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Abstract. We give new algorithms for learning halfspaces in the chalileg
malicious noisemodel, where an adversary may corrupt both the labels and the
underlying distribution of examples. Our algorithms caleitate malicious noise
rates exponentially larger than previous work in terms efdependence on the
dimensionn, and succeed for the fairly broad class of all isotropic ¢ogcave
distributions.

We give poly(n, 1/¢)-time algorithms for solving the following problems to ac-
curacye:

— Learning origin-centered halfspacesRi* with respect to the uniform dis-
tribution on the unit ball with malicious noise rate= 2(e?/log(n/c)).
(The best previous result wég(e/ (n log(n/€))'/*).)

— Learning origin-centered halfspaces with respect to astyapic log-concave
distribution onR.™ with malicious noise ratg = 2(¢*/log(n/¢)). This is
the first efficient algorithm for learning under isotropigtooncave distribu-
tions in the presence of malicious noise.

We also give a polfn, 1/¢)-time algorithm for learning origin-centered half-
spaces under any isotropic log-concave distributionRdhin the presence of

adversarial label noisat raten = £2(c*/log(1/¢)). In the adversarial label

noise setting (or agnostic model), labels can be noisy, btierample points

themselves. Previous results could hangle 2(e) but had running time expo-
nential in an unspecified function df'e.

Our analysis crucially exploits both concentration and-eahcentration prop-

erties of isotropic log-concave distributions. Our algfums combine an itera-
tive outlier removal procedure using Principal Componenalisis together with

“smooth” boosting.

1 Introduction

A halfspaceis a Boolean-valued function of the forgh = sign(}_;" | w;z; — 6).
Learning halfspaces in the presence of noisy data is a fuedehproblem in ma-
chine learning. In addition to its practical relevance, ineblem has connections to
many well-studied topics such as kernel methods [26], oy@phic hardness of learn-
ing [15], hardness of approximation [6, 9], learning Boolearcuits [2], and addi-
tive/multiplicative update learning algorithms [17, 7].

Learning an unknown halfspace from correctly labeled (noisy) examples is one
of the best-understood problems in learning theory, withkadating back to the famous
Perceptron algorithm of the 1950s [21] and a range of effiaégorithms known for
different settings [20, 16, 3, 18]. Much less is known, hoareabout the more difficult
problem of learning halfspaces in the presence of noise.



Important progress was made by Blwehal. [2] who gave a polynomial-time al-
gorithm for learning a halfspace undeassification noiseln this model each label
presented to the learner is flipped independently with soxeel forobability; the noise
does not affect the actual example points themselves, venehenerated according to
an arbitrary probability distribution ové™.

In the current paper we consider a much more challengialicious noisenodel.
In this model, introduced by Valiant [27] (see also [12])et is an unknown target
function f and distributiorD over examples. Each time the learner receives an example,
independently with probability — it is drawn fromD and labeled correctly according
to f, but with probabilityy it is an arbitrary paifz, y) which may be generated by an
omniscient adversary. The paramejés known as the “noise rate.”

Malicious noise is a notoriously difficult model with few ptige results. It was al-
ready shown in [12] that for essentially all concept clasésinformation-theoretically
impossible to learn to accuraty- ¢ if the noise rate) is greater thaa/(1 + ¢). Indeed,
known algorithms for learning halfspaces [25, 11] or evempér target functions [19]
with malicious noise typically make strong assumptionsultte underlying distribu-
tion D, and can learn to accuraty- ¢ only for noise rateg much smaller thai. We
describe the most closely related work that we know of iniSact.2.

In this paper we consider learning under the uniform digtidn on the unit ball
in R™, and more generally under any isotropic log-concave 8istion. The latter is
a fairly broad class of distributions that includes sphari@aussians and uniform dis-
tributions over a wide range of convex sets. Our algoritharslearn from malicious
noise rates that are quite high, as we now describe.

1.1 Main Results

Our first result is an algorithm for learning halfspaces mithalicious noise model with
respect to the uniform distribution on thedimensional unit ball:

Theorem 1. There is apoly(n, 1/¢)-time algorithm that learns origin-centered half-
spaces to accuracy — e with respect to the uniform distribution on the unit ballsin
dimensions in the presence of malicious noise at#ate 2(e?/ log(n/¢)).

Via a more sophisticated algorithm, we can learn in the presef malicious noise
under any isotropic log-concave distribution:

Theorem 2. There is apoly(n, 1/¢)-time algorithm that learns origin-centered half-
spaces to accuracly— e with respect to any isotropic log-concave distribution olRg"
and can tolerate malicious noise at raje= §2(¢2/ log(n/e)).

We are not aware of any previous polynomial-time algoritiordearning under
isotropic log-concave distributions in the presence ofici@ls noise.

Finally, we also consider a somewhat relaxed noise modelkrasadversarial
label noise In this model there is a fixed probability distributiéhoverR™ x {—1,1}
(i.e. over labeled examples) for whichla- 7 fraction of draws are labeled according
to an unknown halfspace. The marginal distribution dR&ris assumed to be isotropic
log-concave; so the idea is that an “adversary” chooses fmaction of examples to
mislabel, but unlike the malicious noise model she cannanhghk the (isotropic log-
concave) distribution of the actual example point®ifh. For this model we prove:



Theorem 3. There is apoly(n, 1/¢)-time algorithm that learns origin-centered half-
spaces to accuracly— e with respect to any isotropic log-concave distribution olRg"
and can tolerate adversarial label noise at rate= £2(¢3/log(1/¢)).

1.2 Previous Work

Here is some of the most closely related previous work.

Malicious noise.General-purpose tools developed by Kearns and Li [12, T&kty
imply that halfspaces can be learned for any distributicer tive domain in randomized
poly(n,1/¢) time with malicious noise at a rafe(c/n); the algorithm repeatedly picks
arandom subsample of the training data, hoping to missalttiisy examples. Kannan
(see [1]) devised a deterministic algorithm witli2de /n) bound that repeatedly finds a
group ofn+1 examples thatincludes a noisy example, then removes thip glalai, et

al [11] showed that the poly(1/¢)-time the averaging algorithm [24] tolerates noise at
a ratef2(e/+/n) when the distribution is uniform. They also described anrmmpment

to 2(e/n'/*) based on the observation that uniform examples will tendetavbll-
separated, so that pairs of examples that are too close tarmiker can be removed.

Adversarial label noise.Kalai, et al showed that if the distribution over the instesic
is uniform over the unit ball, the averaging algorithm talerss adversarial label noise
at a rateO(e/+/log(1/¢)) in poly(n,1/¢) time. (In that paper, adversarial label noise
was called “agnostic learning”.) They also described aoritlgm that fits low-degree
polynomials that tolerates noise at a rate within an adalitief the accuracy, but in

poly<n1/€4) time; for log-concave distributions, their algorithm tophly(n(/<))
time, for an unspecified functiah The latter algorithm does not require that the distri-
bution is isotropic, as ours does.

Robust PCA. Independently of this work, Xu et al [28] designed and anadyan al-
gorithm that performs principal component analysis whemesof the examples are
corrupted arbitrarily, as in the malicious noise model &ddhere.

1.3 Techniques

Outlier Removal. Consider first the simplest problem of learning an originteead
halfspace with respect to the uniform distribution on thdimensional ball. A natural
ideais to use a simple “averaging” algorithm that takes tetar average of the positive
examples it receives and uses this as the normal vector bfyfisthesis halfspace.
Servedio [24] analyzed this algorithm for the random cfasstion noise model, and
Kalai et al.[11] extended the analysis to the adversarial label noisgeino

Intuitively the “averaging” algorithm can only toleratewiamalicious noise rates
because the adversary can generate noisy examples whiththguaverage vector far
from its true location. Our main insight is that the adveys#oes this most effectively
when the noisy examples are coordinated to pull in roughtysame direction. We
use a form of outlier detection based on Principal CompoAeatysis to detect such
coordination. This is done by computing the directwnof maximal variance of the
data set; if the variance in directienis suspiciously large, we remove from the sample
all pointsx for which (w - x)? is large. Our analysis shows that this causes many noisy
examples, and only a few non-noisy examples, to be removed.



We repeat this process until the variance in every diredsamot too large. (This
cannot take too many stages since many noisy examples aoyedrm each stage.)
While some noisy examples may remain, we show that theiteseat effects cannot
hurt the algorithm much.

Thus, in a nutshell, our overall algorithm for the unifornstdibution is to first do
outlier removat by an iterated PCA-type procedure, and then simply run teesaing
algorithm on the remaining “cleaned-up” data set.

Extending to Log-Concave Distributions via Smooth Boostig. We are able to show
that the iterative outlier removal procedure describedrali® useful for isotropic log-
concave distributions as well as the uniform distributidexamples are removed in a
given stage, then many of the removed examples are noisyrdyd éew are non-noisy
(the analysis here uses concentration bounds for isottogiconcave distributions).
However, even if there were no noise in the data, the averathe positive examples
under an isotropic log-concave distribution need not givegl-accuracy hypothesis.
Thus the averaging algorithm alone will not suffice aftedieatemoval.

To get around this, we show that after outlier removal theaye of the positive
examples gives a (real-valuadgakhypothesis that has some nontrivial predictive ac-
curacy. (Interestingly, the proof of this relies heavily anti-concentration properties
of isotropic log-concave distributions!) A natural appehds then to use a boosting
algorithm to convert this weak learner into a strong learfieis is not entirely straight-
forward because boosting “skews” the distribution of exksjthis has the undesirable
effects of both increasing the effective malicious noige,rand causing the distribu-
tion to no longer be isotropic log-concave. However, by gsan“smooth” boosting
algorithm [25] that skews the distribution as little as pbkes we are able to control
these undesirable effects and make the analysis go thrfTgdextra factor of in the
bound of Theorem 2 compared with Theorem 1 comes from thdaHatthe boosting
algorithm constructs!'/e-skewed” distributions.)

We note that our approach of using smooth boosting is repenisof [23, 25], but
the current algorithm goes well beyond that earlier worl] [@d not consider a noisy
scenario, and [25] only considered the averaging algonithtmout any outlier removal
as the weak learner (and thus could only handle quite lovs maitenalicious noise in
our isotropic log-concave setting).

Finally, our results for learning under isotropic log-cawe distributions with ad-
versarial label noise are obtained using a similar approalk algorithm here is in
fact simpler than the malicious noise algorithm: since tiveasarial label noise model
does not allow the adversary to alter the distribution ofélkemples inR", we can
dispense with the outlier removal and simply use smooth toogpsvith the averaging
algorithm as the weak learner. (This is why we get a slighéitdr quantitative bound
in Theorem 3 than Theorem 2).

Organization. We present the simpler and more easily understood unifostrilalition
analysis first, proving Theorem 1 in Section 2. The proof oéditem 2, which builds

1 We note briefly that the sophisticated outlier removal tégies of [2, 5] do not seem to be
useful in our setting; those works deal with a strong notibrowtliers, which is such that
no point on the unit ball can be an outlier if a significant frac of points are uniformly
distributed on the unit ball.



on the ideas of Theorem 1, is sketched in Section 3. In Sett@®ynwe described some
of the most closely related previous work. Because of spaostraints the proof of
Theorem 3 is omitted here and is given in the full version [14]

2 The uniform distribution and malicious noise

In this section we prove Theorem 1. As described above, gorighm first does outlier
removal using PCA and then applies the “averaging algorithm

We may assume throughout that the noise nagesmaller than some absolute con-
stant, and that the dimensians larger than some absolute constant.

2.1 The Algorithm: Removing Outliers and Averaging
Consider the following AlgorithmA,,,,:

1. Draw a samplé& of m = poly(n/e) many examples from the malicious oracle.

2. ldentify the directiorw € S*~! that maximizes

2"y (wex?
(x,y)€S

If 02, < W then go to Step 4 otherwise go to Step 3.

. Remove front every example that hgsv - x)? > W. Go to Step 2.
. For the exampleS that remain letv = ﬁ Z(w)es yx and output the lineg

classifierh, defined byh, (x) = sgn(v - x).
We first observe that Step 2 can be carried out in polynonmeag ti

W
=

Lemma 1. There is a polynomial-time algorithm that, given a finiteleotion S of
points inR™, outputsw € S"~! that maximize$~_ _ o(w - x)?.

Proof. By applying Lagrange multipliers, we can see that the odtimas an eigen-
vector of A = > _cza”. Further, if\ is the eigenvalue o, then}" _ (w-x)? =
wl Aw = w?(Aw) = ). The eigenvectow with the largest eigenvalue can be found
in polynomial time (see e.g. [10]). a

Before embarking on the analysis we establish a termincégonvention. Much
of our analysis deals with high-probability statementsrdlie draw of then-element
sampleS; it is straightforward but quite cumbersome to explicitgep track of all of
the failure probabilities. Thus we write “with high probbty” (or “w.h.p.”) in various
places below as a shorthand for “with probability at least1/poly(n/¢).” The inter-
ested reader can easily verify that an approprale (n/¢) choice ofm makes all the
failure probabilities small enough so that the entire dthar succeeds with probability
at leastl /2 as required.

2.2 Properties of the clean examples

In this subsection we establish properties of the clean plesrthat were sampled in
Step 1 ofA,,,,. The first says that no direction has much more variance treexpected
variance ofl /n. Its proof, which uses standard tools from VC theory, is tedidue to
space constraints.



Lemma 2. W.h.p. over a random draw défclean exampleS.jc., we have

max {1 ) (a.x)2}§%+ O(n)logm

a€8" 1 | £ (x 1)€Bu1ean t

The next lemma says that in fact no direction has too manynasamples lying
far out in that direction. Its proof, which uses Lemma 7 of jdJomitted due to space
constraints.

0(1)~n2ﬂ2eﬂ2"/2

Lemma 3. Forany$ > 0 andk > 1, if S¢jean IS @ random set of > ey ()

clean examples then w.h.p. we have

aeSn—t € Sclean

1
max {Z > 1(a.m)2>52} < (1+/€)e_52"/2.

2.3 Whatis removed

In this section, we provide bounds on the number of clean amgekamples removed
in Step 3.
The first bound is a Corollary of Lemma 3.

Corollary 1. W.h.p. over the random draw of the-element sampl#, the number of
clean examples removed during the any execution of Steg 3.iris at mostn log m.

Proof. Since the noise rateis sufficiently small, w.h.p. the numbépf clean examples
is at least (sayjn/2. We would like to apply Lemma 3 with = 5/*nlog/ andj3 =

1/ W, and indeed we may do this because we have

O(1) - n2B2e% /2 O(1) - n(log m)m® m m
(14 £)In(1 + &) = (14 £)In(1 + k) =0 <logm> sg st

for n sufficiently large. Since clean points are only removedéfthave(a - x)? > 32,
Lemma 3 gives us that the number of clean points removed i®at m

m(1+ /{)6762”/2 < 6m°nlog(f)/m® < 6nlogm.

0
The counterpart to Corollary 1 is the following lemma. ligals that if examples
are removed in Step 3, then there must be ndirty examples removed. It exploits the
fact that Lemma 2 bounds the varianceaih directionsa, so that it can be reused to
reason about what happens in different executions of step 3.

Lemma 4. W.h.p. over the random draw &f, wheneverA,,, executes step 3, it re-
moves at Ieasf% noisy examples frorfis;,+y, the set of dirty examples it

Proof. As stated earlier we may assume that< 1/4. This implies that w.h.p. the
fraction?) of noisy examples in the initial sétis at mostl /2. Finally, Lemma 2 implies



thatm = £2(n?) suffices for it to be the case that w.h.p., for alle §"~!, for the
original multisetS.j..,, Of clean examples drawn in step 1, we have

2m
Y (ax)?’< o (2)

(x,y)E€Sclean

We shall say that a random samflethat satisfies all these requirements is “reason-
able”. We will show that for any reasonable dataset, the rermalh noisy examples
removed during the execution of step 34f,, is at Ieastw.

If we remove examples using directiom then it mean:sZ(x yes(W x)? >

M Since S is reasonable, by (1) the contribution to the sum from tharcle
examples that survived to the current stage is at rhwstn so we must have

S (w-x)% > 10mlog(m)/n — 2m/n > 9mlog(m)/n.

(%,y) E€Sdirty

Let us decomposé&yi,, into N U F where N (“near”) consists of those points
s.t. (w - x)? < 10log(m)/n and F (“far”) is the remaining points for whiclfw -
x)? > 10log(m)/n. Since |N| < [Saity| < Him, (any dirty examples removed
in earlier rounds will only reduce the size Sfi.iy) we have} (w-x)? <
(nm)101log(m)/n and so

(x,y)EN

|F| > ( Z)GF(W -x)% > 9mlog(m)/n — (m)101log(m)/n > 4mlog(m)/n

(the last line used the fact that< 1/2). Since the points if” are removed in Step 3,
the lemma is proved. O

2.4 Exploiting limited variance in any direction

In this section, we show that if all directional variances amall, then the algorithm’s
final hypothesis will have high accuracy.

We first recall a simple lemma which shows that a sample ofaftleexamples
results in a high-accuracy hypothesis for the averagingrakgn:

Lemma5 ([24]). Suppose;, ..., X,, are chosen uniformly at random frof#—!, and
a target weight vecton € S"~! produces labelg; = sign(u - x1), ..., ym = sign(u
Xpm). Letv = % S, yixe. Then w.h.p. the component ofin the direction ofu

satisfiean-v = Q(\/Lﬁ), while the rest ofr satisfied|v — (u-v)u|| = O(y/log(n)/m).
Now we can state Lemma 6.

Lemma 6. LetS = Scican U Sairty b€ the sample of. examples drawn from the noisy
oracleEX, (f,U). Let

S!ean D€ those clean examples that were never removed during $teg,3,,
Sdmy be those dirty examples that were never removed during sbépl3,,,

- = ‘S‘di‘vl i.e. the fraction of dirty examples among the examples that

7 L
clemusdmy|

survive step 3, and



p— / B -
-—a = 'l‘;‘iu‘;“ the ratio of the number of clean points that were erronepusl

1
clean dirty‘

removed to the size of the final surviving data set.

Lets' < Stiean U Shiry- SUppose that , for every direction € S"~' we have

lean

o2 def Z (w-x)2 < lOmlogm.
()es’ "

Then w.h.p. over the draw 6f the halfspace with normal vecter’s ﬁ Z(x,y)ES’ yx

has error rate
1
O (1/nllogm—|—o¢\/ﬁ—|— 1/ n ;)571) .

Proof. The claimed bound is trivial unlegg < o(1)/logm anda < o(1)/+/n, SO we
shall freely use these bounds in what follows.

Let u be the unit length normal vector for the target halfspace.v.g., be the
average ofall the clean examplesaﬁlilrty be the average of the dirty (noisy) examples
that were not deleted (i.e. the example§mﬁy), andvgy. be the average of the clean
examples that were deleted. Then

1

/! !/
Sclean U Sdirty| (x,y)€S’ us.

7
clean = dirty

1
=T U9 1 > yx |+ >oyx | — > yx
| clean dirty| (x,¥)ESclean (x:y)eséirty (xvy)escleanfsélean

v=(1-7"+a)viean + ﬂ/Vﬁnmy — QV{el- (2)

Let us begin by exploiting the bound on the variance in evagction to bound the
length ofv/,. . . Foranyw € S*~! we know that

dirty
10m1 10m1
Z (W . X)2 < M’ and hence Z (W . X)2 < w
(x,y)€S’ n (<, 9)ESfirey "
sinceS};,, € S'. The Cauchy-Schwarz inequality now gives

SN

(%,9) €Sy "

Takingw to be the unit vector in the direction of; ., we have| vy, || =

irty?

1 1 10m1
W YoxE— ¥ wex|g 220
|Sdirty| (x,y)€S/, |Sdirty| (x,y)€S/, |Sdirty|n

dirty dirty
(3)

/
W Viirty =



Because the domain distribution is uniform, the errohgfis proportional to the
angle betweer andu, in particular,

[V — (v wu]| lv—(v-wul|

Prihy £ f] = %arctan ( ) < (1/7) (4)

u-v u-v

We have thaf|v — (v - u)u|| equals
|(1 = 7" + @) (Velean — (Velean - W)u) + U'(Vﬁnrty - (Vilirty ‘u)u) — a(Vdel — (Vder - u)u)|
< 2|[Velean — (Velean - w)u|| + T]/HV:iirtyH + a[vdell

where we have used the triangle inequality and the factihaiare “small.” Lemma 5
lets us bound the first term in the sum Byy/log(n)/m), and the fact that 4c; is
an average of vectors of length 1 lets us bound the third.blfor the second term,
Equation (3) gives us

10m(n’)? logm 10mn’ logm 207" logm
77/||V£lirtyH < / = / < )
| Sty ™ 1S |n n

irty

where for the last equality we uséd’| > m/2 (which is an easy consequence of
Corollary 1 and the fact that w.h.[f¢jean| > 3m/4). We thus get

Iv = (v wul| < 0 (Viogn)/m) + /207 Tog(m)/n + . (5)
Now we consider the denominator of (4). We have
u-v=(1-7"+a)(u-viean) + 170 Vi — QU- Vel

Similar to the above analysis, we again use Lemma 5 (but nevother bounds - v >
2(1/+/n), Equation (3), and the fact thi .|| < 1. Sincea andy’ are “small,” we

get that there is an absolute constaatich thatr- v > ¢//n — /207 log(m)/n — a.
Combining this with (5) and (4), we get

O( /M)_’_ /20n/logm+a
Prlhy # f] < :O<\/nb%+\/n’10gm+a\/ﬁ>-

207’1 )
c 0n ogm _ .,

N n

O

2.5 Proof of Theorem 1

By Corollary 1, with high probability, each outlier remowsthge removes at most
6n logm clean points.

Since each outlier removal stage removes at Iéﬁérigﬂ noisy examples, there
must be at mos©(n/(logm)) such stages. Consequently the total number of clean
examples removed across all stage®is?). Since w.h.p. the initial number of clean
examples is at least:/2, this means that the final data set (on which the averaging



algorithm is run) contains at least/2 — O(n?) clean examples, and hence at least
m/2 — O(n?) examples in total. Consequently the valuexdfom Lemma 6 after the
final outlier removal stage (the ratio of the total numberlebo examples deleted, to
the total number of surviving examples) is at mes ”_2n2 .

The standard Hoeffding bound implies that w.h.p. the adtaation of noisy exam-
ples in the original sampl€ is at most) + 1/O(logm)/m. Itis easy to see that w.h.p.
the fraction of dirty examples does not increase (since staje of outlier removal re-
moves more dirty points than clean points, for a suitablgéaly(n/¢) value ofm),
and thus the fraction’ of dirty examples among the remaining examples after thé fina
outlier removal stage is at mogtt- \/O(log m)/m. Applying Lemma 6, for a suitably
large valuen = poly(n/e), we obtainPr[h, # f] < O (v/nlogm) . Rearranging this
bound, we can learn to accuracgven forn = 2(¢2/log(n/¢)). This completes the
proof of the theorem. O

3 Isotropic log-concave distributions and malicious noise

Our algorithm A, that works for arbitrary log-concave distributions usesosth
boosting.

3.1 Smooth Boosting

A boosting algorithm uses a subroutine, called/@ak learnerthat is only guaran-
teed to output hypotheses with a non-negligible advantagerandom guessingThe
boosting algorithm that we consider usesoafidence-ratesveak learner [22], which
predicts{—1, 1} labels using continuous valuesjinl, 1]. Formally, theadvantageof
a hypothesig’ with respect to a distributio®’ is defined to bé&, .o/ [h/(z) f(x)],
wheref is the target function.

For the purposes of this paper, a boosting algorithm makesithe weak learner,
an example oracle (possibly corrupted with noise), a désiceuracy, and a bound
on the advantage of the hypothesis output by the weak learner

A boosting algorithm that is trying to learn an unknown tarigection f with re-
spect to some distributiof® repeatedly simulates a (possibly noisy) example oracle
for f with respect to some other distributi@ calls a subroutinel ... with respect
to this oracle, receiving weak hypothesjsvhich mapsR™ to the continuous interval
[—1,1].

After repeating this for some number of stages, the boostiggrithm combines
the weak hypotheses generated during its various callsstavéak learner into a final
aggregate hypothesis which it outputs.

LetD, D’ be two distributions oveR™. We say thaD’ is (1/¢)-smooth with respect
toDif D(x) < (1/€)D’'(x) forall x € R™.

The following lemma from [25] (similar results can be regdibund elsewhere,
see e.g. [8]) identifies the properties that we need from atirgg algorithm for our
analysis.

2 For simplicity of presentation we ignore the confidence peater of the weak learner in our
discussion; this can be handled in an entirely standard way.



Lemma 7 ([25]). There is a boosting algorithn® and a polynomiap such that, for
anye,y > 0, the following properties hold. When learning a target ftioc f us-
ing EX,,(f,D), we have: (a) If each call tod,... takes timet, then B takes time
p(t,1/7,1/¢€). (b) The weak learner is always called with an oraEIg,, (f, D’) where
D’ is (1/¢)-smooth with respect t® andn’ < n/e. (c) Suppose that for each distri-
butionEX,, (f, D’) passed tdd.,cq.r by B, the output of4d,,..,, has advantage. Then
the final outputh of B satisfiesPr cplh(x) # f(z)] <e.

3.2 The Algorithm

Our algorithm for learning under isotropic log-concavetritigitions with malicious
noise, AlgorithmA,,,,., applies the smooth booster from Lemma 7 with the following
weak learner, which we call Algorithm ... (The valuecy is an absolute constant
that will emerge from our analysis.)

1. Drawm = poly(n/e) examples from the oracleX,, (f,D’).
2. Remove all those examplés, y) for which ||x|| > /3nlogm.
3. Repeatedly
— find a direction (unit vectorjv that maximizesy_, ). q(W - x)? (se€
Lemma 1)
—if Z(W)es(w-x)2 < copmlog(n/e) then move on to Step 4, and otherwjise
— remove fromS all examplegx, ) for which (w - x)? > ¢y log(n/e€), and
iterate again.
4. Letv = 5 3 s ¥, and returrh defined byh(x) = 5720 if [v - x| <
3nlogm, andh(x) = sgn(v - x) otherwise.

Our main task is to analyze the weak learner. Given the fafigizemma, Theo-
rem 2 will be an immediate consequence of Lemma 7. The prawohitted due to space
constraints.

Lemma 8. Suppose Algorithmt,, . is run usingX,, (f, D) where f is an origin-
centered halfspacd)’ is (1/¢)-smooth w.r.t. an isotropic log-concave distributidn
n' < n/e, andn < 2(e3/log(n/¢)). Then w.h.p. the hypothesisreturned byA,,icy,

has advantage? ( ﬁ?n/e) )

Proof SketchWe exploit the fact that isotropic logconcave distribuicare notvery
concentrated to show that clean examples tend to be clakssifieectly by a large mar-
gin. We then use concentration bounds to prove analogs ofian?® and 3, and put
them together in a roughly similar way. a
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