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Abstra
t

We 
onsider a fundamental problem in 
omputational learning theory: learning an

arbitrary Boolean fun
tion that depends on an unknown set of k out of n Boolean vari-

ables. We give an algorithm for learning su
h fun
tions from uniform random examples

that runs in time roughly (n

k

)

!

!+1

; where ! < 2:376 is the matrix multipli
ation ex-

ponent. We thus obtain the �rst polynomial fa
tor improvement on the naive n

k

time

bound whi
h 
an be a
hieved via exhaustive sear
h. Our algorithm and analysis exploit

new stru
tural properties of Boolean fun
tions.
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1 Introdu
tion

1.1 Ba
kground and motivation

One of the most important and 
hallenging issues in ma
hine learning is how to learn eÆ-


iently and e�e
tively in the presen
e of irrelevant information. Many real-world learning

problems 
an be modeled in the following way: we are given a set of labeled data points

and we wish to �nd some hypothesis whi
h a

urately predi
ts the label of ea
h data point.

An often en
ountered situation in this framework is that ea
h data point 
ontains a large

amount of information (i.e., ea
h data point is a high dimensional ve
tor of attribute values

over a �xed large set of attributes), but only a small unknown portion of this information is

relevant to the label of the data point (i.e., the label is determined by a fun
tion whi
h only

depends on a few of the attributes). For example, in a 
omputational biology s
enario ea
h

data point may 
orrespond to a long DNA sequen
e, and the label may be some property

whi
h depends only on a small unknown a
tive part of this sequen
e.

In this paper we 
onsider the following learning problem whi
h Blum [4℄ and Blum

and Langley [5℄ proposed as a 
lean formulation of learning in the presen
e of irrelevant

information: Let f be an unknown Boolean fun
tion over an n-bit domain whi
h depends

only on an unknown subset of k � n variables. Su
h a fun
tion is 
alled a fun
tion with k

relevant variables; following [9℄ we 
all su
h a fun
tion a k-junta. Given a data set of labeled

examples hx; f(x)i; where the points x are independently and uniformly 
hosen random n-bit

strings, 
an the fun
tion f be learned by a 
omputationally eÆ
ient algorithm? (We give a

pre
ise des
ription of what it means to \learn f" in Se
tion 2.) Note that a naive brute for
e

sear
h over all possible subsets of k relevant variables 
an be performed in time roughly n

k

;

we would like to have an algorithm whi
h runs faster than this.

We believe that the problem of eÆ
iently learning k-juntas is the single most important

open question in uniform distribution learning. In addition to being natural and elegant,

learning juntas is at the heart of the most notorious open problems in uniform distribution

learning, namely learning DNF formulas and de
ision trees of super
onstant size. Sin
e

every k-junta 
an be expressed as a de
ision tree or DNF formula of size 2

k

; it is 
lear

that eÆ
ient algorithms for learning 2

k

-size de
ision trees or DNFs would also be eÆ
ient

algorithms for learning k-juntas. But in fa
t more is true: obtaining eÆ
ient algorithms for

learning !(1)-juntas woud immediately yield improved algorithms for learning de
ision trees

and DNFs. Spe
i�
ally, any size-k de
ision tree is also a k-junta, and any k-term DNF is

�-indistinguishable (under the uniform distribution) from a k log(k=�)-junta. Thus, learning

!(1)-size de
ision trees or !(1)-term DNFs in polynomial time is equivalent to learning

!(1)-juntas in polynomial time.

We note that learning from uniform random examples seems to be the model in whi
h this

problem has the right amount of diÆ
ulty. As des
ribed in Se
tion 5, allowing the learner to

make membership queries makes the problem too easy, while restri
ting the learner to the

statisti
al query model makes the problem provably hard.
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1.2 Our results

We give the �rst learning algorithm for the problem of learning k-juntas whi
h a
hieves a

polynomial fa
tor improvement over brute for
e exhaustive sear
h. Under the uniform dis-

tribution, our algorithm exa
tly learns an unknown k-junta with 
on�den
e 1 � Æ in time

n

!

!+1

k

�poly(2

k

; n; log(1=Æ)), where ! is the exponent in the time bound for matrix multipli
a-

tion. Sin
e Coppersmith and Winograd [8℄ have shown that ! < 2:376, our algorithm runs in

time roughly N

:704

where N � n

k

is the running time of a naive brute for
e approa
h. Note

that even if a naive �(n

3

) time matrix multipli
ation algorithm is used, our algorithm runs

in time roughly N

3=4

and thus still improves over a brute-for
e approa
h. Our algorithm and

analysis exploit new stru
tural properties of Boolean fun
tions whi
h may be of independent

interest.

We note that sin
e this learning problem was �rst posed by Blum in 1994, little progress

has been made. The �rst improvement over the trivial n

k

time bound of whi
h we are aware

is a re
ent algorithm due to A. Kalai and Mansour [13℄ whi
h runs in time roughly n

k�
(k

1=4

)

.

Mansour [19℄ later improved this to n

k�
(k

1=2

)

. (In re
ent work Fis
her et al. have studied

the problem of testing k-juntas [9℄, but the learning and testing problems seem to require

di�erent te
hniques.)

1.3 Organization

In Se
tion 2 we formally de�ne the learning problem and give some ba
kground on polyno-

mial representations of Boolean fun
tions. In Se
tion 3 we present the learning algorithms

whi
h allow us to redu
e the learning problem to some questions about representing Boolean

fun
tions as polynomials. In Se
tion 4 we prove the ne
essary new stru
tural properties

of Boolean fun
tions and thus obtain our learning result. Finally, in Se
tion 5 we use the

developed ma
hinery to analyze several variants of the juntas problem.

2 Preliminaries

The learning model we 
onsider is a uniform distribution version of Valiant's Probably Ap-

proximately Corre
t (PAC) model [22℄ whi
h has been studied by many resear
hers, e.g.,

[7, 11, 12, 15, 16, 18, 23, 24℄. In this model a 
on
ept 
lass C is a 
olle
tion [

n�1

C

n

of

Boolean fun
tions, where ea
h 
 2 C

n

is a fun
tion on n bits. Let f 2 C

n

be an unknown

target fun
tion. A learning algorithmA for C takes as input an a

ura
y parameter 0 < � < 1

and a 
on�den
e parameter 0 < Æ < 1: During its exe
ution A has a

ess to an example or-

a
le EX(f) whi
h, when queried, generates a random labeled example hx; f(x)i where x is

drawn uniformly from f0; 1g

n

. A outputs a hypothesis h whi
h is a Boolean fun
tion over

f0; 1g

n

; the error of this hypothesis is de�ned to be error(h; f) = Pr[h(x) 6= f(x)℄. (Here

and in the remainder of the paper, unless otherwise indi
ated all probabilities are taken over

x 
hosen uniformly at random from f0; 1g

n

.) We say that A is a uniform-distribution PAC

learning algorithm for C if the following 
ondition holds: for every f 2 C and every �; Æ;

with probability at least 1� Æ algorithm A outputs a hypothesis h whi
h has error(h; f) � �.

For the purposes of this paper the a

ura
y parameter � will always be 0, so our goal is to

exa
tly identify the unknown fun
tion.
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A Boolean fun
tion f : f0; 1g

n

! f0; 1g is said to depend on the ith variable if there exist

inputs x; y 2 f0; 1g

n

whi
h di�er only in the ith 
oordinate and whi
h have f(x) 6= f(y).

Equivalently, we say that su
h a variable is relevant to f . If the fun
tion f has at most

k relevant variables then we 
all f a k-junta. The 
on
ept 
lass we 
onsider in this paper

is the set of k-juntas over n variables, i.e., C

n

= ff : f0; 1g

n

! f0; 1g s.t. f is a k-juntag.

Equivalently, ea
h fun
tion f 2 C

n

is de�ned by a subset R = fi

1

; : : : ; i

k

0

g � f1; : : : ; ng of

k

0

� k relevant variables and a truth table of 2

k

0

bits 
orresponding to all possible settings

of these variables.

We are most interested in the 
ase where k is O(logn) or even a large 
onstant value.

For su
h k the number of possible sets of relevant variables is n

(1�o(1))k

. Hen
e the naive

learning algorithm whi
h performs an exhaustive sear
h over all possible subsets of relevant

variables will take time n

(1�o(1))k

.

2.1 Representing Boolean fun
tions as polynomials

A Boolean fun
tion g on n bits is a mapping fF;Tg

n

! fF;Tg. There are many possible

ways to represent g as a multilinear polynomial. Sin
e our analysis will use several di�erent

representations, we give a general de�nition whi
h en
ompasses all of the 
ases we will need:

De�nition 1 Let F be a �eld and let f; t 2 f�1; 0; 1g be distin
t elements of F: We say that

a multilinear polynomial p hF; f; ti-represents g if p : F

n

! F has the following properties:

� for all inputs in ff; tg

n

, p outputs a value in ff; tg; and,

� p and g indu
e the same mapping when F and T are identi�ed with f and t in the

input and output.

Note that sin
e f

2

; t

2

2 f0; 1g; the assumption that p is multilinear is without loss of gener-

ality. It is well known that the hF; f; ti-representation of g always exists and is unique; for


ompleteness we give a simple proof below.

Proposition 2 For any given hF; f; ti, every Boolean fun
tion g has a unique multilinear

hF; f; ti-representation.

Proof: The 
ondition that p is a multilinear polynomial whi
h represents g is equivalent

to a system of 2

n

linear equations in 2

n

unknowns, where the unknowns are the 
oeÆ
ients

on the 2

n

multilinear monomials. Let A

n

denote the 2

n

� 2

n

matrix arising from this linear

system, so the 
olumns of A

n


orrespond to monomials and the rows 
orrespond to truth

assignments. It suÆ
es to prove that A

n

has full rank; we now prove this by indu
tion.

In the 
ase n = 1 we have A

1

=

�

1 f

1 t

�

whi
h has full rank over any �eld sin
e f 6= t. In

the general 
ase, one 
an rearrange the rows and 
olumns of A

n

to get A

n

=

�

A

n�1

fA

n�1

A

n�1

tA

n�1

�

,

where the 
olumns on the left 
orrespond to monomials not 
ontaining x

n

and the others


orrespond to monomials 
ontaining x

n

. By performing elementary row operations on this

matrix, one 
an get

�

(f � t)A

n�1

0

0 A

n�1

�

. Sin
e f 6= t and A

n�1

has full rank by indu
tion,

this has full rank. 2

3



The �elds we will 
onsider in this paper are the two-element �eld F

2

and the �eld R

of real numbers. In F

2

we will represent bits by f = 0, t = 1, and in R we will usually

represent bits by f = 1, t = �1.

De�nition 3 Given a Boolean fun
tion g on n bits:

� We write g

F

2

for the multilinear polynomial whi
h hF

2

; 0; 1i-represents g, and we say

that g

F

2

F

2

-represents g. Note that g

F

2


an be viewed as a parity of ANDs sin
e F

2

multipli
ation 
orresponds to AND and F

2

addition 
orresponds to parity.

� We write g

R

for the multilinear polynomial whi
h hR;+1;�1i-represents g, and we

say that g

R

R-represents g. Note that g

R

is pre
isely the \Fourier representation" of

g. As is standard, we write ĝ(S) for the 
oeÆ
ient of x

S

in g

R

, where x

S

denotes the

monomial

Q

i2S

x

i

. We 
all ĝ(S) the \S Fourier 
oeÆ
ient of g."

As an example, if g = PARITY

n

then we have g

F

2

= x

1

+x

2

+� � �+x

n

and g

R

= x

1

x

2

� � �x

n

.

Note that there is a huge di�eren
e in the degrees of these two polynomial representations;

we will be very interested in the degree of Boolean fun
tions under various representations.

We observe that for a given �eld this degree is independent of the exa
t 
hoi
e of f; t: This

is be
ause we 
an pass ba
k and forth between any two su
h 
hoi
es by non
onstant linear

transformations on the inputs and outputs, and under su
h transformations the monomials

of highest degree 
an never vanish. Thus we 
an make the following de�nition:

De�nition 4 deg

F

(g) is de�ned to be deg(p) where p is any hF; f; ti-representation of g.

Hen
e we have deg

F

2

(PARITY

n

) = 1 and deg

R

(PARITY

n

) = n. In general deg

F

2

(g) �

deg

R

(g):

Fa
t 5 For any Boolean fun
tion g, deg

F

2

(g) � deg

R

(g).

Proof: Let p be the hR; 0; 1i-representation of g and let g

F

2

be the F

2

-representation of g.

We have

p(x) =

X

z2f0;1g

n

"

p(z)

 

Y

i:z

i

=1

x

i

! 

Y

i:z

i

=0

(1� x

i

)

!#

:

This polynomial 
learly has integer 
oeÆ
ients; g

F

2

is obtained by redu
ing the 
oeÆ
ients

of p mod 2, and this operation 
an only de
rease degree. 2

3 Learning tools

In this se
tion we give the learning algorithms we will use for solving the junta problem. We

�rst show that it suÆ
es to give a learning algorithm whi
h 
an identify a single relevant

variable. We then give two learning algorithms that look for relevant variables. Our algo-

rithm for learning k-juntas will end up trying both algorithms and we shall prove in Se
tion

4 that at least one of them always works.

Throughout this se
tion, f will denote a k-junta on n bits, R will denote the set of

variables on whi
h f depends, k

0

will denote jRj (so 0 � k

0

� k), and f

0

will denote the

fun
tion fF;Tg

k

0

! fF;Tg given by restri
ting f to R.
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3.1 Finding a single relevant variable is enough

Proposition 6 Suppose that A is an algorithm running in time n

�

� poly(2

k

; n; log(1=Æ))

whi
h 
an identify at least one variable relevant to f with 
on�den
e 1 � Æ (assuming f

is non
onstant). Then there is an algorithm for exa
tly learning f whi
h runs in time

n

�

� poly(2

k

; n; log(1=Æ)):

Proof: First note that if f is non
onstant then for uniform random inputs ea
h output value

o

urs with frequen
y at least 1=2

k

: Hen
e we 
an de
ide whether or not f is a 
onstant

fun
tion with 
on�den
e 1� Æ in time in time poly(2

k

; n; log(1=Æ)):

Next, suppose � is any restri
tion �xing at most k bits. We 
laim that we 
an run any

learning algorithm on f j

�

with a slowdown of at most poly(2

k

). To do so, we only need to

transform the example ora
le for f into one for f j

�

; this is easily done by reje
ting all samples

hx; f(x)i for whi
h x does not agree with �. Sin
e � �xes at most k bits, the probability

that a random x agrees with � is at least 2

�k

. Hen
e with probability 1 � Æ we 
an get M

samples for f j

�

by taking M � poly(2

k

) log(M=Æ) samples from the ora
le for f .

We now show how to identify all the variables R on whi
h f depends in the requisite

amount of time. By indu
tion, suppose we have identi�ed some relevant variables R

0

� R.

For ea
h of the 2

jR

0

j

possible restri
tions � whi
h �x the bits in R

0

, 
onsider the fun
tion

f j

�

. Sin
e f j

�

is also a k-junta, A 
an identify some variables relevant to f j

�

(or else we 
an


he
k that f j

�

is 
onstant). By running A (with the slowdown des
ribed above) for ea
h

possible �, we will identify new variables to add into R

0

. We repeatedly add new variables

to R

0

, testing all restri
tions on these variables, until all of the restri
ted subfun
tions are


onstant. It is 
lear that at this point we will have identi�ed all variables relevant to f .

Note that R

0

grows by at least one variable at ea
h stage, and so we will never run A

more than k2

k

times. Further, we 
an get 
on�den
e 1 � Æ=k2

k

for ea
h run | even after

the reje
tion-sampling slowdown | in time n

�

� poly(2

k

; n; log(1=Æ)). Hen
e we 
an identify

R in time n

�

� poly(2

k

; n; log(1=Æ)) with 
on�den
e 1� Æ.

Finally, on
e R is identi�ed it is easy to learn f exa
tly. Simply draw poly(2

k

; log(1=Æ))

samples; with probability 1� Æ we will see every possible bit setting for R so we 
an build

f 's truth table and output this as our hypothesis. 2

3.2 The Fourier-based learning algorithm

We des
ribe a simple Fourier-based algorithm for trying to identify a variable relevant to

f . The algorithm is based on the \Low Degree" learning algorithm of Linial, Mansour, and

Nisan [16℄ (see also [17℄). As with the Low Degree algorithm, our Fourier-based algorithm

tries to learn the unknown fun
tion f by estimating all of f 's Fourier 
oeÆ
ients

^

f(S) with

1 � jSj � �. Unlike the Low Degree algorithm, our algorithm 
an stop as soon as it �nds a

nonzero 
oeÆ
ient, sin
e all variables in the asso
iated monomial must be relevant to f .

We �rst show how to 
ompute the exa
t value of any desired Fourier 
oeÆ
ient:

Proposition 7 We 
an exa
tly 
al
ulate any Fourier 
oeÆ
ient

^

f(S) with 
on�den
e 1� Æ

in time poly(2

k

; n; log(1=Æ)).

Proof: We view bits as being �1, as in the R-representation. After multilinear redu
tion we

see that the polynomial x

S

f

R

(x) has

^

f(S) as its 
onstant 
oeÆ
ient. Sin
e E[x

T

℄ = 0 for all

5



nonempty subsets T , linearity of expe
tation lets us 
on
lude that E[x

S

f

R

(x)℄ =

^

f(S). We


an 
learly 
ompute the value of x

S

f

R

(x) in linear time given a labeled example hx; f(x)i: By

standard Cherno� bounds, poly(2

k

; log(1=Æ)) independent samples of the�1 random variable

x

S

f

R

(x) are suÆ
ient for 
omputing the expe
tation to within�1=2

k+1

with 
on�den
e 1�Æ.

Sin
e f and f

0

have the same Fourier expansion and f

0

is a fun
tion on at most k variables,

^

f(S) must be of the form a=2

k

for some integer a 2 [�2

k

; 2

k

℄. Hen
e by rounding the

empiri
al expe
tation to the nearest integer multiple of 1=2

k

we will get the exa
t value of

^

f(S) with 
on�den
e 1� Æ. 2

The next proposition says that if f

0

has a nonzero Fourier 
oeÆ
ient of small (but

nonzero) degree, then we 
an eÆ
iently identify some variables relevant to f .

Proposition 8 If

^

f

0

(S) 6= 0 for some S with 1 � jSj � �, then we 
an identify at least one

relevant variable for f with 
on�den
e 1� Æ in time n

�

� poly(2

k

; n; log(1=Æ)).

Proof: We use Proposition 7 to 
ompute ea
h Fourier 
oeÆ
ient

^

f(S), 1 � jSj � �,

with 
on�den
e 1 � Æ=n

�

. Sin
e there are at most n

�

possible sets S, with 
on�den
e

1 � Æ we will obtain the exa
t values of all the desired Fourier 
oeÆ
ients in time at most

n

�

� poly(2

k

; n; log(1=Æ)): Sin
e f and f

0

have the same Fourier 
oeÆ
ients, we will �nd an

S with

^

f(S) 6= 0. It is easy to see that every variable in S must be relevant to f ; for if f is

does not depend on x

i

then

^

f(S) = E[x

S

f

R

(x)℄ = E[x

i

℄E[x

S�i

f

R

(x)℄ = 0 � E[x

S�i

f

R

(x)℄ = 0:

2

3.3 The F

2

-based learning algorithm

In this subse
tion we show that if f

0

is a low-degree polynomial over F

2

, then in fa
t we 
an

learn f

0

exa
tly. Here we view True and False as 1 and 0 respe
tively.

Re
all the following well-known result from 
omputational learning theory [10℄:

Theorem 9 Let g : f0; 1g

N

! f0; 1g be a parity fun
tion on an unknown subset of the N

Boolean variables x

1

; : : : ; x

N

: There is a learning algorithm B whi
h, given a

ess to labeled

examples hx; g(x)i drawn from any probability distribution D on f0; 1g

N

; outputs a hypothesis

h (whi
h is a parity of some subset of x

1

; : : : ; x

N

) su
h that with probability 1 � Æ we have

Pr

x2D

[h(x) 6= g(x)℄ � �: Algorithm B runs in time O((

N

�

+

log 1=Æ

�

)

!

) where ! < 2:376 is the

exponent for matrix multipli
ation.

The idea behind Theorem 9 is simple: sin
e g is a parity fun
tion, ea
h labeled example

hx; g(x)i 
orresponds to a linear equation over F

2

where the ith unknown 
orresponds to

whether x

i

is present in g: Algorithm B draws O(

N

�

+

log 1=Æ

�

) examples and solves the resulting

system of linear equations to �nd some parity over x

1

; : : : ; x

N

whi
h is 
onsistent with all of

the examples. Well-known results in PAC learning theory [6℄ imply that su
h a 
onsistent

parity will satisfy the (�; Æ) 
riterion.

Now suppose deg

F

2

(f

0

) = � � k. Then f

0

is a F

2

-linear 
ombination (i.e., a parity) over

the set of monomials (
onjun
tions) in x

1

; : : : ; x

n

of degree up to �. This lets us learn f

0

in

time roughly n

!�

:

6



Proposition 10 If deg

F

2

(f

0

) = �, then we 
an learn f exa
tly in time n

!�

�poly(2

k

; n; log(1=Æ))

with 
on�den
e 1� Æ. (Hen
e we 
an 
ertainly identify a variable on whi
h f depends.)

Proof: Consider the expanded variable spa
e 
onsisting of all monomials over x

1

; : : : ; x

n

of degree at most �. There are at most N = n

�

variables in this spa
e. Run algorithm B

from Theorem 9 on this variable spa
e, with � set to 2

�(k+1)

. That is, given an example

hx; f(x)i, translate it to the example h(x

S

)

jSj��

; f(x)i, and run B using this new example

ora
le. Simulating a draw from this new ora
le takes time N �poly(n), so 
onstru
ting all the

ne
essary examples for B takes time N

2

� poly(2

k

; n; log(1=Æ)). Solving the resulting system

of equations takes time N

!

� poly(2

k

; n; log(1=Æ)). Hen
e the total time for the algorithm is

n

!�

� poly(2

k

; n; log(1=Æ)) as 
laimed.

We now argue that B's output hypothesis is pre
isely the F

2

-representation of f: Let D

be the distribution over the expanded variable spa
e indu
ed by the uniform distribution

on x

1

; : : : ; x

n

. Sin
e f

0

(equivalently f) is a parity over the expanded variable spa
e, the

output of B will be a parity hypothesis h over the expanded variable spa
e whi
h satis�es

Pr

x2D

[h(x) 6= f(x)℄ � 2

�(k+1)

. View both f and h as F

2

-polynomials of degree � over the

original variables x

1

; : : : ; x

n

.

If f and h are not identi
al, then f + h 6� 0 and we have Pr[f(x) 6= h(x)℄ = Pr[f(x) +

h(x) 6= 0℄: Now sin
e deg

F

2

(f + h) � � and f + h is not identi
ally 0, the polynomial f + h

must be nonzero on at least a 2

��

� 2

�k

fra
tion of the points in (F

2

)

n

. (This is a slightly

nonstandard form of the S
hwartz-Zippel Lemma; see [21℄ for an expli
it proof.) But this


ontradi
ts the fa
t that Pr

x2D

[h(x) 6= f(x)℄ � 2

�(k+1)

. 2

4 Learning juntas via new stru
tural properties of Boolean

fun
tions

With our learning tools in hand we are ready to give the algorithm for learning k-juntas.

The basi
 idea is to show that every Boolean fun
tion f

0

must either have a nonzero Fourier


oeÆ
ient of \not too large" positive degree, or must be a polynomial over F

2

of \not too

large" degree. Then by Propositions 8 and 10, in either 
ase we 
an �nd a relevant variable

for f

0

without performing a full-
edged exhaustive sear
h.

The Fourier learning algorithm des
ribed earlier fails only on fun
tions whose low-degree

Fourier 
oeÆ
ients are all zero (ex
ept for possibly the 
onstant 
oeÆ
ient; if this is nonzero

the Fourier algorithm 
an still fail). Let us make a de�nition for su
h fun
tions:

De�nition 11 Suppose that g satis�es ĝ(S) = 0 for all 1 � jSj < t. If ĝ(;) is also 0 then

we say that g is strongly balan
ed up to size t. If ĝ(;) is nonzero we say that g is strongly

biased up to size t.

These de�nitions were essentially �rst made by Bernas
oni in [3℄. The justi�
ation of

the terminology is this: if g is strongly balan
ed up to size t, then it is easy to show that

every subfun
tion of g obtained by �xing 0 � ` � t � 1 bits is balan
ed (i.e. is true with

probability exa
tly 1=2). Similarly, if g is strongly biased up to size t then it is easy to show

that every su
h subfun
tion has the same bias as g itself.

We now show that strongly balan
ed fun
tions have low F

2

-degree:

7



Theorem 12 Let g =2 fPARITY

n

;:PARITY

n

g be a Boolean fun
tion on n bits whi
h is

strongly balan
ed up to size t. Then deg

F

2

(g) � n� t.

Proof: Given su
h a g, let h = g�PARITY

n

. Then h

R

= g

R

�x

1

x

2

� � �x

n

. By assumption, g

R

has zero 
oeÆ
ient on all monomials x

S

with jSj < t. By multilinear redu
tion (x

2

i

= 1) we

see that h

R

has zero 
oeÆ
ient on all monomials x

S

with jSj > n�t. Hen
e deg

R

(h) � n�t,

so by Fa
t 5, deg

F

2

(h) � n � t. But sin
e g = h � PARITY

n

, the F

2

-representation of g

is simply g

F

2

(x) = h

F

2

(x) + x

1

+ � � � + x

n

. Adding a degree 1 polynomial to h

F

2

does not

in
rease degree (sin
e g is neither PARITY

n

nor its negation, h is not a 
onstant fun
tion

and hen
e deg

F

2

(h) � 1), and 
onsequently deg

F

2

(g) � n� t. 2

The bound n� t in Theorem 12 is best possible. To see this, 
onsider the fun
tion

g(x) = (x

1

^ � � � ^ x

n�t

)� x

n�t+1

� � � � � x

n

:

This fun
tion has F

2

-representation g

F

2

(x) = x

1

� � �x

n�t

+x

n�t+1

+� � �+x

n

so deg

F

2

(g) = n�t.

Moreover, g is balan
ed and every subfun
tion of g �xing fewer than t bits is also balan
ed,

sin
e to make g unbalan
ed one must restri
t all of x

n�t+1

; : : : ; x

n

.

It remains to deal with strongly biased fun
tions. Our next theorem shows that no

Boolean fun
tion 
an be strongly biased up to too large a size:

Theorem 13 If g is a Boolean fun
tion on n bits whi
h is strongly biased up to size t, then

t �

2

3

n:

Proof: Let g

R

(x) =

P

S




S

x

S

be the R-representation of g. Sin
e g is strongly biased up

to size t we have 0 < j


;

j < 1 and 


S

= 0 for all 0 < jSj < t. As in Theorem 12, we let

h = g � PARITY

n

so h

R

(x) = 


;

x

1

x

2

� � �x

n

+

P

jSj�n�t




0

S

x

S

, where 


0

S

= 


[n℄nS

.

Let h

0

: f+1;�1g

n

! f1+


;

; 1�


;

;�1+


;

;�1�


;

g be the real-valued fun
tion given by

h

0

(x) = h

R

(x)� 


;

x

1

x

2

� � �x

n

; note that deg(h

0

) � n� t: Furthermore, for x 2 f+1;�1g

n

we

have h

0

(x) 2 f1 + 


;

; 1� 


;

g i� h

R

(x) = +1; and h

0

(x) 2 f�1 + 


;

;�1� 


;

g i� h

R

(x) = �1:

Sin
e 0 < j


;

j < 1 we have that f1+


;

; 1�


;

g and f�1+


;

;�1�


;

g are disjoint two-element

sets.

Let p : R ! R be the degree 3 polynomial whi
h maps 1 + 


;

and 1 � 


;

to +1 and

�1� 


;

and �1+ 


;

to �1. Now 
onsider the polynomial p Æh

0

. By 
onstru
tion p Æh

0

maps

f+1;�1g

n

! f+1;�1g, and p Æ h

0

R-represents h. But the R-representation of h is unique,

so after multilinear redu
tion p Æ h

0

must be identi
al to h

R

. Sin
e 


;

6= 0; we know that

deg

R

(h) is exa
tly n. Sin
e p has degree exa
tly 3 and deg(h

0

) � n � t, we 
on
lude that

3(n� t) � n, so t �

2

3

n. 2

O. Regev [20℄ 
ommuni
ated to us an alternate proof of Theorem 13 whi
h we in
lude

here with his permission:

Proof: (Regev) Let g

R

(x) be as in the previous proof. Let U be any set of maximal size

su
h that 


U

6= 0; sin
e g is non
onstant and strongly biased up to size t we have jU j � t.

Consider expanding g

R

(x)

2

= (

P

S




S

x

S

)(

P

T




T

x

T

); there will be a nonzero 
oeÆ
ient on

the 
ross-term x

;

x

U

. But g

R

(x)

2

must be identi
ally 1 after multilinear redu
tion, sin
e g

R

8



takes on only the values �1. Thus the nonzero 
oeÆ
ient on x

U

must be 
an
elled in the

expansion. But if t >

2

3

n then 


T

= 0 for all 1 � jT j �

2

3

n, and so all nonzero 
ross-terms not

involving the 
onstant term 


;

will be on terms x

V

with V <

2

3

n. (Any two sets S; T � [n℄

with jSj; jT j >

2

3

n must interse
t in more than

1

3

n elements, and sin
e x

2

i

= 1 for ea
h

variable x

i

; the monomial obtained by multiplying x

S

and x

T

will have degree less than

2

3

n.)

This 
ontradi
ts the fa
t that the x

U

term must be 
an
elled. 2

The bound

2

3

n in Theorem 13 is best possible. To see this, let n = 3m and 
onsider the

fun
tion

f(x

1

; : : : ; x

n

) =

 

2m

M

i=1

x

i

!

^

 

n

M

i=m+1

x

i

!

:

It is easy to see that this fun
tion is unbalan
ed, and also that its bias 
annot 
hange under

any restri
tion of fewer than 2m bits (to 
hange the bias, one must set bits 1 : : : 2m or

m+ 1 : : : 3m or 1 : : :m; 2m + 1 : : : 3m).

We 
an now prove our main theorem:

Theorem 14 The 
lass of k-juntas over n bits 
an be exa
tly learned under the uniform

distribution with 
on�den
e 1� Æ in time n

!

!+1

k

� poly(2

k

; n; log(1=Æ)).

Proof: Let f be a k-junta on n bits and f

0

be the fun
tion on at most k bits given by

restri
ting f to its relevant variables. Let t =

!

!+1

k >

2

3

k. If f

0

is strongly balan
ed up

to size t then by Theorem 12 f

0

is an F

2

-polynomial of degree at most k � t = k=(! + 1).

By Proposition 10 f 
an be learned in time (n

k=(!+1)

)

!

� poly(2

k

; n; log(1=Æ)). On the other

hand, suppose f

0

is not strongly balan
ed up to size t: By Theorem 13, f

0


annot be strongly

biased up to size t, sin
e t >

2

3

k. Hen
e f

0

has a nonzero Fourier 
oeÆ
ient of degree less

than t and greater than 0. So by Proposition 8, some relevant variable for f 
an be identi�ed

in time n

t

� poly(2

k

; n; log(1=Æ)).

In either 
ase, we 
an identify some relevant variable for f in time n

!

!+1

k

�poly(2

k

; n; log(1=Æ)).

Proposition 6 
ompletes the proof. 2

5 Variants of the junta learning problem

We 
an use the ideas developed thus far to analyze some variants and spe
ial 
ases of the

juntas learning problem.

5.1 Some easier spe
ial 
ases

For various sub
lasses of k-juntas, the learning problem is more easily solved.

Monotone juntas: It is easy to verify that if f

0

is a monotone fun
tion, then

^

f

0

(fig) > 0

for every relevant variable x

i

: (Use the fa
t that

^

f

0

(fig) = E[x

i

f

0

(x)℄ = Pr[f(x) = x

i

℄ �

Pr[f(x) 6= x

i

℄:) Hen
e monotone juntas 
an be learned in time poly(2

k

; n; log(1=Æ)) using the

Fourier learning algorithm of Proposition 8.

9



Random juntas: As observed in [5℄, almost every k-junta on n variables 
an be learned

in time poly(2

k

; n; log(1=Æ)). To see this, observe that if a fun
tion f

0

on k bits is 
hosen

uniformly at random, then for every S we have

^

f

0

(S) = 0 only if exa
tly half of all inputs

have f

0

(x) = x

S

: This o

urs with probability

�

2

k

2

k�1

�

=2

2

k

= O(1)=2

k=2

. Consequently, with

overwhelming probability in terms of k | at least 1 � O(k)=2

k=2

| a random fun
tion on

k variables will have every Fourier 
oeÆ
ient of degree 1 nonzero, and hen
e we 
an learn

using Proposition 8.

Symmetri
 juntas: A symmetri
 k-junta is a junta whose value depends only on how

many of its k relevant variables are set to 1. We 
an learn any symmetri
 k-junta in time

n

2

3

k

�poly(2

k

; n; log(1=Æ)); whi
h somewhat improves on our bound for arbitrary k-juntas. To

prove this, we show that every symmetri
 fun
tion f

0

on k variables, other than parity and

its negation, has a nonzero Fourier 
oeÆ
ient

^

f

0

(S) for 1 � jSj <

2

3

k. Hen
e we 
an identify

at least one relevant variable in time n

2

3

k

� poly(2

k

; n; log(1=Æ)) using Proposition 8, and we


an use the algorithm of Proposition 6 sin
e the 
lass of symmetri
 fun
tions is 
losed under

subfun
tions.

To prove this 
laim about the Fourier 
oeÆ
ients of symmetri
 fun
tions, �rst note that

if f

0

is not balan
ed then by Theorem 13 it must have a nonzero Fourier 
oeÆ
ient of positive

degree less than

2

3

k. Otherwise, if f

0

is balan
ed and is neither parity nor its negation, then

g := f

0

�PARITY

k

is a symmetri
 non
onstant fun
tion and deg

R

(g) < k; this last fa
t follows

be
ause the x

1

x

2

� � �x

k


oeÆ
ient of g is the 
onstant 
oeÆ
ient of f

0

, and f

0

is balan
ed.

By a result of von zur Gathen and Ro
he [25℄, every non
onstant symmetri
 fun
tion g on

k variables has deg

R

(g) � k �O(k

:548

). Hen
e ĝ(S) 6= 0 for some k �O(k

:548

) � jSj < k, so

^

f

0

([n℄ n S) 6= 0 and 1 � j[k℄ n Sj � O(k

:548

) �

2

3

k.

In [25℄ von zur Gathen and Ro
he 
onje
ture that every non
onstant symmetri
 Boolean

fun
tion f

0

on k variables has deg

R

(f) � k � O(1): We note that if a somewhat stronger


onje
ture were true | that every non
onstant symmetri
 fun
tion (other than parity) has

a nonzero Fourier 
oeÆ
ient of degree d for some k � O(1) � d � k � 1 | then using

the above approa
h we 
ould learn symmetri
 juntas in poly(2

k

; n; log(1=Æ)) time. (The von

zur Gathen/Ro
he 
onje
ture does not appear to suÆ
e sin
e f

0


ould 
on
eivably have a

nonzero Fourier 
oeÆ
ient of degree k and yet have no nonzero Fourier 
oeÆ
ients of degree

k � O(1).)

5.2 Other learning models

Blum and Langley observed [5℄ that if the learning algorithm is allowed to make membership

queries for the value of the target junta at points of its 
hoi
e, then any k-junta 
an be

learned in time poly(2

k

; n; log(1=Æ). By drawing random examples, the learner will either

determine that the fun
tion is 
onstant or it will obtain two inputs x and y with f(x) 6= f(y):

In the latter 
ase the learner then sele
ts a path in the Hamming 
ube between x and y and

queries f on all points in the path. The learner will thus �nd two neighboring points z and

z

0

on whi
h f has di�erent values, so the 
oordinate in whi
h z and z

0

di�er is relevant. The

learner then re
urses as in Proposition 6.

While membership queries make the problem of learning juntas easy, 
asting the problem

in the more restri
tive statisti
al query learning model of Kearns (see [14℄ for ba
kground

10



on this model) makes the problem provably hard. The 
lass of k-juntas over n variables


ontains at least

�

n

k

�

distin
t parity fun
tions, and for any two distin
t parity fun
tions

x

S

6= x

T

we have that E[x

S

x

T

℄ = 0: Consequently, an information-theoreti
 lower bound of

Bshouty and Feldman [2℄ (a re�nement of an earlier bound in [1℄) implies that any statisti
al

query algorithm for learning k-juntas under the uniform distribution must have q=�

2

�

�

n

k

�

;

where q is the number of statisti
al queries whi
h the algorithm makes and � 2 (0; 1) is the

additive error toleran
e required for ea
h query. Thus, as noted earlier, the PAC model of

learning from random examples seems to be the right framework for the juntas problem.

We 
lose by observing that if the uniform distribution is repla
ed by a produ
t measure

in whi
h Pr[x

i

= T℄ = p

i

, then for almost every 
hoi
e of (p

1

; : : : ; p

n

) 2 [0; 1℄

n

, k-juntas

are learnable in time poly(2

k

; n; log(1=Æ)). In parti
ular, we 
laim that for every produ
t

distribution ex
ept for a set of measure zero in [0; 1℄

n

, every k-junta f has nonzero 
orrelation

with every variable on whi
h it depends, and 
onsequently a straightforward variant of

the Fourier-based learning algorithm will identify all relevant variables in the 
laimed time

bound. This is a 
onsequen
e of the following easily veri�ed fa
t:

Fa
t 15 If f

0

is neither a single variable nor its negation and f

0

depends on x

i

; then

E

p

1

;:::;p

n

[f

0

(x)x

i

℄; when viewed formally as a multivariable polynomial in p

1

; : : : ; p

n

, is a non-


onstant polynomial.

Consequently, the set of points (p

1

; : : : ; p

n

) 2 [0; 1℄

n

on whi
h this polynomial takes value 0

has measure 0. The union of all su
h sets for all (�nitely many) 
hoi
es of i and f

0

still has

measure 0, and the 
laim is proved.

6 Con
lusion

A major goal for future resear
h is to give an algorithm whi
h runs in polynomial time for

k = logn or even k = !(1). We hope that further study of the stru
tural properties of

Boolean fun
tions will lead to su
h an algorithm. Right now, the bottlene
k preventing an

improved runtime for our algorithm is the 
ase of strongly balan
ed juntas. A. Kalai has

asked the following question:

Question: Is it true that for any Boolean fun
tion f on k bits whi
h is strongly balan
ed up to

size

2

3

k, there is a restri
tion �xing at most

2

3

k bits under whi
h f be
omes a parity fun
tion?

If the answer were yes, then it would be straightforward to give a learning algorithm for

k-juntas running in time n

2

3

k

. (Of 
ourse, another way to get su
h an algorithm would be to

give a quadrati
 algorithm for matrix multipli
ation!)

Finally, we 
lose by observing that there are still several important generalizations of the

k-junta problem for whi
h no algorithm with running time better than n

(1�o(1))k

is known.

Can we learn juntas under any �xed nonuniform produ
t distribution? Can we learn ternary

juntas (i.e. fun
tions on f0; 1; 2g

n

with k relevant variables) under uniform? There are many

dire
tions for future work.
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