Martingale Boosting

Philip M. Long Rocco A. Servedib
Google Columbia University
Mountain View, CA New York, NY
plong@google.com rocco@cs.columbia.edu

September 12, 2008

Abstract

Martingale boosting is a simple and easily understood tgcienwith a simple and easily under-
stood analysis. A slight variant of the approach provabhj@es optimal accuracy in the presence of
misclassification noise.

1 Introduction

Boosting [15, 8] has been an overwhelming practical successmany applied domains, the best known
algorithms use boosting. Nevertheless, some time agoitisépgo noise was identified as a weakness of
the standard boosting techniques [7, 11, 5].

Heuristics have been proposed to combat this [14, 13]. Thedies are based on an implicit view
that noisy examples tend to be borderline cases: they genadisy examples roughly in proportion to how
much they deviate from the norm. This view has been seen tedfelubut there are applications in which
many examples are not borderline.

Some boosting algorithms have been shown to be provablegftoierant [16, 2, 3, 9, 10]. As in clas-
sification in general, the main approaches to theory foreatmgerant boosting can be divided into agnos-
tic/malicious and independent models. In the agnostidfioals case, essentially nothing is assumed about
the noise, except a limit on its rate. This may appear to beememlistic than the alternative in which the
labels are assumed to be flipped independently of the sarhiolever, analysis of agnostic or malicious
noise models is by necessity focused on the worst caseatiypim this case, noisy examples are the most
extreme elements of the opposite class. Sources involvidgpendent misclassification resemble applied
problems more than this. Thus, analysis of learning wittepshdent misclassification noise may be the
most effective way to use theory to guide the design of bongstigorithms that are robust to noisy data
other than borderline cases.

1.1 Our contribution This paper is about an approach that we paktingale boostingWe concentrate

on the problem of predicting binary classifications, say 6 &n As in many earlier boosting algorithms,
learning proceeds incrementally in stages. In each stagep@es are partitioned into bins, and a separate
base classifier is chosen for each bin. An example is ass@héadby counting the number of 1 predictions
made by the appropriate base classifiers from earlier rounds

*This is a full version which contains some proofs omittedrfrine conference version because of space.
fSupported in part by NSF CAREER award CCF-0347282



The analysis is very simple: it proceeds by thinking of areobjo be classified as taking a random walk
on the number of base classifiers that predict 1. If the eat@srare balanced between false positives and
false negatives and are slightly better than random gugsiiis easy to see that, after a few rounds, it is
overwhelmingly likely that more than half the steps are mdbrrect direction: such examples are classified
correctly by the boosted classifier.

In some cases, one can promote balanced error rates difectgxample, if decision stumps are used
as base classifiers, one can easily adjust the thresholdeiodeahe error rates on the training data. We also
show that it is possible tforce a standard weak learner to produce a classifier with balagced rates in
the cases that we need.

Martingale boosting facilitates noise tolerance by the faat the probability of reaching a given bin
depends on theredictionsmade by the earlier base classifiers, and not on the label ekample. (In
particular, it does not depend on the number that are cooreicicorrect, as does Boost-by-Majority [6].)
The most technical aspect of the paper is to show that theghtireg to force balanced errors can be done
while preserving noise-tolerance. Ideas from earlier wayrlKalai and Servedio [10] are useful there.

Because it is a simple and easily understood technique #megrgtes highly noise-tolerant algorithms,
ideas from martingale boosting appear likely to be praltyiceseful.

1.2 Organization Section 3 gives a high-level description of the architextoir our boosting algorithm
and compares it with the three previous boosting algoritivinieh seem most closely related, namely the
Boost-by-Majority algorithm of Freund [6], the branchingpgram booster of Mansour and McAllester [12]
and the noise-tolerant booster of Kalai and Servedio [10].

In Section 4 we consider a learning scenario in which the viemking algorithm is assumed to satisfy
a somewhat stronger guarantee than the usual weak learssognption: the base classifier produced by
the weak learner is assumed to achieve accuracy signiffogrethter thari /2 on both positive and negative
examples. Working in this scenario lets us highlight thenmidéa of our new boosting method; we give
a very simple proof in Section 4 that our algorithm succdlsfibosts such a weak learner to arbitrary
accuracy.

In Section 5, we show how a slight modification of the algarntirom Section 4 can be used to boost
a standard weak learning algorithm, which only meets thalusaak learning criterion, to arbitrarily high
accuracy. We discuss computational issues and give annmepi@tion of this algorithm in a framework
where the learner has access to an example ofa&lé, D) in Section 6.

In Section 7, we show how the algorithm of Section 5 can be tsbdost a random classification noise
tolerant weak learning algorithm to achieve final accurbeye, wheree is any value greater than the noise
ratern. The modification described in this section is similar to thiaKalai and Servedio [10] who showed
how the boosting algorithm of McAllester and Mansour couddnodified to achieve tolerance to random
classification noise.

2 Preliminaries

Given a target concept: X — {0, 1} and a distributiorD over X, we write D" to denote the distribution
D restricted to the positive examplés € X : ¢(z) = 1}. Thus, for any event C {z € X : ¢(z) = 1}
we havePrp+ [z € S| = Prp[z € S]/Prplc(x) = 1]. Similarly, we writeD~ to denoteD restricted to the
negative examplefr € X : ¢(x) = 0}.



output'0 ) ) " output 1

NN o Y Y Y

Vo, T v1,T V2,17 v3,T vr-3or Vr-2oTr Vr-i1,T7 UrT

Figure 1: The branching program produced by the boostingriéign. Each node; ; is labeled with a
0/1-valued functiorh; +; left edges correspond to 0 and right edges to 1.

3 High-level structure of the boosting algorithm

The boosting algorithm works in a seriesiotages The hypothesis of the boosting algorithm is a layered
branching program witli" + 1 layers in a grid graph structure, where laydsast + 1 nodes (see Figure 1);
we refer to the-th node from the left in layer asv; ;, wherei ranges from 0 té. For0 < ¢ < T — 1, each
nodev; ; in layert has two outgoing edges, one left edge (which is labeled withta nodev; ;11 and one
right edge (labeled with a 1) to node, ; ;1. Nodesu;  in layerT have no outgoing edges.

Before stage of the boosting algorithm begins, each node at levels. ;¢ — 1 has been labeled with
a 0/1-valued hypothesis function. We writg; to denote the hypothesis function that labels nogg
In the t-th stage, hypothesis functions are assigned to each af-thé nodesuy ; throughv, ; at levelt.
Given an example: € X in staget, the branching program routes the example by evaludiingon «
and then sending the example on the outgoing edge whoseddhgl(x), i.e. sending it to nodey, ; (z),1-
The example is routed through successive levels in this vy itireaches levet; more precisely, when
examplex reaches some nodg ; in level j, it is routed from there via the outgoing edge whose label is
hij(x) to the nodev;, , .(x),j+1- In this fashion the example eventually reaches the nodg; after being
evaluated on hypotheses, wheréis the number of thesehypotheses which evaluated to 1.en

Thus, in thet-th stage of boosting, given an initial distributidh over examplese, the hypotheses
that have been assigned to nodes at levels. ;¢ — 1 of the branching program induge+ 1 different
distributionsDy ¢, . . ., D; ; corresponding to the+ 1 nodesvg s, . .., vy in layert (a random draw from
distribution D; ; is a draw fromD conditioned onx reachingv;;). In the following sections, we will
carefully specify just how the hypothesks;, . .., h;; are generated to label the nodegs, ..., v in the
t-th stage of boosting; as we will see in Section 5, for the tingsalgorithms that work in the standard
model, it isnot the case thak; ; is obtained simply by running the weak learner on distrioutD; ; and
using the resulting hypothesis Aas;.

Once allT stages of boosting have been performed, the resulting lhirmpprogram routes any example
x to some nodey, r at level T'; observe that is the number of hypotheses that evaluated to 1 out of the
T hypotheses that were evaluatedaanThe final classifier computed by the branching program igpk&m
given an example to classify, if the final node, 1 thatx reaches haé > 7'/2 then the output is 1, and



otherwise the output is 0.

3.1 Relation to previous boosting algorithmsReaders who are familiar with Freund’s paper on the
Boost-by-Majority algorithm [6] may experience a sense @fdvu on looking at Figure 1, since a very
similar figure appears in [6]. Indeed, both our current biogsscheme and the Boost-by-Majority algo-
rithm can be viewed as routing an example through a branghmiagram which has the graph structure
shown in Figure 1, and both boosters work by ultimately prali 1 or O according to whether the majority
of T weak hypotheses evaluate to 1 or 0. However, we emphasizthéna is a very significant difference
between our boosting approach and that of [6]. In Boost-lajekty, in stage the weak learning algorithm

is only invoked once, using a single distributidn that reweights each examples according to which node
v;+ at levelt it arrives at. Thus, in Boost-by-Majority there are ofiffyweak hypotheses that are ever gener-
ated in the course of boosting, and each nagle. . ., v ; is labeled with the same weak hypothesisthe
final output is a majority vote over the§ehypotheses:y, ..., hr. In contrast, our algorithm invokes the
weak learnet + 1 separate times in stageonce for each of the+ 1 distinct distributionsDy 4, ..., Dy,
corresponding to the nodes;, vi 4, ..., v . (We remind the reader again that as we will see in Section 5,
the hypothesis; ; is not obtained simply by running the weak learner®y), and taking the resulting hy-
pothesis to bé; ;.) A total of T'(T' + 1) /2 weak hypotheses are constructed, and any single exangully
encounterd’ of these hypotheses in its path through the branching pmogra

As we will see, our algorithm has a very simple proof of comess which seems quite different from
the Boost-by-Majority proof. Moreover, the fact that ougaiithm constructs a different hypothedis;
for each node);; seems to play an important role in enabling our boostingralga to tolerate random
classification noise. We will show in Section 7 that a sligatiant of our boosting algorithm can learn to
any accuracy raté — e < 1 — n in the presence of random classification noise atwate such guarantee
is given for Boost-by-Majority or any variant of it that wesaaware of in the literature, and we were unable
to prove such a guarantee for Boost-by-Majority. It is aetiesting question for future work to determine
whether Boost-by-Majority actually has (close to) thisdesf noise tolerance.

Another related algorithm is the “boosting by branchingguams” algorithm of Mansour and McAllester
[12], which we refer to as the MM algorithm. Kalai and SengefdiO] modified the MM algorithm to obtain
a boosting algorithm which is robust in the presence of randiassification noise.

Like the Mansour/McAllester boosting algorithm, our basworks by building a branching program.
Also, as mentioned earlier, our modification and analysishaf paper’s boosting algorithm to achieve
random classification noise tolerance will follow the apmto of Kalai & Servedio. However, there are
significant differences between our boosting algorithm #msl earlier work. The algorithm and analysis
of [12] and [10] are based on the notion of “purity gain;” a eadis split into two descendents if each of
the two labels 0 and 1 is achieved by a nonnegligible fraatioiihe examples that reaeh and two nodes
v andw are merged if the ratio of positive to negative examples iwithis similar to the ratio withinw.
Nodes that are pure (for somec {0, 1} almost all examples that reachare labeled wittb) are “frozen”
(i.e. not split any more) and assigned the labelln contrast, in our new algorithm the label of a given
terminal node in the branching program depends not on therityayote label of examples that reach that
node, but on the majority vote label of the hypotheses thatesaluated on the path to the node. In the
analysis of our algorithm, progress is measured not in tefrpsirity gain achieved by splitting a node, but
rather by the amount of “drift” in the right direction that ade imparts to the examples that reach it. (We
will see, though, that notions of purity do play a role for @#incy reasons in the example oracle model
implementation of the algorithm that we describe in Secign

We note also that the algorithms and analyses of [12, 10] gtleinsight into the structure of the



branching programs that they create. In contrast, our idgoryields a well-structured and easily intelligible
branching program as shown in Figure 1.

4 Boosting a two-sided weak learner

Letc : X — {0,1} be the target function that we are trying to learn to high emoy with respect to
distributionD over X. Throughout this section the distributiofs™ andD~ are defined with respect to

Definition 1. A hypothesig: : X — {0,1} is said to havdwo-sided advantage with respect taD if it
satisfies bottPr,cp+[h(z) = 1] > § + v andPr,ep-[h(z) = 0] > 2 + .

Thus such a hypothesis performs noticeably better tharoramgliessing both on positive examples and
on negative examples. In this section we will assume thatave hAccess to tavo-sided weak learndhat,
when invoked on target concepand distributionD, outputs a hypothesis with two-sided advantage.

In the next section, we will perform an analysis using thealisissumption of having just a standard
weak learner. That analysis can be viewed as reducing tbatgm to the two-side model studied here.
However, results in the two-sided model are arguably istarg in their own right for the following reason.
In practice, boosting algorithms are often applied in coojion with “decision stumps”, classifiers that
base their predictions on whether individual variablesadreve or below thresholds. For such classifiers,
the threshold can be adjusted so that the training errodabad between positive and negative examples,
with a modest increase in the overall error rate; this preméinding base classifiers with reasonably small
error on both kinds of examples, as is required by the defmiti the two-sided model.

We now show how the general boosting framework of Sectiom3beaused to boost a two-sided weak
learner to high accuracy. This is done very simply: in staget each node; ; we just run the two-sided
weak learner on examples drawn fral; (recall that this is the distribution obtained by filteridgto
accept only those examples that reach nogdg, and use the resulting hypothesis, which has two-sided
advantage with respect ®; ;, as the hypothesis functiol; ; labeling nodev; ;. We refer to this boosting
scheme aBasi ¢ Marti Boost.

The idea of the analysis is extremely simple. hetienote the final branching program thgdsi c
Mart i boost constructs. We will see that a random exampldrawn fromD™ (i.e. a random positive
example) is routed through according to a random walk that is biased toward the right, @mandom
examplezx drawn fromD~ is routed throughh according to a random walk that is biased toward the left.
Sinceh classifies example according to whether reaches a final nodey - with ¢ > T'/2 or ¢ < T'/2,
this will imply that & has high accuracy on both random positive examples and mandgative examples.

So consider a random positive exampldi.e. x is distributed according t®*). For any nodey; ;,
conditioned on: reaching nodey;; we have that: is distributed according t¢D; ;). Consequently, by
the definition of two-sided advantage we have thaoes from node; ; to nodev; 41 With probability
at leastl /2 + -, soz does indeed follow a random walk biased to the right. Siryildor any nodev; ; a
random negative example that reaches ngdavill proceed to node; ;1 with probability at least /2+ -,
and thus random negative examples follow a random walk di&sdhe left. Now standard bounds on
random walks are easily seen to imply thaffif= O(b—i%), then the probability that a random positive
examplez ends up at a nodey - with ¢ < 7'/2 is at mosk. The same is true for random negative examples,
and thush has overall accuracy at lealst- e with respect tdD.

In more detail, we have the following theorem:

Theorem 1. Let y9,71,...,7r—1 be any sequence of values betw@&eand 1/2. For each valuet =
0,...,7—1, suppose that each of tihe-1 invocations of the weak learner on distributioRg; (with0 < ¢ <



t) yields a hypothesis; ; which has two-sided advantage with respect taD; ;. Then the final output hy-
pothesish thatBasi ¢ Marti boost computes will satisfPr,cp[h(z) # c(z)] < exp( St ) /(2T)) :

Proof. As sketched above, we will begin by bounding the error ratpasitive examples (a nearly identical
proof will work for the negative examples).

Fort = 0,...,T we define the integer-valued random variallgas follows: given a draw af from
DT, let: denote the index of the nodg, thatx reaches at level of the branching program. The value of
X, isi.

Fix 1 <t < T and let us consider the conditional random varigb{g| X;_). Conditioned onX;_
taking any particular value (i.e. anreaching any particular nods ;_;), we have that is distributed
according taD; ;—1)™, and thus we have

1
EX| X q]=Xe1 4+ Pr [higa(x)=1]> X1+ = + -1, (1)
ZBE(Di’tfl)‘F 2

where the inequality follows from the two-sided advantafé,q_;.

Now for¢ = 0,...,T define the random variablg asY; = X; — Zf;é(% + ;) (soYy = Xy =0.)
Since each possible value Bf_; corresponds to a unique value &_; and vice versa, conditioning on
the value ofY;_ is the equivalent conditioning on the valueXf_;. Using inequality (1) we obtain

t—1

t—1
1 1
EYi|Yia] = E|X, =) (5 +%)Yr| = BX|Yia] = Y (5 +%)
=0 i=0
t—1

t—2

1 1 1

> Xt—1+§+’Yt—1—Z(§+’Yz = X¢o 1—224‘% =Yi1,
=0 =0

so the sequence of random variahlgs. . ., Y7 is a sub-martingale. We have

1
;=Y =X — Xeo1 — (5

1) <1
2+’7t 1)|_ )

so by Azuma’s inequality for sub martingales (Theorem 7 ijppé@ndix A) we getPr[Yy < —)\] <

exp(—A2/(2T)). We takex = S} o 7e.andobserve thadtr[Yr < —\] = Pr[Xp < T/2] = Prycp+[h(x) =

0] for the final hypothesis.. Thus, we indeed have that the error rate on positive exaniplat most
T—-1 T

exp (—M) . The same argument shows that,.p- [h(x) = 1] < exp (—%) and we are

done.

Note that if we havey, > ~ for all ¢, then Theorem 1 gives the familiar bouRd,cp[h(z) # c(x)] <

exp(——) We further observe that if all the; values are small and equal to the same valuthen we
can replace the 1 in the upper bound|Bh— Y;_1| with a value close td /2; and this gives a final bound in
which the constant in the exponent is close to 2 (rather tharctirrent value of /2), which is optimal.

5 Boosting a standard weak learner
We recall the usual definition of a weak learner.

Definition 2. Given a target functiom : X — {0, 1} and a distributionD, a hypothesig : X — {0,1} is
said to haveadvantagey with respect tdD if it satisfiesPr,ep|h(z) = c(z)] > 1 + 7.



| le(@)=1]c(x)=0] h(z) =1, h(z) =1 2 ]
hz) =1 p q W) =1,hx)=0 | p(1—£) | ¢(1— %)
hx)=0] 1/2—-p | 1/2—¢ h(z) =0, h(z) =1 0 0
h(z) =0, h(z) =0 T—p 1 g

Table 1: Each table entry gives the probability of the cqroesling event under the balanced distribution
D.

In this section we will assume that we have access to a sthngzak learning algorithm which, when
invoked on target conceptand distributionD, outputs a hypothesis which has advantage with respect
to D. This is the usual assumption that is made in the study oftb@psand is clearly less demanding
than the two-sided weak learner we considered in the preveeation. We will show how thBasi ¢
Mar t i boost algorithm of the previous section can be modified to boosaadsird weak learner to high
accuracy.

For clarity of exposition, throughout this section we witirsider an abstract version of the boosting
algorithm in which all desired probabilities can be obtdirexactly (i.e. we do not consider issues of
sampling error, etc. here). We will deal carefully with teessues when we describe an example oracle
model implementation of the algorithm in Section 6.

5.1 Definitions and an easy lemmé_,etc : X — {0, 1} be a target concept. We say that a distributidon
over X is balancedif D puts equal weight on positive and negative examplesPirgep[c(z) = 0] = %
Given an arbitrary distributio® (not necessarily balanced), we writeto denote the balanced versionZof
which is an equal average Bf" andD~; i.e. for anyS C X we havePr5[S] = & Prp+[S] + § Prp-[S].

Given a distributiorD over X and a hypothesis : X — {0,1}, we definelAz, the balanced version &f,
to be the (probabilistic) version afdescribed below; the key propertyﬁis that it output$) and 1 equally
often underD. Letb € {0,1} be the value that evaluates to more often, and let= Pr,ep[h(z) = b
(so1/2 < r <1). Given an inputz € X, to evaluateh on z we toss a biased coin which comes up heads
with probability % If we get heads we output(z), and if we get tails we output — b. This ensures that
Pr,ep[h(z) = b] = Pr[coin is headse h(z) = b] = 4 - = 1.

The following simple lemma shows that if we have a weak hypsigh. that has advantagerelative to
a balanced distributio®, then the balanced hypothe%iswas advantage at leagt2 relative toD.

Lemma 1. If D is a balanced distribution anBtrp[h(z) = c(x)] > 1+~ thenPrp[h(z) = ¢(z)] > 1 +1.

Proof. We may assume without loss of generality tRap[h(z) = 1] = r > 1, i.e. thatb = 1 in the above
discussion. If we lep denotePrp[h(x) = 1 & ¢(z) = 1] andq denotePrplh(z) = 1 & ¢(z) = 0], so
p + q = r, then the probabilities for all four possible valueshadindc are given in the left side of Table 1.
From the definition off it is straightforward to verify that the probabilities ofl &ight combinations of
values forh, h andc are as given in the right side of Table 1. We thus have Eh@t[ﬁ(x) = ¢(z)] =
L 4g(1—4)+1—¢=13+ 22 Byassumption we haverp|h(z) = c(z)] > L + ~, so from the left
side of Table 1 we have — ¢ > ~. The claim follows since: < 1. O



| | hig(2) =0 | hiy(x) =1 |
c(x) =0 p 1/2—p
1] 1/2—-p D

Table 2: Each table entry gives the probability of the cqroesling event under the balanced distribution
D; 4.

5.2 Boosting a standard weak learner withvar t i Boost Our algorithm for boosting a standard weak
learner, which we callar ti Boost , works as follows. In stage, at each node;; we run the weak

learning algorithm on the balanced versiﬁ@ of the distributionD; ;; let g; ; denote the hypothesis that the
weak learner returns. The hypothesis that is used to label; ; is h; ; = g,:, namelyg; , balanced with

respect to the balanced distributiﬁg:.
The following lemma plays a key role in our proof of corredsie

Lemma 2. We havePr(,¢p, )+ [hit(r) = 1] > % + 3 andPrep, )~ [hii(z) = 0] > % + 1.

Proof. Since the original hypothesig ; that the weak learner returns when invoked @ has accuracy
at Ieast% + ~ with respect toﬁzt, by Lemma 1 we have that the balanced hypothégishas accuracy
at leastl + 7 with respect toﬁi} Let p denotePrl/):t [hit(xz) = c(z) = 0]. Sincel/);t is a balanced
distribution andh; ; is a balanced hypothesis, it is easy to see that all four tftlées must be as given in
Table 2, and thu®r 5~ [hi(z) = c(z)] = 2p > 5 + 3, i.e.p > 1 + 7. But sinceD; , is an equal mixture
of (Di4) " and(DM)—; this implies thaPr,¢ p, )+ [his(z) = 1] > (3 +3)/3 = 5 + 3. We similarly have
thatPr e (p, ,)- [hii(z) = 0] > 5 + 3, and the lemma is proved. O

With this lemma in hand it is easy to prove correctnesshft i Boost :

Theorem 2. Let vp,71,...,77—1 be any sequence of values betwé&eand 1/2. For each valuet =
0,...,7 — 1, suppose that each of tiei- 1 invocations of the weak learner on distributio@ (with0 <

i < t—1)yields a hypothesig; ; which has advantage; with respect tcﬁ\t Then the final branching pro-
gram hypothesi& thatMar t i Boost constructs will satisfyPr,cp[h(x) # c(z)] < exp (—(2%7:;%)2) .
Proof. The proof is almost identical to the proof of Theorem 1. Werdefiequences of random variables
X1,...,Xp andYy,..., Yy as before; the only difference is that (i) now we havex;| > % + & (by
Lemma 2) rather thatiy[ X,;] > % + 7 as in the earlier proof, and (ii) the randomness is now takem o
both the draw of: from D+ and over the internal randomness of each hypothesist each node in the
branching program. This loss of a factor dfrom (i) in the advantage accounts for the different cortstan
(worse by a factor of 4) in the exponent of the bound. O

6 Complexity issues: implementation ofvar t i Boost that works with an example oracle

Thus far we have described and analyzed an abstract versidr ¢ i Boost without specifying how the
weak learner is actually run on the distributi(ﬁﬁ at each node. One approach is to run the boosting
algorithm on a fixed sample. In this case all relevant prdhigsi can be maintained explicitly in a look-up
table, and then Theorem 2 bounds the training set accuratyedfr t i Boost final hypothesis over this
fixed sample.



In this section we describe and analyze an implementatiagheolgorithm in which the weak learner
runs given access to an example orakl& (¢, D). As we will see, this version of the algorithm requires
some changes for the sake of efficiency; in particular we frileze” the execution of the algorithm at
nodesv; ; where it is too expensive to simulat/ez. We give an analysis of the time and sample complexity
of the resulting algorithm which shows that it is computaéitly efficient and can achieve a high accuracy
final hypothesis. Note that the accuracy in this case is nmedsuith respect to the underlying distribution
generating the data (and future test data).

6.1 The model We define weak learning in the example orakl& (¢, D) framework as follows:

Definition 3. Given a target function: : X — {0,1}, an algorithm A is said to be aweak learning
algorithm with advantage if it satisfies the following property: for any > 0 and any distributiorD over
X, if A'is givend and access td&' X (¢, D) then algorithmA outputs a hypothesis : X — {0,1} which
with probability at leastl — § satisfiesPr,ep[h(z) = c(z)] > & + 7.

We letm 4(d) denote the running time of algoritha, where we charge one time step per invocation of
the oracleE X (¢, D). Thus, if we must run algorithmi using a simulated oracle X (¢, D") but we only
have access t&' X (¢, D), the runtime will be at most: 4 (§) times the amount of time it takes to simulate a
draw fromE X (¢, D’) given EX (¢, D).

6.2 An idealized version of the oracle algorithmWe now describe the version dfrti Boost de-
signed to work with a sampling oracle in more detail; we daB tlgorithmSanpl i ng Marti boost ,or
Shar t i Boost . While this algorithm is intended to work with random exaswlto keep the focus clear on
the main ideas, let us continue for a while to assume thag¢allired probabilities can be computed exactly.
In Section 6.3 we will show that the analysis still holds ibpabilities are estimated using a polynomial-size
sample.

For convenience, we will use to denote all of the random bits used by all the hypothéseslt is
convenient to think of as an infinite sequence of random bits that is determinedd#ie algorithm starts
and then read off one at a time as needed by the algorithmdthihie algorithm will use only polynomially
many of them).

In staget of SMar t i Boost , all nodes at level$' < ¢ have been labeled and the algorithm is labeling
nodesuvo, ..., v . Let p;, denotePr ¢p [ reaches; ;]. For eachb € {0, 1}, Ietpi?ﬁt denotePr cp [z
reaches); ; and the label of: is b], sop; ; = pgt +p},t. In staget, SMar t i Boost does the following for
each node; ¢

1. If minyego 1y p?’t < ﬁ then the algorithm “freezes” node, by labeling it with the bit(1 — b)
and making it a terminal node with no outgoing edges (so aayngkex which reaches; , will be
assigned labegll — b) by the branching program hypothesis).

2. Otherwise, we havminbe{071}p§?7t > ﬁ Inthis casesMar t i Boost works just likeMar t i Boost :
it runs the weak learning algorithm on the balanced verﬁ/g?p of D; ; to obtain a hypothesis; ,

and it labelsy; ; with h; , = g; +, which is g, ; balanced with respect t; ;.

The idea is that each node which is “frozen” in step (1) abmrerdutes at mo% to the error of

the final branching program hypothesis; since there are at (@ + 1)/2 many nodes in the branching
program, the total error induced by all frozen nodes is attr§o®n the other hand, for any nodg; which
satisfies condition (2) and is not frozen, the expected numbéraws fromE X (¢, D) that are required to

9



simulate a draw fronE X (c, Z/Di\,t) IS O(TTQ), and thus we can indeed run the weak learner efficiently on the
desired distributions. (We discuss computational efficgjein more detail in the next subsection where we
take sampling issues into account.)

The following theorem establishes correctnesSMir t i Boost :

Theorem 3. LetT = %3/5) Suppose that each time it is invoked on some distribun/@\n the weak
,\/ 9

learner outputs a hypothesis that has advantageith respect tol/); Then the final branching program
hypothesig: that SMar t i Boost constructs will satisfyPr,cp[h(x) # c(z)] < e.

Proof. Given an unlabeled instanee € X and a particular setting of the random bits for each of the
(randomized) hypothesés ; labeling nodes of the branching program, we say that) freezes at node
v;¢+ If the path through the branching program thatakes under randomnessauses it to terminate at a
nodev; , with ¢ < T' (i.e. at a node; ; which was frozen bysMar t i Boost ). We have

Prih(z) # c(z)] = Prlh(z) # c(z) & (z,r) freeze$+ Pr[h(z) # c(z) & (x,r) does not freeZe
< % + Pr[h(z) # c(x) & (z,r) does not freeze

where the probabilities, as in the proof of Theorem 2, arenakver the draw aof from D and the choice of
T.
It remains to show thaer[h(z) # c(z) & (x,r) does not freeZe< 5. As before, we first will show that
Prcp+[h(z) # c(x) & (z,r) does not freeZés at mosts; the negative examples can be handled similarly.
To show thatPr,cp+ [h(z) # c(z) & (z,7) does not freeze< §, we consider a slightly different
random process than in the proof of Theorem 2. fer 0,...,T we now define integer-valued random
variablesX] as follows. Given a draw of from D* and a random choice of

e If (z,7) does not freeze at any nodg,s with ¢’ < t, then X/ takes value, wherei denotes the index
of the nodev; ; thatx reaches under randomesat levelt of the branching program;

o If (z,r) freezes at some nodg with t' < ¢, then letk be the sum of — ¢’ many independent 0/1
coin tosses each of which comes up 1 with probabgity 2. The value ofX7 is j + k.

(This part of the proof is reminiscent of [3].) It is clear tha

. 1
E[X} |X{_ & (z,r) freezes at some node, with t’ < ¢] = X] | + 3+ %
On the other hand, ifx, r) does not freeze at any such node, then conditioned r@aching any particular
nodew;,—; under randomness we have that is distributed according t¢D;;—1)". It follows from
Lemma 2 that
. 1
E[X}|X{_, & (z,r) freezes at no node; » with t’ < ¢] > X/ | + 3+ %,
and thus overall we havB[X/| X, ;] > 2 + 1.
Now similar to the proof of Theorem 1, fér= 0, ..., T let the random variabl&, be defined a¥; =
X, - t(% +7). As in the earlier proof we have thi, . . ., Y7 is a sub-martingale with bounded differences,
T

so Azuma’s inequality for sub-martingales gives[Y, < —T'/2] < exp (‘T) . Now recall that if

(x,r) never freezes, then the predictib(r) is determined by the majority of the values/gf;(z) obtained
from hypotheseg; ; encountered in its path through the branching program. ;Tihuke particular case of
positive example®r,cp+ ,[h(z) # c(x) & (x,r) does not freeZe< Pr (X7, < T'/2] = Pr[Y/ < —T/2].
Applying the inequality from above, bounding negative epéea similarly, and recalling our choice &t
we have thaPr[h(z) # c(z) & (z,r) does not freeZe< § and the theorem is proved. O

10



6.3 Dealing with sampling error In this section we remove the assumptions that we know allired
probabilities exactly, by showing that sufficiently acderastimates of them can be obtained efficiently. We
do not belabor details since sampling error analyses suttieasie we now present are quite standard.

Consider some node; ;. While we cannot determine precisely whettpé; is greater thanf— or
not, standard multiplicative Chernoff bounds show that ae compare it up to a constant muIt|pIe which
is good enough for our purposes:

T2 log %

Fact 3. WithO(
following:

) many draws tdf X (¢, D), we can obtain an estimafé , of p? , which satisfies the

o If pgt < m then with probabilityl — 4, we have thag? cisat most4 ; and

T+

o If plt > 77Ty then with probabilityl — &, we have thaﬁbt is at Ieast74T(T+1)

ThusSMar t i Boost will actually decide whether or not to freeze a nagg by checking Whetheﬁgt

exceedsm If minyego13 pi{t is not too small then we can efficiently simulate draws frbii (c, Z/Di\,t)

(by tossing a coin to decide whethBiX (c, 5;) will give a positive or negative example, and then drawing
from EX (c, D) until it gives an example with the correct label which reacheg):

Fact 4. If minyego1) p?’t > then given access X (¢, D) we can with probabilityl — § perfectly

)
— oo L
simulate a draw fronE'X (¢, D; ) by making at mos(D(&Eg&) many draws fronE X (¢, D).

Once we have run the weak learning algorithm witl (c, 2/);) and it has given us its hypothesis;,

we need to construdi; ;, the balanced version of this hypothesis with respe(f)\igg In order to do this
perfectly as in Section 5.1, we would need the exact value 8f Pr__z—[g;:(z) = b] > 3. While this

exact value is not available to us, the following straighwfard generalization of Lemma 1 shows that an
approximate value is good enough for our needs:

Lemma 5. Letr’ € [0, 1] be any value such that —r'| < 7 wherer is as described above. Lef, denote
the “balanced” hypothesis obtained fropy; as in Sectlon 5.1 but using instead ofr. If Pr5— [gZ () =

oz )]22+7,thenPr5;t[h2,( z) =c()] > 5+ 7.

Standard bounds on sampling show that we can obtain an éstifrad » which is accurate to within an
additive +7 with probability 1 — § by making at mosO(k’gi#) many draws fromF X (c, Z/D;) Putting
all the pieces together, we have the following theorem wisichws thatSMVar t i Boost is correct and
efficient (we use) notation to hide polylogarithmic factors, and ignore theetedences o — which are
everywhere polylogarithmic — throughout for the sake ofiedslity):

Theorem 4. LetT = @(bgg#). If Ais a weak learning algorithm that requires; many examples to

construct ay-advantage hypothesis, th&War t i Boost makesO(s4) - ON(%) : poly(%) many calls to
EX (¢, D) and with probabilityl — § outputs a final hypothesisthat satisfiePr,cp[h(z) # c(z)] < e.

Proof. A straightforward union bound over all failure probabdii (for each call of the weak learning al-
gorithm and for each sampling-based estimate), togethér Wieorem 3, establishes correctness. For the
sample complexity bound consider a single step of the @lhgowhen it is processing some nodlq Es-

timatingplt takesO( ) many draws by Fact 3, and then running the weak learner BiHc, D; t) takes

11



O(#) many draws fromE X (c, D) by Fact 4. Estimating atv; ; to “balance” the hypothesig ; that the
weak learner returns takéﬁ(,y%) many draws fromE X (c, 5;) ie. O(%) many draws fronE X (¢, D).

Thus, dealing with a single node takesé(@ + %) many draws fromE' X (¢, D). Since there are
O(T?) many nodes in the branching program ane- O(loi—i/ﬁ) we obtain the claimed bound. O

7 A noise-tolerant version ofSMar t i Boost

In this section we show how tH&Var t i Boost algorithm can be modified to withstand random classifica-
tion noise. We follow the approach of Kalai & Servedio [10havshowed how the MM branching program
boosting algorithm of Mansour and McAllester can be modifeedithstand random classification noise.
Given a distributionD and a value) < n < %, anoisy example oracles an oracleE X (¢, D, n) that
works as follows: each tim& X (¢, D, n) is invoked, it returns a labeled examile b) € X x {0,1} where
x € X is drawn from distributiorD andb is independently chosen to laéxr) with probability 1 — » and
1 — ¢(x) with probability 7.
Recall the definition of noise-tolerant weak learning:

Definition 4. Given a target functior : X — {0,1}, an algorithm A is said to be anoise-tolerant weak
learning algorithm with advantageif it satisfies the following property: for anyy> 0 and any distribution
D over X, if A is givené and access to a noisy example oradl& (¢, D,n) where0 < n < %, then A
runs in time polyﬁ, 1) and with probability at least — § A outputs a poly;, %, ﬁ)-time evaluable
hypothesis: such thatPr,ep[h(z) = c(z)] > § + 7.

Ideally, we would like a boosting algorithm that can conaaty noise-tolerant weak learning algorithm
into a noise-tolerant strong learning algorithm that cdriea@ any arbitrarily low error rate > 0. However,
Kalai and Servedio showed that in general it is not possb®bst the error ratedown below the noise rate
n.t They showed that a modification of the MM boosting algorithwhjch they called the MMM (Modified
Mansour-McAllester) algorithm, can achieve any error eaten + 7 in time polynomial in% and the other
relevant parameters. We now show that a modificatioBMr t i Boost has the same property.

Throughout this section we assume that the valug, dhe random classification noise rate, is known
in advance to the boosting algorithm. As described in [13] #ssumption can be removed via a standard
approach of guessing different values for the noise ratauaimd) the best outcome.

For ease of presentation, in Section 7.1 we give the noleeatt martingale boosting algorithm under
the assumption that all required probabilities are obthieeactly. In Section 7.2 we deal with issues of
estimating these probabilities via sampling and bound &nepée complexity of the algorithm.

7.1 Boosting a noise-tolerant weak learneiRoughly speaking, the reason wBiyhar t i Boost can be
easily modified to withstand random classification noiseeisaoise in each stagef boosting the labeb
of a labeled examplér, b) plays only a limited role in the reweighting that the examgtperiences. Since
this role is limited, it is possible for us to efficiently sitate the distributions that the weak learner requires
at each stage of boosting and thus for the overall boostiogess to succeed.

More precisely, as a labeled exampteb) proceeds through levels. . . ,t—1 of the branching program
in staget, the path it takes is completely independentofThus, given a sourc& X (¢, D,n) of noisy

1They showed that if cryptographic one-way functions exfgn there is no efficient “black-box” boosting algorithnatizan
always achieve a final error rate< 7. A black-box boosting algorithm is a boosting algorithmttban run the weak learning
algorithm in a black-box fashion but cannot “inspect theeCoaf the weak learner. All known boosting algorithms areckkyox
boosters. See [10] for more discussion.

12



examples, the distribution of examples that arrive at eiqastr nodev; ; is preciselyE X (¢, D; ,n). Once

a labeled examplér, b) arrives at some nodsg ,, though, it is clear that the labeimust be consulted in the
“rebalancing” of the distributiorD; ; to obtain distributio@. More precisely, the labeled examples that
reach node; ; are distributed according t6.X (c, D; ;, ), but in order to us&Mar t i Boost with a noise-
tolerant weak learner we must simulate braéanceddistributionﬁ; corrupted with random classification
noise, i.e.EX (c, 2/);, n'). (As we show below, it turns out that need not necessarily be the same;aisis
okay to have a higher noise rajefor the balanced oracle as longsgss not too close tc%.) The following
lemma from [10] shows that it is possible to do this:

Lemma 6. [Lemma 7 of [10]] Letr > 0 be any value satisfying + 7 < % Suppose we have access to
EX(c,D,n). Letp denotePr,cplc(z) = 1]. Suppose thaj+7 < p < 3 (the case wherg+Z < 1—p < 1

is completely analogous). Consider the following rejettiampling procedure: given a drax, b) from
EX(e,D,n),

e if b = 0 then with probabilityp, =
b = band acceptz,t');

=2 reject (x,b), and with probabilityl — p, = £ set

e if b= 1 then set' to 1 — b with probability p; = jj):flg’ggfn—_@m) (and sety’ to b with probability
1 — py), and acceptz, ).

Given a draw fromE X (c, D, ), with probability p,.; := (L=22en-U=p)1=1) this procedure rejects, and

1—p—n
with probability 1 — p,.; = W the procedure accepts. Moreover, if the procedure accepés,
the (z, V') that it accepts is distributed according X (¢, D, ) wherer/ = : - m.

So the noise-tolerant version 8iar t i Boost , which we callNoi se- Tol er ant SMarti Boost,
works in the following way. As in Section 6.2 lgf ; denotePr,cp , [z reachesy;;]. Forb = 0,1 let
qg”t denoteqi?,t = Pryepyrle(r) = b | z reachesv; ;] = Pryep,,rlc(z) = b], SO qgt + qit = 1. The
boosting algorithm (which takes as input a parameter 0, wheren + 7 is the desired final accuracy of the
hypothesis; we assume WLOG that- 7 < %) proceeds in stageas follows: at each nods .,

1 Ifp < % then the algorithm “freezes” nodeg; by labeling it with an arbitrary bit and making
it a terminal node with no outgoing edges.

2. Otherwise, ifmin,e (o 1y qfvt < n + 3, then the algorithm “freezes” node; by labeling it with the
bit (1 — b) and making it a terminal node with no outgoing edges.

3. Otherwise the algorithm runs the noise-tolerant weaknkrausingFE X (c,l/D;,n/) as described in
Lemma 6 to obtain a hypothesjs,. The balanced version of this hypothesis (balanced withes
to D; ;), which we callr; , is used to label node; ;.

Theorem 5. LetT = % Suppose that each time it is invoked with some oraiil’é(c,ﬂ;,n’),
the weak learner outputs a hypothegis that satisfiesPr 5~ [git(z) = c(z)] > L+ 4. Then the

final branching program hypothesis that Noi se- Tol erant SMarti Boost constructs will satisfy
Pryeplh(z) # c(z)] <n+.

13



Proof. As in the proof of Theorem 3, given an unlabeled instance X and a particular setting of the
random bits for each of the (randomized) hypothégsedabeling nodes of the branching program, we say
that (z, ) freezes at node; ; if the path through the branching program thatakes under randomness
causes it to terminate at a nodg with ¢t < 7' (i.e. at a node; ; which was frozen byNoi se- Tol er ant
Shar t i Boost ). We say that a node; ; is negligibleif p; ; < m We have

Pr[h(z) # c(z)] = Prlh(x) # c(x) & (x,r) does not freeZet+
Pr[h(x) # c(z) & (x,r) freezes at a negligible nofle
Pr[h(x) # c(z) & (x,r) freezes at a non-negligible ndde
Since (x,r) reaches a given negligible nodeg; with probability at mostm and there are at most
T(T + 1)/2 many negligible nodesPr[h(x) # c(x)& (x,r) freezes at a negligible nodes at mostz.
ConsequenthPr[h(x) # c(x)] is at mostg + Pr[h(x) # c(x) & (z,7) does not freeZeplus

Prh(z) # c(z)| (z,r) freezes ab; ;] - Pr[(z, r) freezes av; 4. 2

i,t : vy ¢ Is non-negligible

SincePr[h(x) # c(x) | (ac r) freezes ab; ;| equalsPryep, , -[h(z) # c(x)], by the fact that the algorithm
freezesv; ¢ if minyego 1y qlt < n+ 3 (case (2) above), we have that (2) is at mpst 5. Thus

Prih(z) # c(z)] < Pr[h(x) # ¢(x) & (x,r) does not freeZet- n + 237—

so it remains to show thaer[h(z) # c(x) & (z,r) does not freezeis at mostz. The proof of this is
identical to the proof thalPr[h(z) # c(x) & (x,r) does not freeZe<  in the proof of Theorem 3 but now
with % in place of5. O

7.2 Complexity issues for implementation ofNoi se- Tol er ant SMarti Boost In this section we
remove the assumptions that we know all required probggsilgéxactly, by showing that sufficiently accu-
rate estimates of them can be obtained efficiently via a pohjal amount of sampling. (For simplicity,
throughout the discussion we continue to assume that we kmoexact value of as mentioned at the start
of Section 7.)

A direct analogue of Fact 3 shows thaf
estimatep; ; of p; s = Pryep [z reaches; ;] such that

M) many draws toF X (¢, D,n) suffice to give an

o If s < 3T(T+1) then with probabilityl — §, we have thap; , is at most2T 751y ; and

o If py > 3T(T+1) then with probabilityl — ¢, we have thap; ; is at IeastZT 1)

ThusNoi se- Tol er ant Sharti Boost will decide whether or not to freeze a nodg on the grounds
of its being negligible (case (1)) by checking whetfgr exceedsm
For case (2), ip;+ is not too small then we can efficiently simulate draws frBdi (¢, D; ¢, 1), and thus

can estimatqgt efficiently:

thenO (2 1°21/0 ) draws fromEX (¢, D, ) suffice to give an estimag, of ¢,

Fact 7. If p; s > T3 (1-2n)

3T_(;“+1_) '
such that

o If qﬁ’,t <1+ g, then with probabilityl — 4, we have thag; ; is at most) + ; and

14



o If pgt > n + 3, then with probabilityl — §, we have thaf; ; is at most) + 7.
Proof. Itis easy to see that

_ Prayenxepmly =b-n
’ xEDi,t 1 _ 277 .

Thus in order to estimat@i?’t to within an additive©(r), we must estimat®r(, ,\cpx(c,p, ;) [y = b] tO

within an additiveO(7(1 — 27)). This requires@(m) many draws fromEX (¢, D; +,n), and since

pit = Q7= ), there is an overhead @(TTQ) to simulate each draw frol8 X (¢, D; ¢, ) usingEX (¢, D, ).
O

Now we consider case (3), which requires us to use the refesampling procedure of Lemma 6. We
first note that if the exact value @f = Prep, [c(x) = 1] were available, then the probabilipy..; of

rejecting would not be too high (so it would indeed be possiblefficiently simulate? X (e, 5;, n')):

Claim 8. The rejection probability,.; := (1_2’))(’);@[()1__77”)(1_’7)) from Lemma 6 satisfigs..; < 1—(1n+7).

Proof. Recall thaty + 5 <p< % ¢, From this it is straightforward to verify that we have

) < 2p(1 —p)( —21)

T T T
n+5 <2+ 5)1-n—5)<2p(1—p) <
( ) ) ( ey

2 2 2

The claim follows since,.; = (1_2”(”1@;1__"”)(1_")) equalsl — W. O

This claim implies that givenE X (¢, D;¢,7n), if p were known exactly then we could sample from

EX(c,ﬁI,n/) with a slowdown of at mos;cﬁlT/2 < % Moreover, if the exact value qf were available,

then the noise rate’ would not be too close té (so it would be possible to efficiently run the weak learner
using EX (¢, D;+,1n)). This is because (as shown in Lemma 7 of [10]) the noiseyafeom Lemma 6

isfiesy) = L - 271 <1 _ 17 gj in ti 11 '
satisfies)’ = 3 — 555, < 7 — 7. Since the weak learner runs in time pGly-., ) when invoked

on EX (¢, D;4,7'), the runtime for each invocation of the weak learner would denoled by pol 1)
So if the exact value 0 = Pr.ep,,[c(x) = 1] were available, then using X (c,D,n) we could

simulateE X (e, 5;, n') and run the weak learner at a given neglein poly(% %) time overall (there is an
O(T—'l;) factor because of the overhead to simulat& (c, D; ;,n) from EX (¢, D,n)). But of course, we do
not have the exact value of the probabilitghat Lemma 6 requires; instead we must use an estipatep

that we obtain by sampling. Singéis not exactlyp, the oracle we simulate may not be exactly balanced,
and it may have slightly different noise rates for positiviel megative examples; but as we now show, the
deviation fromEX (¢, D; ,n") can be made so small that the weak learner is unaffected.

It is easy to see that = 1’7_;2’17 wherep equalsPr, ycpx (e, .m0 = 1]. Thus we can estimateto
within an additive£¢ by estimatings from EX (¢, D; +,7) to within an additivet£(1 — 2). As above, we
can obtain such an estimateofwith probability 1 — ¢) by making at mow(%) many draws from
EX(c,D,n).

Thus, we may assume that we have an approximationat is within an additive:¢ of p. We now use
the following lemma (the proof is a routine but tedious emoalysis applied to the proof of Lemma 7 of
[10]):

15



Lemma 9. Consider the rejection sampling procedure defined in Lemimat 6vith o’ used in place op in
the definition o, andp;. Given anyv > 0, there is a valug = m such that if ' — p| < &, then

(i) this procedure rejects with probability at mast- (n+ 1) (and thus the rejection sampling procedure
incurs a slowdown of at mogd);

(ii) if the procedure accepts, then the, b) that it accepts is distributed according t§—p) EX (¢, (D; )", ny )+
(3 +p)EX(c, (D;y)~,m-) where|p| is at mosts and., n_ each differ fromy’ by at most an additive-v.

It is easy to check that sinde|, | — n| and|’ — n_| are all at mos¥, the total variation distance
between(: — p)EX (c, (D)™, n4) + (5 + p)EX(c, (Diy),n-) andEX (c, D;,,n') is at mostdv. Since

the weak learner makes at most pdly;) draws to the example oracle to achieve confidenees’ that it

outputs a satisfactory weak hypothesis when rudof(c, 5; ,n'), if we chooser = m then we

have confidencé—d that its behavior when run witth —p) EX (c, (D;¢) ™, n4 )+ (3 +p) EX (¢, (D)™, n-)
will be indistinguishable from its behavior when run withX (e, 2/);, 7). This in turn implies that we may
take¢ =poly(1, 1), and thus that the overall runtime for each invocation ofitieak learner to gef; , is at
most poly(T, 1, 5). (Recall thatr < 5 — 7 so a poly 1) factor subsumes a pdly- ) factor.)

Finally, as in Section 6.3, we must balance the hypothgsido obtain the hypothesis; ; that will
actually be used at node ;. As in that earlier section, we can only approximately badathe hypothesis
but this is sufficient by an analysis similar to that of thevimas section. So all in all, we have that in

case (3) ofNoi se- Tol erant SMarti Boost, the time (and number of calls 86X (¢, D, n) required
is poly(T', ., 7, 5) =poly(2, 1, ).
Putting all the pieces together, we have the following teeorvhich establishes correctness and effi-

ciency of the sampling-based versionNtfi se- Tol er ant SMarti Boost :

Theorem 6. Given anyr such that) + 7 < %, letT = @(l"gg#). If Ais a noise-tolerant weak learning

algorithm with advantage,, thenNoi se- Tol er ant SMar t i Boost makes poly%, 1,3) many calls to
EX (e, D,n) and with probabilityl — ¢ outputs a final hypothesis that satisfiePr,ep[h(z) # c(x)] <
n+rT.

8 Conclusion

We are working on implementing the algorithm and evaluaiisgerformance and noise tolerance on real
world data.

References
[1] N. Alon, J. Spencer, and P. ErdoBhe Probabilistic MethodWiley-Interscience, New York, 1992.

[2] Shai Ben-David, Philip M. Long, and Yishay Mansour. Agtio boosting. IrProceedings of the 14th
Annual Conference on Computational Learning Thepgges 507-516, 2001.

[3] N. Bshouty and D. Gavinsky. On boosting with optimal pblyunded distributionsJournal of Ma-
chine Learning Researc3:483-506, 2002.

[4] F. Chung and L. Lu. Concentration inequalities and madie inequalities.Internet Mathematics
3(1):79-127, 2006.

[5] T.G. Dietterich. An experimental comparison of threethoels for constructing ensembles of decision
trees: bagging, boosting, and randomizatibtachine Learning40(2):139-158, 2000.

16



[6] Y. Freund. Boosting a weak learning algorithm by majorit Information and Computatign
121(2):256-285, 1995.

[7] Y. Freund and R. Schapire. Experiments with a new bogstigorithm. InProceedings of the Thir-
teenth International Conference on Machine Learnipgges 148-156, 1996.

[8] Y. Freund and R. Schapire. A decision-theoretic getimatibn of on-line learning and an application
to boosting.Journal of Computer and System Scienéeg1):119-139, 1997.

[9] Dmitry Gavinsky. Optimally-smooth adaptive boostingdeapplication to agnostic learningournal
of Machine Learning Research:101-117, 2003.

[10] A. Kalai and R. Servedio. Boosting in the presence ofsaoi InProceedings of the 35th Annual
Symposium on Theory of Computing (STQ#2)ges 196—-205, 2003.

[11] R. Maclin and D. Opitz. An empirical evaluation of baggiand boosting. IRRAAI/IAAI pages
546-551, 1997.

[12] Y. Mansour and D. McAllester. Boosting using branchprggrams.Journal of Computer and System
Sciences64(1):103-112, 2002.

[13] Llew Mason, Peter L. Bartlett, and Jonathan Baxter. rlorpd generalization through explicit opti-
mization of marginsMachine Learning38(3):243-255, 2000.

[14] G. R atsch, T. Onoda, and K.-R. M uller. Soft margins fataBoost.Machine Learning42(3):287—
320, 2001.

[15] R. Schapire. The strength of weak learnabilit§achine Learning5(2):197-227, 1990.

[16] R. Servedio. Smooth boosting and learning with malisimoise.Journal of Machine Learning Re-
search 4:633-648, 2003. Preliminary versionfmoc. COLT'01

A Sub-Martingales and Azuma'’s Inequality for Sub-Martingales

A sub-martingalds a sequencg, . .., X7 of random variables with finite means such thatffot i < T,
we haveE[X;|X;_1] > X;_;. (This is the definition given in [1]; the definition in [4] isrenger in that it
requiresE[X;| X1,..., X;1] = X;-1.)

The following theorem is well known, but for completeness give a proof since we could not find
precisely this statement in the literature. The proof igiyedentical to the proof of Theorem 5.2 (Azuma’s
inequality for regular martingales) given in [4].

Theorem 7. [Azuma’s Inequality for Sub-Martingales] Lét= Xy, ..., X7 be a sub-martingale which has
bounded differences, i.e.
|X; — X;-1| <¢ foreachi=1,...,T.

)\2
Pr| X+ < —/\ < ex — .

Then for anyA > 0 we have

17



Proof. As in [4], for any fixedd and|z| < ¢ we have

1 Oc —fc 1 fc —bc
2—C(e —e )ZE+§(€ +e7).

Fori=1,...,TletY; = X; — X;_1,s0[|Y;| < ¢; andE[Y;| X;_1] > 0. Then forf < 0 we have

1

E[?Yi|X;, ] < E|—
X)) < B g
1 Oc; —0c; 1 Oc; —0c;

= 2—Ci(€ —e )E[Yi|Xi—1]+§(€ +e77)

1
5 (690i + 6_€Ci)

S 69205/2

1
(eeci . e—BcZ—)Yi + 5(69@ + B_QCi)|Xi—1

IN

where the last line uses the inequatityh(z) < ¢**/2, valid for all z > 0.
Since
E[e”|X; 1] = B[’ Y- Xx; ] = E[e"Y] X;_4]e %1,

we have
E[e(’Xi|Xi_1] < 6920?/2 . eGXi,l.

So inductively, we have

E[’XT] = E[E[""|Xr ]
< 6920%/2E[69XT,1]

T
S <H 6920?/2> E[69X0]
i=1
et 6%02 tL'T:1 612‘
Consequently foé < 0 we have
Pr[Xp < =) = Pr[e?7 > e
< e@)\E[EGXT]
< IAFEPYL G
Choosd) = —%CQ to minimize this expression, and we have
1=1 "1
/\2
Pr[Xr < —)\] <exp <—#> .
23 i1

18



