
Learning Intersections of Halfspaces with a

Margin

Adam R. Klivans 1

Department of Computer Science
University of Texas at Austin

Austin, TX 78712

Rocco A. Servedio ∗,2

Department of Computer Science
Columbia University
New York, NY 10027

Abstract

We give a new algorithm for learning intersections of halfspaces with a margin, i.e.
under the assumption that no example lies too close to any separating hyperplane.
Our algorithm combines random projection techniques for dimensionality reduction,
polynomial threshold function constructions, and kernel methods. The algorithm
is fast and simple. It learns a broader class of functions and achieves an exponential
runtime improvement compared with previous work on learning intersections of
halfspaces with a margin.

Key words: computational learning theory, intersections of halfspaces, margin,
polynomial threshold function, random projection, kernel Perceptron.

∗ Corresponding author.
Email addresses: klivans@cs.utexas.edu (Adam R. Klivans),

rocco@cs.columbia.edu (Rocco A. Servedio).
URLs: http://www.cs.utexas.edu/∼klivans (Adam R. Klivans),

http://www.cs.columbia.edu/∼rocco (Rocco A. Servedio).
1 Work done while at Harvard University and supported by an NSF Mathematical
Sciences Postdoctoral Research Fellowship.
2 Partially supported by NSF Early Career Development (CAREER) Grant CCF-
0347282 and by a Sloan Foundation Fellowship.

Preprint submitted to Elsevier 24 July 2006

1 Introduction

The Perceptron algorithm and Perceptron Convergence Theorem are among
the oldest and most famous results in machine learning. The Perceptron Con-
vergence Theorem, see e.g. [22,19,10], states that at most 4/ρ2 iterations of
the Perceptron update rule are required in order to correctly classify any set
S of examples which are consistent with some halfspace which has margin ρ
on S. (Roughly speaking, this margin condition means that no example lies
within distance ρ of the separating hyperplane; we give a precise definition in
Section 2.)

Since halfspace learning is so widely used in machine learning algorithms and
applications, it is of great interest to develop efficient algorithms for learning
intersections of halfspaces and other more complex functions of halfspaces.
While this problem has been intensively studied, progress to date has been
quite limited; we give a brief overview of relevant previous work on learning
intersections of halfspaces at the end of this section.

1.1 Our results: toward Perceptron-like performance for learning intersec-
tions of halfspaces.

In this paper we take a perspective similar to that of the original Perceptron
Convergence Theorem by highlighting the role of the margin. Our goal is to
obtain results analogous to the Perceptron Convergence Theorem for learning
intersections of halfspaces with margin ρ. (Roughly speaking, an intersection of
t halfspaces has margin ρ relative to a data set if each of the defining halfspaces
has margin ρ on the data set; we give a precise definition in Section 2.) The
margin is a natural parameter to consider; previous work by Arriaga and
Vempala [3] on learning intersections of halfspaces has explicitly studied the
dependence on this parameter. Since the Perceptron algorithm learns a single
halfspace over Rn in time linear in n and 1/ρ2, the ultimate goal in this
framework would be an algorithm which can learn (say) an intersection of two
halfspaces in time polynomial in n and 1/ρ as well.

Figure 1 summarizes our main results. For any constant t number of halfs-
paces (in our opinion this is the most interesting case) over Rn, our learning
algorithm runs in time polynomial in n and (1/ρ)log 1/ρ, i.e. quasipolynomial
in 1/ρ. This is an exponential improvement over Arriaga and Vempala’s pre-
vious result [3] which was an algorithm that runs in poly(n, (1/ρ)ω(1/ρ2)) time.
(However, as we discuss in Section 1.3, the algorithm of Arriaga and Vempala
constructs a hypothesis which is an intersection of halfspaces, whereas our
algorithm uses a different hypothesis representation.) Put another way, our

2

Arriaga & Vempala [3] This Paper

h1 ∧ · · · ∧ ht n · poly
(

log t
ρ

)

+
(

log t
ρ

)

t log t
ρ

ρ2
n
(

t
ρ

)t log t log 1
ρ or n

(

log t
ρ

)

√

1
ρ

log t

f(h1, . . . , ht) ——————— n
(

t
ρ

)t2 log 1
ρ

Fig. 1. Bounds on running time for learning intersections and arbitrary functions
of t halfspaces with margin ρ. Each hi is a halfspace over R

n; in the second line f

denotes an arbitrary Boolean function (not known a priori to the learner) on t bits.
In each case the target function is assumed to have margin ρ.

algorithm can learn the intersection of O(1) halfspaces with margin at least

1/2
√

log n in poly(n) time, whereas Arriaga and Vempala require the margin to
be at least ω(1/

√
log n) to achieve poly(n) runtime. In fact, we can learn any

Boolean function of t = O(1) halfspaces, not just an intersection of halfspaces,
in n · (1/ρ)O(log 1/ρ) time.

One can instead consider the number of halfspaces t as the relevant asymptotic
parameter and view ρ as Θ(1). For this case we give an algorithm which has
a tO(log log t) dependence on t; this algorithm can learn an intersection of t =
n1/ log log n many halfspaces in poly(n) time. In contrast, the previous algorithm
of [3] has a tω(t) dependence on t and thus runs in poly(n) time only for
t = o(log n

log log n
) many halfspaces.

As described below all our results are achieved using simple iterative algo-
rithms (in fact using simple variants of the Perceptron algorithm!).

1.2 Our Approach

Our algorithm (called PKP, for “Projection Kernel Perceptron”) for learning
an intersection of t halfspaces in Rn with margin ρ is given in Figure 2.
The algorithm has three main conceptual stages: (i) random projection, (ii)
polynomial threshold function construction, and (iii) kernel methods used to
learn polynomial threshold functions. We now give a brief overview of each of
these stages.

Random Projection: Random projection for dimensionality reduction has emerged
as a useful tool in many areas of theoretical computer science (see [28] for a
recent overview). The key fact on which most of these applications are based
is the Johnson-Lindenstrauss lemma [14] which shows that a random projec-
tion of a set of m points in Rn into Rk with k ≈ log m

ǫ2
with high probability

will not change pairwise distances by more than a (1± ǫ) factor. Arriaga and
Vempala [3] were among the first to give learning algorithms based on random
projections. Their key insight was that since the geometry of a sample does

3

Algorithm PKP(EX(c,D)):
(1) Let M be an n × k random projection matrix.
(2) Draw m many examples from EX(c,D) and project them to Rk

using M .
(3) Run the kernel Perceptron algorithm using the polynomial kernel

Kd(x, y) = (x ·y +1)d over the projected examples until a consistent
hypothesis is obtained. Let h′ be the kernel Perceptron hypothesis
(a mapping from Rk to {−1, 1}).

(4) Output h : Rn → {−1, 1}, h(x) = sign(h′(MT x)) as the final hy-
pothesis.

Fig. 2. The algorithm is given access to a source EX(c,D) of random labelled
examples, where the target concept c is an intersection of t halfspaces over R

n

which has margin ρ with respect to distribution D. The values of m,k and d are
given in Section 6.

not change much under random projection, one can run learning algorithms
in the low dimensional space Rk rather than Rn and thus get a computational
savings. Around the same time Dasgupta [11] used random projections in an
algorithm for learning mixtures of Gaussians.

As described in Section 3, the first step of our algorithm is to perform a
random projection of the sample from Rn into a lower dimensional space Rk

where k has no dependence on n. After this projection, with high probability
we have data points in Rk which are labelled according to some intersection
of halfspaces with margin ρ/2.

Polynomial Threshold Functions: Recently, constructions of polynomial thresh-
old functions (PTFs) have proven quite useful in computational learning the-
ory; for example the DNF learning algorithm of [17] has at its heart the fact
that any DNF formula can be expressed as a low degree thresholded polyno-
mial sign(p(x)). The second conceptual step of our algorithm is to construct
a polynomial threshold function for an intersection of halfspaces over Rk. We
show in Section 4 that any intersection of halfspaces with margin ρ/2 over Rk

can be expressed as a low-degree polynomial threshold function p over Rk.
These constructions are essentially the same as the constructions from [16,17],
but unlike previous analyses (which only gave degree bounds) we show that
this PTF p has nonnegligible PTF margin (we define PTF margin in Section
2.3). We can thus view our projected data in Rk as being labelled according
to some degree-d PTF over Rk which has nonnegligible PTF margin. (We
emphasize that this is only a conceptual rather than an algorithmic step —
the learning algorithm itself does not have to do anything at this stage!)

Kernel Methods: The third step is to learn the low-degree polynomial threshold
function over Rk. As shown in Section 5 we do this using the Perceptron

4

algorithm with the standard polynomial kernel Kd(x, y) = (1 + x · y)d. The
kernel Perceptron algorithm learns an implicit representation of a halfspace
over an expanded feature space; here the expanded space has a feature for
each monomial of degree up to d, and thus each example in Rk corresponds to

a point in R(k+d
d). We show that since there is a polynomial threshold function

which correctly classifies the data in Rk with some PTF margin, there must

be a halfspace over R(k+d
d) which correctly classifies the expanded data with a

margin, and thus we can use kernel Perceptron to learn.

1.3 Comparison with Previous Work

Many researchers have considered the problem of learning intersections of half-
spaces. Efficient algorithms are known for learning intersections of halfspaces
under the uniform distribution on the unit ball [7,25] and on the Boolean
cube [16], but less is known about learning under more general probability
distributions. Baum [4] gave an algorithm which learns an intersection of two
origin-centered halfspaces under any symmetric distribution D (which satisfies
D(x) = D(−x) for all x ∈ Rn), and Klivans et al. [16] gave a PTF-based al-
gorithm which learns an intersection of O(1) many poly(n)-weight halfspaces
over {0, 1}n in nO(log n) time under any distribution.

The most closely related previous work is that of Arriaga and Vempala [3] who
gave an algorithm for learning an intersection of halfspaces with margin ρ; see
Figure 1 for a comparison with their results. Their algorithm uses random
projection to reduce dimensionality and then uses a brute-force search over
all (combinatorially distinct) halfspaces over the sample data. In contrast, our
algorithm combines polynomial threshold functions and kernel methods with
random projections, and is able to achieve an exponential runtime savings
over [3]. However, one potential drawback of our algorithm compared with
the algorithm of [3] is that the hypothesis it generates is not an intersection
of halfspaces, and thus it may be more difficult for a human to intuitively
interpret the hypothesis.

2 Preliminaries

2.1 PAC Learning

Here we describe the Probably Approximately Correct (PAC) model of learn-
ing due to Valiant [26]. A concept class C is any subset of Boolean functions
mapping {0, 1}n → {0, 1} with polynomial (in n) description length (e.g.,

5

polynomial-size circuits, DNF formulas with a polynomial number of terms).
Fix a target function f ∈ C and a distribution D on {0, 1}n. The learner, who
does not know f, receives labeled examples (x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn)).
Here each xi in {0, 1}n is chosen independently at random according to D. An
algorithm is said to learn C if, for any choice of f ∈ C, on input ǫ ∈ (0, 1),
δ ∈ (0, 1), the learner receives poly(n, 1

ǫ
, 1

δ
, size(f)) labeled examples drawn

from D, and outputs, with probability at least 1− δ, a hypothesis h such that
Prx∼D[f(x) 6= h(x)] < ǫ. The learner must run in time poly(n, 1

ǫ
, 1

δ
, size(f)),

and h must be computable in polynomial time (again in the relevant para-
maters).

2.2 Concepts and Margins

A concept is simply a Boolean function c : Rn → {−1, +1}. A halfspace over
Rn is a Boolean function h : Rn → {−1, 1} defined by a vector w ∈ Rn and
a value θ ∈ R; given an input x ∈ Rn, the value of h(x) is sign(w · x − θ),
i.e. h(x) = +1 if w · x ≥ θ and h(x) = −1 if w · x < θ. An intersection of t
halfspaces h1, . . . , ht is the Boolean AND of these halfspaces, i.e. the value is
+1 if hi(x) = 1 for all i = 1, . . . , t and is −1 otherwise.

For two vectors x, y ∈ Rn we write ‖x − y‖ to denote the Euclidean distance
between x and y and we write Sn−1 for the unit ball in Rn.

Definition 1 Given X ⊂ Rn and a concept c over Rn, write ‖X‖ to denote
supz∈X ‖z‖. We say that c has (geometric) margin ρ with respect to X if

ρ = min{‖z − y‖ : z ∈ X, y ∈ Rn, c(z) 6= c(y)}/‖X‖.

Our definition of the geometric margin is similar to the notion of robustness
defined in Arriaga and Vempala [3]; the difference is that we normalize by
dividing by the radius of the data set ‖X‖. In the case where ‖X‖ = 1 these
notions coincide and the condition is simply that for every z ∈ X, every point
within a ball of radius ρ around z has the same label as z under c.

Let D be a probability distribution over Rn. We say that c has margin ρ with
respect to distribution D if c has margin ρ with respect to the set {x ∈ Rn :
D(x) > 0}. Thus, for D a distribution where {x ∈ Rn : D(x) > 0} ⊂ Sn−1,
an intersection of t halfspaces has margin ρ with respect to D if every point
x with D(x) > 0 lies at least distance ρ away from each of the t separating
hyperplanes.

Throughout this paper we assume that: (i) All halfspaces in our intersection of
halfspaces learning problem are origin-centered, i.e. of the form sign(w ·x− θ)

6

with θ = 0 — this can be achieved by adding an (n + 1)st coordinate to each
example. (ii) All examples lie on the unit ball Sn−1 — this can be achieved
by adding a new coordinate so that all examples have the same norm and
rescaling.

2.3 Polynomial Threshold Functions and PTF Margins

Let f : Rn → {−1, 1} be a Boolean function and X be a subset of Rn. A real
polynomial p in n variables is said to be a polynomial threshold function (PTF)
for f over X if sign(p(x)) = f(x) for all x ∈ X. The degree of a polynomial
threshold function p is simply the degree of the polynomial p. Polynomial
threshold functions are well studied in the case where X = {0, 1}n or {−1, 1}n

(see e.g. [5,17,20,23]) but we will consider other more general subsets X.

For S ⊆ {x1, . . . , xn} a multiset of variables, we write xS to denote the mono-
mial

∏

i∈S xi. We emphasize that S is a multiset and thus the monomial xS need
not be multilinear. For p(x) =

∑

S cSxS a polynomial, we write ‖p‖ to denote
√

∑

S c2
S, i.e. the L2 norm of the vector of coefficients of p. Given a PTF p over

X, we define the PTF margin of p over X to be min{|p(z)| : z ∈ X}/‖p‖. Note

that if p(x) = w · x is a degree-1 polynomial which has ‖p‖ =
√

w2
1 + · · ·+ w2

n

= 1, then the PTF margin of p over X is equal to the geometric margin of
sign(p(x)) over X (up to scaling by ‖X‖). However in general for polynomials
of degree greater than 1 these two notions are not equivalent.

2.4 The Perceptron Algorithm and Kernel Perceptron

Perceptron is a simple iterative online learning algorithm which finds a linear
separator for a labelled data set X ⊂ Rn if such a separator exists. The
algorithm maintains a weight vector w ∈ Rn and a bias θ ∈ R and updates
these parameters additively each time the current hypothesis sign(w · x −
θ) makes a prediction mistake; see e.g. Chapter 2 of [10] for details. The
Perceptron Convergence Theorem bounds the number of updates in terms of
the maximum margin of any halfspace (the following is adapted from Theorem
2.3 of [10]):

Theorem 2 Let X ⊂ Rn be a set of labelled examples such that there is some
halfspace h (which need not be origin-centered) which has margin ρ over X.
Then the Perceptron algorithm makes at most 4

ρ2 prediction mistakes on any
sequence of examples from X.

Let φ : Rn → RN be any function. The reader may think of φ as a fea-
ture expansion. We refer to Rn as the original feature space and RN as

7

the expanded feature space. The kernel corresponding to φ is the function
K(x, y) = φ(x)·φ(y). The use of kernels in machine learning has received much
research attention in recent years (see e.g. [10,13] and references therein).

Given a data set X ⊂ Rn, it is well known (see e.g. [12]) that the Perceptron
algorithm can be simulated over φ(X) in the expanded feature space RN using
the kernel function K(x, y) to yield an implicit representation of a halfspace
in RN . If evaluating K(x, y) takes time T and the Perceptron algorithm is
simulated until M mistakes are made on a data set X with |X| = m, the time
required is O(mTM2) (see e.g. [13,15]).

3 Random Projections

We say that an n × k matrix M is a random projection matrix if each entry
of M is chosen independently and uniformly from {−1, 1}. We will use the
following lemma from Arriaga and Vempala [3] (see Achlioptas [1] for similar
results):

Lemma 3 [3] Let w, x ∈ Rn such that ‖w‖, ‖x‖ ≤ 1. Let M be an n × k
random projection matrix where each entry is chosen from N(0, 1) or U(−1, 1).
Let w′ = 1√

k
MT w and x′ = 1√

k
MT x. Then for any τ > 0 we have

Pr[w · x − τ ≤ w′ · x′ ≤ w · x + τ] ≥ 1 − 4 e−(τ2−τ3)k/4 .

With this lemma in hand we can establish the main theorem on random pro-
jection which we will use:

Theorem 4 Let X be a set of m points on Sn−1 and let h = sign(w · x) be a
halfspace which has margin ρ on X. Let k ≥ 2048

ρ2 log(18m
δ

) and let M be a n×k

random projection matrix. Let M(X) ⊂ Rk denote the projection of X under
1√
k
M and let h′ : Rk → {−1, +1} denote the function h′(x) = sign((1√

k
MT w) ·

x). Then with probability 1− δ, the halfspace h′ correctly classifies M(X) with
margin at least ρ

2
and we have 1

2
≤ ‖M(X)‖ ≤ 2.

Proof: We may assume that ‖w‖ = 1. After applying M to the points in X,
we need to verify that Definition 1 is satisfied for h′ with respect to the points
in M(X). Setting τ = ρ

8
and setting k as above, taking x = w in Lemma 3 we

have that with probability at least 1 − δ
3m

, ‖ 1√
k
MT w‖2 ≤ ‖w‖2 + ρ

8
= 1 + ρ

8
,

so ‖ 1√
k
MT w‖ ≤ 1 + ρ

16
.

8

Now for each point z ∈ X, applying Lemma 3, with probability at least 1− δ
3m

we have

(w · z) − ρ

8
≤ (

1√
k
MT w) · (1√

k
MT z) ≤ (w · z) +

ρ

8
.

Since |(w · z)| ≥ ρ, this gives | 1√
k
(MT w) · 1√

k
(MT z)| ≥ 7ρ

8
. Hence with proba-

bility at least 1 − δ
2

we have

min{‖z′ − x‖ : z′ ∈ M(X), x ∈ Rk, h′(z′) 6= h′(x)}≥min
z∈X

|(1√
k
MT w) · (1√

k
MT z)|

‖ 1√
k
MT w‖

≥ 7ρ/8

1 + ρ/16
≥ 3ρ

4
.

Lemma 3 similarly implies that 1 − ρ
8
≤ ‖M(X)‖ ≤ 1 + ρ

16
with probability

at least 1− δ
2
. Thus with probability 1− δ, h′ has margin at least ρ

2
on M(X)

and 1
2
≤ ‖M(x)‖ ≤ 2. ✷

A union bound yields the following corollary:

Corollary 5 Let X be a set of m points on Sn−1 and let H =
∧t

i=1 hi =
sign(w1 · x) ∧ . . . ∧ sign(wt · x) be an intersection of t halfspaces which has
margin ρ on X. Let k ≥ 2048

ρ2 · log(18mt
δ

) and let M be a n×k random projection

matrix. Let M(X) ⊂ Rk denote the projection of X under M and let H ′ =
∧t

i=1 sign((MT wi)·y). Then with probability 1−δ, the intersection of halfspaces
H ′ correctly classifies M(X) with margin at least ρ

2
and 1

2
≤ ‖M(X)‖ ≤ 2.

Thus with high probability the projected set of examples in Rk is classified by
an intersection of halfspaces with margin ρ

2
. It is easy to see that the corollary

in fact holds for any Boolean function (not just intersections) of t halfspaces.

4 Polynomial Threshold Functions for Intersections of Halfspaces

with a Margin

In this section we give several constructions of polynomial threshold functions
for intersections of halfspaces with a margin. In each case we give a PTF and
also a lower bound on the PTF margin of the polynomial threshold function
which we construct. These PTF margin lower bounds will be useful when we
analyze the performance of kernel methods for learning polynomial threshold
functions.

In order to lower bound the PTF margin of a polynomial p we must upper
bound ‖p‖ (recall the definition from Section 2.3). Fact 1 helps us obtain such
upper bounds:

9

Fact 1 For i = 1, . . . , ℓ let qi(x) =
∑

S ci,SxS be a polynomial of degree at
most d over x1, . . . , xk with ‖qi‖2 ≤ Mi. Then (1) we have ‖q1(x) . . . qℓ(x)‖2 ≤
Kℓ∏

i Mi, and (2) we have ‖q1+· · ·+qℓ‖2 ≤ ℓ(M1+· · ·+Mℓ), where K =
(

k+d
d

)

.

Proof: For the first bound, we have

q1(x) . . . qℓ(x) =
∑

S1,...,Sℓ

c1,S1 . . . cℓ,Sℓ
xS1 . . . xSℓ

from which it follows that

‖q1(x) . . . qℓ(x)‖2 ≤




∑

S1,...,Sℓ

|c1,S1 . . . cℓ,Sℓ
|




2

≤Kℓ
∑

S1,...,Sℓ

(c1,S1 . . . cℓ,Sℓ
)2

= Kℓ
ℓ
∏

i=1





∑

Si

c2
i,Si



 ≤ Kℓ
∏

i

Mi

where the second inequality follows from Cauchy-Schwarz using the fact that
each qi(x) has at most K =

(

k+d
d

)

monomials (so the first sum has at most

Kℓ summands).

For the second bound, we have qi(x) =
∑

S ci,SxS so by Cauchy-Schwarz we
have

‖q1(x) + · · · + qℓ(x)‖2 =
∑

S

(c1,S + · · · + cℓ,S)2 ≤ ℓ

(

∑

S

c2
1,S + · · ·+

∑

S

c2
ℓ,S

)

which is at most ℓ(M1 + · · · + Mℓ). ✷

4.1 Constructions based on Rational Functions

Recall that a rational function is a quotient of two real polynomials, i.e. Q(x) =
a(x)/b(x). The degree of Q is defined as deg(a) + deg(b). Building on earlier
results of Newman [18] on rational functions which approximate the absolute
value function |x|, in [6] Beigel et al. gave a construction of a low-degree
rational function which closely approximates the function sgn(x). We will use
the following lemma (Lemma 9 of [6]):

Lemma 6 [6] For all integers r, ℓ ≥ 1 there is a univariate rational function

P r
ℓ (x) = a(x)

b(x)
of degree O(ℓ log r) with the following properties (part (iv) is

implicit):

(i) P r
ℓ (x) ∈ [1, 1 + 1

r
] for all x ∈ [1, 2ℓ];

10

(ii) P r
ℓ (x) ∈ [−1 − 1

r
,−1] for all x ∈ [−2ℓ,−1]; and

(iii) Each coefficient of a(x), b(x) has magnitude at most 2O(ℓ2 log r).
(iv) If the fractional part of x is at least 2−ℓ then |b(x)| ≥ 1/4.

The following theorem extends Theorem 24 in [16], which addresses the special
case of intersections of low-weight halfspaces over the space X = {0, 1}n:

Theorem 7 Let X be a subset of Rk with 1
2
≤ ‖X‖ ≤ 2 and c : Rk → {−1, 1}

be an intersection of t origin-centered halfspaces h1, . . . , ht such that the corre-
sponding wis have margin ρ with respect to X, and all points in X, as well as
the wis, are described by rationals with precision at most 2−k (i.e., no rational
value has fractional part smaller than 2−k). Then there exists a polynomial
threshold function of degree d = O(t log t log 1

ρ
) for c on X. Assuming d ≤ k,

this PTF has PTF margin at least (ρ/k)O(t log t log 1/ρ) on X.

Proof: We must exhibit a polynomial p(x) of the claimed degree such that

for any z ∈ X we have sign(p(z)) = c(z) and |p(z)|
‖p‖ ≥ (ρ/k)O(t log t log 1/ρ).

Let w1 · x = 0, . . . , wt · x = 0 be the t hyperplanes which define halfspaces
h1, . . . , ht; we may assume without loss of generality that each ‖wi‖ = 1. Now
consider the sum of rational functions

Q(x) = P 2t
log 4/ρ(2(w1 · x)/ρ) + · · · + P 2t

log 4/ρ(2(wt · x)/ρ) − t + 1/2.

Fix any z ∈ X. Since c has margin ρ on X and 1
2
≤ ‖X‖ ≤ 2, for each

i = 1, . . . , t we have ρ
2
≤ ρ‖X‖ ≤ |wi · z| ≤ ‖wi‖ · ‖X‖ ≤ 2 and hence

|2(wi · z)/ρ| ∈ [1, 4
ρ
]. Consequently P 2t

log 4/ρ(
2(wi·z)

ρ
) lies in [1, 1 + 1

2t
] if hi(z) = 1

and lies in [−1 − 1
2t

,−1] if hi(z) = −1. Thus if hi(z) = 1 for all i we have
Q(z) ≥ t− t + 1

2
= 1

2
, and if hi(z) = −1 for some i we have Q(z) < −1 + (t−

1) + (t−1)
2t

− t + 1
2

< −1
2
. So sign(Q(z)) = c(z) for all z ∈ X, and furthermore

|Q(z)| ≥ 1/2 for all z ∈ X.

Since Q(x) is a sum of t rational functions of degree O(log t log 1
ρ
), we can

move to a common denominator and re-express Q(x) as a single rational func-
tion A(x)/B(x) of degree O(t log t log 1

ρ
). It follows that the function p(x) =

A(x)B(x), which is a polynomial of degree O(t log t log 1
ρ
), has sign(p(z)) =

sign(Q(z)) as desired.

Now we must bound ‖p‖. We have ‖2wi·x
ρ

‖2 = 4
ρ2 so by part (1) of Fact 1

we have that ‖(2wi·x
ρ

)j‖2 ≤ (4(k+1)
ρ2)j for all j. By Lemma 6 we have that

P 2t
log 4/ρ(x) = a(x)

b(x)
where a(x), b(x) are polynomials of degree O(log t log 1

ρ
) with

coefficients of magnitude at most 2O((log 1
ρ
)2 log t) = (1

ρ
)O(log t log 1/ρ). It follows

11

from part (2) of Fact 1 that

‖a(2wi · x/ρ)‖2 ≤ (k/ρ)O(log t log 1/ρ) · (1/ρ)O(log t log 1/ρ)

which equals (k
ρ
)O(log t log 1/ρ), and the same holds for ‖b(2wi·x

ρ
)‖2. Expressing

Q(x) as a rational function A(x)/B(x), we have that B(x) =
∏t

i=1 b(2wi·x
ρ

).

Since we assume d ≤ k, we have
(

k+d
d

)

≤ kO(d), and therefore part (1) of Fact
1 implies that

‖B(x)‖2 ≤ kO(t log t log 1/ρ)(k/ρ)O(t log t log 1/ρ) = (k/ρ)O(t log t log 1/ρ).

Simple calculations using part (1) of Fact 1 show that ‖A(x)‖2 and ‖p(x)‖ =
‖A(x)B(x)‖ are also (k/ρ)O(t log t log 1/ρ). Part (iv) of Lemma 6 implies that
‖B(x)‖ is not too small, and this finishes the proof. ✷

By modifying this construction, we get a polynomial threshold function for
any Boolean function of t halfspaces rather than just an intersection at a
relatively small cost in degree and PTF margin:

Theorem 8 Let f : {−1, 1}t → {−1, 1} be any Boolean function on t bits. Let
X be a subset of Rk with 1

2
≤ ‖X‖ ≤ 2 and c : Rk → {−1, 1} be the function

f(h1, . . . , ht) where h1, . . . , ht are origin-centered halfspaces in Rk such that
the corresponding wis have margin ρ on X and all wis and z ∈ X are described
by rationals with precision at most 2−k (i.e., no rational value has fractional
part smaller than 2−k). Then there exists a PTF of degree d = O(t2 log 1

ρ
) for

c on X. Assuming d ≤ k, this PTF has PTF margin at least (ρ/k)O(t2 log 1/ρ)

on X.

Proof: As before, we give a polynomial p(x) of the claimed degree such that

for any z ∈ X we have sign(p(z)) = c(z) and |p(z)|
‖p‖ ≥ (ρ/k)O(t2 log 1/ρ).

Again let w1 ·x = 0, . . . , wt ·x = 0 be the hyperplanes for halfspaces h1, . . . , ht,
where each wi is a unit vector. For each i = 1, . . . , t consider the rational
function

Qi(x) = P 23t

log 4/ρ

(

2(wi · x)/ρ
)

.

Fix any z ∈ X. As before we have that |2(wi · z)/ρ| ∈ [1, 4
ρ
], so by Lemma 6

the value of Qi(z) differs from the ±1 value hi(z) = sign(wi · z) by at most
1

23t . Since f is a Boolean function on t inputs, it is expressible as a multilinear

polynomial f̃ of degree t, with coefficients of the form i/2t where i is an integer
in [−2t, 2t]. (The polynomial f̃ is just the Fourier representation of f .) Multiply
f̃ by 2t, so now f̃ : {−1, +1}t → {−2t, +2t}, and f̃ has integer coefficients
which are at most 2t in absolute value.

12

Now we would like to argue that f̃(Q1(z), . . . , Qt(z)) has the same sign as
f(h1(z), . . . , ht(z)). To do this we show that the “error” of each Qi(z) relative
to the ±1 value hi(z) (which error is at most 1

23t) does not cause f̃ to have

the wrong sign. The polynomial f̃ has at most 2t terms, each of which is
the product of an integer coefficient of magnitude at most 2t and up to t
of the Qi’s. The product of the Qi’s incurs error at most O(t2−3t) relative
to the corresponding product of the hi’s, and thus the error of any given
term (including the integer coefficient) is at most O(t2−2t). Since we add up
at most 2t terms, the overall error is at most O(t2−t) error, which is much
less than what we could tolerate (we could tolerate error 2t; recall that f̃
takes value ±2t on ±1 inputs). Thus f̃(Q1(z), . . . , Qt(z)) has the same sign as
f(h1(z), . . . , ht(z)) for all z ∈ X.

Now f̃ is a multilinear polynomial of degree t, and each Qi is a rational function
of degree O(t log w). We can bring f̃(Q1, . . . , Qt); to a common denominator
(which is the product of the denominators of the Qi’s) of degree O(t2 log w).
Hence we have a single multivariate rational function A(x)/B(x) which takes
the right sign on z, and we can convert this rational function to a polynomial
threshold function p(x) = A(x)B(x) as in the proof of Theorem 7.

Now we must bound ‖p‖. Let Qi(x) = ai(x)
bi(x)

. The analysis from the previous

proof implies that ‖ai(x)‖2 and ‖bi(x)‖2 are both at most (k
ρ
)O(t log 1/ρ). Now

consider a monomial (in the “variables” Q1(x), . . . , Qt(x)) in the polynomial
f̃(Q1(x), . . . , Qt(x)). Since the numerator α(x) of such a monomial is the prod-
uct of at most t of the ai(x)’s, and each ai(x) has degree at most O(log t log 1

ρ
),

the fact that d ≤ k and part (1) of Fact 1 together give

‖α(x)‖2 ≤ kO(t log t log 1/ρ)(k/ρ)O(t2 log 1/ρ)

which equals (k
ρ
)O(t2 log 1/ρ). The same holds for the denominator β(x) of such

a monomial. Since the common denomiator for f̃(Q1, . . . , Qt) is the prod-
uct of the denominators of the Qi’s, clearing all denominators we have that
f̃(Q1, . . . , Qt) = A(x)/B(x) with ‖A(x)‖2 and ‖B(x)‖2 both at most (k

ρ
)O(t2 log 1/ρ).

We thus have ‖p(x)‖2 = ‖A(x)B(x)‖2 = (k
ρ
)O(t2 log 1/ρ). Since wi · x has frac-

tional part at least 2−k, part (iv) of Lemma 6 implies that ‖B(x)‖ is not too
small and the theorem is proved. ✷

4.2 Constructions using Chebyshev Polynomials

The bounds from the previous section are strong when t is relatively small.
If t is large but ρ is also quite large, then the following bounds based on
Chebyshev polynomials are better.

13

The r-th Chebyshev polynomial of the first kind, Tr(x), is a univariate degree-r
polynomial with the following properties [9]:

Lemma 9 The polynomial Tr(x) =
∑r

i=0 aix
i satisfies: (i) |Tr(x)| ≤ 1 for

|x| ≤ 1 with Tr(1) = 1; (ii) T ′
r(x) ≥ r2 for x > 1 with T ′

r(1) = r2; and (iii)
For i = 0, . . . , r each ai is an integer with |ai| ≤ 2r.

The following theorem generalizes results in [17]:

Theorem 10 Let X be a subset of Rk with 1
2
≤ ‖X‖ ≤ 2 and let c : Rk →

{−1, 1} be an intersection of t origin-centered halfspaces h1, . . . , ht. If c has

margin ρ on X then there is a PTF of degree d = O(
√

1/ρ log t) for c on X.

If d ≤ k then this PTF has PTF margin 1/kO(
√

1/ρ log t) on X.

Proof: As in the previous proofs we must exhibit a polynomial p(x) such

that for any z ∈ X we have sign(p(z)) = c(z) and |p(z)|
‖p‖ ≥ 1/kO(

√
1/ρ log t).

Let w1·x = 0, . . . , wt·x = 0 be the t hyperplanes for halfspaces h1, . . . , ht where
each ‖wi‖ = 1. Let P be the univariate polynomial P (x) = Tr(1 − x) where

r = ⌈
√

2/ρ⌉. The first part of Lemma 9 implies that |P (x)| ≤ 1 for x ∈ [0, 2],

and the second part implies that P (x) ≥ 2 for x ≤ −ρ
2

. Now consider the
polynomial threshold function sign(p(x)) where

p(x) = t +
1

2
−

t
∑

i=1

(P (wi · x))⌈log 2t⌉.

Since P is a polynomial of degree r = ⌈
√

2/ρ⌉ and wi · x is a polynomial of

degree 1, this polynomial threshold function has degree d = ⌈
√

2/ρ⌉ · ⌈log 2t⌉.
We now show that p(x) has the desired properties described above.

We first show that for any z ∈ X the polynomial p takes the right sign and
has magnitude at least 1

2
. Fix any z ∈ X. For each i = 1, . . . , t we have

ρ
2
≤ ρ‖X‖ ≤ |wi · z| ≤ ‖wi‖ · ‖X‖ ≤ 2.

• If c(z) = 1 then for each i we have ρ
2
≤ wi · z ≤ 2 and hence we have that

P (wi · z) (and also P (wi · z)⌈log 2t⌉ lies in [−1, 1]. Consequently we have that
p(z) ≥ t + 1

2
− t ≥ 1

2
so sign(p(z)) = c(z) = 1.

• If c(z) = −1 then for some i we have wi · z ∈ [−2,−ρ
2
], so consequently

P (wi · z) ≥ 2 and P (wi · z)⌈log 2t⌉ ≥ 2t. Since P (wj · z)⌈log 2t⌉ ≥ −1 for all j,
we have p(z) ≤ t + 1

2
− 2t + (t − 1) = −1

2
so sign(p(z)) = c(z) = −1.

To finish the proof it remains to bound ‖p‖. Since ‖wi · x‖2 = 1 for all i, by
part (2) of Fact 1 we have ‖1 − wi · x‖2 ≤ 4 so by part (1) of Fact 1 we have
that ‖(1−wi ·x)j‖ ≤ (4(k +1))j for j = 0, . . . , r. Since (by Lemma 9) Tr(x) =

14

∑r
j=0 ajx

j where each |aj| ≤ 2r, for each j = 0, . . . , r we have ‖aj(1−wi·x)j‖2 ≤
22r(4(k+1))r. By part (2) of Fact 1 we obtain ‖Tr(1−wi ·x)‖2 ≤ (r+1)2(16k)r,
and now part (1) implies that (P (wi · x))⌈log 2t⌉ = kO(r log t). Using part (2)
again we obtain that ‖p‖ ≤ (t + 1)2kO(r log t) = kO(r log t), and the theorem is
proved. ✷

As Arriaga and Vempala observed in [3], DNF formulas can be viewed as
unions of halfspaces. If we rescale the cube so that it is a subset of Sk−1, it is
easy to check that a Boolean function f : {−1, 1}k → {−1, 1} has margin ρ
with respect to X ⊆ {−1, 1}k if for every z ∈ X we have that every Boolean

string z′ which differs from z in at most a ρ2

4
fraction of bits has f(z′) = f(z).

Since any DNF formula with t terms can be expressed as a union of t halfs-
paces, we have the following corollary of Theorem 10:

Corollary 11 Let X ⊂ {−1, 1}k and let c be a t-term DNF formula on k
variables. If c has margin ρ on X then there is a polynomial threshold function

of degree O(
√

1/ρ log t) for c on X which has PTF margin 1/kO(
√

1/ρ log t) on

X. If d ≤ k then this PTF has PTF margin (1/k)O(
√

1/ρ log t) on X.

A similar corollary for DNF formulas also follows from Theorem 7 but we are
most interested in DNFs with t = poly(n) terms so we focus on Theorem 10.

5 Kernel Perceptron for learning PTFs with PTF margin

In this section we first define a new kernel, the Complete Symmetric Kernel,
which arises naturally in the context of polynomial threshold functions. We
give an efficient algorithm for computing this kernel (which may be of inde-
pendent interest), and indeed all results of the paper could be proved using
this new kernel. To make our overall algorithm simpler, however, we ultimately
use the standard polynomial kernel which we discuss later in this section.

Let φd : Rk → R(k+d
d) be the feature expansion which maps (x1, . . . , xk) to the

vector (1, x1, . . . , xk, x2
1, x1x2, . . .) containing all monomials of degree up to d.

Let Kd(x, y) = φd(x) · φd(y) be the kernel corresponding to φd. We refer to
Kd(x, y) as the complete symmetric kernel since as explained below the value
Kd(x, y) equals the sum of certain complete symmetric polynomials.

For a data set X ⊂ Rk we write φd(X) to denote the expanded data set of

points in R(k+d
d). The following lemma gives a mistake bound for the Percep-

tron algorithm using the complete symmetric kernel:

15

Lemma 12 Let X ⊂ Rk be a set of labelled examples such that there is some
degree-d polynomial threshold function p(x) which correctly classifies X and
has PTF margin ρ over X. Then the Perceptron algorithm (run on φd(X)

using the complete symmetric kernel Kd) makes at most 4‖φd(X)‖2

ρ2 mistakes on
X.

Proof: The vector W ∈ R(k+d
d) whose coordinates are the coefficients of p has

margin
minz∈X |W · φd(z)|
‖W‖ · ‖φd(X)‖

over φd(X). Since W · φd(z) = p(z) and ‖W‖ = ‖p‖, the lemma follows by
from the definition of the PTF margin of p and the Perceptron Convergence
Theorem (Theorem 2). ✷

We now give a polynomial time algorithm for computing Kd(x, y), but this
algorithm is somewhat cumbersome.

Lemma 13 There is a poly(k, d) time algorithm for computing Kd(x, y).

Proof: Writing zi for xiyi, it is easy to see that Kd(x, y) =
∑d

ℓ=0 hℓ(z1, . . . , zk)
where hℓ(z1, . . . , zk) =

∑

d1+···+dk=ℓ zd1
1 · · · zdk

k is the ℓ-th complete symmetric
polynomial (the sum of all monomials of degree exactly ℓ). Let eℓ(z1, . . . , zk)
denote the ℓ-th elementary symmetric polynomial (the sum of all multilinear
monomials of degree exactly ℓ). By Equation (8) of [29], we have the identity
hℓ = det(E), where E is the ℓ × ℓ matrix whose (i, j) entry is e1−i+j (inter-
preting er as 0 for r < 0). Thus computing Kd(x, y) reduces to computing the
polynomials eℓ; these polynomials can be computed efficiently via polynomial
interpolation (see e.g. Section 2.5 of [24]). ✷

With the aim of obtaining a faster and simpler overall algorithm, we now
describe an alternate approach based on the well known polynomial kernel.

As in [10], we define the degree-d polynomial kernel K ′
d : Rk × Rk → R as

K ′
d(x, y) = (1+x ·y)d. It is clear that K ′

d(x, y) can be computed efficiently. Let

φ′
d : Rk → R(k+d

d) be the feature expansion such that K ′
d(x, y) = φ′

d(x) ·φ′
d(y);

note that φ′
d(x) differs from φd(x) defined above because of the coefficients

that arise in the expansion of (1 + x · y)d.

We have the following polynomial kernel analogue of Lemma 12:

Lemma 14 Let X ⊂ Rk be a set of labelled examples such that there is some
degree-d polynomial threshold function p(x) which correctly classifies X and
has PTF margin ρ over X. Then the Perceptron algorithm (run on φ′

d(X)

using the polynomial kernel K ′
d) makes at most 4(1+‖X‖2)d

ρ2 mistakes on X.

16

Proof: We view φ′
d(x) as a vector (aSxS) of monomials with coefficients. By

inspection of the coefficients of (1+x · y)d it is clear that each aS ≥ 1. Let W ′

be the vector in R(k+d
d) such that W ′ · φ′

d(x) = p(x) as a formal polynomial.
For each monomial xS in p(x), the W ′

S coordinate of W ′ equals WS/aS ≤ WS

where W is defined as in the proof of Lemma 12 so we have ‖W ′‖ ≤ ‖W‖.

The vector W ′ has margin

minz∈X |W ′ · φ′
d(z)|

‖W ′‖ · ‖φ′
d(X)‖ =

minz∈X |p(z)|
‖W ′‖ · ‖φ′

d(X)‖ ≥ minz∈X |p(z)|
‖W‖ · ‖φ′

d(X)‖

over φ′
d(X). It is easy to verify that ‖φ′

d(X)‖ ≤ (1 + ‖X‖2)d/2, so W ′ has
margin at least

minz∈X |p(z)|
‖W‖ · (1 + ‖X‖2)d/2

=
ρ

(1 + ‖X‖2)d/2
.

The lemma now follows from the Perceptron Convergence Theorem. ✷

The output hypothesis of this kernel Perceptron is an (implicit representation

of a) halfspace over R(k+d
d) which can be viewed as a polynomial threshold

function of degree d over Rk.

6 The Main Results

In this section we give our main learning results by bounding the running
time of algorithm A and proving that it outputs an accurate hypothesis. For
simplicity we assume throughout this section that the actual margin ρ of the
target concept is known to the learning algorithm; at the end of the section
we discuss how this assumption can be removed.

Our first theorem gives a good bound for the case where t is relatively small:

Theorem 15 Algorithm PKP learns any ρ-margin intersection of t halfspaces
over Rn in at most n

ǫ
· (t

ρ
log 1

δǫ
)O(t log t log 1/ρ) time steps.

Proof: Let c be an intersection of t origin-centered halfspaces over Rn which
has margin ρ with respect to distribution D where {x ∈ Rn : D(x) >
0} ⊂ Sn−1. Let m equal the number of examples our algorithm draws from
EX(c,D); we defer specifying m until the end of the proof. Let k = O(1

ρ2 ·
log mt

δ
), and d = O(t log t log 1

ρ
). Let X be the set of m examples in Rn, and

let M(X) be the projected set of m examples in Rk. Note that it takes nkm
time steps to construct the set M(X).

17

By Corollary 5, with probability 1 − δ we have that 1
2
≤ ‖M(X)‖ ≤ 2 and

there is an intersection of t origin-centered halfspaces in Rk which has margin
at least ρ

2
on M(X). Assume now that all points in M(X) (and descriptions of

corresponding halfspaces in Rk) are truncated to precision at most 2−k. Since
2−k is much less than ρ, by Theorem 7 there is a polynomial threshold function
over Rk of degree d = O(t log t log 1

ρ
) which has PTF margin (ρ

k
)O(d) with

respect to M(X). By Lemma 14 the degree-d polynomial kernel Perceptron
algorithm makes at most (k

ρ
)O(d) mistakes when run on M(X), and thus once

M(X) is obtained the algorithm runs for at most m · (k
ρ
)O(d) time steps.

Now we show that with probability 1 − δ algorithm A outputs an ǫ-accurate
hypothesis for c relative to D. Since the output hypothesis h(x) = sign(p(Mx))
is computed by first projecting x ∈ Rn down to Rk via M and then evaluating
the k-variable PTF p, it suffices to show that p is a good hypothesis under
the distribution M(D) obtained by projecting D down to Rk via M . It is
well known (see e.g. [2]) that the VC dimension of the class of degree-d PTFs

over k real variables is
(

k+d
d

)

. Thus by the VC theorem [8] in order to learn

to accuracy ǫ and confidence δ it suffices to take m = O(kO(d)

ǫ
log 1

ǫ
+ 1

ǫ
log 1

δ
).

It is straightforward to verify that k = (d
ρ
log 1

δǫ
)O(1), m = 1

ǫ
· (d

ρ
log 1

δǫ
)O(d)

satisfy the above conditions on m and k. Since d = O(t log t log 1
ρ
) we have

k = (t
ρ
log 1

δǫ
)O(1) and m = 1

ǫ
· (t

ρ
log 1

δǫ
)O(t log t log 1/ρ) which proves the theorem.

✷

Note that for a constant t number of halfspaces Algorithm PKP has a quasipoly-
nomial ((1

ρ
)O(log 1/ρ)) runtime dependence on the margin ρ, in contrast with the

exponential ((1
ρ
)O(log 1

ρ
)/ρ2)) dependence of [3].

The proof of Theorem 15 used the polynomial threshold function construction
of Theorem 7. We can instead use the construction of Theorem 10 to obtain:

Theorem 16 Algorithm PKP learns any ρ-margin intersection of t halfspaces

over Rn in at most n
ǫ
· (log t

ρ
log 1

δǫ
)O(

√
1/ρ log t) time steps.

For a constant ρ = Θ(1) margin Algorithm PKP has an almost polynomial
(tO(log log t)) runtime dependence on t, in contrast with the exponential (tω(t))
dependence of [3]. By Corollary 11 the above bound holds for learning t-term
DNF with margin ρ as well.

Finally, we can use the construction of Theorem 8 to obtain:

Theorem 17 Algorithm PKP learns any Boolean function of t halfspaces with
margin ρ in at most n

ǫ
· (t

ρ
log 1

δǫ
)O(t2 log 1/ρ) time steps.

As noted at the beginning of this section, our analysis thus far has assumed

18

that the margin ρ is known to the learner in advance. This assumption can
be removed by applying a “guess and double” approach in the standard way.
More precisely, we simply run the algorithm repeatedly with progressively
smaller “guessed” values ρ = 1, 1

2
, 1

4
, . . . values for the margin; after each run

the resulting hypothesis is tested on fresh data to check whether it is in fact
ǫ-accurate. After at most log 1

ρ
iterations we will have a legitimate lower bound

on the margin and the algorithm will succeed with high probability. We omit
the (standard) details of the analysis.

7 Discussion

7.1 Is Random Projection Necessary?

A natural question is whether our quantitative results could be achieved sim-
ply by using kernel Perceptron (or a Support Vector Machine) without first
performing random projection. Given a data set X in Rn classified by an
intersection of t = 2 halfspaces with margin ρ, Theorem 7 implies the ex-
istence of a polynomial threshold function for X of degree d = O(log(1/ρ))
with PTF margin (ρ/n)O(log(1/ρ)). Using either the degree-d polynomial kernel

or the Complete Symmetric Kernel, we obtain a halfspace over R(n+d
d) which

classifies the expanded data set φ(X) with geometric margin (ρ/n)O(log(1/ρ)). 3

Thus it appears that without the initial projection step, the required sample
complexity for either kernel Perceptron or an SVM will be (n/ρ)Ω(log(1/ρ)), as
opposed to the bounds in Section 6 which do not depend on n; so random
projection does indeed seem to provide a gain in efficiency.

7.2 Lower Bounds on Polynomial Threshold Functions

Theorem 17 of O’Donnell and Servedio in [21], if suitably interpreted, proves
that there exists a set X ⊂ R2 labelled according to the intersection of two
halfspaces with margin ρ for which any PTF correctly classifying X must
have degree Ω(log(1/ρ)

log log(1/ρ)
). This lower bound implies that our choice of d in the

proof of Theorem 15 is essentially optimal with respect to ρ. For a discussion
of other lower bounds on PTF constructions see Klivans et al. [16].

3 In Arriaga and Vempala [3] it is claimed that if the geometric margin of a degree-

d PTF p in R
n is ρ then the margin of the corresponding halfspace in R

(n+d
d) is

at least ρd, but this claim is in error [27]; to bound the margin of the halfspace in

R(n+d
d) one must analyze the PTF margin of p rather than its geometric margin.

19

7.3 Alternative Algorithms

We note that after random projection, in Step 3 of Algorithm PKP there are
several other algorithms that could be used instead of kernel Perceptron. For
example, we could run a support vector machine over Rk with the same degree

d polynomial kernel to find the maximum margin hyperplane in R(k+d
d); alter-

natively we could even explicitly expand each projected example M(x) ∈ Rk

into φ′
d(M(x)) ∈ R(k+d

d) and explicitly run Perceptron (or indeed any algo-
rithm for solving linear programs such as the Ellipsoid algorithm) to learn a

single halfspace in R(k+d
d). It can be verified that each of these approaches gives

the same asymptotic runtime and sample complexity as our kernel Perceptron
approach. We use kernel Perceptron both for its simplicity and for its ability to
take advantage of the actual margin if it is better than the worst-case bounds
presented here.

7.4 Future Work and Implications for Practice

We feel that our results give some theoretical justification for the effectiveness
of the polynomial kernel in practice, as kernel Perceptron takes direct advan-
tage of the representational power of polynomial threshold functions. We are
working on experimentally assessing the algorithm’s performance.

8 Acknowledgements

We thank Santosh Vempala for helpful discussions.

References

[1] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss
with binary coins. Journal of Computer and System Sciences, 66(4):671–687,
2003.

[2] M. Anthony. Classification by polynomial surfaces. Discrete Applied
Mathematics, 61:91–103, 1995.

[3] R. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts
and random projection. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science (FOCS), pages 616–623, 1999.

20

[4] E. Baum. A polynomial time algorithm that learns two hidden unit nets. Neural
Computation, 2:510–522, 1991.

[5] R. Beigel. When do extra majority gates help? polylog(n) majority gates are
equivalent to one. Computational Complexity, 4:314–324, 1994.

[6] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection.
Journal of Computer and System Sciences, 50(2):191–202, 1995.

[7] A. Blum and R. Kannan. Learning an intersection of a constant number of
halfspaces under a uniform distribution. Journal of Computer and System
Sciences, 54(2):371–380, 1997.

[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and
the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

[9] E. Cheney. Introduction to Approximation Theory. McGraw-Hill, New York,
New York, 1966.

[10] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
(and Other Kernel-Based Learning Methods). Cambridge University Press,
2000.

[11] S. Dasgupta. Learning mixtures of Gaussians. In Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, pages 634–644, 1999.

[12] Y. Freund and R. Schapire. Large margin classification using the Perceptron
algorithm. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, pages 209–217, 1998.

[13] R. Herbrich. Learning Kernel Classifiers. MIT Press, 2002.

[14] W. Johnson and J. Lindenstrauss. Extensions of Lipshitz mapping into Hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

[15] R. Khardon, D. Roth, and R. Servedio. Efficiency versus Convergence of
Boolean Kernels for On-Line Learning Algorithms. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, Cambridge, MA, 2002. MIT Press.

[16] A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and
thresholds of halfspaces. In Proceedings of the Forty-Third Annual Symposium
on Foundations of Computer Science, pages 177–186, 2002.

[17] A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). In Proceedings of
the Thirty-Third Annual Symposium on Theory of Computing, pages 258–265,
2001.

[18] D. J. Newman. Rational approximation to |x|. Michigan Mathematical Journal,
11:11–14, 1964.

[19] A. Novikoff. On convergence proofs on perceptrons. In Proceedings of the
Symposium on Mathematical Theory of Automata, volume XII, pages 615–622,
1962.

21

[20] R. O’Donnell and R. Servedio. Extremal properties of polynomial
threshold functions. In Proceedings of the Eighteenth Annual Conference on
Computational Complexity, pages 3–12, 2003.

[21] R. O’Donnell and R. Servedio. New degree bounds for polynomial threshold
functions. In Proceedings of the 35th ACM Symposium on Theory of Computing,
pages 325–334, 2003.

[22] F. Rosenblatt. Principles of Neurodynamics. Springer-Verlag, New York, 1962.

[23] M. Saks. Slicing the Hypercube, pages 211–257. London Mathematical Society
Lecture Note Series 187, 1993.

[24] A. Shpilka. Lower Bounds for Small Depth Arithmetic and Boolean Circuits.
PhD thesis, Hebrew University, 2001.

[25] S. Vempala. A Random Sampling Based Algorithm for Learning the intersection
of Halfspaces. Available at
http://www-math.mit.edu/~vempala/papers/robust.ps. A preliminary version
appeared in Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, pages 508–513, 1997.

[26] L. Valiant. A Theory of the Learnable. Communications of the ACM, 1984.

[27] S. Vempala. Personal communication, 2004.

[28] S. Vempala. The Random Projection Method. American Mathematical Society,
DIMACS, 2004.

[29] J. Zhou. Introduction to Symmetric Polynomials and Symmetric
Functions. Lecture notes for course at Tsinghua University, available at
cms.zju.edu.cn/course/cn/SymmetricF.pdf, 2003.

22

