy of boolean
functions where each f € C, is a boolean function on {0,1}". For
example, we might have C, as the class of all boolean conjunctions on
n variables. If f and h are two boolean functions on {0,1}" and D is a
distribution on {0, 1}", we say that h is an e-approzimator for f under
D if Prp[f(z) = h(z)] > 1 — e. The learner has access to an ezam-
ple oracle EX(f, D) which, when queried, provides a labelled example
(z, f(z)) where z is drawn from {0,1}" according to the distribution
D and f € C), is the unknown target concept which the algorithm is
trying to learn. The goal of the learner is to generate an e-approximator
for f under D. We thus have the following definition:

Definition 8. An algorithm A is a strong PAC learning algorithm for
a concept class C if the following condition holds: for any n > 1, any
f € Cy, any distribution D on {0,1}", and any 0 < ¢, < 1, if A is
given access to n,¢,0 and EX(f, D), then A runs in time polynomial in
n, €1, 67!, and size(f), and with probability at least 1 — § algorithm
A outputs an e-approximator for f under D.

In the above definition size(f) measures the complexity of the func-
tion f under some fixed reasonable encoding scheme. For the concept
class DNF which we will consider in Section 5, size(f) is the minimum
number of terms in any disjunctive normal form representation of f.

If the algorithm A is only guaranteed to find a (1/2—+y)-approximator
for some v > 0 with probability 1 — 4, then we say that Aisa (1/2—+)-
approzimate learning algorithm; if v = Q(1/p(n, size(f))) for some
polynomial p, we say that A is a weak learning algorithm (The notion
of weak learning was introduced by Kearns and Valiant in (Kearns and
Valiant, 1994)). We will abuse notation and say that A is a (1/2 — 7)-
approximate learning algorithm for f if A is a (1/2 — )-approximate
learning algorithm for the concept class C' which consists of the single
function f. In a series of important results, Schapire (Schapire, 1990)
and subsequently Freund (Freund, 1990; Freund, 1992) have shown that
if A is a weak learning algorithm for a concept class C, then there exists
a strong learning algorithm for C. Their proofs are highly constructive
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in that they give explicit boosting algorithms which transform weak
learning algorithms into strong ones. We now formally define boosting
algorithms (a related definition can be found in (Freund, 1995)):

Definition 9. An algorithm B is said to be a boosting algorithm if it
satisfies the following condition: for any boolean function f and any
distribution D, if B is given 0 < ¢,6 < 1, 0 < 7 < 1/2, an example
oracle EX(f,D), and a (1/2 — «y)-approximate learning algorithm WL
for f, then algorithm B runs in time polynomial in n, size(f),y 1, e !,
and 6!, and with probability at least 1 — § algorithm B outputs an
e-approximator for f under D.

3.2. STRUCTURE OF BOOSTING ALGORITHMS

All known boosting algorithms rely crucially on the fact that the weak
learning algorithm WL can find a (1/2 — 7)-approximator for f under
D' for any distribution D', as long as WL is given access to the example
oracle EX(f, D). We give the following high-level definition:

Definition 10. A canonical booster is a boosting algorithm which has
the following iterative structure:

— At stage 0 the algorithm starts with Dy = D and uses WL to
generate an approximator hy for f under Dy.

— At stage 7 the boosting algorithm does two things: (1) constructs

a distribution D; which favors points where the previous hypothe-
ses hg,...,hj—1 do poorly at predicting the value of f, and (2)
simulates the example oracle EX(f,D;) and lets WL access this
simulated example oracle to produce a hypothesis h; which is an
approximator for f under D;.

Finally, after doing this repeatedly for several stages, the boost-
ing algorithm combines the hypotheses hg, ..., h;_1 in some way to
obtain a final hypothesis h which satisfies the following property:
if each hypothesis h; is a (1/2 — y)-approximator for f under D;,
then h is an e-approximator for f under D.

We feel that this definition captures the essence of known boosting
algorithms.
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4. Hard-Core Set Construction from Boosting

4.1. A STRUCTURAL SIMILARITY

From the descriptions of the hard-core set construction of Section 2
and the canonical boosting algorithm of Section 3, one can see a close
structural resemblance between the THA algorithm and the canonical
boosting algorithm outlined above. To be more specific, just as IHA
assumes that at each stage there is a circuit Cj for which Prp,, [f(z) #
Ci(z)] < 1/2—+, the canonical boosting algorithm assumes that WL can
generate at each stage a hypothesis h; for which Prp,[f(z) # hi(z)] <
1/2 — 7. The induced distributions Dy, of IHA correspond precisely to
the distributions D; of the canonical boosting algorithm (note that THA
starts off with the measure My = 1 which corresponds to the uniform
distribution U = Dy). Finally, just as the canonical boosting algorithm

combines the hypotheses hg, ..., h; 1 in some fashion to obtain a final
hypothesis A which has Pry[f(z) = h(z)] > 1 — ¢, the IHA algorithm
combines the circuits Cy, . . ., C;_1 by taking majority to obtain a circuit

h such that Pry[f(z) = h(z)] > 1 —e.

We conclude that IHA is an algorithm which succeeds in boost-
ing provided that the starting distribution is the uniform distribution
U. Since boosting algorithms from computational learning theory will
work for any starting distribution, a priori it seems as if it should
be possible to use any boosting algorithm in place of THA and obtain
a hard-core set construction. In the next section we prove a theorem
which formalizes this idea and emphasizes the parameters which are
important to obtain a good hard-core set construction.

4.2. A GENERAL HARD-CORE SET CONSTRUCTION

Definition 11. Let D be a distribution over {0,1}". For d > 1 we say
that D is d-smooth if L, (2"D) < d.

As an immediate consequence of Definitions 2 and 11, we have
Observation 12. If distribution D is d-smooth then p(Mp) > 1/d.

Definition 13. Let B be a canonical boosting algorithm which takes as
input ¢, 6,7, an example oracle EX(f, D), and a (1/2 — y)-approximate
learning algorithm WL for f.

1. We say that B is a k(e,y)-stage boosting algorithm if the following
holds: For all example oracles EX(f, D) and (1/2 — )-approximate
learners WL for f, algorithm B simulates at most k = k(e,y) distri-
butions Dy, Dy, ..., Di_1 for WL and uses WL to generate at most k
hypotheses hg,...,hg_1-
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2. We say that B is a d(e, y)-smooth boosting algorithm if the following
holds: For all functions f and (1/2 — «y)-approximate learners WL,
when B is given EX(f,U) and WL, with probability 1 — ¢ both of the
following events occur: (i) the simulated distributions Dy, ..., Dg_1
are each d(e,~y)-smooth, and (ii) the hypothesis A which B outputs
satisfies Pry[f(z) = h(z)] > 1 —e.

The property of the distributions D; described in part 2 of the above
definition is similar to Levin’s notion of “dominated” distributions
(Levin, 1986).

Now we can state the following theorem which generalizes Impagli-
azzo’s hard-core set construction.

Theorem 14. Let B be a k(e,y)-stage, d(e,y)-smooth boosting algo-
rithm which outputs as its final hypothesis a circuit of size r over inputs
ho,...,hx_1. Let f be e-hard for circuits of size g under i and let 0 <
v < 1/2. Then there is a measure M on {0,1}" with u(M) > 1/d(e, )
such that f is y-hard-core on M for size ¢' = (g — r)/k(e,7)-

Proof: The proof is analogous to the proof of Theorem 5. Assume by
way of contradiction that for every measure M with u(M) > 1/d(e,7y)
there is a circuit Cj; of size at most ¢’ such that Prp,, [f(z) = Cp(z)] >
1/2 + 7. By Observation 12, this implies that for every d(e,y)-smooth
distribution D there is a circuit Cp of size at most ¢’ for which we have
Prp[f(z) = Cp(a)] > 1/2+7.

Now run the boosting algorithm B on inputs ¢,d, 7y, and EX(f,U).
Since B is d(e,y)-smooth, with nonzero probability we have that (i)
every distribution D; which B simulates will be d(e, y)-smooth, and (ii)
the final hypothesis which B outputs is an e-approximator to f under
the original distribution . By (i), there must exist a circuit C; of at
most ¢’ gates which is a (1/2 — «y)-approximator for f under D;. Give
B this circuit when it calls WL on distribution D;. Now by (ii), the final
hypothesis which B outputs must be an e-approximator to f under the
original distribution ¢/. But since B is k(e, y)-stage, this final hypothesis
is a circuit of size at most 7+¢'k(e,y) < g, which contradicts the original
assumption that f is e-hard for circuits of size g under U. O

4.3. NEwW HARD-CORE SET CONSTRUCTIONS

Here we apply Theorem 14 to obtain new hard-core set constructions
from known boosting algorithms. We proceed in stages. First, we show
how two different boosting algorithms yield different hard-core set con-
structions. Next, we combine these boosting algorithms to achieve a
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12 A. Klivans and R. Servedio

new hard-core set construction which improves on results of Impagli-
azzo and Nisan in the circuit size parameter but has a set size param-
eter worse than their results by a logarithmic factor. In Section 4.5
we improve the set size parameter to within a constant factor of the
Impagliazzo/Nisan results.

We first consider Freund’s boost-by-majority algorithm from (Fre-
und, 1990) which, following (Jackson, 1995), we refer to as Fi. Algo-
rithm F1is a k = O(y 2log(1/¢))-stage boosting algorithm which com-
bines its k& hypotheses using the majority function. Jackson’s analysis
((Jackson, 1995), pp. 57-59) yields the following fact about F1:

Fact 15. If F1 is given inputs ¢, 6,7, and access to EX(f, D) and to
a (1/2 — v)-approximate weak learner WL for f, then with probability
1 — § each distribution D' which F1 simulates for WL satisfies

Loo(D') = O(1/é%) - Lo (D).

This immediately implies that F1 is O(1/e3)-smooth.> We thus ob-
tain the following hard-core set construction:

Theorem 16. Let f be e-hard for circuits of size g under U/ and let
0 <y < 1/2. Then there is a measure M on {0, 1}" with u(M) = Q(€®)
such that f is y-hard-core on M for size ¢’ = O(vy*(log(1/¢)) 1)g.

Next, we consider Freund’s later B;}; algorithm from (Freund, 1995)
(the name comes from the fact that the algorithm “filters” examples
from the original distribution to simulate new distributions). Like F1,
algorithm Bpy); is a k-stage boosting algorithm for k = O(y~2(log 1/e)).
Bpjt combines its (1/2—1)-approximators to obtain an e-approximator
for f by using a majority function on k inputs which may have some
random inputs. A straightforward argument shows that some circuit
of size O(k) is an e-approximator for f. To analyze the smoothness
of BRjjt, we use the following fact which follows from Lemma 3.4 and
Lemma 3.9 of (Freund, 1995):

Fact 17. If Bgy); is given inputs ¢,0,y, EX(f,D) and a (1/2 — v)-
approximate weak learner WL for f, then with probability 1 — § each
distribution D’ which Bp;); simulates for WL satisfies

Loo(D') = O(log(1/€)/(€7)) + Loo(D).

Since Fact 17 implies that Bpyj; is O(log(1/€)/(ey))-smooth, we obtain

3 In (Freund, 1990) Freund states that the F1 algorithm can be shown to be
O(1/€?)-smooth. Jackson proves that F1 is O(1/€®)-smooth and states that variants
of F1 can be shown to be O(1/e**#)-smooth for arbitrarily small values p > 0.
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Boosting and Hard-Core Set Construction 13

Theorem 18. Let f be e-hard for circuits of size g under U/ and let
0 < 7 < 1/2. Then there is a measure M on {0,1}" with u(M) =
Q(ey(log(1/€))™!) such that f is y-hard-core on M for circuits of size

g = 0(y*(log(1/€))"'g).

Finally we establish a stronger hard-core set construction by com-
bining the previous two approaches. In (Freund, 1992) Freund describes
a two-level boosting algorithm which works as follows: algorithm F1 is
used to boost from accuracy (1/2 —«y) to accuracy 1/4, and algorithm
Bpjt boosts from accuracy 1/4 to accuracy e by taking F1 as its weak
learner. We call this combined algorithm Bogmt, -

Lemma 19. Boom, is an O(y 2 log(1/e€))-stage boosting algorithm.

Proof: The top level of Brgp, Which uses algorithm Bpy), takes
O(log(1/e)) stages since the weak learner which it uses is F1 which
provides (1/2 — +')-accurate hypotheses with 4/ = 1/4. The bottom
level, which uses algorithm F1, takes O(y~2) stages since it boosts
a (1/2 — ~y)-approximate learner to accuracy 1/4. Consequently the
combined algorithm Bgyyp uses the claimed number of stages. O

Lemma 20. Bogmt, is an O(log(1/€)/€)-smooth boosting algorithm.

Proof: Since Bpy); is boosting from accuracy 1/4 to accuracy e using
F1 as its weak learner, Fact 17 implies that each distribution D’ which
Brij¢ passes to F1 satisfies

Loo(D') = O(log(1/€)/e) - (D).

Since F1 is boosting from accuracy (1/2 — ) to accuracy 1/4, Fact 15
implies that if D" is the distribution which F1 passes to WL, then

Loo(D") = O(1) - Loo (D).
Combining these two equations, we find that
Loo(D") = O(l0g(1/€)/€) - Lo (D).
O

Finally, we note that the final hypothesis which B, outputs is
a depth 2 majority circuit over the weak hypotheses h;, since both
F1 and Bgj; combine their hypotheses using the majority function.
A straightforward linear bound on the size of this majority circuit
(see (Muller and Preparata, 1975)) yields the following hard-core set
construction:
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14 A. Klivans and R. Servedio

Theorem 21. Let f be e-hard for circuits of size g under U/ and let
0 < 7 < 1/2. Then there is a measure M on {0,1}" with u(M) =
Q(e(log(1/€))™!) such that f is y-hard-core on M for circuits of size

g = 0(y*(log(1/€))"'g).

4.4. FrRoM HARD-CORE MEASURES TO HARD-CORE SETS

While we have been referring to our results thus far as hard-core set
constructions, in fact Theorems 16, 18 and 21 establish the existence
of hard-core measures rather than hard-core sets. We now show how
hard-core measure constructions such as Theorems 16, 18 and 21 im-
ply corresponding hard-core set constructions. This conversion from
hard-core measures to hard-core sets is based on an argument from
(Impagliazzo, 1995).
We will use the following crude lemma:

Lemma 22. The number of Boolean circuits of size g is at most ((n+
5)g°)9.

Proof: To specify a circuit it suffices to specify, for each of g gates, the
two inputs and the label of the gate. For a given gate there are at most
g? choices for the inputs and at most n + 5 choices (1, ...,Zn, 7, V, A,
TRUE, FALSE) for the label. O

The following easy fact follows from the definition of |M].

Fact 23. Let C be a circuit and view C and f as taking values in
{-1,1}. Then Prp,,[C(z) = f(z)] = 3 + p if and only if

Y. M(2)C(z)f(z) = 2p|M|.

z€{0,1}"

Now we state and prove our conversion from hard-core measures
to hard-core sets. Constant factors have not been optimized in the
following lemma.

Lemma 24. Let f be a Boolean function on {0,1}" and M a measure
such that (i) u(M) > 7 and (ii) f is y-hard-core on M for size g where
g < % - 274272 Then there exists a set S with |S| > 52" such that f
is 4y-hard-core on S for size g.

Proof: Let C be any circuit of size at most g. Consider the following

randomized construction of a set S C {0,1}" : for each z € {0,1}" put
z in S with probability M (z). Let Mg be the characteristic function of
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Boosting and Hard-Core Set Construction 15

S. For each z € {0,1}" the expected value of Mg(z) is M(z), and thus
by linearity of expectation we have

E

)3 Ms<m>c<m>f<z>]= Y M@)0@) () < M|

ze{0,1}" z€{0,1}"

where the inequality follows from Fact 23 and f being y-hard-core on M
for size g. For each value of = the quantity Mg(z)C(z)f(x) is a random
variable in the interval [—1,1]. Hoeffding’s tail bound now implies that

< exp (—2 : 2"(27M(M))2>

4
< exp(—2-2"y°r?)

Pr [; S Ms(@)C(0)f(2) 2 (M)

where the second inequality is because p(M) > 7. By Lemma 22 and
the bound on g we have that the number of circuits of size at most g is at
most ((n+5)g%)Y < 15 exp(2-2"y2r?). Thus the probability that there
exists a C with |C| < g such that 3> c(01)» Ms(z)C(z)f(z) > 4y|M|
is less than %.

Meanwhile, we also have that E[|S|] = |M| and |S] is a sum of 2"
independent random variables each with range {0, 1}. Thus Hoeffding’s
bound implies that

Pr [@ p(M )]

<

o 5 exp(—2-2"(u(M)/2)?)

exp(—2"7%/2).

IN

AN

Ifr< Qn% then the bound on g in the statement of the lemma is less

than % and the lemma is trivially true. Thus we assume that 7 > 27}/2
which by the above inequality implies that Pr[|S| > |2M] > L.

These two probability bounds together imply that there exists some
S with |S| > \2M > 52" such that for every circuit C' with at most g

gates

S Ms(@)0(@)F(x) < 4|M]| < 8y5] = 89| Ms].
ze€{0,1}"

By Fact 23 we have that Pryes[C(z) = f(z)] < 5 + 4y for every such
circuit C, and thus f is 4y-hard-core on S. O

Combining this lemma with Theorem 21 we obtain the following
hard-core set construction:
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16 A. Klivans and R. Servedio

Theorem 25. Let f be e-hard for circuits of size g under U where
g=0 <% - logi/e) and let 0 < v < 1/2. Then there is a set S C {0,1}"
with |S| = Q(e(log1/€)~1)2" such that f is 4y-hard-core on S for size

g’ = O0(v*(log(1/€))"'g).

4.5. OPTIMAL HARD-CORE SET CONSTRUCTION

Theorem 25 improves the circuit size parameter in Impagliazzo’s con-
struction from O(y2€2)g to O(?)(log(1/€))~!)g but has a set size pa-
rameter of (e(log(1/€))~!) which is smaller, and hence worse, than
Impagliazzo’s bound of Q(e). Having a large set size parameter is im-
portant for certain applications of hard-core set construction in de-
randomization such as constructing efficient pseudorandom generators
(Sudan et al., 2001).

In this section we show how the set size parameter of Theorem 25
can be improved from Q(e(log1/¢)~!) to Q(e). The basic idea is quite
simple and was suggested by Avi Wigderson (Wigderson, 1999). Let
f be e-hard for circuits of size g under U/ and let S be the hard-core
set whose existence is asserted by Theorem 25. If |S| = 0(e2™) then
we can take away the points in this hard-core set and intuitively f
should still be almost e-hard for circuits of size g under the uniform
distribution on the remaining points. We can then reapply Theorem 25
on the remaining points using “almost €” in place of € to obtain a new
hard-core set. This procedure can be repeated until the total size of all
the hard-core sets is Q(e2").

To make this argument precise we will need to consider measures
which are defined over proper subsets of {0,1}". If X C {0,1}" and
M : X — [0,1] is a measure we write |M|x to denote > . x M(z) and
px (M) to denote % We write Ux to denote the uniform distribution
on X.

The following generalization of Theorem 25 is easily seen to follow
from the arguments of Section 4.3.

Theorem 26. Fix X C {0,1}" such that |X| > 2"/2. Let f be e-

hard for circuits of size g under Ux where g = O (% . ﬁ) and let

0 < v < 1/2. Then there is a set S C X with |S| = Q(e(log(1/¢€)) )| X|
such that f is 4y-hard-core on S for size ¢’ = O(%(log(1/€))1g).

Proof: Identical to the proof of Theorem 25 with X in place of {0, 1}"
and |X| in place of 2". Note that there is enough slack in the Hoeffding
tail bounds of Lemma 24 for them to still go through as long as | X| >

2" /2. O
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Boosting and Hard-Core Set Construction 17

We need the following easy lemma:

Lemma 27. If X C {0,1}" satisfies | X| > (1 — §)2" and f is e-hard
for circuits of size g under ¢ then f is §-hard for circuits of size g under
Ux.

Proof: For any circuit C with |C| < g we have that |{z : C(z) =
f(z)} < (1 —€)2™. Thus Pry, [C(z) = f(z)] < 11—;572 <1l-3. O

Now we prove our strongest hard-core set construction.

Theorem 28. Let f be e-hard for circuits of size g under & where

g = O(%-ﬁ) and let 0 < v < 1/2. Then there is a set S C
{0,1}™ with |S| > §2" such that f is y-hard-core on S for size ¢’ =

O(y*(log(1/€)) "1 g).

Proof: Theorem 25 implies that there is a set Sy with

|So| = Q(e(log 1/€)~1)2" such that f is y-hard-core on Sy for size g’ =
O(v*(log1/€)~'g). If | Sp| > £2™ we are done, so we assume that |Sp| <
£2" and let X; = {0,1}" \ Sp. Lemma 27 implies that f is §-hard for
circuits of size g under Uy,. Theorem 26 now implies the existence of a
set S1 C X1 with |S1| = Q(e(log 1/€)~1)|X1]| such that f is y-hard-core
on S for size g’ = O(y?(log(1/€)) *g). Now let Xo = X7\ S;. Continue
in this fashion, obtaining S; from X; as above, until }* |S;| > §2".

To see that this works, notice that until 37 [S;| > $2" each set X;
satisfies |X;| > (1 — §)2". Thus by Lemma 27 at each stage we have
that f is 5-hard for size g under Uy, so we can apply Theorem 26 each
time with hardness parameter €/2. Furthermore, we have that each
|Si| = Q(e(log(1/€))~1)| Xi| where | X;| > (1— §)2", so we must achieve
> |Si| > 52" after at most O(log1/¢) stages.

Now let S = U;S;. Since the S; are disjoint we have [S| > §2".
Moreover, since f is y-hard-core on each |S;| for size ¢/, for any circuit
C of size at most g' we have

|:Si] 1
55[0(56) = flx)] = <|S| 551;[0(96) = f(m)]) <5+

1

Thus f is y-hard-core on § for size ¢’ and the theorem is proved. O

Remark 1. The reader may have noticed that the two arguments used
to go from a hard-core measure to a hard-core set and to increase the
size of the hard-core set do not depend in any essential way on the fact
that the initial hard-core measure was of size u(M) = Q(e(log1/e)™1).
We could also have obtained the same final result — a hard-core set
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18 A. Klivans and R. Servedio

construction with €/2 as the set size parameter and O(y2(log1/e)™!)
as the circuit size parameter — by using the boosting algorithm F1
which implies the existence of a measure of size Q(e?) (Theorem 16).
We introduced and analyzed the Bogpp, algorithm in part because this
boosting algorithm will play an important role in the results of Section
5.

Remark 2. Freund has shown that any algorithm which boosts a
(1/2 — y)-approximate weak learner to accuracy 1 — e must combine at
least (72 log(1/¢€)) weak hypotheses in the worst case (Freund, 1995).
Thus, for any hard-core set construction falling within this framework
our circuit size parameter is optimal up to constant factors. Further-
more, it is easy to see that any general hard-core set construction such
as those we have given must have a set size parameter of at most O(e),
since the original e-hard function f might be very easy to compute (e.g.
constant; see (Shaltiel, 2001)) on a 1 — O(e) fraction of inputs. Thus
we believe that the hard-core set construction given by Theorem 28 is
optimal up to constant factors with respect to both the circuit size and
set size parameters.

4.6. A BOOSTING ALGORITHM FROM IHA

We have not yet described just how boosting algorithms manage to
simulate the different distributions D; for the example oracles EX(f, D;)
which are required by the weak learning algorithm at each boosting
stage. There are two different types of boosting algorithms, known as
boosting-by-filtering and boosting-by-sampling, which handle this issue
in different ways. In boosting-by-filtering the distribution D; is sim-
ulated from D by filtering examples received from EX(f, D). If the
filtering process accepts example z with probability a(x) and rejects x
(i.e. discards z and makes another call to EX(f,D)) with probability
1 — a(x), then it is easy to see that this filtering process defines a new
distribution D’ where

__a(z)D(z)
>y (y)D(y)

The boosting algorithms F1, Bgy; and Bogy,p all are boosting-by-
filtering algorithms.

In boosting-by-sampling, on the other hand, a set S of examples is
drawn from EX(f,D) once and for all at the beginning of the boosting
process and the initial distribution Dy is taken to be the uniform dis-
tribution over S. Subsequent distributions D; are nonzero only on the
points of S, and the final hypothesis h generated by boosting has high
accuracy with respect to the uniform distribution over S. Well-known

D'(x) (1)
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Boosting and Hard-Core Set Construction 19

results on generalization error (Blumer et al., 1989) imply that if 4 be-
longs to a concept class with bounded Vapnik-Chervonenkis dimension,
then for sufficiently large S any hypothesis h which is correct on all of
S will with high probability have low error under D. The AdaBoost
algorithm of Freund and Schapire (Freund and Schapire, 1997) is an
O(log(1/€)/~?)-stage boosting-by-sampling algorithm; however, as dis-
cussed by Jackson in (Jackson, 1997), Adaboost does not seem to have
any nontrivial smoothness properties.

Impagliazzo’s proof shows that it is possible to use THA directly as a
O(1/(e2~?))-stage, 1/e-smooth boosting by sampling algorithm. Build-
ing on this algorithm, Servedio has given an improved boosting-by-
sampling algorithm which is also 1/e-smooth but uses only O(1/(ey?))
stages (Servedio, ). In the next section we discuss using IHA as a
O(1/(e?4?))-stage, O(1/e)-smooth boosting by filtering algorithm in
the case where the initial distribution D is uniform over {0,1}".

5. Faster Algorithms for Learning DNF

We have seen that boosting algorithms can be used to improve on
previous complexity-theoretic hard-core set constructions. Now we go
in the opposite direction and use ideas from hard-core set construction
to establish new results in learning theory. We show that the uniform
distribution boosting algorithm which is implicit in THA can be used
to significantly improve the asymptotic running time of Jackson’s Har-
monic Sieve algorithm for learning DNF under the uniform distribution
using membership queries. This algorithm is widely viewed as one of
the most important results in computational learning theory. We also
show how a different modification inspired by our analysis in Section
4.3 can improve the running time even further at the cost of learning
using more complex hypotheses.

Bshouty, Jackson and Tamon (Bshouty et al., 1999) have recently
given a variant of the Harmonic Sieve which runs substantially faster
than the original algorithm. Their improvement is obtained by speeding
up a weak learning algorithm which is a component of the Harmonic
Sieve, and is orthogonal to our improvements of the boosting compo-
nent of the Sieve. As described below, by combining our techniques with
their improvements we obtain the fastest known algorithm for learning
DNF under the uniform distribution with membership queries.
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20 A. Klivans and R. Servedio
5.1. THE DNF LEARNING PROBLEM

A disjunctive normal form (DNF) expression is a disjunction of terms
where a term is a conjunction of Boolean literals. Since every Boolean
function can be expressed as a DNF, the concept class DNF is the class
of all Boolean functions over {0,1}". The DNF-size of a function f is
the minimum number of terms in any DNF expression for f. Thus an
efficient learning algorithm for the concept class DNF must be able to
learn any Boolean function in time polynomial in the number of terms
in its smallest DNF representation.

In his seminal paper Valiant posed the question of whether there is
an efficient PAC algorithm for learning DNF under an arbitrary proba-
bility distribution on labeled examples (Valiant, 1984). A recent result
(Klivans and Servedio, ) shows that there is a PAC learning algorithm
which learns to accuracy € and runs in time 20(n/?lognlogs) /e for target
concepts of DNF-size s, but it is not yet known whether there is an
algorithm which runs in time poly(n,s,1/e€). If the learning scenario
is suitably modified, though, then efficient learning of DNF becomes
possible. In a breakthrough result several years ago Jackson gave the
Harmonic Sieve algorithm which uses membership queries to learn DNF
to accuracy € under the uniform distribution in poly(n,s,1/€) time
steps (Jackson, 1997). A membership query is an oracle query in which
the learner specifies a point x € {0,1}" and the membership oracle
MEM(f) returns the value f(z).

Although the Harmonic Sieve runs in polynomial time, it is not
considered to be computationally practical due to the high degree of
the polynomial time bound. We show how to substantially improve the
algorithm’s time dependence on the error parameter ¢, thus making
progress towards a more efficient implementation.

5.2. THE HARMONIC SIEVE

The main result of (Jackson, 1997) is the following theorem:

Theorem 29. (Jackson, 1997) Let f be a Boolean function on {0, 1}"
of DNF-size s and let 0 < ¢,6 < 1. For any constant p > 0, given access
to a membership oracle M EM(f) the Harmonic Sieve algorithm runs
in time O(ns'®/€!2*) and with probability 1 — § outputs a hypothesis
h such that Pry[h(z) # f(z)] < et

At the heart of Jackson’s Harmonic Sieve algorithm is a proce-
dure WDNF which was first studied in (Blum et al., 1994). The WDNF

* In (Jackson, 1997) a running time of O(ns®/e'>**) is reported but this was in
error as explained below (Jackson, 2002).
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Boosting and Hard-Core Set Construction 21

algorithm takes as input an example oracle EX(f,D), a membership
oracle MEM(f), a distribution oracle DIST(D) and a value § > 0. A
distribution oracle DIST(D) is an oracle which, when queried with a
point z in the domain of D, returns the value of D(z). With probability
at least 1 — ¢ the WDNF algorithm outputs a parity function which is a
(1/2 — Q(1/s))-approximator for f under D, where s is the DNF-size
of f.5

The Harmonic Sieve algorithm works by running Freund’s boosting
algorithm F1 with WDNF as the weak learning algorithm. At the i-th
stage of boosting the F1 boosting algorithm simulates some distribution
D; and uses the simulated oracles EX(f,D;) and DIST'(D;) for WDNF;
here DIST'(D;) is a constant-factor approximation of DIST(D;)®. The
following lemma is a direct consequence of Jackson’s Lemma 9 and the
analysis used in its proof:

Lemma 30. (Jackson, 1997) Let f be any Boolean function of DNF-
size s over {0,1}" and let D be any distribution over {0,1}". If WDNF is
run using EX(f, D), MEM(f) and DIST'(D) as its oracles, then WDNF
runs in

O(time(DIST/(D)) - ns(Loo (2"D))® +
time(EX(f, D)) - s* (Lo (2"D))?)

time steps and with probability at least 1 —§ outputs a parity function
which is a (1/2 — ©(1/s))-approximator to f under D.

It follows from Jackson’s analysis that the F1 boosting algorithm
constructs each distribution D; in such a way that after a “one-time”
initial cost of O(Ls (2"D;)?) time steps (to estimate the scaling factor
in the denominator of Equation 1) for each D;, it is possible to sim-
ulate a constant-factor approximation DIST'(D;) of DIST(D;) in O(7)
time steps per call.” Jackson’s analysis also implies that each call to
EX(f,D;) made by WDNF can be simulated in time O(iLy (2"D;)) with
high probability. Thus by Lemma 30, the time required for the i-th ex-
ecution of WDNF on distribution D; is bounded by O(nis®(Ls.(2"D))").

® For A C {1,...,n} the parity function x4 : {0,1}" — {0,1} is xa(x) =
> ca ®i mod 2.

° To be more precise, the oracle DIST'(D;) is such that DIST'(D;)(z) =
a-DIST(D;)(z) for all = where a € [%, 3] is some fixed constant. Jackson shows
that access to DIST' is sufficient for WDNF to work successfully.

T In (Jackson, 1997) it is implicitly claimed that only constant time is required to
simulate DIST'(D;) per call, but in fact O(3) time is required since at the i-th stage
of boosting there are i weak hypotheses which must be evaluated per call (Jackson,
2002).
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22 A. Klivans and R. Servedio

As noted in Section 4.3, for any p > 0 algorithm F1 can be shown
to be an O(y 2log(1/¢))-stage, O(1/e?**)-smooth boosting algorithm,
$0 Loo(2"D;) = O(1/€2*F) for every distribution D; which WDNF uses.
Moreover, v = €(1/s) for the WDNF algorithm as stated earlier. It is
clear that the running time of WDNF for each D; dominates the “one-
time cost” mentioned earlier which is incurred for each D;. Recalling the
number of stages and smoothness of Freund’s F1 booster, we have that
the overall Harmonic Sieve algorithm runs in time O(ns!?/e'2t7) for
any p > 0. The hypotheses output by the Harmonic Sieve are majority-
of-parity circuits since each weak hypothesis is a parity circuit and F1’s
hypothesis is a majority circuit over weak hypotheses.

5.3. A FASTER VERSION OF THE HARMONIC SIEVE

As described above, the Harmonic Sieve algorithm works by boosting
under the uniform distribution and its running time strongly depends
on the smoothness of the boosting algorithm. The following observation
follows directly from the discussion of THA in Section 2:

Observation 31. For each measure M; constructed in the execution
of THA the distribution Dy, is 1/e-smooth.

This is substantially better than the distributions constructed by
F1 which are guaranteed only to be (1/€21#)-smooth. Thus, it appears
that we can use the better boundedness of the THA algorithm to obtain
a faster version of the Harmonic Sieve, and indeed this turns out to be
the case.

One detail which needs to be addressed, though, is that since the
running time of WDNF depends on the quantity L. (2"D;), where D; is
a distribution over {0,1}", we need a version of IHA which works effi-
ciently over the entire domain {0, 1}". Another way of saying this is that
we need a boost-by-filtering version of THA. Doing an exact computation
of u(M;) in line 3 of IHA would take exponential time for the domain
{0,1}", so our boost-by-sampling version of IHA instead estimates the
value of p(M;) by using a sample average. More precisely, the algorithm
draws a collection of uniformly distributed z’s from {0,1}" and uses
the observed average value of M;(z) on this sample as its estimate for
p(M;). Tt is easy to see that p(M;) is the expected value of M;(z) for
uniformly chosen z; standard bounds on sampling (e.g. Corollary 2.2
of (Jackson, 1995)) show that with very high probability an estimate
p'(M;) satisfying 2u(M;) < w'(M;) < 3u(M;) can be found using
O(1/u(M;)?) samples. Thus in the boost-by-sampling version of THA
the test in line 3 can be approximately performed in O(1/€?) time steps,
and the resulting algorithm will be 2/e-smooth with high probability.
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(We note that the O(1/u(M;)?) time steps required to perform this esti-
mation for each measure M; corresponds exactly to the “one-time cost”
of O(Lso(2"D;)?) for estimating the denominator of Equation 1 which
was required for each distribution D; simulated by F1.) Thus IHA can be
translated into a O(1/(y%€%))-stage, O(1/€)-smooth boost-by-filtering
algorithm under the uniform distribution.

As was the case with F1, the boost-by-sampling version of THA will
construct each distribution D; in such a way that it is possible to
simulate a constant-factor approximation DIST'(D;) of DIST(D;) in
O(i) time. Furthermore, as with F1 it is possible to simulate each call to
EX(f, D;) in time O(iLo(2"D;)) with high probability. Thus by Lemma,
30, the time required for the i-th execution of WDNF on distribution D;
is bounded by O(nis®(L(2"D))%).

We refer to the modified Harmonic Sieve algorithm which uses THA in
place of F1 as HS'. Putting all the pieces together, we see that although
HS' requires a factor of £2(1/e2) more boosting stages than the original
Sieve, this disadvantage is more than offset by the improved runtime
of WDNF. We obtain the following:

Theorem 82. There is a membership-query algorithm HS’ for learning
DNF under the uniform distribution which runs in time O(ns!?/¢!9).
The algorithm outputs as its final hypothesis a majority-of-parity cir-
cuit.

We can achieve an even faster variant of the Harmonic Sieve, at the
price of using more complex hypotheses, by using the B, 1, boosting
algorithm instead of the boost-by-filtering THA algorithm. As noted in
Section 4.2, Boomp, is an O(y 2 log(1/¢))-stage, O(log(1/€)/e)-smooth
boost-by-filtering algorithm. The smoothness of B¢y, 1, implies that the
“one-time cost” of computing the scaling factor for each distribution
D; is now O(LOO(Q"Dif) = O(1/€%). As before, the time required to
simulate DIST'(D;) is O(4), and the time required to simulate EX(f, D;)
is O(iLoo(2"D;)). ;From Lemma 30 we find that if Bogpy is used as
the boosting algorithm in the Sieve, then the total running time of each
boosting stage will be at most O(ns®/e’). Since we boost for at most
O(s®1og(1/€)) stages under Bry, 1, we have the following theorem:

Theorem 33. There is a membership-query algorithm for learning s-
term DNF formulae under the uniform distribution on {0,1}" which
runs in time O(ns'%/e5). The algorithm outputs as its final hypothesis
a majority-of-majority-of-parity circuit.

The additional circuit complexity comes from the fact that the hypoth-
esis output by Bogmp, 18 a depth 2 majority circuit over its inputs.
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5.4. EXTENSIONS

Throughout this section we have only discussed using the Harmonic
Sieve to learn DNF formulae under the uniform distribution. Jackson
generalizes the algorithm to several other concept classes including
TOP (polynomial-size depth-2 circuits where the top gate computes
majority and the bottom gates compute parities) and unions of axis-
parallel rectangles over {0,1,...,b}" for constant b. In each case our
approach can be used to improve the running time of Jackson’s algo-
rithms.

In recent work Bshouty, Jackson and Tamon (Bshouty et al., 1999)
have given a new version of the Harmonic Sieve for learning DNF under
the uniform distribution. The new algorithm differs from the original
Harmonic Sieve in that it uses a faster version of the WDNF algorithm.
Implicit in their analysis is the following lemma.®

Lemma 34. (Bshouty et al., 1999) Let f be any Boolean function of
DNF-size s over {0,1}" and let D be any distribution over {0,1}".
There is an algorithm WDNF’ which takes as input an example or-
acle EX(f,D), a membership oracle MEM(f), a distribution oracle
DIST'(D), and a value § > 0. In the context of the Harmonic Sieve,
each invocation of WDNF’ with the i-th distribution D; generated by
the boosting algorithm takes O(nis?(Loo(2"D;))?) time steps and and
with probability at least 1 — § outputs a parity function which is a
(1/2 — Q(1/s))-approximator to f under D;.

The Harmonic Sieve variant described in (Bshouty et al., 1999)
runs the original O(1/€2>*)-smooth F1 boosting algorithm for O(s?)
stages, using the new WDNF’ algorithm as the weak learner, to obtain
an overall running time of essentially O(ns%/¢*). By instead using the
O(log(1/€) /y*)-stage, O(log(1/€)/e)-smooth boosting algorithm B, 1,
as in Section 5.3, we obtain the following result, which is the fastest
known algorithm for learning DNF under the uniform distribution using
membership queries:

Theorem 35. There is a membership-query algorithm for learning s-
term DNF formulae over {0,1}" under the uniform distribution which
runs in time O(ns®/e2). The algorithm outputs as its final hypothesis
a majority-of-majority-of-parity circuit.

8 The error mentioned in Section 5.2 in Jackson’s analysis of the Harmonic
Sieve also appears in the recent work of Bshouty, Jackson and Tamon. Lemma
34 and Theorem 35 incorporate a correction: the WDNF' algorithm takes time
O(nis? (Lo (27D;))?) as opposed to O(ns?(Le(2"D;))?) as is stated in (Bshouty
et al., 1999).
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