
Testing Halfspaces

Kevin Matulef∗
MIT

matulef@mit.edu

Ryan O’Donnell
Carnegie Mellon University

odonnell@cs.cmu.edu

Ronitt Rubinfeld†

MIT
ronitt@theory.csail.mit.edu

Rocco A. Servedio‡

Columbia University
rocco@cs.columbia.edu

October 5, 2007

Abstract

This paper addresses the problem of testing whether a Boolean-valued function f is a halfspace, i.e. a
function of the form f(x) = sgn(w ·x−θ). We consider halfspaces over the continuous domain R

n (en-
dowed with the standard multivariate Gaussian distribution) as well as halfspaces over the Boolean cube
{−1, 1}n (endowed with the uniform distribution). In both cases we give an algorithm that distinguishes
halfspaces from functions that are ε-far from any halfspace using only poly( 1

ε
) queries, independent of

the dimension n.
Two simple structural results about halfspaces are at the heart of our approach for the Gaussian dis-

tribution: the first gives an exact relationship between the expected value of a halfspace f and the sum
of the squares of f ’s degree-1 Hermite coefficients, and the second shows that any function that approxi-
mately satisfies this relationship is close to a halfspace. We prove analogous results for the Boolean cube
{−1, 1}n (with Fourier coefficients in place of Hermite coefficients) for balanced halfspaces in which all
degree-1 Fourier coefficients are small. Dealing with general halfspaces over {−1, 1}n poses significant
additional complications and requires other ingredients. These include “cross-consistency” versions of
the results mentioned above for pairs of halfspaces with the same weights but different thresholds; new
structural results relating the largest degree-1 Fourier coefficient and the largest weight in unbalanced
halfspaces; and algorithmic techniques from recent work on testing juntas [FKR+02].
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1 Introduction

A halfspace is a function of the form f(x) = sgn(w1x1 + · · · + wnxn − θ). Halfspaces are also known
as threshold functions or linear threshold functions; for brevity we shall often refer to them in this paper as
LTFs. LTFs are a simple yet powerful class of functions, which for decades have played an important role
in fields such as complexity theory, optimization, and machine learning (see e.g. [HMP+93, Yao90, Blo62,
Nov62, MP68, STC00]).

In this work, we focus on the halfspace testing problem: given query access to a function, we would
like to distinguish whether it is an LTF or whether it is ε-far from any LTF. This is in contrast to the proper
halfspace learning problem: given examples labeled according to an unknown LTF (either random examples
or queries to the function), find an LTF that it is ε-close to. Though any proper learning algorithm can be used
as a testing algorithm (see, e.g., the observations of [GGR98]), testing potentially requires fewer queries.
Indeed, in situations where query access is available, a query-efficient testing algorithm can be used to check
whether a function is close to a halfspace, before bothering to run a more intensive algorithm to learn which
halfspace it is close to.

Our main result is to show that the halfspace testing problem can be solved with a number of queries
that is independent of n. In doing so, we establish new structural results about LTFs which essentially
characterize LTFs in terms of their degree-0 and degree-1 Fourier coefficients.

We note that any learning algorithm — even one with black-box query access to f — must make at
least Ω(n

ε ) queries to learn an unknown LTF to accuracy ε under the uniform distribution on {−1, 1}n (this
follows easily from, e.g., the results of [KMT93]). Thus the complexity of learning is linear in n, as opposed
to our testing bounds which are independent of n.

We start by describing our testing results in more detail.

Our Results. We consider the standard property testing model, in which the testing algorithm is allowed
black-box query access to an unknown function f and must minimize the number of times it queries f . The
algorithm must with high probability pass all functions that have the property and with high probability fail
all functions that have distance at least ε from any function with the property. Our main algorithmic results
are the following:

1. We first consider functions that map R
n → {−1, 1}, where we measure the distance between func-

tions with respect to the standard n-dimensional Gaussian distribution. In this setting we give a
poly(1

ε ) query algorithm for testing LTFs with two-sided error.

2. [Main Result.] We next consider functions that map {−1, 1}n → {−1, 1}, where (as is standard in
property testing) we measure the distance between functions with respect to the uniform distribution
over {−1, 1}n. In this setting we also give a poly( 1

ε ) query algorithm for testing LTFs with two-sided
error.

Results 1 and 2 show that in two natural settings we can test a highly geometric property — whether or
not the −1 and +1 values defined by f are linearly separable — with a number of queries that is independent
of the dimension of the space. Moreover, the dependence on 1

ε is only polynomial, rather than exponential
or tower-type as in some other property testing algorithms.

While it is slightly unusual to consider property testing under the standard multivariate Gaussian dis-
tribution, we remark that our results are much simpler to establish in this setting because the rotational
invariance essentially means that we can deal with a 1-dimensional problem. We moreover observe that
it seems essentially necessary to solve the LTF testing problem in the Gaussian domain in order to solve
the problem in the standard {−1, 1}n uniform distribution framework; to see this, observe that an unknown
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function f : {−1, 1}n → {−1, 1} to be tested could in fact have the structure

f(x1, . . . , xdm) = f̃

(
x1 + · · · + xm√

m
, . . . ,

x(d−1)m+1 + · · · + xdm√
m

)
,

in which case the arguments to f̃ behave very much like d independent standard Gaussian random variables.
We note that the assumption that our testing algorithm has query access to f (as opposed to, say, access

only to random labeled examples) is necessary to achieve a complexity independent of n. Any LTF testing
algorithm with access only to uniform random examples (x, f(x)) for f : {−1, 1}n → {−1, 1} must use
at least Ω(log n) examples (an easy argument shows that with fewer examples, the distribution on exam-
ples labeled according to a truly random function is statistically indistinguishable from the distribution on
examples labeled according to a randomly chosen variable from {x1, . . . , xn}).

Characterizations and Techniques. We establish new structural results about LTFs which essentially char-
acterize LTFs in terms of their degree-0 and degree-1 Fourier coefficients. For functions mapping {−1, 1}n

to {−1, 1} it has long been known [Cho61] that any linear threshold function f is completely specified by the
n+1 parameters consisting of its degree-0 and degree-1 Fourier coefficients (also referred to as its Chow pa-
rameters). While this specification has been used to learn LTFs in various contexts [BDJ+98, Gol06, Ser07],
it is not clear how it can be used to construct efficient testers (for one thing this specification involves n + 1
parameters, and in testing we want a query complexity independent of n). Intuitively, we get around this
difficulty by giving new characterizations of LTFs as those functions that satisfy a particular relationship
between just two parameters, namely the degree-0 Fourier coefficient and the sum of the squared degree-1
Fourier coefficients. Moreover, our characterizations are robust in that if a function approximately satisfies
the relationship, then it must be close to an LTF. This is what makes the characterizations useful for testing.

We first consider functions mapping R
n to {−1, 1} where we view R

n as endowed with the standard
n-dimensional Gaussian distribution. Our characterization is particularly clean in this setting and illustrates
the essential approach that also underlies the much more involved Boolean case. On one hand, it is not hard
to show that for every LTF f , the sum of the squares of the degree-1 Hermite coefficients1 of f is equal
to a particular function of the mean of f — regardless of which LTF f is. We call this function W ; it is
essentially the square of the “Gaussian isoperimetric” function.

Conversely, Theorem 20 shows that if f : R
n → {−1, 1} is any function for which the sum of the

squares of the degree-1 Hermite coefficients is within ±ε3 of W (E[f ]), then f must be O(ε)-close to an
LTF — in fact to an LTF whose n weights are the n degree-1 Hermite coefficients of f. The value E[f ] can
clearly be estimated by sampling, and moreover it can be shown that a simple approach of sampling f on
pairs of correlated inputs can be used to obtain an accurate estimate of the sum of the squares of the degree-1
Hermite coefficients. We thus obtain a simple and efficient test for LTFs under the Gaussian distribution and
thereby establish Result 1. This is done in Section 4.

In Section 5 we take a step toward handling general LTFs over {−1, 1}n by developing an analogous
characterization and testing algorithm for the class of balanced regular LTFs over {−1, 1}n; these are LTFs
with E[f ] = 0 for which all degree-1 Fourier coefficients are small. The heart of this characterization is a
pair of results, Theorems 24 and 25, which give Boolean-cube analogues of our characterization of Gaussian
LTFs. Theorem 24 states that the sum of the squares of the degree-1 Fourier coefficients of any balanced
regular LTF is approximately W (0) = 2

π . Theorem 25 states that any function f whose degree-1 Fourier
coefficients are all small and whose squares sum to roughly 2

π is in fact close to an LTF — in fact, to one
whose weights are the degree-1 Fourier coefficients of f. Similar to the Gaussian setting, we can estimate
E[f ] by uniform sampling and can estimate the sum of squares of degree-1 Fourier coefficients by sampling
f on pairs of correlated inputs. An additional algorithmic step is also required here, namely checking that

1These are analogues of the Fourier coefficients for L2 functions over R
n with respect to the Gaussian measure; see Section 2.
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all the degree-1 Fourier coefficients of f are indeed small; it turns out that this can be done by estimating
the sum of fourth powers of the degree-1 Fourier coefficients, which can again be obtained by sampling f
on (4-tuples of) correlated inputs.

The general case of testing arbitrary LTFs over {−1, 1}n is substantially more complex and is dealt with
in Section 6. Very roughly speaking, the algorithm has three main conceptual steps:

• First the algorithm implicitly identifies a set of O(1) many variables that have “large” degree-1 Fourier
coefficients. Even a single such variable cannot be explicitly identified using o(log n) queries; we
perform the implicit identification using O(1) queries by adapting an algorithmic technique from
[FKR+02].

• Second, the algorithm analyzes the regular subfunctions that are obtained by restricting these implic-
itly identified variables; in particular, it checks that there is a single set of weights for the unrestricted
variables such that the different restrictions can all be expressed as LTFs with these weights (but dif-
ferent thresholds) over the unrestricted variables. Roughly speaking, this is done using a generalized
version of the regular LTF test that tests whether a pair of functions are close to LTFs over the same
linear form but with different thresholds. The key technical ingredients enabling this are Theorems 37
and 38, which generalize Theorems 24 and 25 in two ways (to pairs of functions, and to functions
which may have nonzero expectation).

• Finally, the algorithm checks that there exists a single set of weights for the restricted variables that
is compatible with the different biases of the different restricted functions. If this is the case then
the overall function is close to the LTF obtained by combining these two sets of weights for the
unrestricted and restricted variables. (Intuitively, since there are only O(1) restricted variables there
are only O(1) possible sets of weights to check here.)

Related Work. Various classes of Boolean functions have recently been studied from a testing perspective.
[PRS02] shows how to test dictator functions, monomials, and O(1)-term monotone DNFs with query com-
plexity O( 1

ε ). [FKR+02] gave algorithms for testing k-juntas with query complexities that are low-order
polynomials in k and 1/ε. On the other hand, [FLN+02] showed that any algorithm for testing mono-
tonicity must have a query complexity which increases with n. See also [AKK+03, BLR93, GGL+00] and
references therein for other work on testing various classes of Boolean functions.

In [DLM+07] a general method is given for testing functions that have concise representations in various
formats; among other things this work shows that the class of decision lists (a subclass of LTFs) is testable
using poly( 1

ε ) queries. The method of [DLM+07] does not apply to LTFs in general since it requires that
the functions in question be “well approximated” by juntas, which clearly does not hold for general LTFs.

Outline of the Paper. In Section 2 we give some notation and preliminary facts used throughout the paper.
In Section 3 we describe a subroutine for estimating sums of powers of Fourier and Hermite coefficients,
based on the notion of Noise Stability. Section 4 contains our algorithm for testing general LTFs over
Gaussian Space. Section 5 contains an algorithm for testing balanced, regular LTFs over {−1, 1}n, a
“warm-up” to our main result. Finally, Section 6 contains our main result, a general algorithm for testing
LTFs over {−1, 1}n

2 Notation and Preliminaries.

Except in Section 4, throughout this paper f will denote a function from {−1, 1}n to {−1, 1} (in Section 4
f will denote a function from R

n to {−1, 1}). We say that a Boolean-valued function g is ε-far from
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f if Pr[f(x) 6= g(x)] ≥ ε; for f defined over the domain {−1, 1}n this probability is with respect to the
uniform distribution, and for f defined over R

n the probability is with respect to the standard n-dimensional
Gaussian distribution.

We make extensive use of Fourier analysis of functions f : {−1, 1}n → {−1, 1} and Hermite analysis
of functions f : R

n → {−1, 1}. In this section we summarize some facts we will need regarding Fourier
analysis of functions f : {−1, 1}n → {−1, 1} and Hermite analysis of functions f : R

n → {−1, 1}.
For more information on Fourier analysis see, e.g., [Šte00]; for more information on Hermite analysis see,
e.g., [LT91].
Fourier analysis. Here we consider functions f : {−1, 1}n → R, and we think of the inputs x to f as
being distributed according to the uniform probability distribution. The set of such functions forms a 2n-
dimensional inner product space with inner product given by 〈f, g〉 = Ex[f(x)g(x)]. The set of functions
(χS)S⊆[n] defined by χS(x) =

∏
i∈S xi forms a complete orthonormal basis for this space. We will also

often write simply xS for
∏

i∈S xi. Given a function f : {−1, 1}n → R we define its Fourier coefficients

by f̂(S) = Ex[f(x)xS ], and we have that f(x) =
∑

S f̂(S)xS . We will be particularly interested in f ’s
degree-1 coefficients, i.e., f̂(S) for |S| = 1; we will write these as f̂(i) rather than f̂({i}). Finally, we have
Plancherel’s identity 〈f, g〉 =

∑
S f̂(S)ĝ(S), which has as a special case Parseval’s identity, Ex[f(x)2] =∑

S f̂(S)2. From this it follows that for every f : {−1, 1}n → {−1, 1} we have
∑

S f̂(S)2 = 1.
Hermite analysis. Here we consider functions f : R

n → R, and we think of the inputs x to f as being
distributed according to the standard n-dimensional Gaussian probability distribution. We treat the set of
square-integrable functions as an inner product space with inner product 〈f, g〉 = Ex[f(x)g(x)] as before.
In the case n = 1, there is a sequence of Hermite polynomials h0 ≡ 1, h1(x) = x, h2(x) = (x2 −
1)/

√
2, . . . that form a complete orthonormal basis for the space; they can be defined via exp(λx−λ2/2) =∑∞

d=0(λ
d/
√

d!)hd(x). In the case of general n, given S ∈ N
n, we have that the collection of n-variate

polynomials HS(x) :=
∏n

i=1 hSi(xi) forms a complete orthonormal basis for the space. Given a square-
integrable function f : R

n → R we define its Hermite coefficients by f̂(S) = 〈f,HS〉 for S ∈ N
n and we

have that f(x) =
∑

S f̂(S)HS(x) (the equality holding in L2). Again, we will be particularly interested in
f ’s “degree-1” coefficients, i.e., f̂(ei), where ei is the vector which is 1 in the ith coordinate and 0 elsewhere.
Recall that this is simply Ex[f(x)xi]. Plancherel and Parseval’s identities also hold in this setting.

We will also use the following definitions:

Definition 1. A “linear threshold function,” or LTF, is a Boolean-valued function of the form f(x) =
sgn(w1x1 + ... + wnxn − θ) where w1, ..., wn, θ ∈ R. The wi’s are called “weights,” and θ is called the
“threshold.” The sgn function is 1 on arguments ≥ 0, and −1 otherwise.

Definition 2. We say that f : {−1, 1}n → {−1, 1} is “τ -regular” if |f̂(i)| ≤ τ for all i ∈ [n].

Definition 3. A function f : {−1, 1}n → {−1, 1} is said to be a “junta on J ⊂ [n]” if f only depends on
the coordinates in J . Typically we think of J as a “small” set in this case.

Definition 4. For a, b ∈ R we write a
η≈ b to indicate that |a − b| ≤ O(η).

and the following simple facts:

Fact 5. Suppose A and B are nonnegative and |A − B| ≤ η. Then |
√

A −
√

B| ≤ η/
√

B.

Proof. |
√

A −
√

B| = |A−B|√
A+

√
B

≤ η√
B

.

Fact 6. If X is a random variable taking values in the range [−1, 1], its expectation can be estimated to
within an additive ±ε, with confidence 1 − δ, using O(log(1/δ)/ε2) queries.

Proof. This follows from a standard additive Chernoff bound.
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3 Tools for Estimating Sums of Powers of Fourier and Hermite Coefficients

In this section we show how to estimate the sum
∑n

i=1 f̂(i)2 for functions over a boolean domain, and
the sum

∑n
i=1 f̂(ei)

2 for functions over gaussian space. This subroutine lies at the heart of our testing
algorithms. We actually prove a more general theorem, showing how to estimate

∑n
i=1 f̂(i)p for any integer

p ≥ 2. Estimating the special case of
∑n

i=1 f̂(i)4 allows us to distinguish whether a function has a single
large |f̂(i)|, or whether all |f̂(i)| are small. The main results in this section are Corollary 13 (along with its
analogue for Gaussian space, Lemma 16), and Lemma 15.

3.1 Noise Stability.

Definition 7. (Noise stability for Boolean functions.) Let f, g : {−1, 1}n → {−1, 1}, let η ∈ [0, 1], and
let (x, y) be a pair of η-correlated random inputs — i.e., x is a uniformly random string and y is formed by
setting yi = xi with probability η and letting yi be uniform otherwise, independently for each i. We define

Sη(f, g) = E[f(x)g(y)].

Fact 8. In the above setting, Sη(f, g) =
∑

S⊆[n] f̂(S)ĝ(S)η|S|.

Definition 9. (Noise stability for Gaussian functions.) Let f, g : R
n → R be in L2(Rn) with respect to

the Gaussian measure, let η ∈ [0, 1], and let (x, y) be a pair of η-correlated n-dimensional Gaussians.
I.e., each pair of coordinates (xi, yi) is chosen independently as follows: xi is a standard 1-dimensional
Gaussian, and yi = ηxi +

√
1 − η2 · zi, where zi is an independent standard Gaussian. We define

Sη(f, g) = E[f(x)g(y)].

Fact 10. In the above setting, Sη(f, g) =
∑

S∈Nn f̂(S)ĝ(S)η|S|, where |S| denotes
∑n

i=1 Si.

3.2 Estimating sums of powers of Fourier coefficients.

For x = (x1, . . . , xn) and S ⊆ [n] we write xS for the monomial
∏

i∈S xi. The following lemma generalizes
Fact 8:

Lemma 11. Fix p ≥ 2. Let f1, . . . , fp be p functions fi : {−1, 1}n → {−1, 1}. Fix any set T ⊆ [n]. Let
x1, . . . , xp−1 be independent uniform random strings in {−1, 1}n and let y be a random string whose bits
are independently chosen with Pr[yi = 1] = 1

2 for i /∈ T and Pr[yi = 1] = 1
2 + 1

2η for i ∈ T. Let � denote
coordinate-wise multiplication. Then

E[f1(x
1)f2(x

2) · · · fp−1(x
p−1)fp(x

1 � x2 � · · · � xp−1 � y)] =
∑

S⊆T
η|S|f̂1(S)f̂2(S) · · · f̂p(S).

Proof. We have

E[f1(x
1)f2(x

2) · · · fp−1(x
p−1)fp(x

1 � x2 � · · · � xp−1 � y)]

= E[
∑

S1,...,Sp⊆[n]

f̂1(S1) · · · f̂p−1(Sp−1)f̂p(Sp) · (x1)S1
· · · (xp−1)Sp−1

(x1 � x2 � · · · � xp−1 � y)Sp ]

=
∑

S1,...,Sp⊆[n]

f̂1(S1) · · · f̂p−1(Sp−1)f̂p(Sp) · E[(x1)S1∆Sp · · · (xp−1)Sp−1∆SpySp ]

Now recalling that x1, . . . , xp−1 and y are all independent and the definition of y, we have that the only
nonzero terms in the above sum occur when S1 = · · · = Sp−1 = Sp ⊆ T ; in this case the expectation is
η|Sp|. This proves the lemma.
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Lemma 12. Let p ≥ 2. Suppose we have black-box access to f1, . . . , fp : {−1, 1}n → {−1, 1}. Then for
any T ⊆ [n], we can estimate the sum of products of degree-1 Fourier coefficients

∑
i∈T

f̂1(i) · · · f̂p(i)

to within an additive η, with confidence 1 − δ, using O(p · log(1/δ)/η4) queries.

Proof. Let x1, . . . , xp be independent uniform random strings in {−1, 1}n and let y be as in the previous
lemma. Empirically estimate

E[f1(x
1)f2(x

2) · · · fp(x
p)] and E[f1(x

1)f2(x
2) · · · fp−1(x

p−1)fp(x
1 � x2 � · · · � xp−1 � y)] (1)

to within an additive ±η2, using O(1/η4) samples. By the previous lemma these two quantities are exactly
equal to

f̂1(∅) · · · f̂p(∅) and
∑

S⊆T
η|S|f̂1(S)f̂2(S) · · · f̂p(S)

respectively. Subtracting the former estimate from the latter yields
∑

|S|>0,S⊆T

η|S|f̂1(S) · · · f̂p(S)

to within an additive O(η2), and this itself is within η2 of
∑

|S|=1,S⊆T

ηf̂1(S) · · · f̂p(S)

because the difference is
∑

|S|>1,S⊆T

η|S|f̂1(S) · · · f̂p(S) ≤ η2 ∑
|S|>1,S⊆T

|f̂1(S) · · · f̂p(S)|

≤ η2
√ ∑

|S|>1,S⊆T

f̂1(S)2
√ ∑

|S|>1,S⊆T

(f̂2(S) · · · f̂p(S))2 (2)

≤ η2 · 1 ·
√ ∑

|S|>1,S⊆T

f̂2(S)2 ≤ η2 (3)

where (2) is Cauchy-Schwarz and (3) uses the fact that the sum of the squares of the Fourier coefficients of
a Boolean function is at most 1. Thus we have η ·∑i∈T f̂1(i) · · · f̂p(i) to within an additive O(η2); dividing
by η gives us the required estimate within O(η).

Taking all fi’s to be the same function f , we have
Corollary 13. Fix p ≥ 2 and fix any T ⊆ [n]. Given black-box access to f : {−1, 1}n → {−1, 1}, we can
estimate

∑
i∈T f̂(i)p to an additive ±η, with confidence 1 − δ, using O(p · log(1/δ)/η4) queries.

Proposition 14. If every i ∈ T has |f̂(i)| < α, then
∑

i∈T f̂(i)4 < α2
∑

i∈T f̂(i)2 ≤ α2.

Lemma 15. Fix any T ⊆ [n]. There is an O(log(1/δ)/τ 16)-query test Non-Regular(τ, δ, T ) which, given
query access to f : {−1, 1}n → {−1, 1}, behaves as follows: with probability 1 − δ,

• If |f̂(i)| ≥ τ for some i ∈ T then the test accepts;

• If every i ∈ T has |f̂(i)| < τ 2/4 then the test rejects.

Proof. The test is to estimate
∑

i∈T f̂(i)4 to within an additive ±τ 4/4 and then accept if and only if the
estimate is at most τ 4/2. If |f̂(i)| ≥ τ for some i then clearly

∑n
i=1 f̂(i)4 ≥ τ4 so the test will accept

since the estimate will be at least 3τ 4/4. On the other hand, if each i ∈ T has |f̂(i)| < τ 2/4, then∑
i∈T f̂(i)4 < τ4/16 by Proposition 14 and so the test will reject since the estimate will be less than

5τ4/16.
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3.3 Estimating sums of powers of Hermite coefficients.

Here we let f̂(ei) denote the i-th degree-1 Hermite coefficient of f : Rn → R as described in Section 4.
For the Gaussian distribution we require only the following lemma, which can be proved in a straight-

forward way following the arguments in Section 3.2 and using Fact 10.

Lemma 16. Given black-box access to f : R
n → {−1, 1}, we can estimate

∑n
i=1 f̂(ei)

2 to within an
additive η, with confidence 1 − δ, using O(log(1/δ)/η4) queries.

4 A Tester for General LTFs over R
n

In this section we consider functions f that map R
n to {−1, 1}, where we view R

n as endowed with the
standard n-dimensional Gaussian distribution. Recall that a draw of x from this distribution over R

n is
obtained by drawing each coordinate xi independently from the standard one-dimensional Gaussian distri-
bution with mean zero and variance 1. In this section we will use Hermite analysis on functions.

Gaussian LTF facts. Let f : Rn → {−1, 1} be an LTF, f(x) = sgn(w·x−θ), and assume by normalization
that ‖w‖ = 1. Now the n-dimensional Gaussian distribution is spherically symmetric, as is the class of LTFs.
Thus there is a sense in which all LTFs with a given threshold θ are “the same” in the Gaussian setting. (This
is very much untrue in the discrete setting of {−1, 1}n.) We can thus derive Hermite-analytic facts about
all LTFs by studying one particular LTF; say, f(x) = sgn(e1 · x − θ). In this case, the picture is essentially
1-dimensional; i.e., we can think of simply h : R → {−1, 1} defined by h(x) = sgn(x − θ), where x is a
single standard Gaussian. The only parameter now is θ ∈ R. Let us give some simple definitions and facts
concerning this function:

Definition 17. Let hθ : R → {−1, 1} be the function of one Gaussian random variable x given by hθ(x) =
sgn(x − θ). We write φ for the p.d.f. of a standard Gaussian; i.e., φ(t) = 1√

2π
e−t2/2.

1. We define the function µ : R ∪ {±∞} → [−1, 1] by µ(θ) = ĥθ(0) = E[hθ]. Explicitly, µ(θ) =
−1+2

∫∞
θ φ. Note that µ is a monotone strictly decreasing function, and it follows that µ is invertible.

2. We have that ĥθ(1) = E[hθ(x)x] = 2φ(θ) (by an easy explicit calculation). We define the function
W : [−1, 1] → [0, 2/π] by W (ν) = (2φ(µ−1(ν)))2. Equivalently, W is defined so that W (E[hθ]) =

ĥθ(1)
2; i.e., W tells us what the squared degree-1 Hermite coefficient should be, given the mean. We

remark that W is a function symmetric about 0, with a peak at W (0) = 2
π .

Proposition 18. 1. If x denotes a standard Gaussian random variable, then E[|x−θ|] = 2φ(θ)−θµ(θ).

2. |µ′| ≤
√

2/π everywhere, and |W ′| < 1 everywhere.

3. If |ν| = 1 − η then W (ν) = Θ(η2 log(1/η)).

Proof. The first statement is because both equal E[hθ(x)(x−θ)]. The bound on µ’s derivative holds because
µ′ = −2φ. The bound on W ’s derivative is because W ′(ν) = 4φ(θ)θ, where θ = µ−1(ν), and this
expression is maximized at θ = ±1, where it is .96788 · · · < 1. Finally, the last statement follows ultimately
from the fact that 1 − µ(θ) ∼ 2φ(θ)/|θ| for |θ| ≥ 1.

Having understood the degree-0 and degree-1 Hermite coefficients for the “1-dimensional” LTF f :
R

n → {−1, 1} given by f(x) = sgn(x1 − θ), we can immediately derive analogues for general LTFs:
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Proposition 19. Let f : R
n → {−1, 1} be the LTF f(x) = sgn(w · x − θ), where w ∈ R

n. By scaling,
assume that ‖w‖ = 1. Then:

1. f̂(0) = E[f ] = µ(θ). 2. f̂(ei) =
√

W (E[f ])wi. 3.

n∑

i=1

f̂(ei)
2 = W (E[f ]).

Proof. The third statement follows from the second, which we will prove. The first statement is left to the
reader. We have f̂(ei) = Ex[sgn(w · x − θ)xi]. Now w · x is distributed as a standard 1-dimensional
Gaussian. Further, w · x and xi are jointly Gaussian with covariance E[(w · x)xi] = wi. Hence (w · x, xi)

has the same distribution as (y, wiy +
√

1 − w2
i · z) where y and z are independent standard 1-dimensional

Gaussians. Thus

E
x
[sgn(w · x − θ)x1] = E[sgn(y − θ)(wiy +

√
1 − w2

i · z)]

= wiĥθ(1) + E[sgn(y − θ)
√

1 − w2
i · z] = wi

√
W (E[hθ]) + 0 =

√
W (E[f ])wi,

as desired.

The second item in the above proposition leads us to an interesting observation: if f(x) = sgn(w1x1 +
· · ·+ wnxn − θ) is any LTF, then its vector of degree-1 Hermite coefficients, (f̂(e1), . . . , f̂(en)), is parallel
to its vector of weights, (w1, . . . , wn).

The tester. We now give a simple algorithm and prove that it accepts any LTF with probability at least
2/3 and rejects any function that is O(ε)-far from all LTFs with probability at least 2/3. The algorithm is
nonadaptive and has two-sided error; the analysis of the two-sided confidence error is standard and will be
omitted.

Given an input parameter ε > 0, the algorithm works as follows:

1. Let µ̃ denote an estimate of E[f ] that is accurate to within additive accuracy ±ε3.

2. Let σ̃2 denote an estimate of
∑n

i=1 f̂(ei)
2 that is accurate to within additive accuracy ±ε3.

3. If |σ̃2 − W (µ̃)| ≤ 2ε3 then output “yes,” otherwise output “no.”

The first step can be performed simply by making O(1/ε6) independent draws from the Gaussian dis-
tribution, querying f on each draw, and letting µ̃ be the corresponding empirical estimate of E[f ]; the result
will be ±ε3-accurate with high probability. The second step of estimating

∑n
i=1 f̂(ei)

2 was described in
section 3.

We now analyze the correctness of the test. The “yes” case is quite easy: Since µ̃ is within ±ε3 of E[f ],
and since |W ′| ≤ 1 for all x (by Proposition 18 item 2), we conclude that W (µ̃) is within ±ε3 of the true
value W (E[f ]). But since f is an LTF, this value is precisely

∑n
i=1 f̂(ei)

2, by Proposition 19 item 3. Now
σ̃2 is within ±ε3 of

∑n
i=1 f̂(ei)

2, and so the test indeed outputs “yes”.
As for the “no” case, the following theorem implies that any function f which passes the test with high

probability is O(ε)-close to an LTF (either a constant function ±1 or a specific LTF defined by E[f ] and f ’s
degree-1 Hermite coefficients):

Theorem 20. Assume that |E[f ]| ≤ 1 − ε. If |∑n
i=1 f̂(ei)

2 − W (E[f ])| ≤ 4ε3, then f is O(ε)-close to an
LTF (in fact to an LTF whose coefficients are the Hermite coefficients f̂(ei)).
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Proof. Let σ =
√∑

i f̂(ei)2, let t = µ−1(E[f ]), and let h(x) = 1
σ

∑
f̂(ei)xi − t. We will show that f and

the LTF sgn(h) are O(ε)-close, by showing that both functions are correlated similarly with h. We have

E[fh] =
1

σ

∑

i

f̂(ei)
2 − tE[f ] = σ − tE[f ],

where the first equality uses Plancherel. On the other hand, by Proposition 18 (item 1), we have

E[|h|] = 2φ(t) − tµ(t) = 2φ(µ−1(E[f ])) − tE[f ] =
√

W (E[f ]) − tE[f ], and thus

E[h(sgn(h) − f)] = E[|h| − fh] =
√

W (E[f ]) − σ ≤ 4ε3

√
W (E[f ])

≤ Cε2,

where C > 0 is some universal constant. Here the first inequality follows easily from W (E[f ]) being
4ε3-close to σ2 (see Fact 5) and the second follows from the assumption that |E[f ]| ≤ 1 − ε, which by
Proposition 18 (item 3) implies that

√
W (E[f ]) ≥ Ω(ε).

Now given that E[h(sgn(h) − f)] ≤ Cε2, the value of Pr[f(x) 6= sgn(h(x))] is greatest if the points
of disagreement are those on which h is smallest. Let p denote Pr[f 6= sgn(h)]. Since h is a normal
random variable with variance 1, it is easy to see that Pr[|h| ≤ p/2] ≤ 1√

2π
p ≤ p/2. It follows that f and

sgn(h) disagree on a set of measure at least p/2, over which |h| is at least p/2. Thus, E[h(sgn(h) − f)] ≥
2 · (p/2) · (p/2) = p2/2. Combining this with the above, it follows that p ≤

√
2C · ε, and we are done.

5 A Tester for Balanced Regular LTFs over {−1, 1}n

It is natural to hope that an algorithm similar to the one we employed in the Gaussian case — estimating
the sum of squares of the degree-1 Fourier coefficients of the function, and checking that it matches up with
W of the function’s mean — can be used for LTFs over {−1, 1}n as well. It turns out that LTFs which are
what we call “regular” — i.e., they have all their degree-1 Fourier coefficients small in magnitude — are
amenable to the basic approach from Section 4, but LTFs which have large degree-1 Fourier coefficients pose
significant additional complications. For intuition, consider Maj(x) = sgn(x1 + · · · + xn) as an example
of a highly regular halfspace and sgn(x1) as an example of a halfspace which is highly non-regular. In the
first case, the argument x1 + · · · + xn behaves very much like a Gaussian random variable so it is not too
surprising that the Gaussian approach can be made to work; but in the second case, the ±1-valued random
variable x1 is very unlike a Gaussian.

We defer the general case to Section 6, and here present a tester for balanced, regular LTFs.

Definition 21. We say that any function f : {−1, 1}n → {−1, 1} is “τ -regular” if |f̂(i)| ≤ τ for all i ∈ [n].

Definition 22. We say that an LTF f : {−1, 1}n → {−1, 1} is “balanced” if it has threshold zero and mean
zero. We define LTFn,τ to be the class of all balanced, τ -regular LTFs.

The balanced regular LTF subcase gives an important conceptual ingredient in the testing algorithm
for general LTFs and admits a relatively self-contained presentation. As we discuss in Section 6, though,
significant additional work is required to get rid of either the “balanced” or “regular” restriction.

The following theorem shows that we can test the class LTFn,τ with a constant number of queries:

Theorem 23. Fix any τ > 0. There is an O(1/τ 8)-query algorithm A that satisfies the following property:
Let ε be any value ε ≥ Cτ 1/6, where C is an absolute constant. Then if A is run with input ε and black-box
access to any f : {−1, 1}n → {−1, 1},

• if f ∈ LTFn,τ then A outputs “yes” with probability at least 2/3;

9



• if f is ε-far from every function in LTFn,τ then A outputs “no” with probability at least 2/3.

The algorithm A in Theorem 23 has two steps. The purpose of Step 1 is to check that f is roughly τ -
regular; if it is not, then the test rejects since f is certainly not a τ -regular halfspace. In Step 2, A checks that∑n

i=1 f̂(i)2 ≈ W (0) = 2
π . This check is based on the idea (see Section 5.1) that for any regular function f ,

the degree-1 Fourier weight is close to 2
π if and only if f is close to being an LTF. (Note the correspondence

between this statement and the results of Section 4 in the case E[f ] = 0.)
We now describe algorithm A, which takes as input a parameter ε ≥ Cτ 1/6:

1. First A estimates
∑n

i=1 f̂(i)4 to within an additive ±τ 2. If the estimate is greater than 2τ 2 then A
halts and outputs “no,” otherwise it continues.

2. Next A estimates
∑n

i=1 f̂(i)2 to within an additive ±C1τ
1/3 (where C1 > 0 is an absolute constant

specified below). If this estimate is within an additive ±2C1τ
1/3 of 2

π then A outputs “yes”, otherwise
it outputs “no.”

A description of how the sums of powers of degree-1 Fourier coefficients can be estimated is given in
Section 3, see Corollary 13 in particular.

In Section 5.1, we prove two theorems showing that balanced regular LTFs are essentially characterized
by the property

∑n
i=1 f̂(i)2 ≈ 2

π . In Section 5.2 we prove correctness of the test.

5.1 Two theorems about LTFn,τ .

The first theorem of this section tells us that any f ∈ LTFn,τ has sum of squares of degree-1 Fourier
coefficients very close to 2

π . The next theorem is a sort of dual; it states that any Boolean function f whose
degree-1 Fourier coefficients are all small and have sum of squares ≈ 2

π is close to being a balanced regular
LTF (in fact, to the LTF whose weights equal f ’s degree-1 Fourier coefficients). Note the similarity in spirit
between these results and the characterization of LTFs with respect to the Gaussian distribution that was
provided by Proposition 19 item 3 and Theorem 20.

Theorem 24. Let f ∈ LTFn,τ . Then
∣∣∣
∑n

i=1 f̂(i)2 − 2
π

∣∣∣ ≤ O(τ2/3).

Proof. Let ρ > 0 be small (chosen later). Using Proposition 7.1 and Theorem 5 of [KKMO07], we have

∑
S

ρ|S|f̂(S)2 =
2

π
arcsin ρ ± O(τ).

On the LHS side we have that f̂(S) = 0 for all even |S| since f is an odd function, and therefore,
|∑S ρ|S|f̂(S)2 − ρ

∑
|S|=1 f̂(S)2| ≤ ρ3

∑
|S|≥3 f̂(S)2 ≤ ρ3. On the RHS, by a Taylor expansion we

have 2
π arcsin ρ = 2

πρ + O(ρ3). We thus conclude

ρ
n∑

i=1
f̂(i)2 =

2

π
ρ ± O(ρ3 + τ).

Dividing by ρ and optimizing with ρ = Θ(τ 1/3) completes the proof.

Theorem 25. Let f : {−1, 1}n → {−1, 1} be any function such that |f̂(i)| ≤ τ for all i and |∑n
i=1 f̂(i)2−

2
π | ≤ γ. Write `(x) :=

∑n
i=1 f̂(i)xi. Then f and sgn(`(x)) are O(

√
γ + τ)-close.
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Proof. First note that if γ > 1/3 then the claimed bound is vacuous, so we may assume that γ ≤ 1/3. Let
L :=

√∑n
i=1 f̂(i)2; note that by our assumption on γ we have L ≥ 1

2 . We have:

(2/π) − γ ≤
n∑

i=1
f̂(i)2 = E[f`] ≤ E[|`|] (4)

≤
√

2/π · L + O(τ) (5)
≤

√
2/π

√
2/π + γ + O(τ) ≤ (2/π) + O(γ) + O(τ).

The equality in (4) is Plancherel’s identity, and the latter inequality is because f is a ±1-valued function.
The inequality (5) holds for the following reason: `(x) is a linear form over random ±1’s in which all the
coefficients are at most τ in absolute value. Hence we expect it to act like a Gaussian (up to O(τ) error)
with standard deviation L, which would have expected absolute value

√
2/π ·L. See Propositions 58 and 59

in Appendix A for the precise justification. Comparing the overall left- and right-hand sides, we conclude
that E[|`|] −E[f`] ≤ O(γ) + O(τ).

Let ε denote the fraction of points in {−1, 1}n on which f and sgn(`) disagree. Given that there is a ε
fraction of disagreement, the value E[|`|] − E[f`] is smallest if the disagreement points are precisely those
points on which |`(x)| takes the smallest value. Now again we use the fact that ` should act like a Gaussian
with standard deviation L, up to some error O(τ/L) ≤ O(2τ); we can assume this error is at most ε/4,
since if ε ≤ O(τ) then the theorem already holds. Hence we have (see Theorem 55 for precise justification)

Pr[|`| ≤ ε/8] = Pr[|`/L| ≤ ε/8L] ≤ Pr[|N(0, 1)| ≤ ε/8L] + ε/4 ≤ ε/8L + ε/4 ≤ ε/2,

since L ≥ 1/2. It follows that at least an ε/2 fraction of inputs x have both f(x) 6= sgn(`(x)) and
|`(x)| > ε/8. This implies that E[|`|] −E[f`] ≥ 2 · (ε/2) · (ε/8) = ε2/8. Combining this with the previous
bound E[|`|] −E[f`] ≤ O(γ) + O(τ), we get ε2/8 ≤ O(γ) + O(τ) which gives the desired result.

5.2 Proving correctness of the test.

First observe that for any Boolean function f : {−1, 1}n → {−1, 1}, if |f̂(i)| ≤ τ for all i then
∑

i∈T f̂(i)4 ≤
τ2
∑

i∈T f̂(i)2 ≤ τ2, using Parseval. On the other hand, if |f̂(i)| ≥ 2τ 1/2 for some i, then
∑n

i=1 f̂(i)4 is
certainly at least 16τ 2.

Suppose first that the function f being tested belongs to LTFn,τ . As explained above, in this case f will
with high probability pass Step 1 and continue to Step 2. By Theorem 24 the true value of

∑n
i=1 f̂(i)2 is

within an additive O(τ 2/3) of 2
π ; since O(τ 2/3) ≤ C1τ

1/3 the algorithm outputs “yes” with high probability.
So the algorithm behaves correctly on functions in LTFn,τ .

Now suppose f : {−1, 1}n → {−1, 1} is such that the algorithm outputs “yes” with high probability;
we show that f must be ε-close to some function in LTFn,τ . Since there is a low probability that A outputs
“no” in Step 1 on f , it must be the case that each |f̂(i)| is at most 2τ 1/2. Since f outputs “yes” with high
probability in Step 2, it must be the case that

∑n
i=1 f̂(i)2 is within an additive O(τ 1/3) of 2

π . Plugging in
2τ1/2 for “τ” and O(τ 1/3) for “γ” in Theorem 25, we have that f is Cτ 1/6-close to sgn(`(x)) where C is
some absolute constant. This proves the correctness of A.

To analyze the query complexity, note that Corollary 13 tells us that Step 1 requires O(1/τ 8) many
queries, and Step 2 only O(1/τ 4/3), so the total query complexity is O(1/τ 8). This completes the proof of
Theorem 23.

6 A Tester for General LTFs over {−1, 1}n

In this section we give our main result, a constant-query tester for general halfspaces over {−1, 1}n. We
start with a very high-level overview of our approach.
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As we saw in Section 5, it is possible to test a function f for being close to a balanced τ -regular LTF.
The key observation was that such functions have

∑n
i=1 f̂(i)2 approximately equal to 2

π if and only if they
are close to LTFs. Furthermore, in this case, the functions are actually close to being the sign of their degree-
1 Fourier part. It remains to extend the test described there to handle general LTFs which may be unbalanced
and/or non-regular.

A clear approach suggests itself for handling unbalanced regular LTFs using the W (·) function as in
Section 4. This is to try to show that for f an arbitrary τ -regular function, the following holds:

∑n
i=1 f̂(i)2

is approximately equal to W (E[f ]) if and only if f is close to an LTF — in particular, close to an LTF whose
linear form is the degree-1 Fourier part of f . The “only if” direction here is not too much more difficult than
Theorem 25 (see Theorem 38 in Section 6.2), although the result degrades as the function’s mean gets close
to 1 or −1. However the “if” direction turns out to present a significant probabilistic difficulty.

In the proof of Theorem 24, the special case of mean-zero, we appealed to two results from [KKMO07].
The first shows that a balanced τ -regular LTF can be represented with “small weights” (small compared to
their sum-of-squares); the second shows that

∑
S ρ|S|f̂(S)2 is close to 2

π arcsin ρ for balanced LTFs with
small weights. It is not too hard to appropriately generalize the second of these to unbalanced LTFs with
small weights (see Theorem 37 in Section 6.2). However generalizing the first result to unbalanced LTFs is
quite complicated, and requires the following theorem, which we prove in Section 6.1:2

Theorem 26. Let f(x) = sgn(w1x1+· · ·+wnxn−θ) be an LTF such that
∑

i w2
i = 1 and δ := |w1| ≥ |wi|

for all i ∈ [n]. Let 0 ≤ ε ≤ 1 be such that |E[f ]| ≤ 1 − ε. Then |f̂(1)| ≥ Ω(δε6 log(1/ε)).

We now discuss removing the regularity condition; this requires additional analytic work and moreover
requires that several new algorithmic ingredients be added to the test. Given any Boolean function f , Parse-
val’s inequality implies that J := {i : |f̂(i)| ≥ τ 2} has cardinality at most 1/τ 4. Let us pretend for now that
the testing algorithm could somehow know the set J . (If we allowed the algorithm Θ(log n) many queries,
it could in fact exactly identify some set like J . However with constantly many queries this is not possible.
We ignore this problem for the time being, and will discuss how to get around it at the end of this section.)

Our algorithm first checks whether it is the case that for all but an ε fraction of restrictions ρ to J , the
restricted function fρ is ε-close to a constant function. If this is the case, then f is an LTF if and only if f is
close to an LTF which depends only on the variables in J . So in this case the tester simply enumerates over
“all” LTFs over J and checks whether f seems close to any of them. (Note that since J is of constant size
there are at most constantly many LTFs to check here.)

It remains to deal with the case that for at least an ε fraction of restrictions to J , the restricted function is
ε-far from a constant function. In this case, it can be shown using Theorem 26 that if f is an LTF then in fact
every restriction of the variables in J yields a regular subfunction. So it can use the testing procedure for
(general mean) regular LTFs already described to check that for most restrictions π, the restricted function
fπ is close to an LTF — indeed, close to an LTF whose linear form is its own degree-1 Fourier part.

This is a good start, but it is not enough. At this point the tester is confident that most restricted functions
fπ are close to LTFs whose linear forms are their own degree-1 Fourier parts — but in a true LTF, all of
these restricted functions are expressible using a common linear form. Thus the tester needs to test pairwise
consistency among the linear parts of the different fπ’s.

To do this, recall that when the algorithm tests that a restricted function fπ is close to an LTF, the actual
test is that there is near-equality in the inequality

∑
|S|=1 f̂π(S)2 ≤ W (E[fπ]). If this holds for both fπ

and fπ′ , the algorithm can further check that the degree-1 parts of fπ and fπ′ are essentially parallel (i.e.,
equivalent) by testing that near-equality holds in the Cauchy-Schwarz inequality

∑
|S|=1 f̂π(S)f̂π′(S) ≤√

W (E[fπ])
√

W (E[fπ′ ]). Thus to become convinced that most restricted fπ’s are close to LTFs over the
2Readers familiar with the notion of influence (Definition 60) will recall that for any LTF f we have Inf i(f) = |f̂ (i)| for each i.

Thus Theorem 26 may roughly be viewed as saying that “every not-too-biased LTF with a large weight has an influential variable.”
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same linear form, the tester can pick a particular fπ∗ and check that
∑

|S|=1 f̂π∗(S)f̂π(S) ≈
√

W (E[fπ∗ ])·√
W (E[fπ]) for most π’s. (At this point there is one caveat. As mentioned earlier, the general-mean LTF

tests degrade when the function being tested has mean close to 1 or −1. For the above-described test to
work, fπ∗ needs to have mean somewhat bounded away from 1 and −1, so it is important that the algorithm
uses a restriction π∗ that has |E[f ]| bounded away from 1. Fortunately, finding such a restriction is not a
problem since we are in the case in which at least an ε fraction of restrictions have this property.)

Now the algorithm has tested that there is a single linear form ` (with small weights) such that for most
restrictions π to J , fπ is close to being expressible as an LTF with linear form `. It only remains for the
tester to check that the thresholds — or essentially equivalently, for small-weight linear forms, the means
— of these restricted functions are consistent with some arbitrary weight linear form on the variables in J .
It can be shown that there are at most 2poly(|J |) essentially different such linear forms w ·π− θ, and thus the
tester can just enumerate all of them and check whether for most π’s it holds that E[fπ] is close to the mean
of the threshold function sgn(` − (θ − w · π)). This will happen for one such linear form if and only if f is
close to being expressible as the LTF h(π, x) = sgn(w · π + ` − θ).

This completes the sketch of the testing algorithm, modulo the explanation of how the tester can get
around “knowing” what the set J is. Looking carefully at what the tester needs to do with J , it turns out
that it suffices for it to be able to query f on random strings and correlated tuples of strings, subject to given
restrictions π to J . This can be done essentially by borrowing a technique from the paper [FKR+02] (see
the discussion after Theorem 42 in Section 6.4.2).

In the remainder of this section we make all these ideas precise and prove the following, which is our
main result:

Theorem 27. There is an algorithm Test-LTF for testing whether an arbitrary black-box f : {−1, 1}n →
{−1, 1} is an LTF versus ε-far from any LTF. The algorithm has two-sided error and makes at most
poly(1/ε) queries to f.

Remark 28. The algorithm described above is adaptive. We note that similar to [FKR+02], the algorithm
can be made nonadaptive with a polynomial factor increase in the query complexity (see Remark 44 in
Section 6.4.2).

Section 6.1 gives the proof of Theorem 26. Section 6.2 gives two theorems essentially characterizing
LTFs; these theorems are the main tools in proving the correctness of our test. Section 6.3 gives an overview
of the algorithm, which is presented in Sections 6.4 and 6.5. Section 6.6 proves correctness of the test.

6.1 On the structure of LTFs: relating weights, influences and biases

In this section we prove a structural theorem about LTFs. The theorem says that an LTF’s most influential
variable has influence at least polynomial in the size of the LTF’s largest weight and the size of the LTF’s
bias.

Theorem 26. Let f(x) = sgn(
∑n

i=1 aixi − θ) be an LTF such that
∑

i a
2
i = 1 and δ

def
= |a1| ≥ |ai| for all

i ∈ [n]. Let 0 ≤ ε ≤ 1 be such that |E[f ]| = 1 − ε. Then Inf 1(f) = Ω(δε6 log(1/ε)).

Even the θ = 0 case of the theorem, corresponding to ε = 1, is somewhat tricky to prove. It appeared
first as Proposition 10.2 of [KKMO07]. A substantially more intricate proof is required for the general
statement; indeed, the arguments of [KKMO07] occur in somewhat modified form as Cases 1.a and 1.b of
our proof below.

We note that it is easy to give an upper bound on Inf1(f) in terms of either δ or ε: it is immediate that
Inf1(f) ≤ O(ε), and from Proposition 64 we have that Inf1(f) ≤ O(δ). We suspect that Θ(δε) may be the
optimal bound for Theorem 26.
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6.1.1 Useful tools for proving Theorem 26.

We first observe that
Inf1(f) = Pr

[
|a2x2 + · · · + anxn − θ| ≤ δ

]
. (6)

We shall prove Theorem 26 by lower bounding the right hand side of (6).
At many points in the proof of Theorem 26 we will use the following fact, which is a simple consequence

of “Poincaré’s inequality” — i.e., the fact that the sum of a function’s influences is at least its variance:

Fact 29. Let g : {−1, 1}` → {−1, 1} be a linear threshold function g(x) = sgn(
∑`

i=1 aixi − θ) with
|a1| ≥ |ai| for all i = 1, . . . , `. Then Inf1(g) ≥ Var[g]/`.

Proof. Poincaré’s inequality says that
∑`

i=1 Infi(g) ≥ Var[g] for any Boolean function g. Since |a1| ≥ |ai|
for all i (Proposition 61), we have Inf1(g) ≥ Inf i(g), and the fact follows.

The following easily verified fact is also useful:

Fact 30. Let g : {−1, 1}` → {−1, 1} be a linear threshold function g(x) = sgn(
∑`

i=1 aixi − θ) with
|a1| > |θ|. Then Var[g] = Ω(1).

Proof. Since |a1| > |θ|, one of the two restrictions obtained by fixing the first variable outputs 1 at least
half the time, and the other outputs −1 at least half the time. This implies that 1/4 ≤ Pr[g(x) = 1] < 3/4,
which gives Var[g] = Ω(1).

We will also often use the Berry-Esseen theorem, Theorem 55. For definiteness, we will write C for
the implicit constant in the O(·) of the statement, and we note that for every interval A we in fact have
|Pr[`(x)/σ ∈ A] − Pr[X ∈ A]| ≤ 2Cτ/σ.

Finally, we will also use the Hoeffding bound:

Theorem 31. Fix any 0 6= w ∈ R
n and write ‖w‖ for

√
w2

1 + · · · + w2
n. For any γ > 0, we have

Pr
x∈{−1,1}n

[w · x ≥ γ‖w‖] ≤ e−γ2/2 and Pr
x∈{−1,1}n

[w · x ≤ −γ‖w‖] ≤ e−γ2/2.

6.1.2 The idea behind Theorem 26.

We give a high-level outline of the proof before delving into the technical details. Here and throughout the
proof we suppose for convenience that δ = |a1| ≥ |a2| ≥ · · · ≥ |an| ≥ 0.

We first consider the case (Case 1) that the biggest weight δ is small relative to ε. We show that with
probability Ω(ε2), the “tail” aβxβ + · · · + anxn of the linear form (for a suitably chosen β) takes a value
in [θ − 1, θ + 1]; this means that the effective threshold for the “head” a2x2 + · · · + aβ−1xβ−1 is in the
range [−1, 1]. In this event, a modified version of the [KKMO07] proof shows that the probability that
a2x2 + · · ·+ aβ−1xβ−1 lies within ±δ of the effective threshold is Ω(δ); this gives us an overall probability
bound of Ω(δε2) for (6) in Case 1.

We next consider the case (Case 2) that the biggest weight δ is large. We define the “critical index”
of the sequence a1, . . . , an to be the first index k ∈ [n] at which the Berry-Esseen theorem applied to the
sequence ak, . . . , an has a small error term; see Definition 35 below. (This quantity was implicitly defined
and used in [Ser07].) We proceed to consider different cases depending on the size of the critical index.

Case 2.a handles the case in which the critical index k is “large” (larger than Θ(log(1/ε)/ε4). Intuitively,
in this case the weights a1, . . . , ak decrease exponentially and the value

∑
j≥k′ a2

j is very small, where
k′ = Θ(log(1/ε)/ε4). The rough idea in this case is that the effective number of relevant variables is at
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most k′, so we can use Fact 29 to get a lower bound on Inf1. (There are various subcases here for technical
reasons but this is the main idea behind all of them.)

Case 2.b handles the case in which the critical index k is “small” (smaller than Θ(log(1/ε)/ε4)). Intu-
itively, in this case the value σk

def
=
√∑

j≥k a2
j is large, so the random variable akxk + · · · + anxn behaves

like a Gaussian random variable N(0, σk) (recall that since k is the critical index, the Berry-Esseen error
is “small”). Now there are several different subcases depending on the relative sizes of σk and θ, and on
the relative sizes of δ and θ. In some of these cases we argue that “many” restrictions to the tail variables
xk, . . . , xn yield a resulting LTF which has “large” variance; in these cases we can use Fact 29 to argue that
for any such restriction the influence of x1 is large, so the overall influence of x1 cannot be too small. In the
other cases we use the Berry-Esseen theorem to approximate the random variable akxk + · · · + anxn by a
Gaussian N(0, σk), and use properties of the Gaussian to argue that the analogue to expression (6) (with a
Gaussian in place of akxk + · · · + anxn) is not too small.

6.1.3 The detailed proof of Theorem 26.

We suppose without loss of generality that E[f ] = −1+ ε, i.e. that θ ≥ 0. We have the following two useful
facts:

Fact 32. We have 0 ≤ θ ≤
√

2 ln(2/ε).

Proof. The lower bound is by assumption, and the upper bound follows from the Hoeffding bound and the
fact that E[f ] = −1 + ε.

Fact 33. Let S be any subset of variables x1, . . . , xn. For at least an ε/4 fraction of restrictions ρ that fix
the variables in S and leave other variables free, we have E[fρ] ≥ −1 + ε/4.

Proof. If this were not the case then we would have E[f ] < (ε/4) · 1 + (1 − ε/4)(−1 + ε/4) < −1 + ε,
which contradicts the fact that E[f ] = −1 + ε.

Now we consider the cases outlined in the previous subsection. Recall that C is the absolute constant in
the Berry-Esseen theorem; we shall suppose w.l.o.g. that C is a positive integer. Let C1 > 0 be a suitably
large (relative to C) absolute constant to be chosen later.

Case 1: δ ≤ ε2/C1. We will show that in Case 1 we actually have Inf 1(f) = Ω(δε2).

Let us define T
def
= {β, . . . , n} where β ∈ [n] is the last value such that

∑n
i=β a2

i ≥ 1
2 . Since each |ai| is

at most ε2/C1 ≤ 1/C1 (because we are in Case 1), we certainly have that
∑

i∈T a2
i ∈ [12 , 3

4 ] by choosing C1

suitably large.
We first show that the tail sum

∑
i∈T aixi lands in the interval [θ−1, θ +1] with fairly high probability:

Lemma 34. We have

Pr

[∑

i∈T

aixi ∈ [θ − 1, θ + 1]

]
≥ ε2/18.

Proof. Let σT denote
(∑

i∈T a2
i

)1/2
. As noted above we have

√
4/3 ≤ σ−1

T ≤
√

2. We thus have

Pr

[∑

i∈T

aixi ∈ [θ − 1, θ + 1]

]
= Pr

[
σ−1

T

∑

i∈T

aixi ∈ σ−1
T [θ − 1, θ + 1]

]

≥ Φ([σ−1
T θ − σ−1

T , σ−1
T θ + σ−1

T ]) − 2Cδσ−1
T (7)

> Φ([σ−1
T θ − σ−1

T , σ−1
T θ + σ−1

T ]) − 2
√

2Cδ (8)
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where (7) follows from the Berry-Esseen theorem using the fact that each |ai| ≤ δ.
If 0 ≤ θ ≤ 1, then clearly the interval [σ−1

T θ − σ−1
T , σ−1

T θ + σ−1
T ] contains the interval [0, 1]. Since

Φ([0, 1]) ≥ 1
3 , the bound δ ≤ ε2/C1 easily gives that (8) is at least ε2/18 as required, for a suitably large

choice of C1.
If θ > 1, then using our bounds on σ−1

T we have that

Φ([σ−1
T θ − σ−1

T , σ−1
T θ + σ−1

T ]) ≥ Φ([
√

2 · θ −
√

4/3,
√

2 · θ +
√

4/3)

> Φ([
√

2 · θ −
√

4/3,
√

2 · θ])

>
√

4/3 · φ(
√

2 · θ)

≥
√

4/3 · φ(2
√

ln(2/ε)) (9)

=

√
4

3
· 1√

2π
· ε2

4
>

ε2

9
. (10)

Here (9) follows from Fact 32 and (10) follows from definition of φ(·). Since δ ≤ ε2/C1, again with a
suitably large choice of C1 we easily have 2

√
2Cδ ≤ ε2/18, and thus (8) is at least ε2/18 as required and

the lemma is proved.

Now consider any fixed setting of xβ, . . . , xn such that the tail
∑

i∈T aixi comes out in the interval
[θ − 1, θ + 1], say

∑
i∈T aixi = θ − τ where |τ | ≤ 1. We show that the head a2x2 + · · ·+ aβ−1xβ−1 lies in

[τ − δ, τ + δ] with probability Ω(δ); with Lemma 34, this implies that the overall probability (6) is Ω(δε2).

Let α
def
= C2

1/8, let S
def
= {α, . . . , β − 1}, and let R

def
= {2, . . . , α − 1}. Since δ ≤ ε2/C1, we have

that
∑α−1

i=1 a2
i ≤ 1/8, so consequently 1/8 ≤ ∑

i∈S a2
i ≤ 1/2. Letting σS denote (

∑
i∈S a2

i )
1/2, we have√

2 ≤ σ−1
S ≤ 2

√
2.

We now consider two cases depending on the magnitude of aα. Let C2
def
= C1/4.

Case 1.a: |aα| ≤ δ/C2. In this case we use the Berry-Esseen theorem on S to obtain

Pr

[∑

i∈S

aixi ∈ [τ − δ, τ + δ]

]
= Pr

[
σ−1

S

∑

i∈S

aixi ∈ σ−1
S [τ − δ, τ + δ]

]

≥ Φ([σ−1
S τ − σ−1

S δ, σ−1
S τ + σ−1

S δ]) − 2C(δ/C2)σ
−1
S . (11)

Using our bounds on τ and σ−1
S , we have that the Φ(·) term of (11) is at least (

√
2δ) · φ(2

√
2) > δ/100.

Since the error term 2C(δ/C2)σ
−1
S is at most δ/200 for a suitably large choice of C1 relative to C (recall

that C2 = C1/4), we have (11) ≥ δ/200. Now for any setting of xα, . . . , xβ−1 such that
∑

i∈S aixi lies
in [τ − δ, τ + δ], since each of |a2|, . . . , |aα−1| is at most δ there is (at least one) corresponding setting of
x2, . . . , xα−1 such that

∑
i∈(R∪S) aixi also lies in [τ − δ, τ + δ]. (Intuitively, one can think of successively

setting each bit xα−1, xα−2, . . . , xj , . . . , x2 in such a way as to always keep
∑β−1

i=j aixi in [τ −δ, τ +δ]). So
the overall probability that a2x2 + · · ·+ aβ−1xβ−1 lies in [τ − δ, τ + δ] is at least (δ/200) · 2−α+2 = Ω(δ),
and we are done with Case 1.a.

Case 1.b: aα > δ/C2. Similar to Case 2 of [KKMO07], we again use the Berry-Esseen theorem on S, now
using the bound that |ai| ≤ δ for each i ∈ S and bounding the probability of a larger interval [τ − C2δ, τ +
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C2δ]:

Pr

[∑

i∈S

aixi ∈ [τ − C2δ, τ + C2δ]

]

= Pr

[
σ−1

S

∑

i∈S

aixi ∈ σ−1
S [τ − C2δ, τ + C2δ]

]

≥ Φ([σ−1
S τ − σ−1

S C2δ, σ
−1
S τ + σ−1

S C2δ]) − 2Cδσ−1
S (12)

≥ Φ([2
√

2 −
√

2C2δ, 2
√

2]) − 4
√

2Cδ (13)

In (12) we have used the Berry-Esseen theorem and in (13) we have used our bounds on σ−1
S and τ . Now

recalling that δ ≤ ε2/C1 ≤ 1/C1 and C2 = C1/4, we have
√

2C2δ < 2
√

2, and hence

(13) ≥
√

2C2δ · φ(2
√

2) − 4
√

2Cδ > Cδ (14)

where the second inequality follows by choosing C1 (and hence C2) to be a sufficiently large constant
multiple of C. Now for any setting of xα, . . . , xβ−1 such that

∑
i∈S aixi = t lies in [τ −C2δ, τ +C2δ], since

δ/C2 ≤ |a2|, . . . , |aα−1| ≤ δ, there is at least one setting of the bits x2, . . . , xα−1 for which t +
∑α−1

i=2 aixi

lies in [τ−δ, τ+δ]. (Since, as is easily verified from the definitions of α and C2, we have (α−2)δ/C2 ≥ C2δ,
the magnitude of a2, . . . , aα−1 is large enough to get from τ−C2δ to τ ; and since each |ai| is at most δ, once
the interval [τ − δ, τ + δ] is reached a suitable choice of signs will keep the sum in the right interval.) So in
Case 1.b. the overall probability that a2x2+· · ·+aβ−1xβ−1 lies in [τ−δ, τ+δ] is at least Cδ·2−α+2 = Ω(δ),
and we are done with Case 1.b..

We turn to the remaining case in which δ is “large:”

Case 2: δ > ε2/C1. Let us introduce the following definition which is implicit in [Ser07]:

Definition 35. Let a1, . . . , an be a sequence of values such that |a1| ≥ · · · ≥ |an| ≥ 0. The critical index of
the sequence is the smallest value of k ∈ [n] such that

C|ak|√∑n
j=k a2

j

≤ C3δε
2. (15)

Here C3 > 0 is a (suitably small) absolute constant specified below. (Note that the LHS value C|ak|/
√∑n

j=k a2
j

is an upper bound on the Berry-Esseen error when the theorem is applied to akxk + · · · + anxn.)

Throughout the rest of the proof we write k to denote the critical index of a1, . . . , an. Observe that
k > 1 since we have

C|a1|√∑n
j=1 a2

j

= Cδ >
Cε2

C1
≥ Cδε2

C1
> C3δε

2

where the final bound holds for a suitably small constant choice of C3.
We first consider the case that the critical index k is large. In the following C4 > 0 denotes a suitably

large absolute constant.

Case 2.a: k > C4 ln(1/ε)/ε4 + 1. In this case we define k′ def
= dC4 ln(1/ε)/ε4e + 1. Let us also define

σk′
def
=
√∑n

j=k′ a2
j . The following claim shows that σk′ is small:

Claim 36. We have σk′ ≤ ε3

10C1
.
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Proof. For i ∈ [n] let us write Ai to denote
∑n

j=i a
2
j ; note that A1 = 1 and Ai = a2

i + Ai+1. For ease of
notation let us write ζ to denote δε2C3/C.

Since we are in Case 2.a, for any 1 ≤ i < k ′ we have a2
i > ζAi = ζa2

i + ζAi+1, or equivalently
(1 − ζ)a2

i > ζAi+1. Adding (1 − ζ)Ai+1 to both sides gives (1 − ζ)(a2
i + Ai+1) = (1 − ζ)Ai > Ai+1. So

consequently we have

Ak′ < (1 − ζ)k′−1 ≤ (1 − ζ)C4 ln(1/ε)/ε4 ≤ (1 − ε4C3/(CC1))
C4 ln(1/ε)/ε4 ≤

(
ε3

10C1

)2

,

where in the third inequality we used δ > ε2/C1 (which holds since we are in Case 2) and the fourth
inequality holds for a suitable choice of the absolute constant C4. This proves the claim.

At this point we know δ is “large” (at least ε2/C1) and σk′ is “small” (at most ε3

10C1
). We consider two

cases depending on whether θ is large or small.

Case 2.a.i: θ < ε2/(2C1). In this case we have 0 ≤ θ < δ/2. Since 4σk′ < ε2/(2C1) < δ/2, the Hoeffding
bound gives that a random restriction that fixes variables xk′ , . . . , xn gives |ak′xk′ + · · · + anxn| > 4σk′

with probability at most e−8 < 1/100. Consequently we have that for at least 99/100 of all restrictions ρ to
xk′ , . . . , xn, the resulting function fρ (on variables x1, . . . , xk′−1) is fρ(x) = sgn(a1x1+· · ·+ak′−1xk′−1−
θρ) where −δ/2 ≤ θρ < δ. Facts 29 and 30 now imply that each such fρ has Inf1(fρ) = Ω(1)/k′ = Ω(1) ·
ε4/ ln(1/ε), so consequently Inf1(f) is also Ω(1) · ε4/ log(1/ε), which certainly suffices for Theorem 26.
This concludes Case 2.a.i.

Case 2.a.ii: θ ≥ ε2/(2C1). We now apply the Hoeffding bound (Theorem 31) to ak′xk′ + · · · + anxn with
γ = 2

√
ln(8/ε). This gives that ak′xk′ + · · · + anxn < −2

√
ln(8/ε) · σk′ with probability at most ε2/8.

Since 2
√

ln(8/ε) · σk′ < ε2/(2C1) ≤ θ, we have that for at least a 1 − ε2/8 fraction of all restrictions ρ to
xk′ , . . . , xn, the resulting function fρ (on variables x1, . . . , xk′−1) is fρ(x) = sgn(a1x1+· · ·+ak′−1xk′−1−
θρ) where θρ > 0. i.e. E[fρ] < 0. Together with Fact 33, this implies that for at least an ε/4 − ε2/8 > ε/8
fraction of restrictions ρ, we have −1 + ε/4 ≤ E[fρ] < 0. Each such fρ has Var[fρ] = Ω(ε), so by Fact 29
has Inf1(fρ) = Ω(ε)/k′ = Ω(ε5/ log(1/ε)). Consequently we have that Inf1(f) = Ω(ε6/ log(1/ε)) which
is certainly Ω(δε6/ log(1/ε)). This concludes Case 2.a.ii.

Case 2.b: k ≤ C4 log(1/ε)/ε4 + 1. We now define σk
def
=
√∑n

j=k a2
j and work with this quantity. First we

consider a subcase in which σk is “small” relative to θ; this case can be handled using essentially the same
arguments as Case 2.a.ii.

Case 2.b.i: σk < θ/(2
√

ln(8/ε)). As above, the Hoeffding bound (now applied to akxk + · · ·+anxn) gives
that akxk + · · ·+ anxn < −2

√
ln(8/ε) ·σk with probability at most ε2/8, so for at least a 1− ε2/8 fraction

of restrictions ρ to xk, . . . , xn we have E[fρ] < 0. Using Fact 33, the argument from Case 2.a.ii again gives
that Inf1(f) = Ω(ε6/ log(1/ε)), and we are done with Case 2.b.i.

Case 2.b.ii: σk ≥ θ/(2
√

ln(8/ε)). In this case we shall show that N(0, σk), the zero-mean Gaussian
distribution with variance σk, assigns at least 2C3δε

2 probability weight to the interval [θ − δ/2, θ + δ/2].
In other words, writing Φσk

to denote the c.d.f. of N(0, σk), we shall show

Φσk
([θ − δ/2, θ + δ/2]) ≥ 3C3δε

2. (16)

Given (16), by the Berry-Esseen theorem and the definition of the critical index we obtain

Pr

[
n∑

i=k

ak ∈ [θ − δ/2, θ + δ/2]

]
≥ 3C3δε

2 − 2C3δε
2 = C3δε

2. (17)
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For any restriction ρ that gives akxk + · · · + anxn ∈ [θ − δ/2, θ + δ/2], Fact 30 gives Var[fρ] =
Ω(1) and hence Fact 29 gives Inf1(fρ) = Ω(1)/k = Ω(ε4/ log(1/ε)). By (17) we thus have Inf1(f) =
Ω(C3δε

6 log(1/ε)), which is the desired result.
We turn to proving (16). Let φσk

denote the c.d.f. of N(0, σk), i.e. φσk
(x)

def
= (1/σk

√
2π)e−x2/2σ2

k . We
first observe that since σk ≥ θ/(2

√
ln 8/ε), we have

φσk
(θ) ≥ Ω(1/σk) · ε2 ≥ 6C3ε

2, (18)

where the second bound holds for a suitably small choice of the absolute constant C3 and uses σk ≤ 1.
We consider two different cases depending on the relative sizes of δ and θ.

Case 2.b.ii.A: δ/2 ≥ θ. In this case we have that [0, δ/2] ⊆ [θ − δ/2, θ + δ/2] and it suffices to show that
Φσk

([0, δ/2]) ≥ 3δε2C3.
If δ ≥ σk, then we have

Φσk
([0, δ/2]) ≥ Φσk

([0, σk/2]) ≥ 3C3 ≥ 3C3δε
2

by a suitable choice of the absolute constant C3. On the other hand, if δ < σk then we have

Φσk
([0, δ/2]) ≥ (δ/2)φσk

(δ/2) ≥ (δ/2)φσk
(σk/2) ≥ 3C3δ ≥ 3C3δε

2

for a suitable choice of the absolute constant C3. This gives Case 2.b.ii.A.

Case 2.b.ii.B: δ/2 < θ. In this case we have

Φσk
([θ − δ/2, θ + δ/2]) ≥ Φσk

([θ − δ/2, θ]) ≥ (δ/2) · φσk
(θ) ≥ 3C3δε

2

where the final inequality is obtained using (18). This concludes Case 2.b.ii.B, and with it the proof of
Theorem 26.

6.2 Two theorems about LTFs

In this section we prove two theorems that essentially characterize LTFs. These theorems are the analogues
of Theorems 24 and 25 in Section 5.1.

The following is the main theorem used in proving the completeness of our test. Roughly speaking, it
says that if f1 = sgn(w · x − θ1), f2 = sgn(w · x − θ2) are two regular LTFs with the same weights (but
possibly different thresholds), then the the inner product of their degree-1 Fourier coefficients is essentially
determined by their means.

Theorem 37. Let f1 be a τ -regular LTF. Then
∣∣∣∣∣

n∑

i=1

f̂1(i)
2 − W (E[f1])

∣∣∣∣∣ ≤ τ1/6. (19)

Further, suppose f2 : {−1, 1}n → {−1, 1} is another τ -regular LTFs that can be expressed using the same
linear form as f1; i.e., fk(x) = sgn(w · x − θk) for some w, θ1, θ2. Then

∣∣∣∣∣∣

(
n∑

i=1

f̂1(i)f̂2(i)

)2

− W (E[f1])W (E[f2])

∣∣∣∣∣∣
≤ τ1/6. (20)

(We assume in this theorem that τ is less than a sufficiently small constant.)
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Proof. We first dispense with the case that |E[f1]| ≥ 1 − τ 1/10. In this case, Proposition 2.2 of Tala-
grand [Tal96] implies that

∑n
i=1 f̂1(i)

2 ≤ O(τ2/10 log(1/τ)), and Proposition 18 (item 3) implies that
W (E[f1]) ≤ O(τ 2/10 log(1/τ)). Thus

∣∣∣∣∣
n∑

i=1

f̂1(i)
2 − W (E[f1])

∣∣∣∣∣ ≤ O(τ1/5 log(1/τ)) ≤ τ 1/6,

so (19) indeed holds. Further, in this case we have
(

n∑

i=1

f̂1(i)f̂2(i)

)2
Cauchy-Schwarz

≤
(

n∑

i=1

f̂1(i)
2

)(
n∑

i=1

f̂2(i)
2

)
≤ O(τ1/5 log(1/τ)) · 1,

and also W (E[f1])W (E[f2]) ≤ O(τ 1/5 log(1/τ)) · 2
π . Thus (20) holds as well.

We may now assume that |E[f1]| < 1 − τ 1/10. Without loss of generality, assume that the linear form
w defining f1 (and f2) has ‖w‖ = 1 and |w1| ≥ |wi| for all i. Then from Theorem 26 it follows that

τ ≥ Inf1(f1) ≥ Ω(|w1|τ6/10 log(1/τ))

which implies that |w1| ≤ O(τ2/5). Note that by Proposition 57, this implies that

E[fk]
τ2/5

≈ µ(θk), k = 1, 2. (21)

Let (x, y) denote a pair of η-correlated random binary strings, where η = τ 1/5. By definition of Sη, we
have

Sη(f1, f2) = 2Pr[(w · x,w · y) ∈ A ∪ B] − 1,

where A = [θ1,∞) × [θ2,∞) and B = (−∞, θ1] × (−∞, θ2]. Using the same multidimensional Berry-
Esseen-based reasoning as in the proof of Proposition 10.1 of [KKMO07], the fact that |wi| ≤ O(τ2/5)
holds for all i implies

Pr[(w · x,w · y) ∈ A ∪ B]
τ2/5

≈ Pr[(X,Y ) ∈ A ∪ B],

where (X,Y ) is a pair of η-correlated standard Gaussians. (Note that the error in the above approximation
also depends multiplicatively on constant powers of 1 + η and of 1 − η, but these are just constants, since
|η| is bounded away from 1.) It follows that

Sη(f1, f2)
τ2/5

≈ Sη(h1, h2), (22)

where hk : R → {−1, 1} is the function of one Gaussian variable hk(X) = sgn(X − θk).
Using the Fourier and Hermite expansions, we can write Equation (22) as follows:

f̂1(∅)f̂2(∅) + η ·
(

n∑
i=1

f̂1(i)f̂2(i)

)
+
∑

|S|≥2

η|S|f̂1(S)f̂2(S)

τ2/5

≈ ĥ1(0)ĥ2(0) + η · ĥ1(1)ĥ2(1) +
∑

j≥2

ηj ĥ1(j)ĥ2(j). (23)

Now by Cauchy-Schwarz (and using the fact that η ≥ 0) we have
∣∣∣∣∣∣
∑

|S|≥2

η|S|f̂1(S)f̂2(S)

∣∣∣∣∣∣
≤
√∑

|S|≥2

η|S|f̂1(S)2
√∑

|S|≥2

η|S|f̂2(S)2 ≤ η2

√∑

S

f̂1(S)2
√∑

S

f̂2(S)2 = η2.
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The analogous result holds for h1 and h2. If we substitute these into Equation (23) and also use

ĥk(0) = E[hk] = µ(θk)
τ2/5

≈ E[fk] = f̂k(∅)

which follows from Equation (21), we get:

η ·
(

n∑
i=1

f̂1(i)f̂2(i)

)
τ2/5+η2

≈ η · ĥ1(1)ĥ2(1) = η · 2φ(θ1) · 2φ(θ2),

where the equality is by the comment in Definition 17 (item 2). Dividing by η and using τ 2/5/η+η = 2τ 1/5

in the error estimate, we get

n∑
i=1

f̂1(i)f̂2(i)
τ1/5

≈ 2φ(θ1) · 2φ(θ2) =
√

W (µ(θ1))W (µ(θ2)). (24)

Since we can apply this with f1 and f2 equal, we may also conclude

n∑
i=1

f̂k(i)
2 τ1/5

≈ W (µ(θk)) (25)

for each k = 1, 2.
Using the Mean Value Theorem, the fact that |W ′| ≤ 1 on [−1, 1], and Equation (21), we conclude

n∑
i=1

f̂k(i)
2 τ1/5

≈ W (E[fk])

for each k = 1, 2, establishing (19). Similar reasoning applied to the square of Equation (24) yields
(

n∑
i=1

f̂1(i)f̂2(i)

)2
τ1/5

≈ W (E[f1])W (E[f2]),

implying (20). The proof is complete.

The next theorem is a sort of dual of the previous theorem and will be the main theorem we use in
proving the soundness of our test. Very roughly speaking, it says that for any Boolean function g and any
τ -regular Boolean function f that satisfies certain conditions, if the inner product of the degree-1 Fourier
coefficients of f and g is close to the “right” value (see Theorem 37), then g is close to a particular linear
threshold function whose weights are the degree-1 Fourier coefficients of f.

Theorem 38. Let f, g : {−1, 1}n → {−1, 1}, and suppose that:

1. f is τ -regular and |E[f ]| ≤ 1 − τ 2/9;

2. |∑n
i=1 f̂(i)2 − W (E[f ])| ≤ τ ;

3. |(∑n
i=1 f̂(i)ĝ(i))2 − W (E[f ])W (E[g])| ≤ τ , and

∑n
i=1 f̂(i)ĝ(i) ≥ −τ .

Write `(x) for the linear form
∑n

i=1(f̂(i)/σ)xi, where σ =
√∑n

i=1 f̂(i)2. Then there exists θ ∈ R such

that g(x) is O(τ 1/9)-close to the function sgn(`(x) − θ). Moreover, we have that each coefficient (f̂(i)/σ)
of `(x) is at most O(τ 7/9).
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Proof. We may assume |E[g]| ≤ 1 − τ 1/9, since otherwise g is τ 1/9-close to a constant function, which
may of course be expressed in the desired form. Using this assumption, the fact that |E[f ]| ≤ 1− τ 2/9, and
the final item in Proposition 18, it follows that

W (E[g]) ≥ Ω(τ 2/9) and W (E[f ]) ≥ Ω(τ 4/9). (26)

The latter above, combined with assumption 2 of the theorem, also yields

σ ≥ Ω(τ2/9). (27)

Note that the second assertion of the theorem follows immediately from the τ -regularity of f and (27).
Let θ = µ−1(E[g]). We will show that g is O(τ 1/9)-close to sgn(h), where h(x) = `(x) − θ, and thus

prove the first assertion of the theorem.
Let us consider E[gh]. By Plancherel and the fact that h is affine, we have

E[gh] =
∑

|S|≤1

ĝ(S)ĥ(S) =
n∑

i=1

ĝ(i)f̂(i)

σ
− θ E[g]. (28)

On the other hand,

E[gh] ≤ E[|h|] τ≈ E[|X − θ|] = 2φ(θ) − θµ(θ) =
√

W (E[g]) − θ E[g], (29)

where the inequality is because g is ±1-valued, the following approximation is by Proposition 58, the
following equality is by Proposition 59, and the last equality is by definition of θ. Combining Equation (28)
and Equation (29) we get

E[|h|] −E[gh] ≤
(
√

W (E[g]) −
n∑

i=1

ĝ(i)f̂(i)

σ

)
+ O(τ). (30)

We now wish to show the parenthesized expression in (30) is small. Using Fact 5 and the first part of
assumption 3 of the theorem, we have

∣∣∣∣
∣∣∣∣

n∑
i=1

f̂(i)ĝ(i)

∣∣∣∣−
√

W (E[f ])
√

W (E[g])

∣∣∣∣ ≤
τ√

W (E[f ])
√

W (E[g])
≤ O(τ6/9), (31)

where we used (26) for the final inequality. We can remove the inner absolute value on the left of (31) by
using the second part of assumption 3 and observing that 2τ is negligible compared with O(τ 6/9), i.e. we
obtain ∣∣∣∣

n∑
i=1

f̂(i)ĝ(i) −
√

W (E[f ])
√

W (E[g])

∣∣∣∣ ≤ O(τ6/9), (32)

We can also use Fact 5 and the first part of assumption 2 of the theorem to get |σ −
√

W (E[f ])| ≤
τ/
√

W (E[f ]) ≤ O(τ 7/9). Since |W (E[g])| = O(1), we thus have
∣∣∣σ
√

W (E[g]) −
√

W (E[f ])
√

W (E[g])
∣∣∣ ≤ O(τ7/9). (33)

Combining (33) and (32), we have
∣∣∣∣

n∑
i=1

f̂(i)ĝ(i) − σ
√

W (E[g])

∣∣∣∣ ≤ O(τ6/9).
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Dividing through by σ and using (27), this gives that
∣∣∣∣∣

n∑
i=1

ĝ(i)f̂(i)

σ
−
√

W (E[g])

∣∣∣∣∣ ≤ O(τ4/9).

Substituting this into (30) yields

E[|h|] −E[gh] ≤ O(τ 4/9). (34)

Let ε denote the fraction of points in {−1, 1}n on which g and sgn(h) disagree. Suppose first that that
ε < 12τ/σ. Since σ ≥ Ω(τ 2/9) by (27), in this case we have that ε ≤ O(τ 7/9). Thus we may assume that
ε ≥ 12τ/σ. We may apply Theorem 56 as follows since εσ/12 ≥ τ ≥ maxi |f̂(i)|:

Pr[|h(x)| ≤ εσ/12] ≤ 6εσ/12

σ
=

ε

2
.

It follows that at least an ε/2 fraction of inputs x have both g(x) 6= sgn(h(x)) and |h(x)| > εσ/12. This
implies that E[|h|] −E[gh] ≥ 2 · (ε/2) · (εσ/12) = ε2σ/12. Combining this with the previous bound (34),
and recalling that σ ≥ Ω(τ 2/9), we get that ε2 ≤ O(τ2/9) and thus ε ≤ O(τ 1/9). This proves that g is
O(τ1/9)-close to sgn(h), as desired.

6.3 Overview of the testing algorithm

We are given ε > 0 and black-box access to an unknown f : {−1, 1}n → {−1, 1}, and our goal is to test
whether f is an LTF versus ε-far from every LTF.

Our testing algorithm Test-LTF operates in three phases. The first two phases make queries to the
black-box function f ; the third phase is a deterministic test making no queries.

In the first phase the algorithm “isolates” a set J that consists of s “influential” coordinates. Essentially,
this set J consists of those coordinates i such that |f̂(i)| is large. We call this phase Isolate-Variables; in
Section 6.4.1 we present the Isolate-Variables algorithm and prove a theorem describing its behavior.

We note that one can show that it is possible to identify a set J as described above using Θ(log n)
queries using an approach based on binary search. However, since we want to use a number of queries
that is independent of n, we cannot actually afford to explicitly identify the set J (note that indeed this set
J is not part of the output that Isolate-Variables produces). The approach we use to “isolate” J without
identifying it is based in part on ideas from [FKR+02].

In the second phase, the algorithm generates a set π1, . . . , πM of i.i.d. uniform random strings in
{−1, 1}s; these strings will play the role of restrictions to J. The algorithm then uses the output of Isolate-
Variables to estimate various parameters of the restricted functions fπ1 , . . . , fπM . More specifically, for
each restriction πi, the algorithm estimates the mean E[fπi ], the sum of squares of degree-1 Fourier co-
efficients

∑
k f̂πi(k)2, and the sum of fourth powers of degree-1 Fourier coefficients

∑
k f̂πi(k)4; and for

each pair of restrictions πi, πj , the algorithm estimates the inner product of degree-1 Fourier coefficients∑
k/∈J f̂πi(k)f̂πi(k). We call this phase Estimate-Parameters-Of-Restrictions; see Section 6.4.2 where

we present this algorithm and prove a theorem describing its behavior.
After these two query phases have been performed, in the third phase the algorithm does some compu-

tation on the parameters that it has obtained for the restrictions π1, . . . , πM , and either accepts or rejects. In
Section 6.5 we give a description of the entire algorithm Test-LTF and prove Theorem 27.
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6.4 The querying portions of the algorithm

6.4.1 Isolating variables.

Isolate-Variables(inputs are τ, δ > 0, and black-box access to f : {−1, 1}n → {−1, 1})

1. Let ` = d1/(τ 16δ)e. Randomly partition the set [n] into ` “bins” (subsets B1, . . . , B`) by assign-
ing each i ∈ [n] to a uniformly selected Bj .

2. Run Non-Regular(τ 2, δ/`,Bj) on each set Bj and let I be the set of those bins Bj such that
Non-Regular accepts. Let s = |I|.

3. Output (B1, . . . , B`, I).

We require the following:

Definition 39. Let B1, . . . , B` be a partition of [n] and I be a subset of {B1, . . . , B`}. We say that (B1, . . . , B`, I)
is isolationist if the following conditions hold:

1. If maxi∈Bj |f̂(i)| ≥ τ 2 then Bj ∈ I;

2. If Bj ∈ I then maxi∈Bj |f̂(i)| ≥ τ 2/4;

3. If Bj ∈ I then the second-largest value of |f̂(i)| for i ∈ Bj is less than τ 4/32.

Given (B1, . . . , B`, I) we define the set J to be

J :=
⋃

Bj∈I

{argmax
k∈Bj

|f̂(k)|}. (35)

The following lemma is useful:

Lemma 40. Let f : {−1, 1}n → {−1, 1} be any function. With probability 1 − O(δ), the sets B1, . . . , B`

have the following property: for all j, the set Bj contains at most one element i such that |f̂(i)| ≥ τ 4/32.

Proof. Parseval’s identity gives us that there are at most 1024/τ 8 many variables i such that |f̂(i)| ≥
τ4/32. For each such variable, the probability that any other such variable is assigned to its bin is at most
(1024/τ 8)/` ≤ 1024τ 8δ. A union bound over all (at most 1024/τ 8 many) such variables gives that with
probability at least 1−O(δ), each variable xi with |f̂(i)| ≥ τ 4/32 is the only variable that occurs in its bin.
This gives the lemma.

Theorem 41. Let f : {−1, 1}n → {−1, 1}, and let τ, δ > 0 be given. Define smax = 16/τ4 and ` =
d1/(τ16δ)e. Then with probability 1 − O(δ),

1. Algorithm Isolate-Variables outputs a list (B1, . . . , B`, I) that is isolationist;

2. The corresponding set J has |J | = |I| ≤ smax, and J contains all coordinates i ∈ [n] such that
|f̂(i)| ≥ τ 2.

The algorithm makes Õ(1/(δτ 48)) queries to f.
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Proof. Part (1) of the theorem follows from Lemma 40 and Lemma 15. Note that Lemma 40 contributes
O(δ) to the failure probability, and since the algorithm runs Non-Regular ` times with confidence parameter
set to δ/`, Lemma 15 contributes another O(δ) to the failure probability.

We now show that if part (1) holds then so does part (2). Observe that since (B1, . . . , B`, I) is isola-
tionist, for each Bj ∈ I there is precisely one element that achieves the maximum value of |f̂(k)|; thus
|J ∩ Bj| = 1 for all Bj ∈ I and |J | = |I|. It is easy to see that |J | ≤ 16/τ 4; this follows immediately from
Parseval’s identity and part 2 of Definition 39.

For the query complexity, observe that Isolate-Variables makes O(1/(τ 16δ)) calls to Non-Regular(τ 2, δ/`,Bj),
each of which requires Õ(1/τ32) queries to f , for an overall query complexity of

Õ

(
1

δτ48

)

queries.

6.4.2 Estimating Parameters of Restrictions.

Estimate-Parameters-Of-Restrictions (inputs are τ, η, δ > 0, M ∈ Z
+, an isolationist list

(B1, . . . , B`, I) where |I| = s, and black-box access to f : {−1, 1}n → {−1, 1})

0. Let δ′ := O( δη2

M2 · log(M2

δη2 )).

1. For i = 1, . . . ,M let πi be an i.i.d. uniform string from {−1, 1}s.

2. For i = 1, . . . ,M do the following:

(a) Make Nµ := O(log(1/δ′)/η2) calls to Random-String(πi, I, δ′, f) to obtain Nµ strings w.
Let µ̃i be the average value of f(w) over the Nµ strings.

(b) Make Nκ := O(log(1/δ′)/η2) calls to Correlated-4Tuple(πi, πi, I, δ′, f, η) to obtain
Nκ pairs of 4-tuples (w1, x1, y1, z1), (w2, x2, y2, z2). Run algorithm Estimate-Sum-Of-
Fourths on the output of these calls and let κ̃i be the value it returns. If κ̃i < 0 or κ̃i > 1
then set κ̃i to 0 or 1 respectively.

3. For i, j = 1, . . . ,M do the following: Make Nρ := O(log(1/δ′)/η2) calls to Correlated-
Pair(πi, πj , I, δ′, f, η) to obtain Nρ pairs of pairs (w1, x1), (w2, x2). Run algorithm Estimate-
Inner-Product on the output of these calls and let ρ̃i,j be the value it returns. If |ρ̃i,j| > 1 then
set ρ̃i,j to sgn(ρ̃i,j).

4. For i = 1, . . . ,M , set (σ̃i)2 to (ρ̃i,i)2.

Theorem 42. Let f : {−1, 1}n → {−1, 1}, τ, η, δ > 0, M ∈ Z
+, and let (B1, . . . , B`, I) be an isolationist

list where |I| = s ≤ smax = 16/τ4. Then with probability at least 1 − δ, algorithm Estimate-Parameters-
Of-Restrictions outputs a list of tuples (π1, µ̃1, σ̃1, κ̃1), . . . , (πM , µ̃M , σ̃M , κ̃M ) and a matrix (ρ̃i,j)1≤i,j≤M

with the following properties:

1. Each πi is an element of {−1, 1}s; further, the strings (πi)i≥1 are i.i.d. uniform elements of {−1, 1}s.

2. The quantities µ̃i, ρ̃i,j are real numbers in the range [−1, 1], and the quantities σ̃ i, κ̃i, are real numbers
in the range [0, 1].
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3. For the set J corresponding to (B1, . . . , B`, I) as in (35), the following properties hold. (In (a)-(d)
below, fπi denotes the restricted function obtained by substituting π i’s bits for the coordinates of J as
follows: for each k = 1, . . . , s, the restriction assigns the value π i

k to the (unique) variable in J∩Bk.)

(a) For each i = 1, . . . ,M ,
|µ̃i −E[fπi ]| ≤ η.

(b) For each i = 1, . . . ,M ,
|κ̃i − ∑

|S|=1

f̂πi(S)4| ≤ η.

(c) For all 1 ≤ i, j ≤ M,
|ρ̃i,j − ∑

|S|=1

f̂πi(S)f̂πj (S)| ≤ η.

(d) For each i = 1, . . . ,M ,
|(σ̃i)2 − ∑

|S|=1

f̂πi(S)2| ≤ η.

The algorithm makes Õ
(

M2

η2τ36

)
queries to f.

The proof of Theorem 42 uses the ideas from Section 3 as well as certain ideas from [FKR+02]. It
appears in Section 6.4.3.

6.4.3 Proof of Theorem 42.

The proof of Theorem 42 follows as a sequence of lemmas. First a word of terminology: for x ∈ {−1, 1}n,
and π a restriction of the variables in J , we say that x is compatible with π if for every j ∈ J the value of
xj is the value assigned to variable j by π.

The goal of Step 2(a) is to obtain estimates µ̃i of the means E[fπi ] of the restricted functions fπi . Thus
to execute Step 2(a) of Estimate-Parameters-Of-Restrictions we would like to be able to draw uniform
strings x ∈ {−1, 1}n conditioned on their being compatible with particular restrictions π i of the variables
in J . Similarly, to estimate sums of squares, fourth powers, etc. of degree-1 Fourier coefficients of restricted
functions, recalling Section 3 we would like to be able to draw pairs, 4-tuples, etc. of bitwise correlated
strings subject to their being compatible with the restriction

The subroutine Correlated-4Tuple, described below, lets us achieve this. (The subroutines Random-
Pair and Correlated-Pair will be obtained as special cases of Correlated-4Tuple.) The basic approach,
which is taken from [FKR+02], is to work with each block Bj separately: for each block we repeatedly
draw correlated assignments until we find ones that agree with the restriction on the variable of J in that
block. Once assignments have been independently obtained for all blocks they are combined to obtain the
final desired 4-tuple of strings. (For technical reasons, the algorithm actually generates a pair of 4-tuples as
seen below.)
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Correlated-4Tuple (Inputs are π1, π2 ∈ {−1, 1}s, a set I of s bins, δ′ > 0, black-box access to
f : {−1, 1}n → {−1, 1}, and η ≥ 0. Outputs are two 4-tuples (w1, x1, y1, z1) and (w2, x2, y2, z2),
each in ({−1, 1}n)4.)

1. For each Bj ∈ I , do the following O(log(s/δ′)) times:

(a) Draw six independent uniform assignments (call them w1j , x1j , y1j and w2j , x2j , y2j) to the
variables in Bj . Let z1j be an assignment to the same variables obtained by independently
assigning each variable in Bj the same value it has in w1j � x1j � y1j with probability
1
2 + 1

2η and the opposite value with probability 1
2 − 1

2η. Let z2j be obtained independently
exactly like z1j (in particular we use w1j � x1j � y1j , not w2j � x2j � y2j , to obtain z2j).
Let

P = {i ∈ Bj : (wjk)i = (xjk)i = (yjk)i = (zjk)i = πk
j for k = 1, 2}.

i.e. P is the set of those i ∈ Bj such that for k = 1, 2, assignments wjk, xjk, yjk and zjk all
set bit i the same way that restriction πk sets πk

j .

(b) Run Non-Regular(τ 2/4, δ′/(s log(s/δ′)), P, f).

2. If any call of Non-Regular above returned “accept,” let (w1j , x1j , y1j , z1j), (w2j , x2j , y2j , z2j)
denote the pair of assignments corresponding to the call that accepted. If no call returned “accept,”
stop everything and FAIL.

3. For k = 1, 2 let (wk, xk, yk, zk) be obtained as follows:

• For each i /∈ ∪Bj∈IBj , set (wk)i, (x
k)i, (y

k)i independently to ±1. Similar to 1(a) above,
set both (z1)i and (z2)i independently to w1

i � x1
i � y1

i with probability 1
2 + 1

2η.

• For each bin Bj ∈ I , set the corresponding bits of w according to wj ; the corresponding
bits of x according to xj ; the corresponding bits of y according to yj; and the corresponding
bits of z according to zj .

Return the 4-tuples (w1, x1, y1, z1) and (w2, x2, y2, z2).

Lemma 43. Each time Correlated-4Tuple(π1, π2, I, δ′, f) is invoked by Estimate-Parameters-Of-Restrictions,
with probability 1−O(δ′) it outputs two 4-tuples (w1, x1, y1, z1), (w2, x2, y2, z2), each in ({−1, 1}n)4, such
that:

• For k = 1, 2 we have that wk, xk, yk and zk are all compatible with πk on J ;

• For k = 1, 2, for each i /∈ J , the bits (wk)i, (x
k)i, (y

k)i are each independent uniform ±1 values
independent of everything else;

• For k = 1, 2, for each i /∈ J , the bit (zk)i is independently randomly equal to (w1)i � (x1)i � (y1)i
with probability 1

2 + 1
2η.

Proof. Fix any Bj ∈ I , and consider a particular execution of Step 1(a). Let `j denote the unique element
of J ∩ Bj . By Definition 39 we have that |f̂(`j)| ≥ τ2/4 and |f̂(k)| < τ 4/32 for all k ∈ Bj such that
k 6= `j . Now consider the corresponding execution of Step 1(b). Assuming that Non-Regular does not
make an error, if `j ∈ P then Non-Regular will accept by Lemma 15, and if `j /∈ P then by Lemma 15
we have that Non-Regular will reject. It is not hard to see (using the fact that η ≥ 0) that the element `j
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belongs to P with probability Θ(1), so the probability that O(log(s/δ ′)) repetitions of 1(a) and 1(b) will
pass for a given Bj without any “accept” occurring is at most cO(log(s/δ′)), where c is an absolute constant
less than 1. Thus the total failure probability resulting from step 2 (“stop everything and fail”) is at most
s2−O(log(s/δ′)) ≤ δ′. Since each invocation of Non-Regular errs with probability at most δ ′/(s log(s/δ′))
and there are O(s log(s/δ)) invocations, the total failure probability from the invocations of Non-Regular
is at most O(δ′).

Once Step 3 is reached, we have that for each j,

• Each of wjk, xjk, yjk is a uniform independent assignment to the variables in Bj conditioned on
(wjk)`j

, (xjk)`j
, (yjk)`j

each being set according to the restriction πk;

• Each bit zjk
`j

is compatible with πk
j . For each variable i 6= `j in Bj , the bit zjk

i is independently set to
wj1

i � xj1
i � yj1

i with probability 1
2 + 1

2η.

By independence of the successive iterations of Step 1 for different Bj’s, it follows that the final output
strings (w1, x1, y1, z1) and (w2, x2, y2, z2) are distributed as claimed in the lemma.

Remark 44. The overall algorithm Test-LTF is nonadaptive because the calls to Non-Regular (which
involve queries to f ) in Correlated-4Tuple are only performed for those Bj which belong to I , and the set
I was determined by the outcomes of earlier calls to Non-Regular (and hence earlier queries to f ). The
algorithm could be made nonadaptive by modifying Correlated-4Tuple to always perform Step 1 on all `
blocks B1, . . . , B`. Once all these queries were completed for all calls to Correlated-4Tuple (and thus all
queries to f for the entire algorithm were done), the algorithm could simply ignore the results of Step 1
for those sets Bj that do not belong to I . Thus, as claimed earlier, there is an nonadaptive version of the
algorithm with somewhat – but only polynomially – higher query complexity (because of the extra calls to
Non-Regular for sets Bj /∈ I).

The subroutine Random-String(πi, I, δ′, f) can be implemented simply by invoking the subroutine
Correlated-4Tuple(πi, πi, I, δ, f, 0) to obtain a pair (w1, x1, y1, z1), (w2, x2, y2, z2) and then discarding
all components but w1. This string w1 is uniform conditioned on being consistent with the restriction π i.
We then easily obtain:

Lemma 45. If (B1, . . . , B`, I) is isolationist, then with probability at least 1−δ ′1 (where δ′1 := O(MNµδ′)),
each of the M values µ̃1, . . . , µ̃M obtained in Step 2(a) of Estimate-Parameters-Of-Restriction satisfies
|µ̃i −E[fπi ]| ≤ η.

Proof. Step 2(a) makes a total of MNµ many calls to Correlated-4Tuple, each of which incurs failure
probability O(δ′). Assuming the calls to Correlated-4Tuple all succeed, by the choice of Nµ each of the
M applications of the Chernoff bound contributes another δ ′ to the failure probability, for an overall failure
probability as claimed.

Now we turn to part 3(b) of Theorem 42, corresponding to Step 2(b) of Estimate-Parameters-Of-
Restrictions. We have:

Lemma 46. There is an algorithm Estimate-Sum-Of-Fourths with the following property: Suppose the
algorithm is given as input values η, δ > 0, black-box access to f , and the output of Nκ many calls to
Correlated-4Tuple(π, π, I, δ, f, η). Then with probability 1 − δ the algorithm outputs a value v such that

|v − ∑
k∈[n],k /∈J

f̂π(k)4| ≤ η.
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Proof. The algorithm is essentially that of Lemma 12. Consider the proof of Lemma 12 in the case where
there is only one function fπ and p = 4. For the LHS of (1), we would like to empirically estimate
E[fπ(α1)fπ(α2)fπ(α3)fπ(α4)] where α1, . . . , α4 are independent uniform strings conditioned on being
compatible with π. Such strings can be obtained by taking each α1 = w1, α2 = w2, α3 = x1 and α4 = x2

where (w1, x1, y1, z1), (w2, x2, y2, z2) is the output of a call to Correlated-4Tuple(π, π, I, δ, f, η).
For the RHS of (1), we would like to empirically estimate E[fπ(α1)fπ(α2)fπ(α3)fπ(α4)] where each

of α1, α2, α3 is independent and uniform conditioned on being compatible with π, and α4 is compatible
with π and has each bit (α4)i for i /∈ J independently set equal to (α1 �α2 �α3)i with probability 1

2 + 1
2η.

By Lemma 43, such strings can be obtained by taking α1 = w1, α2 = x1, α3 = y1, and α4 = z1. The
corollary now follows from Lemma 12.

Observing that the two restrictions that are arguments to Correlated-4Tuple in Step 2(b) are both π i,
Lemma 48 directly gives us part 3(b) of Theorem 42:

Lemma 47. If (B1, . . . , B`, I) is isolationist, then with probability at least 1−δ ′2 (where δ′2 := O(MNκδ′)),
each of the M values κ̃i obtained in Step 2(b) of Estimate-Parameters-Of-Restrictions satisfies |κ̃i −∑

|S|=1 f̂πi(S)4| ≤ η.

Now we turn to parts 3(c)-(d) of Theorem 42, corresponding to Steps 3 and 4 of the algorithm. The sub-
routine Correlated-Pair(πi , πj , I, δ′, f, η) works simply by invoking Correlated-4Tuple(πi, πj , I, δ′, f, η)
to obtain a pair (w1, x1, y1, z1), (w2, x2, y2, z2) and outputting (u1, z1), (u2, z2) where each uk = (wk �
xk � yk). The following corollary of Lemma 12 describes the behavior of algorithm Estimate-Inner-
Product:

Lemma 48. There is an algorithm Estimate-Inner-Product with the following property: Suppose the al-
gorithm is given as input values η, δ > 0, black-box access to f , and the output of Nρ many successful calls
to Correlated-Pair(π1 , π2, I, δ, f, η). Then with probability 1− δ the algorithm outputs a value v such that

|v − ∑
k∈[n],k /∈J

f̂π1(k)f̂π2(k)| ≤ η.

Proof. Again the algorithm is essentially that of Lemma 12. Consider the proof of Lemma 12 in the case
where there are p = 2 functions fπ1 and fπ2 . For the LHS of (1), we would like to empirically esti-
mate E[fπ1

(α1)fπ2(α2)] where α1, α2 are independent uniform strings conditioned on being compatible
with restrictions π1 and π2 respectively. Such strings can be obtained by taking each αk to be uk where
(u1, z1), (u2, z2) is the output of a call to Correlated-Pair(π1 , π2, I, δ, fη).

For the RHS of (1), we would like to empirically estimate E[fπ1
(α1)fπ2(α2)] where α1 is uniform

conditioned on being compatible with π1 and α2 is compatible with π2 and has each bit (α2)i for i /∈ J
independently set equal to (α1)i with probability 1

2 + 1
2η. By Lemma 43 and the definition of Correlated-

Pair, such strings can be obtained by taking α1 = u1 and α2 = z2. The corollary now follows from
Lemma 12.

Lemma 48 gives us parts 3(c)-(d) of Theorem 42:

Lemma 49. If (B1, . . . , B`, I) is isolationist, then with probability at least 1−δ ′3 (where δ′3 := O(M2Nρδ
′))

both of the following events occur: each of the M 2 values (ρ̃i,j)2 obtained in Step 3 of Estimate-Parameters-
Of-Restrictions satisfies |ρ̃i,j −∑|S|=1 f̂πi(S)f̂πj (S)| ≤ η, and each of the M values (σ̃i)2 obtained in

Step 4 satisfies |(σ̃i)2 −∑|S|=1 f̂πi(S)2| ≤ η.
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This essentially concludes the proof of parts 1-3 of Theorem 42. The overall failure probability is
O(δ′1 + δ′2 + δ′3); by our initial choice of δ′ this is O(δ).

It remains only to analyze the query complexity. It is not hard to see that the query complexity is domi-
nated by Step 3. This step makes M 2Nρ = Õ(M2/η2) invocations to Correlated-4Tuple(πi, πj , I, δ′, f, η);
at each of these invocations Correlated-4Tuple makes at most

O(smax log(smax/δ
′) = Õ(1/τ4)

many invocations to Non-Regular(τ 2/4, δ′, P, f), each of which requires

O(log(smax log(smax/δ
′)/δ′)/τ32)) = Õ(1/τ32)

queries by Lemma 15. Thus the overall number of queries is at most

Õ

(
M2

η2τ36

)
.

This concludes the proof of Theorem 42.

6.5 The full algorithm

We are given black-box access to f : {−1, 1}n → {−1, 1}, and also a “closeness parameter” ε > 0. Our
goal is to distinguish between f being an LTF and f being ε-far from every LTF, using poly(1/ε) many
queries. For simplicity of exposition, we will end up distinguishing from being O(ε)-far from every LTF.
The algorithm for the test is given below, followed by a high-level conceptual explanation of the various
steps it performs.
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Test-LTF (inputs are ε > 0 and black-box access to f : {−1, 1}n → {−1, 1})

0. Let τ = εK , a “regularity parameter”, where K is a large universal constant to be specified later.a

Let δ be a sufficiently small absolute constant.
We will also take η = τ (the error parameter for Estimate-Parameters-Of-Restrictions), smax =
16/τ4, and M = poly(smax) log(1/δ)/ε2 .

1. Run Isolate-Variables(τ, δ) to obtain output (B1, . . . , B`, I). This implicitly defines some set
J ⊂ [n] and explicitly defines its cardinality (the same as the cardinality of I), some s with
s ≤ smax.

2. Run Estimate-Parameters-Of-Restrictions(τ, η, δ,M, (B1 , . . . , B`, I), f). This produces a list
of restrictions πi ∈ {−1, 1}s and real values µ̃i, (σ̃i)2, κ̃i, ρ̃i,j where 1 ≤ i, j ≤ M .

3. At this point there are two cases depending on whether or not the fraction of i’s for which |µ̃i| ≥
1 − ε is at least 1 − ε:

(a) (The case that for at least a 1 − ε fraction of i’s, |µ̃i| ≥ 1 − ε.)
In this case, enumerate all possible length-s integer vectors w with entries up to 2O(s log s)

in absolute value, and also all possible integer thresholds θ in the same range. For each pair
(w, θ), check whether sgn(w · πi − θ) = sgn(µ̃i) holds for at least a 1 − 20ε fraction of the
values 1 ≤ i ≤ M . If this ever holds, ACCEPT. If it fails for all (w, θ), REJECT.

(b) (The case that for at least an ε fraction of i’s, |µ̃i| < 1 − ε.)
In this case, pick any i∗ such that |µ̃i∗ | < 1 − ε. Then:

i. Check that κ̃i∗ ≤ 2τ . If this fails, REJECT.
ii. Check that |(σ̃i∗)2 − W (µ̃i∗)| ≤ 2τ1/12. If this fails, REJECT.

iii. Check that both |(ρ̃i∗,i)2 − W (µ̃i∗)W (µ̃i)| ≤ 2τ1/12 and ρ̃i∗,i ≥ −η hold for all
1 ≤ i ≤ M . If this fails, REJECT.

iv. Enumerate all possible length-s vectors w whose entries are integer multiples of
√

τ/s,
up to 2O(s log s)

√
ln(1/τ) in absolute value, and also all possible thresholds θ with the

same properties. For each pair (w, θ), check that |µ̃i − µ(θ −w · πi)| ≤ 5
√

τ holds for
all πi’s. If this ever happens, ACCEPT. If it fails for all (w, θ), REJECT.

aWe will eventually take K = 108.

Note that all parameters described in the test are fixed polynomials in ε. Further, the query complexity
of both Isolate-Variables and Estimate-Parameters-Of-Restrictions is polynomial in all parameters (see
Theorems 41, 42). Thus the overall query complexity is poly(1/ε). As given, the test is adaptive, since
Estimate-Parameters-Of-Restrictions depends on the output of Isolate-Variables . However, in remark 44
we discuss how the test can easily be made nonadaptive with only a polynomial blowup in query complexity.

In Section 6.6 we will show that indeed this test correctly distinguishes (with probability at least 2/3)
LTFs from functions that are O(ε)-far from being LTFs. Thus our main testing result, Theorem 27, holds as
claimed.

6.5.1 Conceptual explanation of the test.

Here we provide a high-level description of the ideas underlying the various stages of the test. The following
discussion should not be viewed in the light of mathematical statements but rather as narrative exposition
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to aid in understanding the test and its analysis. (It may also be useful to refer back to the sketch at the
beginning of Section 6.)

In Step 1, the idea is that J is (roughly) the set of variables i such that |f̂(i)| ≥ τ 2.
In Step 2, each πi is an i.i.d. uniform random restriction of the variables in J . Each value µ̃i is an

estimate of E[fπi ], each (σ̃i)2 is an estimate of
∑

k f̂πi(k)2, each κ̃i is an estimate of
∑

k f̂πi(k)4, and each
ρ̃i,j is an estimate of

∑
k f̂πi(k)f̂πj (k).

The idea of Step 3(a) is that in this case, almost every restriction π of the variables in J causes fπ to be
very close to a constant function 1 or −1. If this is the case, then f is close to an LTF if and only if it is
close to an LTF which is a junta over the variables in J . Step 3(a) enumerates over every possible LTF over
the variables in J and checks each one to see if it is close to f.

If the algorithm reaches Step 3(b), then a non-negligible fraction of restrictions π have |E[fπ]| bounded
away from 1. We claim that when f is an LTF, this implies that at least one of those restrictions should be
τ -regular, and moreover all restrictions should be

√
τ -regular (these claims are argued using Proposition 62

and Theorem 26, respectively). Step 3(b)(i) verifies that one such restriction π i∗ is indeed
√

τ -regular.
Step 3(b)(ii) checks that the sum of squares of degree-1 Fourier coefficients

∑
k f̂πi∗ (k)2 is close to

the “correct” value W (E[fπi∗ ]) that the sum should take if fπi∗ were a
√

τ -regular LTF (see the first in-
equality in the conclusion of Theorem 37). If this check passes, Step 3(b)(iii) checks that every other
restriction fπi is such that the inner product of its degree-1 Fourier coefficients with those of fπi∗ , namely∑

k/∈J f̂πi(k)f̂πi∗ (k), is close to the “correct” value W (E[fπi ])W (E[fπi∗ ]) that it should take if fπi and
fπi∗ were LTFs with the same linear part (see Theorem 37 again).

At this point in Step 3(b), if all these checks have passed then every restriction fπ is close to a function
of the form sgn(`(x) − θπ) with the same linear part (that is based on the degree-1 Fourier coefficients of
fπi∗ , see Theorem 38). Finally, Step 3(b)(iv) exhaustively checks “all” possible weight vectors w for the
variables in J to see if there is any weight vector that is consistent with all restrictions fπi . The idea is that
if f passes this final check as well, then combining w with ` we obtain an LTF that f must be close to.

6.6 Proving correctness of the test

In this section we prove that the algorithm Test-LTF is both complete and sound. At many points in these
arguments we will need that our large sample π1, . . . , πM of i.i.d. uniform restrictions is representative of
the whole set of all 2s restrictions, in the sense that empirical estimates of various probabilities obtained
from the sample are close to the true probabilities over all restrictions. The following proposition collects
the various statements of this sort that we will need. All proofs are straightforward Chernoff bounds.

Proposition 50. After running Steps 0,1 and 2 of Test-LTF, with probability at least 1 − O(δ) (with re-
spect to the choice of the i.i.d. π1, . . . , πM ’s in Estimate-Parameters-Of-Restrictions) the following all
simultaneously hold:

1. The true fraction of restrictions π to J for which |E[fπ]| ≥ 1 − 2ε is within an additive ε/2 of the
fraction of the πi’s for which this holds. Further, the same is true about occurrences of |E[fπ]| ≥
1 − ε/2.

2. For every pair (w∗, θ∗), where w∗ is a length-s integer vector with entries at most 2O(s log s) in absolute
value and θ∗ is an integer in the same range, the true fraction of restrictions π to J for which

|E[fπ] − sgn(w∗ · π − θ∗)| ≤ 3/5

is within an additive ε of the fraction of πi’s for which this holds. Further, the same is true about
occurrences of sgn(E[fπ]) = sgn(w∗ · π − θ∗).
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3. For every fixed restriction π∗ to J , the true fraction of restrictions π to J for which we have

|(
∑

|S|=1

f̂π∗(S)f̂π(S))2 − W (E[fπ∗])W (E[fπ])| ≤ 3τ 1/12

is within an ε fraction of the true fraction of πi’s for which this holds.

4. For every fixed pair (w∗, θ∗), where w∗ is a length-s vector with entries that are integer multiples of√
τ/s at most 2O(s log s)

√
ln(1/τ) in absolute value and θ∗ is an integer multiple of

√
τ/s in the same

range, the true fraction of restrictions π to J for which

|E[fπ] − µ(θ∗ − w∗ · π)| ≤ 6
√

τ

is within an additive ε of the fraction of πi’s for which this holds.

Proof. All of the claimed statements can be proved simply by using Chernoff bounds (using the fact that the
πi’s are i.i.d. and M is large enough) and union bounds. For example, regarding item 4, for any particular
(w∗, θ∗), a Chernoff bound implies that the true fraction and the empirical fraction differ by more than ε
with probability at most exp(−Ω(ε2M)) ≤ δ/2poly(s), using the fact that M ≥ poly(s) log(1/δ)/ε. Thus
we may union bound over all 2poly(s) possible (w∗, θ∗) to get that the statement of item 4 holds except with
probability at most δ. The other statement and the other items follow by similar or easier considerations.

6.6.1 Completeness of the test.

Theorem 51. Let f : {−1, 1}n → {−1, 1} be any LTF. Then f passes Test-LTF with probability at least
2/3.

Proof. Steps 1 and 2 of the test, where querying to f occurs, are the places where the test has randomness.
We have that Step 1 succeeds except with probability at most δ; assuming it succeeds, the set J becomes
implicitly defined according to (35). Step 2 also succeeds except with probability at most δ; assuming it
succeeds, we obtain restrictions πi and estimates µ̃i, (σ̃i)2, κ̃i, ρ̃i,j that satisfy the conclusion of Theorem 42,
with η := τ . Finally, in Proposition 50 (which relates the empirical properties of the restrictions to the
true properties), all conclusions hold except with probability at most O(δ). Thus all of these assumptions
together hold with probability at least 1 − O(δ), which is at least 2/3 when we take δ to be a sufficiently
small constant. Note that we have not yet used the fact that f is an LTF.

We will now show that given that all of these assumptions hold, the fact that f is an LTF implies that
the deterministic part of the test, Step 3, returns ACCEPT. We consider the two cases that can occur:

Case 3(a): for at least a 1−ε fraction of i’s, |µ̃i| ≥ 1−ε. Since Theorem 42 implies that |µ̃i−E[fπi ]| ≤ η,
and since η � ε, in this case we have that for at least a 1 − ε fraction of the i’s it holds that |E[fπi ]| ≥
1 − ε − η ≥ 1 − 2ε. Applying Proposition 50 item 1, we get that |E[fπ]| ≥ 1 − 2ε for at least a 1 − 2ε
fraction of all 2s restrictions π on J . It follows that f is 2ε · 1

2 + (1 − 2ε) · ε ≤ 2ε-close to being a junta on
J . Thus by Proposition 63 we have that f is 2ε-close to being an LTF on J .

Write this LTF on J as g(π) = sgn(w∗ · π − θ∗), where w∗ is an integer vector with entries at most
2O(s log s) in absolute value and θ∗ is also an integer in this range. (Since |J | ≤ s, any LTF on J can be
expressed thus by the well-known result of Muroga et al. [MTT61].) Since f is 2ε-close to g, we know
that for at least a 1 − 10ε fraction of the restrictions π to J , fπ(x) takes the value g(π) on at least a 4/5
fraction of inputs x. I.e., |E[fπ] − sgn(w∗ · π − θ∗)| ≤ 3/5 for at least a 1 − 10ε fraction of all π’s. Using
Proposition 50 item 2 we conclude that |E[fπi ] − sgn(w∗ · πi − θ∗)| ≤ 3/5 for at least a 1 − 20ε fraction
of the πi’s. But for these πi’s we additionally have |µ̃i − sgn(w∗ · πi − θ∗)| ≤ 3/5 + η < 1 and hence
sgn(µ̃i) = sgn(w∗ · πi − θ∗). Thus Step 3(a) returns ACCEPT once it tries (w∗, θ∗).
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Case 3(b): for at least an ε fraction of i’s, |µ̃i| < 1 − ε. In this case we need to show that Steps i.–iv.
pass.

To begin, since |µ̃i − E[fπi ]| ≤ η � ε/2 for all i, we have that for at least an ε fraction of the i’s,
|E[fπi ]| ≤ 1 − ε/2. Thus by Proposition 50 item 1, we know that among all 2s restrictions π to J , the true
fraction of restrictions for which |E[fπi ]| ≤ 1 − ε/2 is at least ε/2.

On the other hand, since J contains all coordinates j with |f̂(j)| ≥ τ 2, we know from Proposition 62
that fπ is not τ -regular for at most a τ fraction of the 2s restrictions π to J . Since τ � ε/2, we conclude
that there must exist some restriction π0 to the coordinates in J for which both |E[fπ0

]| ≤ 1 − ε/2 and fπ0

is τ -regular.
Express f as f(π, x) = sgn(w′ ·π+` ·x−θ′), where π denotes the inputs in J , x denotes the inputs not

in J , and ` is normalized so that ‖`‖ = 1. We’ve established that the LTF fπ0
(x) = sgn(` ·x−(θ′−w′ ·π0))

has |E[fπ0
]| ≤ 1− ε/2 and is τ -regular. Applying Theorem 26, we conclude that all coefficients in ` are, in

absolute value, at most O(τ/(ε6 log(1/ε))) ≤ Ω(
√

τ); here use the fact that K � 12.. In particular, we’ve
established:

Claim 52. There is a linear form ` with ‖`‖ = 1 and all coefficients of magnitude at most Ω(
√

τ), such
that the following two statements hold: 1. For every restriction π to J , the LTF fπ is expressed as fπ(x) =
sgn(` · x − (θ′ − w′ · π)). 2. For every restriction π to J , fπ is

√
τ -regular.

The second statement in the claim follows immediately from the first statement and Proposition 64,
taking the constant in the Ω(·) to be sufficiently small.

We now show that Steps 3b(i)–(iv) all pass. Since fπ is
√

τ -regular for all π, in particular fπi∗ is
√

τ -
regular. Hence

∑
|S|=1 f̂πi∗ (S)4 ≤ τ (see Proposition 14) and so κ̃i∗ ≤ τ + η ≤ 2τ . Thus Step 3b(i)

passes.
Regarding Step 3b(ii), Claim 52 implies in particular that fπi∗ is

√
τ -regular. Hence we may apply

the first part of Theorem 37 to conclude that
∑

|S|=1 f̂πi∗ (S)2 is within τ 1/12 of W (E[fπi∗ ]). The former
quantity is within η of (σ̃i∗)2; the latter quantity is within η of W (µ̃i∗) (using |W ′| ≤ 1). Thus indeed
(σ̃i∗)2 is within τ 1/12 + η + η ≤ 2τ 1/12 of W (µ̃i∗), and Step 3b(ii) passes.

The fact that the first condition in Step 3b(iii) passes follows very similarly, using the second part of
Theorem 37 (a small difference being that we can only say that W (E[fπi∗ ])W (E[fπi ]) is within, say, 3η of
W (µ̃i∗)W (µ̃i)). As for the second condition in Step 3b(iii), since f is an LTF, for any pair of restrictions
π, π′ to J , the functions fπ and fπ′ are LTFs expressible using the same linear form. This implies that fπ

and fπ′ are both unate functions with the same orientation, a condition which easily yields that f̂π(j) and
f̂π′(j) never have opposite sign for any j. We thus have that

∑
|S|=1 f̂πi(S)f̂πi∗ (S) ≥ 0 and so indeed the

condition ρ̃i∗,i ≥ −η holds for all i. Thus Step 3b(iii) passes.
Finally we come to Step 3b(iv). Claim 52 tells us that for every restriction πi, we have fπi(x) =

sgn(` · x − (θ′ − w′ · πi)), where ` is a linear form with 2-norm 1 and all coefficients of magnitude at
most Ω(

√
τ). Applying Proposition 57 we conclude that |E[fπ] − µ(θ′ − w′ · πi)| ≤ √

τ holds for all i
(again, ensuring the constant in the Ω(·) is small enough). Using the technical Lemma 53 below, we infer
that there is a vector w∗ whose entries are integer multiples of

√
τ/s at most 2O(s log s)

√
ln(1/τ) in absolute

value, and an integer multiple θ∗ of
√

τ/s, also at most 2O(s log s)
√

ln(1/τ) in absolute value, such that
|E[fπi ] − µ(θ∗ − w∗ · πi)| ≤ 4

√
τ holds for all πi. By increasing the 4

√
τ to 4

√
τ + η ≤ 5

√
τ , we can

make the same statement with µ̃i in place of E[fπi ]. Thus Step 3(b)(iv) will return ACCEPT once it tries
(w∗, θ∗).

Lemma 53. Suppose that |E[fπ]−µ(θ′−w′ ·π)| ≤ √
τ holds for some set Π of π’s. Then there is a vector

w∗ whose entries are integer multiples of
√

τ/s at most 2O(s log s)
√

ln(1/τ) in absolute value, and an integer
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multiple θ∗ of
√

τ/s, also at most 2O(s log s)
√

ln(1/η) in absolute value, such that |E[fπ]−µ(θ∗−w∗ ·π)| ≤
4η1/6 also holds for all π ∈ Π.

Proof. Let us express the given estimates as
{
E[fπ] −√

τ ≤ µ(θ′ − w′ · π) ≤ E[fπ] +
√

τ
}

π∈Π
(36)

We would prefer all of the upper bounds E[fπ]+
√

τ and lower bounds E[fπ]−√
τ in these double inequal-

ities to have absolute value either equal to 1, or at most 1 − √
τ . It is easy to see that one can get this after

introducing some quantities 1 ≤ Kπ,K ′
π ≤ 2 and writing instead

{
E[fπ] − Kπ

√
τ ≤ µ(θ′ − w′ · π) ≤ E[fπ] + K ′

π

√
τ
}

π∈Π
. (37)

Using the fact that µ is a monotone function, we can apply µ−1 and further rewrite (37) as
{
cπ ≤ θ′ − w′ · π ≤ Cπ

}
π∈Π

, (38)

where each |cπ|, |Cπ| is either ∞ (meaning the associated inequality actually drops out) or is at most
µ−1(−1 +

√
τ) ≤ O(

√
ln(1/τ)). Now (38) may actually be thought of as a “linear program” in the

entries of w′ and in θ′ — one which we know is feasible.
By standard results in linear programming [Chv83] we know that if such a linear program is feasible, it

has a feasible solution in which the variables take values that are not too large. In particular, we can take as
an upper bound for the variables

L =
|maxA det(A)|
|minB det(B)| , (39)

where B ranges over all nonsingular square submatrices of the constraint matrix and A ranges over all
square submatrices of the constraint matrix with a portion of the “right-side vector” substituted in as a
column. Note that the constraint matrix from (38) contains only ±1’s and that the right-side vector contains
numbers at most O(

√
ln(1/τ)) in magnitude. Thus the minimum in the denominator of (39) is at least 1 and

the maximum in the numerator of (39) is at most O(
√

ln(1/τ)) · (s + 1)!; hence L ≤ 2O(s log s)
√

ln(1/τ).
Having made this conclusion, we may recast and slightly weaken (37) by saying that there exist a pair

(w′′, θ′′), with entries all at most L in absolute value, such that
{
E[fπ] − 2

√
τ ≤ µ(θ′′ − w′′ · π) ≤ E[fπ] + 2

√
τ
}

π∈Π

Finally, suppose we round the entries of w′′ to the nearest integer multiples of
√

τ/s forming w∗, and we
similarly round θ′′ to θ∗. Then |(θ′′ −w′′ · π)− (θ∗ −w∗ · π)| ≤ 2

√
τ for every π. Since |µ′| ≤

√
2/π ≤ 1

we can thus conclude that the inequalities
{
E[fπ] − 4

√
τ ≤ µ(θ∗ − w∗ · π) ≤ E[fπ] + 4

√
τ
}

π∈Π

also hold, completing the proof.

6.6.2 Soundness of the test.

Theorem 54. Let f : {−1, 1}n → {−1, 1} be a function that passes Test-LTF with probability more than
1/3. Then f is O(ε)-close to an LTF.

Proof. As mentioned at the beginning of the proof of Theorem 51, for any f , with probability at least
1 − O(δ) Step 1 of the algorithm succeeds (implicitly producing J ), Step 2 of the algorithm succeeds
(producing the πi’s, etc.), and all of the items in Proposition 50 hold. So if an f passes the test with
probability more than 1/3 ≥ O(δ), it must be the case that f passes the deterministic portion of the test,
Step 3, despite the above three conditions holding. We will show that in this case f must be O(ε)-close to
an LTF. We now divide into two cases according to whether f passes the test in Step 3(a) or Step 3(b).
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Case 3(a). In this case we have that for at least a 1− ε fraction of π i’s, |µ̃i| ≥ 1− ε and hence |E[fπi ]| ≥
1 − ε − η ≥ 1 − 2ε. By Proposition 50 item 1we conclude:

For at least a 1 − 2ε fraction of all restrictions π to J , |E[fπ]| ≥ 1 − 2ε. (40)

Also, since the test passed, there is some pair (w∗, θ∗) such that sgn(w∗ · πi − θ∗) = sgn(µ̃i) for at least a
1− 20ε fraction of the πi’s. Now except for at most an ε fraction of the πi’s we have |E[fπi ]| ≥ 1− 2ε ≥ 2

3
and |µ̃i −E[fπi ]| ≤ η < 1

3 whence sgn(µ̃i) = sgn(E[fπi ]). Hence sgn(w∗ · πi − θ∗) = sgn(E[fπi ]) for at
least a 1 − 20ε − ε ≥ 1 − 21ε fraction of the πi’s. By Proposition 50 item 2 we conclude:

For at least a 1 − 22ε fraction of all restrictions π to J , sgn(E[fπ]) = sgn(w∗ · π − θ∗). (41)

Combining (40) and (41), we conclude that except for a 22ε + 2ε ≤ 24ε fraction of restrictions π to J , fπ is
ε-close, as a function of the bits outside J , to the constant sgn(w∗ ·π−θ∗). Thus f is 24ε+(1−24ε)ε ≤ 25ε-
close to the J -junta LTF π 7→ sgn(w∗ · π − θ∗). This completes the proof in Case 3(a).

Case 3(b). In this case, write π∗ for πi∗ . Since |µ̃i∗ | ≤ 1−ε, we have that |E[fπ∗ ]| ≤ 1−ε+η ≤ 1−ε/2.
Once we pass Step 3(b)(i) we have κ̃i∗ ≤ 2τ which implies

∑
|S|=1 f̂π∗(S)4 ≤ 2τ + η ≤ 3τ . This

in turn implies that fπ∗ is (3τ)1/4 ≤ 2τ1/4-regular. Once we pass Step 3(b)(ii), we additionally have
|∑|S|=1 f̂π∗(S)2 − W (E[fπ∗ ])| ≤ 2τ 1/12 + η + η ≤ 3τ 1/12, where we’ve also used that W (µ̃i∗) is within
η of W (E[fπ∗ ]) (since |W ′| ≤ 1).

Summarizing:

fπ∗ is 2τ1/4-regular and satisfies |E[fπ∗ ]| < 1 − ε/2,

∣∣∣∣∣
∑

|S|=1

f̂π∗(S)2 − W (E[fπ∗ ])

∣∣∣∣∣ ≤ 3τ1/12. (42)

Since Step 3(b)(iii) passes we have that both |(ρ̃i∗,i)2 − W (µ̃i∗)W (µ̃i)| ≤ 2τ1/12 and ρ̃i∗,i ≥ −η hold for
all i’s. These conditions imply |(∑|S|=1 f̂π∗(S)f̂πi(S))2−W (E[fπ∗])W (E[fπi ])| ≤ 2τ 1/12 +4η ≤ 3τ 1/12

and
∑

|S|=1 f̂π∗(S)f̂πi(S) ≥ −2η hold for all i. Applying Proposition 50 item 3 we conclude:

For at least a 1 − ε fraction of the restrictions π to J , both∣∣∣∣∣∣

(
∑

|S|=1

f̂π∗(S)f̂π(S)

)2

− W (E[fπ∗])W (E[fπ])

∣∣∣∣∣∣
≤ 3τ1/12 and

∑
|S|=1

f̂π∗(S)f̂πi(S) ≥ −2η. (43)

We can use (42) and (43) in Theorem 38, with fπ∗ playing the role of f , the good fπ’s from (43) playing
the roles of g and the “τ” parameter of Theorem 38 set to 3τ 1/12. (This requires us to ensure K � 54.) We
conclude:

There is a fixed vector ` with ‖`‖ = 1 and |`j | ≤ O(τ7/108) for each j

such that for at least a 1 − ε fraction of restrictions π to J ,
fπ(x) is O(τ 1/108)-close to the LTF gπ(x) = sgn(` · x − θπ). (44)

We now finally use the fact that Step 3(b)(iv) passes to get a pair (w∗, θ∗) such that |µ̃i−µ(θ∗−w∗·πi)| ≤
5
√

τ ⇒ |E[fπi ] − µ(θ∗ − w∗ · πi)| ≤ 6
√

τ holds for all πi’s. By Proposition 50 item 4 we may conclude
that:

For at least a 1 − ε/2 fraction of restrictions π to J , |E[fπ] − µ(θ∗ − w∗ · π)| ≤ 6
√

τ . (45)
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Define the LTF h : {−1, 1}n → {−1, 1} by h(π, x) = sgn(w∗ · π + ` · x− θ∗). We will complete the proof
by showing that f is O(τ 1/108)-close to h.

We have that the conclusions of (44) and (45) hold simultaneously for at least a 1 − 2ε fraction of
restrictions π; call these the “good” restrictions. For the remaining “bad” restrictions π ′ we will make no
claim on how close to each other fπ′ and hπ′ may be. However, these bad restrictions contribute at most
2ε to the distance between f and h, which is negligible compared to O(τ 1/108). Thus it suffices for us to
show that for any good restriction π, we have that fπ and hπ are oh-so-close, namely, O(τ 1/108)-close. So
assume π is a good restriction. In that case we have that fπ is O(τ1/108)-close to gπ , so it suffices to show
that gπ is O(τ1/108)-close to hπ . We have hπ(x) = sgn(` · x − (θ∗ − w∗ · π)), and since ‖`‖ = 1 and

|`j | ≤ O(α7/108) for each j, Proposition 57 implies that E[hπ]
τ7/108

≈ µ(θ∗ − w∗ · π). Since π is a good

restriction, using (45) we have that E[hπ]
6
√

τ≈ E[fπ]. This certainly implies E[hπ]
α1/108

≈ E[gπ] since fπ and
gπ are O(α1/108)-close. But now it follows that indeed gπ is O(α1/108)-close to hπ because the functions
are both LTFs expressible with the same linear form and thus either gπ ≥ hπ pointwise or hπ ≥ gπ point-
wise, either of which implies that the distance between the two functions is proportional to the difference of
their means.

Finally, we’ve shown that f is O(τ 1/108)-close to an LTF. Taking K = 108 completes the proof.
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A Basic Theorems about Gaussians and LTFs

A.1 Gaussian basics.

We will often require the Berry-Esseen theorem, a version of the Central Limit Theorem with error bounds
(see, e.g., [Fel68]):

Theorem 55. Let `(x) = c1x1 + · · · + cnxn be a linear form over the random ±1 bits xi. Assume that

|ci| ≤ τ for all i, and write σ =
√∑

c2
i . Write F for the c.d.f. of `(x)/σ; i.e., F (t) = Pr[`(x)/σ ≤ t].

Then for all t ∈ R,

|F (t) − Φ(t)| ≤ O(τ/σ) · 1

1 + |t|3 ,

where Φ denotes the c.d.f. of X , a standard Gaussian random variable. In particular, if A ⊆ R is any

interval then Pr[`(x)/σ ∈ A]
τ/σ
≈ Pr[X ∈ A].

A special case of this theorem, with a sharper constant, is sometimes useful (the following can be found
in [Pet95]):

Theorem 56. In the setup of Theorem 55, for any λ ≥ τ and any θ ∈ R it holds that Pr[|`(x) − θ| ≤ λ] ≤
6λ/σ.

We will use the following proposition:

Proposition 57. Let f(x) = sgn(c · x − u) be an LTF such that
∑

i c
2
i = 1 and |ci| ≤ τ for all i. Then we

have E[f ]
τ≈ µ(u).

This is an almost immediate consequence of the Berry-Esseen theorem. Next we prove the following
more difficult statement, which gives an approximation for the expected magnitude of the linear form c·x−u
itself:

Proposition 58. Let `(x) =
∑

cixi be a linear form over {−1, 1}n and assume |ci| ≤ τ for all i. let

σ =
√∑

c2
i and let u ∈ R. Then

E[|` − u|] τ≈ E[|σX − u|],
where X is a standard Gaussian random variable.

Proof. The result is certainly true if σ = 0, so we may assume σ > 0. Using the fact that E[R] =∫∞
0 Pr[R > s] ds for any nonnegative random variable R for which E[R] < ∞, we have that

E[|` − u|] =

∫ ∞

0
Pr[|` − u| > s] ds

=

∫ ∞

0
Pr[` > u + s] + Pr[` < u − s] ds

=

∫ ∞

0
(1 − F ((u + s)/σ) + F ((u − s)/σ) ds (46)

where we have written F for the c.d.f. of `(x)/σ. We shall apply Berry-Esseen to `(x). Since
∑n

i=1 E[|cxi|3] =∑n
i=1 |ci|3 ≤ τ

∑n
i=1 c2

i = τσ2, Berry-Esseen tells us that for all z ∈ R we have |F (z) − Φ(z)| ≤
O(τ/σ)/(1 + |z|3). It follows that (46) ≤ (A) + (B), where

(A) =

∫ ∞

0
1 − Φ((u + s)/σ) + Φ((u − s)/σ) ds
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and

(B) = O(τ/σ) ·
∫ ∞

0

(
1

1 + |(u + s)/σ|3 +
1

1 + |(u − s)/σ|3
)

ds.

It is easy to see that
(B) = O(τ/σ) ·

∫ ∞

−∞

1

1 + |x/σ|3 dx = O(τ).

For (A), observe that (A) can be re-expressed as
∫ ∞

0
Pr[X > (u + s)/σ] + Pr[X < (u − s)/σ]ds =

∫ ∞

0
Pr[|σX − u| > s] ds.

Again using the fact that E[R] =
∫∞
0 Pr[R > s] ds for any nonnegative random variable R for which

E[R] < ∞, this equals E[|σX − u|]. This gives the desired bound.

Proposition 59. Using the notation above, E[|σX − u|] = σ · 2φ(u/σ) − uµ(u/σ). (This remains sensible
even for σ = 0.)

Proof.
E[|σX − u| = E[sgn(σX − u)(σX − u)] = σĝ(1) − uE[g],

where g : R → R is the function g(X) = sgn(X − u/σ). But E[g] = µ(u/σ) and ĝ(1) = 2φ(u/σ) (see
Definition 17).

A.2 LTF basics.

We collect here some easy propositions about LTFs. First, we need to recall the general notion of “influ-
ences” for Boolean functions:

Definition 60. Given f : {−1, 1}n → {−1, 1} and i ∈ [n], the influence of variable i is defined as
Infi(f) = Prx[f(xi−) 6= f(xi+)], where xi− and xi+ denote x with the i’th bit set to −1 or 1 respectively.

It is well-known that if f is a unate function then Inf i(f) = |f̂(i)|. In particular, this holds for LTFs
(which are unate).

The next proposition, relating the rank of the weights to the rank of the influences/degree-1 Fourier
coefficients, is very elementary; an explicit proof appears in, e.g., [FP04].

Proposition 61. Let f = sgn(w1x1 + · · · + wnxn − θ) be an LTF such that |w1| ≥ |wi| for all i ∈ [n].
Then |Inf1(f)| ≥ |Infi(f)| for all i ∈ [n].

Next, we show that LTFs typically become regular when their most influential coordinates are restricted:

Proposition 62. Let f : {−1, 1}n → {−1, 1} be an LTF and let J ⊇ {j : |f̂(i)| ≥ β}. Then fπ is not
(β/η)-regular for at most an η fraction of all restrictions π to J .

Proof. Since f is an LTF, |f̂(j)| = Infj(f); thus every coordinate outside J has influence at most β on f .
Let k be a coordinate outside of J of maximum influence. Note that since f is an LTF, k is a coordinate of
maximum influence for fπ under every restriction π to J ; this follows from Proposition 61. But Infk(f) =

Avgπ(Infk(fπ)) = Avgπ(|f̂π(k)|) and so

β ≥ Infk(f) = Avgπ(regularity of fπ).

The result now follows by Markov’s inequality.
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Next, a proposition on LTFs that are close to juntas:

Proposition 63. Let f = sgn(w1x1 + · · · + wnxn − θ) be an LTF which is ε-close to being some junta on
the set J . Then f is in fact ε-close to being the LTF on J given by sgn(

∑
i∈J wixi − θ).

Proof. Assume without loss of generality that J = {1, . . . , r}. Given any values for x1, . . . , xr , let fx1,...,xr

denote the restricted version of f , a function of the remaining variables xr+1, . . . , xn. Now without even
using the fact that f is an LTF, we know that the junta over {−1, 1}r to which f is closest is given by mapping
x1, . . . , xr to the more common value of fx1,...,xr . But this more common value is certainly sgn(w1x1 +
· · · + wrxr − θ), by the symmetry of the variables xr+1, . . . , xn. This completes the proof.

Finally, we show a partial converse to our Theorem 26:

Proposition 64. Suppose f(x) = sgn(a1x1 + · · · + anxn − θ) is an LTF with
∑n

i=1 a2
i = 1 and |ai| ≤ δ

for all i. Then f is O(δ)-regular; i.e., Inf i(f) ≤ O(δ) for all i.

Proof. Without loss of generality we may assume that δ = |a1| ≥ |ai| for all i. By Proposition 61 we need
to show that Inf1(f) ≤ O(δ). Now observe that

Inf1(f) = Pr
[
|a2x2 + · · · + anxn − θ| ≤ δ

]
.

If δ ≥ 1/2 then clearly Inf1(f) ≤ 2δ so we may assume δ < 1/2. By the Berry-Esseen theorem, the
probability (6) above is within an additive O(δ/

√
1 − δ2) = O(δ) of the probability that |X−θ| ≤ δ, where

X is a mean-zero Gaussian with variance 1 − δ2. This latter probability is at most O(δ/
√

1 − δ2) = O(δ),
so indeed we have Inf1(f) ≤ O(δ).
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