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Abstract

In this paper we give new extremal bounds on polynomial threshold function (PTF) repre-
sentations of Boolean functions. Our results include the following:

• Almost every Boolean function has PTF degree at most n

2 + O(
√

n log n). Together with
results of Anthony and Alon, this establishes a conjecture of Wang and Williams [32] and
Aspnes, Beigel, Furst, and Rudich [4] up to lower order terms.

• Every Boolean function has PTF density at most (1 − 1
O(n) )2

n. This improves a result of

Gotsman [14].

• Every Boolean function has weak PTF density at most o(1)2n. This gives a negative answer
to a question posed by Saks [28].

• PTF degree blog2 mc+1 is necessary and sufficient for Boolean functions with sparsity m.
This answers a question of Beigel [7].

We also give new extremal bounds on polynomials which approximate Boolean functions in the
`∞ norm.

1 Introduction

A broad research goal in computational complexity is to understand the properties of various
representation schemes for Boolean functions. Many representation schemes have been studied,
such as DNF and CNF formulas, decision trees, branching programs, the Fourier representation
(i.e. polynomials over the reals), polynomials over GF2, monotone span programs, and so on.

Our main focus in this paper is on Boolean functions represented as polynomial threshold func-
tions. Given a Boolean function f : {+1,−1}n → {+1,−1}, a polynomial threshold function
(PTF) for f is an n-variable real polynomial p such that sgn(p(x)) = f(x) for all x ∈ {+1,−1}n.
(Alternatively, we sometimes say that such a polynomial p sign-represents f .)

Polynomial threshold functions play an important role in theoretical computer science. They
are very useful in structural complexity theory; the Beigel et al. [8] proof that PP is closed under
intersection uses clever constructions of polynomial threshold functions, and many oracle results
have been obtained using PTFs, e.g. [4, 6, 13, 31]. Polynomial threshold functions can be viewed
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Strong PTF degree Weak PTF degree
lower upper lower upper
bound bound bound bound

every function n n n n

almost every function n
2

n
2 + O(

√
n log n) (†) n

2 − O(
√

n log n) (†) n
2

Table 1: Best bounds to date on strong and weak PTF degrees of n-variable Boolean functions.
Lower bounds for “every function” mean that some function has this as a lower bound. Entries
marked with (†) are new bounds proved in this paper.

Strong PTF density Weak PTF density
lower upper lower upper
bound bound bound bound

every function .11 2n (1 − 1
O(n) )2

n (†) 2n/2 (†) o(1)2n (†)
almost every function .11 2n (1 − 1

O(n) )2
n (‡) 1

2
√

n
2n/2 (†) 2

n2n (†)

Table 2: Best bounds to date on strong and weak PTF densities of n-variable Boolean functions.
Lower bounds for “every function” mean that some function has this as a lower bound. Entries
marked with (†) are new bounds proved in this paper. For (‡), we in fact show that every set of
(1 − 1

O(n))2
n monomials can serve as a PTF support for almost every Boolean function.

as threshold-of-parity circuits and as such have been studied by researchers in circuit complexity
[10, 11] and learning theory [18]. More recently, upper bounds on polynomial threshold function
degree have been used to obtain learning algorithms for various classes of Boolean circuits [20,
19, 25]. Finally, polynomial threshold functions are an inherently interesting intermediate model
of computation between purely algebraic models such as Fourier or GF2 polynomials and purely
combinatorial models such as decision trees or logic circuits. See Saks [28] for an extensive survey
on polynomial threshold functions.

The two most basic complexity measures for a polynomial threshold function are its degree
and its density (number of nonzero monomials). The PTF degree of a Boolean function f is the
minimum degree over all polynomials p which sign-represent f , and the PTF density of f is the
minimum density over all polynomials p which sign-represent f. Note that without loss of generality
we may take any sign-representing polynomial to be multilinear, and hence every Boolean function
has PTF degree at most n and PTF density at most 2n.

Aspnes et al. [4] introduced a useful variant on polynomial threshold representations, namely,
weak polynomial threshold representations. Given a Boolean function f : {+1,−1}n → {+1,−1}
we say the n-variable polynomial p is a weak polynomial threshold representation of f (alternatively,
p weakly sign-represents f) if p(x) is not identically 0 on {+1,−1}n and sgn(p(x)) = f(x) for all
x ∈ {+1,−1}n such that p(x) 6= 0. The “Theorem of the Alternative” [4] shows that weak poly-
nomial threshold representations are intimately connected to the usual threshold representations
(see Theorem 3), and thus the study of weak PTF degree and weak PTF density, defined in analogy
with PTF degree and PTF density, is of interest.
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1.1 Previous Work

Prior to our work many authors have studied extremal properties of polynomial threshold functions.
Here we touch briefly on the most relevant previous results (see Saks [28] for a detailed treatment).

In a famous result Minsky and Papert [23] proved upper and lower bounds of n for the PTF
degree of the n-variable parity function. Aspnes et al. [4] proved upper and lower bounds of n for
the weak PTF degree of parity as well. Both Aspnes et al. and Wang and Williams [32] conjectured
that almost every n-variable Boolean function has PTF degree either bn/2c or dn/2e. Toward this
conjecture, Anthony [3] and Alon [1] used a counting argument to show that almost every Boolean
function has PTF degree at least n/2. For the upper bound Razborov and Rudich [27] used a
counting argument to show that almost every Boolean function has PTF degree at most 19

20n, and
Alon [1] used results of Gotsman [14] to show that almost every Boolean function has PTF degree
at most .89n.

Less was known for PTF density. Saks [28] noted that results of Cover [12] imply that almost
every Boolean function has PTF density at least (.11)2n. Gotsman [14] proved that every Boolean
function has PTF density at most 2n − 2n/2. Aspnes et al. proved that every Boolean function has
weak PTF density at most 1

22n. Saks [28] has asked whether almost every Boolean function (i) has
PTF density at most (1 − ε)2n for some ε > 0, (ii) has weak PTF density at most ( 1

2 − ε)2n for
some ε > 0.

1.2 Our Results

We give many new extremal results on the degree and density of polynomial threshold functions.
These results, which are summarized in Tables 1 and 2, improve on previous bounds and answer
several of the questions described above. In addition to the results shown in Tables 1 and 2, we also
prove a tight bound on the PTF degree of sparse Boolean functions, answering a question posed
by Beigel [7].

We also give some new extremal bounds on approximate polynomial representations of Boolean
functions. Approximating polynomials have multiple applications in complexity theory and quan-
tum computation and have been studied by many authors, see e.g. [26, 24, 2, 5]. For ε ∈ [0, 1) we
say that an n-variable real polynomial p is an ε-approximating polynomial for f if |p(x)−f(x)| ≤ ε
for all x ∈ {+1,−1}, i.e. if p is an ε-approximator for f in the `∞ norm. It is easy to see that
an approximating polynomial satisfies a stricter condition than a strong PTF, and in many cases
our bounds for strong PTFs follow directly from bounds which we establish for ε-approximating
polynomials. Our results on approximating polynomials are proved in Sections 3 through 5 and are
summarized in Table 3.

1.3 Organization of the paper

In Section 2 we give some necessary background on strong and weak threshold representations
and approximating polynomials, tail bounds, and Fourier analysis. Section 3 gives our new upper
bound on PTF density and approximating polynomial density for all Boolean functions. Our upper
bounds on PTF density and degree and approximating polynomial density and degree for almost
all Boolean functions are in Section 4. Section 5 gives lower bounds on density and degree of
approximating polynomials for almost all Boolean functions. In Section 6 we give new upper and
lower bounds on weak PTF density for all and almost all Boolean functions. Finally, we prove a
tight bound on the PTF degree of sparse Boolean functions in Section 7. We close in Section 8
with suggestions for future work and a conjecture.

3



ε-approximating degree ε-approximating density
lower upper lower upper
bound bound bound bound

every function n n .11 2n (1 − Ω( ε2

n ))2n (†)
a.e. function n

2 + Ω
(
√

n log 1
ε

)

(†) n
2 + O

(√

n log n
ε

)

(†) .11 2n (1 − Ω( ε2

n ))2n (‡)

Table 3: Best bounds to date on density and degree for ε-approximating polynomials for n-variable
Boolean functions. Lower bounds for “every function” mean that some function has this as a lower
bound. Entries marked with (†) are new bounds proved in this paper — for the range of ε for which

they hold, please see the relevant theorems. For (‡), we in fact show that every set of (1−Ω( ε2

n )) 2n

monomials can serve as an ε-approximating polynomial support for almost every Boolean function.

2 Preliminaries

2.1 Sign-representing and approximating polynomials

In this section we formally define weak and strong polynomial threshold functions (PTFs) and
ε-approximating polynomials.

Definition 1 Let f : {+1,−1}n → {+1,−1} be a Boolean function and let p : Rn → R be a real
multilinear polynomial.

• We say that p (strongly) sign-represents f , or p is a (strong) PTF for f , if p(x) 6= 0 for all
x ∈ {+1,−1}n and sgn(p(x)) = f(x) for all x ∈ {+1,−1}n.

• We say that p weakly sign-represents f , or p is a weak PTF for f , if p(x) 6= 0 for at least
one x ∈ {+1,−1}n and sgn(p(x)) = f(x) for all x ∈ {+1,−1}n such that p(x) 6= 0.

• For ε ∈ [0, 1) we say that p is an ε-approximating polynomial for f if |p(x) − f(x)| ≤ ε for
all x ∈ {+1,−1}n.

Since x2 = 1 for all x ∈ {+1,−1}, the assumption that p is a multilinear polynomial is without
loss of generality. Any multilinear p can be written as a linear combination of all 2n multilinear
monomials over x1, . . . , xn; we let M denote this set of 2n monomials. The support of p is the set of
monomials which have non-zero coefficients in p, and the density of p is the number of monomials
in the support.

It is easy to see that for ε ∈ [0, 1) any ε-approximating polynomial for f is also a strong PTF
for f , and that any strong PTF for f is also a weak PTF for f. Every Boolean function has a 0-
approximating polynomial, i.e., a multilinear polynomial which agrees exactly with f on all inputs
in {+1,−1}n. This is precisely the Fourier representation of f as described in Section 2.3.

The two most important complexity measures for PTFs and approximating polynomials are
degree and density.

Definition 2 Given a Boolean function f , we say the strong PTF (respectively, weak PTF, ε-
approximating) degree of f is the minimum degree over all polynomials which strongly sign-represent
(respectively, weakly sign-represent, ε-approximate) f . We similarly define the strong PTF, weak
PTF, and ε-approximating density of f .
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It follows from the above discussion that for each of these three notions (strong, weak, and
ε-approximating) every Boolean function has degree at most n and has density at most 2n.

We will use the so-called “Theorem of the Alternative” of Aspnes et al. [4] which relates weak
and strong representations. This theorem follows immediately from the theorems of the alternative
used for proving linear programming duality (e.g., Farkas’s Lemma, the Stiemke Transposition
Theorem). See [4, 25, 28] for more details.

Theorem 3 Let S be any set of monomials over x1, . . . , xn and let f be any Boolean function.
Then exactly one of the following statements is true:

1. f has a strong representation with support in S;

2. f has a weak representation with suport in M−S.

2.2 Concentration bounds

The following three concentration bounds will be useful for us. The first is quite standard, the
second and third somewhat less so:

Chernoff bound: Let X1, . . . , Xm be independent ±1 random variables. Let X = 1
m

∑m
i=1 Xi, and

let µ = E[X]. Then for all ε > 0 we have

Pr[|X − µ| ≥ ε] ≤ 2 exp

(

−1

2
ε2m

)

.

Hoeffding bound [17]: Let X1, . . . , Xm be independent random variables with common mean µ
and bounded deviance from the mean, |Xi−µ| ≤ c. Let σ2 = 1

m

∑m
i=1 Var[Xi], and let X =

∑m
i=1 Xi.

Then for each 0 < t < cm, we have:

Pr [|X − µm| ≥ t] ≤







2
(

3σ2m
ct

)t/c
when 3σ2m/ct < 1,

2 exp
(

− t2

4σ2m

)

when 3σ2m/ct ≥ 1.

This inequality also holds in the scenario where X1, . . . , Xm are chosen without replacement from
a fixed population {α1, . . . , αN}, and µ and σ2 denote 1

N

∑N
i=1 αi and 1

N

∑N
i=1(αi−µ)2, respectively.

Talagrand’s Deviation Inequality [30] (see [21, Sec. 3.2]): Let v1, . . . vm be fixed vectors in
Rd, let X1, . . . , Xm be independent ±1 random variables, and let X =

∑m
i=1 Xivi. Then for all

ε > 0 we have

Pr
[

‖X‖ ≥ E[‖X‖] + ε
]

≤ exp

(

− ε2

8σ2

)

,

where

σ2 = max
‖u‖≤1

m
∑

i=1

〈u, vi〉2.
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2.3 Fourier background

We view Boolean functions as maps {+1,−1}n → {+1,−1}. We consider the vector space V of all
real-valued functions on {+1,−1}n endowed with inner product 〈·, ·〉 defined by

〈f, g〉 = E[f(x)g(x)],

where the expectation is over a uniform choice of x ∈ {+1,−1}n. For S ⊆ [n] we write xS to denote
∏

i∈S xi. As is well known, the collection of functions {xS}S⊆[n] forms an orthonormal basis for V.

We denote 〈f(x), xS〉 by f̂(S) and hence for any function f,

f(x) =
∑

S⊆[n]

f̂(S)xS .

This 0-approximating polynomial is known as the Fourier representation of f. Thus the Fourier
coefficient f̂(S) is precisely the coefficient of xS in the (unique) multilinear polynomial for f.

We will write ‖̂f ‖̂p for the quantity
(

∑

S⊆[n] |f̂(S)|p
)1/p

. We also write ‖̂f ‖̂∞ for maxS |f̂(S)|.
An easy consequence of the orthonormality of {xS} is Plancherel’s identity: for any f, g : {+1,−1}n →
R,

E[fg] =
∑

S⊆[n]

f̂(S)ĝ(S).

As a special case we have Parseval’s identity: for any f : {+1,−1}n → R,

‖̂f ‖̂2
2 = 2−n

∑

x∈{+1,−1}n

f(x)2.

In particular, all Boolean functions f : {+1,−1}n → {+1,−1} have ‖̂f ‖̂2 = 1.
For S ⊆ 2[n] define fS to be the real-valued multilinear polynomial given by

fS(x) =
∑

S∈S
f̂(S)xS ,

so fS is obtained by zeroing the Fourier coefficients of all monomials xT such that T /∈ S. We will
often use the following simple fact:

Fact 4 Let f : {+1,−1}n → {+1,−1} be any Boolean function. Suppose that S ⊆ [n] is such that
∑

S/∈S |f̂(S)| < ε. Then fS is an ε-approximating polynomial for f .

We conclude this section by analyzing the Fourier coefficients of a randomly chosen Boolean
function f : {+1,−1}n → {+1,−1}. Let f be constructed by choosing each of its 2n values in-
dependently and uniformly from {+1,−1}. It is easy to see that each Fourier coefficient f̂(S)
is distributed as 2−nB(±1, 2n), where B(±1, 2n) denotes the binomial random variable given by
adding 2n independent uniformly random ±1 values. Hence E[f̂(S)] = 0 and E[f̂(S)2] = 2−n.
Furthermore, a Chernoff bound tells us that Prf [|f̂(S)| ≥ c

√
n2−n/2] < 2 exp(− 1

2c2n). Taking (for
example) c = 2, a union bound over all 2n sets S lets us conclude:

Proposition 5 All but a 2−n fraction of Boolean functions f : {+1,−1}n → {+1,−1} satisfy

‖̂f ‖̂∞ < 2
√

n 2−n/2.
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Gotsman noted this fact in [14].
The Fourier coefficients of a random function are not independent random variables. Never-

theless, we can prove that for any fixed set of Fourier coefficients S ⊆ 2[n], for a random Boolean
function f the value ‖̂fS ‖̂2

2 (which equals the L2 Fourier weight of f on S) is tightly concentrated
around its expectation, |S|2−n.

Proposition 6 Let S ⊆ 2[n] be a collection of µ2n monomials. Then for a random Boolean func-
tion f , for any 0 < ε ≤ 1 we have that

Pr
f

[

∑

S∈S
f̂(S)2 ≥ µ + ε

]

≤ exp

(

− ε2

72
2n

)

.

Proof: In Talagrand’s Deviation Inequality we take m = 2n and consider

X =
∑

x∈{+1,−1}n

f(x)vx,

where the f(x)’s play the role of the random ±1 bits Xi, and the vectors vx ∈ RS are defined by

vx = (2−nxS)S∈S .

By definition, the random vector X ∈ RS consists of the S-Fourier coefficients of f . In particular,
‖X‖2 =

∑

S∈S f̂(S)2 and E[‖X‖2] = µ.
We now compute the quantity σ2. Let A be the |S| × 2n matrix given by placing the column

vectors vx’s side by side. Then for any vector u we have that
∑

x〈u, vx〉2 = ‖u>A‖2. Hence

σ2 = max
‖u‖≤1

∑

x∈{+1,−1}n

〈u, vx〉2

is equal to the square of the largest singular value of A. This in turn equals the largest magnitude
among the eigenvalues of AA>. But the rows of A are orthogonal, so AA> is equal to 2−n times
the |S| × |S| identity matrix. We conclude that σ2 = 2−n, and therefore Talagrand’s Deviation
Inequality tells us that

Pr
[

‖X‖ ≥ E[‖X‖] + δ
]

≤ exp

(

−δ2

8
2n

)

.

So except with probability at most exp
(

− δ2

8 2n
)

we have

‖X‖ < E[‖X‖] + δ ⇒ ‖X‖2 < (E[‖X‖] + δ)2

⇒ ‖X‖2 < E[‖X‖]2 + 3δ ≤ E[‖X‖2] + 3δ = µ + 3δ,

where the second step used E[‖X‖] ≤ 1 (which holds because ‖X‖2 ≤ 1 always). Taking δ = ε/3
completes the proof. 2

3 A new upper bound for PTF density

We first study the maximum PTF density of any Boolean function. As noted earlier, for any
f : {+1,−1}n → {+1,−1} the PTF density of f is at most 2n. Gotsman [14] obtained a slightly
better bound of 2n − 2n/2 + 1. The proof is straightforward: Let T denote the set of 2n/2 − 1
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monomials on which f has Fourier coefficients of smallest magnitude. Since ‖̂f ‖̂2 = 1, we have

‖̂f ‖̂1 ≤ 2n/2, and hence the sum of the magnitudes of the smallest 2n/2 Fourier coefficients is at
most 1. Thus

∑

S∈T |f̂(S)| < 1, so sgn(fM−T ) sign-represents f by Fact 4.
In this section we improve this upper bound to (1 − 1

O(n) )2
n. Indeed, we show that for all f

and sufficiently large ε, f has an ε-approximating polynomial of density (1 − Ω( ε2

n ))2n:

Theorem 7 Let f : {+1,−1}n → {+1,−1} be any Boolean function. Then for every ε > n2−n/4,

f has an ε-approximating polynomial of density at most (1−Ω( ε2

n ))2n. In particular, f has a PTF
of density at most (1 − 1

O(n))2
n.

Proof: Let L = ‖̂f ‖̂1. Bruck and Smolensky [11] gave a randomized construction showing that
f has PTF density at most d2nL2e. It is easy to see that their proof generalizes to give an ε-

approximating polynomial of density at most d 2nL2

ε2
e. Hence if L ≤ (ε/2

√
n)2n/2 then f has an

ε-approximating polynomial of density at most 1
22n; consequently we assume L > (ε/2

√
n)2n/2.

Since ε > n2−n/4, we conclude that L > 2n/ε with room to spare.
Since L is large, f must have a very large number of very small Fourier coefficients. The basic

idea of the proof is that if we throw out a few monomials with very small Fourier coefficients, the
function’s values are unlikely to change by more than an additive ε.

To this end, let T be the set of monomials on which f has its Fourier coefficients of smallest
magnitude, where the cutoff is selected so that:

∑

S 6∈T
|f̂(S)| ∈ [n/ε − 2, n/ε − 1). (1)

Note that this makes sense since L > 2n/ε.
Since the average value of |f̂(S)| on M − T must be at least the overall average, namely

2−n
∑

S∈M |f̂(S)| = 2−nL, we conclude (n/ε−1)/|M−T | ≥ 2−nL, whence |T | ≥ (1−(n/ε−1)/L)2n .
Let N denote |T |, the number of small Fourier coefficients. Using L > 2n/ε, we conclude that
N > 1

22n.
We now randomly select m = (ε2/Cn)2n of the monomials in T without replacement; call

the resulting set of monomials S. (Here C > 0 is a large absolute constant to be determined
later.) We will prove that for every fixed x ∈ {+1,−1}n, the probability (over the choice of S)
that |

∑

S∈S f̂(S)xS | > ε is at most 3−n. By a union bound, it will follow that for some particular
collection S, the polynomial

fM−S(x) =
∑

S 6∈S
f̂(S)xS

is within ε of f(x) for every x ∈ {+1,−1}n; i.e., fM−S is an ε-approximating polynomial for f .
This will prove the theorem, since fM−S has density 2n − m, as desired.

Fix x, and let (α1, . . . , αN ) denote the list of numbers (f̂(S)xS)S∈T . We have:

∣

∣

∣

∣

∣

N
∑

i=1

αi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

S⊆[n]

f̂(S)xS −
∑

S 6∈T
f̂(S)xS

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

S⊆[n]

f̂(S)xS

∣

∣

∣

∣

∣

∣

+
∑

S 6∈T
|f̂(S)xS |

< 1 + (n/ε − 1) = n/ε.
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Write µ = 1
N

∑N
i=1 αi, so |µ| < n/εN . Now we bound σ2:

σ2 :=
1

N

N
∑

i=1

(αi − µ)2

≤ 1

N

N
∑

i=1

2(α2
i + µ2)

= 2µ2 +
2

N

N
∑

i=1

α2
i

≤ 2µ2 + 2/N

< 3/N

where the next to last inequality is by Parseval’s identity and the last is since µ2 < (n/εN)2 <
2n/2/N2 < 1/2N , since ε > n2−n/4 and N > 1

22n.
Finally, we have that |αi| ≤ 1/(n/ε−2) and hence |αi−µ| ≤ 2ε/n for all 1 ≤ i ≤ N . The second

of these inequalities follows from the first since 1/(n/ε − 2) < 1.5ε/n, and |µ| < n/εN < .5ε/n
(using ε > n2−n/4, N > 1

22n). To see the first inequality, note that otherwise we would have

|f̂(S)| > 1/(n/ε − 2) for all S 6∈ T , hence |M − T | < (n/ε − 2)2 because
∑

S 6∈T f̂(S)2 ≤ 1 by
Parseval. But by (1) and Cauchy-Schwarz we have:

n/ε − 2 ≤
∑

S 6∈T
|f̂(S)|

≤
√

|M − T |
√

∑

S 6∈T
f̂(S)2

≤
√

|M − T |,

which is a contradiction.

Now we consider selecting m of the αi’s at random. Let X denote the sum of the selected
numbers. Our goal is to show that |X| > ε with probability at most 3−n. By Hoeffding’s bound,
with t = ε/2 and c = 2ε/n, we have:

Pr [|X − µm| ≥ t] ≤ 2(3σ2m/ct)t/c

⇒ Pr [|X| ≥ |µm| + t] ≤ 2(3σ2m/ct)t/c

⇒ Pr
[

|X| ≥ (n/εN)(ε2/Cn)2n + ε/2
]

≤ 2 [(9/C)(2n/N)]n/4

⇒ Pr [|X| ≥ (2/C)ε + ε/2] ≤ (18/C)n/4

⇒ Pr [|X| ≥ ε] ≤ 3−n,

Here the third inequality follows from the previously established bounds |µ| < n/εN , σ2 ≤ 3/N
and the substitution m = (ε2/Cn)2n. The fourth inequality follows from N > 1

22n, and the final
inequality follows by taking C to be a large enough constant. 2

4 Upper bounds on density and degree for almost all functions

In the previous section we showed that every Boolean function has PTF density at most
(1 − 1

O(n))2
n. In this section we show that every subset of (1 − 1

O(n))2
n monomials can serve
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as a polynomial threshold support for almost every Boolean function. Indeed, every subset of
(1 − Ω( ε2

n ))2n monomials can serve as the support of an ε-approximating polynomial for almost
every Boolean function. Precisely:

Theorem 8 Let S ⊆ 2[n] be any collection of subsets of [n] such that |S| ≥ (1 − ε2

6n)2n. Then for
all but a 2−n fraction of Boolean functions f on n bits, there is a ε-approximating polynomial p for
f whose support is contained in S.

An interesting special case of Theorem 8 occurs when we take ε = 1/n and S to be the (1− 1
6n3 )2n

smallest subsets of 2[n]. By the Chernoff bound we then have that |S| ≤ n
2 + O(

√
n log n) for all

S ∈ S. We thus obtain the following corollary:

Corollary 9 Almost all Boolean functions have 1
n -approximating polynomial degree (and hence

also PTF degree) at most n
2 + O(

√
n log n).

As noted earlier, Anthony and also Alon have used a counting argument to show that almost every
Boolean function has PTF degree at least bn/2c. Together with this lower bound, our upper bound
answers in the affirmative a conjecture of Wang and Williams [32] and Aspnes et al. [4] up to lower
order terms. (They conjectured that almost all Boolean functions have PTF degree exactly n/2.)
We have been informed that a PTF degree upper bound of n/2 + O(

√
n log n) for almost every

function has also been independently proved by Samorodnitsky [29].
Using the Theorem of the Alternative, Aspnes et al. gave a simple proof that for any n-bit

Boolean function f, the sum of the strong degree of f and the weak degree of f ·PARITYn is exactly
n (Lemma 2.5 of [4]). Hence Corollary 9 also implies that almost all Boolean functions have weak
degree at least n/2 − O(

√
n log n).

4.1 Proof of Theorem 8

Let f : {+1,−1}n → {+1,−1} be a randomly chosen Boolean function. In the sequel, all proba-
bilities are taken over this choice of f . To motivate our proof of Theorem 8, consider the earlier
proof of Alon and Gotsman (see [14, 28]); they show the weaker PTF upper bound of 2n − 1

2
√

n
2n/2

by combining Proposition 5 and Fact 4. (This gives the PTF degree upper bound of .89n noted
in Section 1.1 by taking S to be the set of monomials of lowest degree.) Alon and Gotsman’s
argument uses a “worst-case” assumption about the magnitude of the sum of the omitted Fourier
coefficients. If the Fourier coefficients of the random function f were not just binomially distributed
but were independent random variables, then we could use standard tail inequalities on sums of
independent random variables to obtain a stronger bound. However the Fourier coefficients are not
at all independent, so this direct approach does not seem to work.

We get around this by showing that in fact the error term
∑

S 6∈S f̂(S)xS can be viewed as a
sum of independent random variables. These new independent variables no longer correspond to
the individual Fourier coefficients f̂(S); nevertheless, we can exactly characterize the variance of
the sum of these new random variables, and this enables us to push the argument through.

We now proceed with the proof. For z ∈ {+1,−1}n let δz : {+1,−1}n → R be the function

δz(x) =

{

1 if x = z

0 otherwise.

10



The Fourier representation of δz is easily seen to be

δz(x) =
(1 + z1x1)(1 + z2x2) · · · (1 + znxn)

2n

=
1

2n

∑

S⊆[n]

zSxS .

Consequently any function f : {+1,−1}n → R may be written as:

f(x) =
∑

z∈{+1,−1}n

f(z)
1

2n

∑

S⊆[n]

zSxS .

For any S ⊆ 2[n] we thus have

fS(x) =
1

2n

∑

z∈{+1,−1}n

f(z)
∑

S∈S
zSxS . (2)

Let δS,z(x) =
∑

S∈S zSxS . It is clear that δS,x(x) = |S| for any x ∈ {+1,−1}n. We now claim:

Lemma 10 For any x ∈ {+1,−1}n, we have
∑

z 6=x δS,z(x)2 = 2n|S| − |S|2.

Proof:

∑

z 6=x

δS,z(x)2 =
∑

z∈{+1,−1}n

δS,z(x)2 − δS,x(x)2

=
∑

z∈{+1,−1}n

δS,z(x)2 − |S|2

=
∑

z∈{+1,−1}n

δS,x(z)2 − |S|2 (3)

= 2n
∑

S⊆[n]

δ̂S,x(S)2 − |S|2 (4)

= 2n|S| − |S|2, (5)

where (3) is because δS,z(x) = δS,x(z), (4) is Parseval’s identity, and (5) follows because δS,x has
exactly |S| nonzero Fourier coefficients, each of magnitude exactly 1. 2

To prove Theorem 8, fix any S ⊆ 2[n] with |S| ≥ (1 − ε2

6n)2n. Fix any x ∈ {+1,−1}n. We claim
that for a random Boolean function f , with probability at least 1 − 4−n we have

∣

∣

∣

∣

∣

∣

∑

z 6=x

f(z)δS,z(x)

∣

∣

∣

∣

∣

∣

< ε|S|. (6)

Given this, a union bound lets us conclude that for all but a 2−n fraction of functions f , inequality
(6) holds for every x ∈ {+1,−1}n. Since we have

2nfS(x) =
∑

z∈{+1,−1}n

f(z)δS,z(x) = |S|f(x) +
∑

z 6=x

f(z)δS,z(x)

11



this implies that

|2nfS(x) − |S|f(x)| =

∣

∣

∣

∣

∣

∣

∑

z 6=x

f(z)δS,z(x)

∣

∣

∣

∣

∣

∣

≤ ε|S|,

for all x, and hence (2n/|S|)fS is a ε-approximating polynomial for f which is supported on S.
To see the claim, note that since each f(z) is an independent random ±1 value, we may view

the sum over z 6= x in (6) as a sum of 2n − 1 independent random variables, where the zth random
variable takes values ±δS,z(x) each with probability 1/2. From Lemma 10 we know that the sum
of the squares of δS,z(x) is precisely 2n|S| − |S|2, and hence the variance of the sum of these 2n − 1

random variables is precisely σ2 = 2n|S|−|S|2
2n−1 . We can bound each random variable’s deviance from

the mean 0 by noting that |δS,z(x)| ≤ 2n − |S| for all z 6= x (this holds since by adding
∑

S/∈S zSxS

to δS,z(x) we would get
∑

S⊆[n] zSxS which is 0). Hence by Hoeffding’s bound, with m = 2n − 1,
t = ε|S|, and c = 2n − |S|, we have

Pr





∣

∣

∣

∣

∣

∣

∑

z 6=x

f(z)δS,z(x)

∣

∣

∣

∣

∣

∣

≥ ε|S|



 ≤ 2 exp

(

− ε2|S|
4(2n − |S|)

)

(7)

≤ 2 exp

(

−6n(1 − ε2/6n)

4

)

≤ 4−n,

as desired, where the second-last step uses |S| ≥ (1 − ε2/6n)2n. (Theorem 8)

5 Lower bounds for ε-approximating density and degree

J. H̊astad communicated to us a proof that if S ⊆ 2[n] contains noticeably less than a 1−4ε fraction
of the monomials in M, then only a tiny fraction of Boolean functions can have an ε-approximating
polynomial supported on S. (Note the contrast with Theorem 8.)

Theorem 11 (J. H̊astad) Given 0 < ε < 1
5 , let S be any set of (1 − 5ε)2n monomials. Then the

fraction of Boolean functions which can have an ε-approximating polynomial supported on S is at

most exp
(

− ε2

722n
)

.

Proof: Suppose g is an ε-approximating polynomial for f . Then for every x, f(x)g(x) > 1 − ε.
Hence:

12



(1 − ε)2 ≤ E[fg]2

=





∑

S⊆[n]

f̂(S)ĝ(S)





2

(Plancherel)

=

(

∑

S∈S
f̂(S)ĝ(S)

)2

(since g is supported on S)

≤
(

∑

S∈S
f̂(S)2

)(

∑

S∈S
ĝ(S)2

)

(Cauchy-Schwarz)

=

(

∑

S∈S
f̂(S)2

)

E[g2] (Parseval)

≤
(

∑

S∈S
f̂(S)2

)

(1 + ε)2,

where the last step uses the fact that |g(x)| ≤ 1+ ε for every x. Hence we have that
∑

S∈S f̂(S)2 ≥
(1−ε)2

(1+ε)2
= 1− 4ε

(1+ε)2
> 1−4ε. But since the expected value of

∑

S∈S f̂(S)2 is 1−5ε for a random f , by

Proposition 6 at most an exp
(

− ε2

722n
)

fraction of all Boolean functions have
∑

S∈S f̂(S)2 > 1−4ε.
2

This theorem immediately yields the following interesting corollary by taking S to be the
(1 − 5ε)2n smallest monomials in M:

Corollary 12 For any 2−n/2 � ε < 1
10 it holds that almost all Boolean functions have ε-approximating

polynomial degree at least n/2 + Ω(
√

n log 1
ε ).

Note that in the case ε = 1
n the lower bound of Corollary 12 essentially matches the upper

bound given by Corollary 9.

6 Weak PTF density

In this section we give an upper bound on weak PTF density which holds for all Boolean functions
and a stronger upper bound which holds for almost all Boolean functions. These bounds give a
negative answer to a question of M. Saks. We also give a lower bound on weak PTF density which
holds for almost all Boolean functions and a stronger lower bound which holds for a particular
Boolean function. To the best of our knowledge these are the only lower bounds known for weak
PTF density.

6.1 Upper bounds for weak PTF density

Since any strong representation of a Boolean function f is also a weak representation, Theorem 3
implies that for any function f and any set S ⊆ M of monomials either f has a weak representation
with support contained in S or f has a weak representation with support contained in M−S (or

13



both). Taking S to be any set of 1
22n monomials, it follows that every Boolean function has weak

density at most 1
22n.

M. Saks has asked the following question (Question 2.28.2 of [28]): is it true that for all ε > 0
almost all Boolean functions have weak density at least ( 1

2 − ε)2n? Our next two theorems show
that the answer is “no” in a rather strong sense:

Theorem 13 Almost all Boolean functions have weak density at most 2
n2n.

Theorem 14 All Boolean functions have weak density o(1)2n.

The intuition behind the proof of Theorem 13 is straightforward: with high probability a
random Boolean function f has some small subcube on which f is “simple.” We take advantage of
this simplicity to construct a low-density polynomial p which weakly represents f on this subcube.
Multiplying p by another polynomial which is 0 off of the subcube, we obtain a weak representative
for f. More precisely, we use the following lemma:

Lemma 15 Let τ be a restriction which fixes n−k variables from x1, . . . , xn and keeps k variables
free. Let D denote the weak density of f |τ . Then the weak density of f is at most 2n−kD.

Proof: Without loss of generality we can suppose that τ is the restriction which maps vari-
ables x1, . . . , xn−k to 1 and leaves the remaining k variables free. Let p be a polynomial over
xn−k+1, . . . , xn which weakly represents f |τ and has D nonzero monomials. Then the polynomial

P (x1, . . . , xn) = (x1 + 1)(x2 + 1) · · · (xn−k + 1) · p(xn−k+1, . . . , xn)

has density 2n−kD. To see that P weakly represents f , note that on any input x = 1n−ky we have
P (x) = 2n−kp(x), while on any other input we have P (x) = 0. Since p is a weak representative of
f |τ it must be somewhere nonzero, so the same is true for P. 2

Proof of Theorem 13: Let f be a random Boolean function. Consider the 2n−k disjoint k-
dimensional subcubes of {+1,−1} corresponding to restrictions τ which fix variables x1, . . . , xn−k.
For any such restriction τ we have

Pr[f |τ is not identically 1] = 1 − 1

22k

and hence

Pr[f |τ 6≡ 1 for all such τ ] =

(

1 − 1

22k

)2n−k

.

Taking k = log n − 1, the above probability is (1 − 2−n/2)2
n−log n+1

< e−2n/2+1/n. Thus with over-
whelmingly high probability there is some restriction τ fixing n − log n + 1 variables such that f |τ
is identically 1, and hence the weak density of f |τ is 1. Now use Lemma 15. 2

Using Lemma 15 it is easy to prove an upper bound of 1
22n on the weak density of all Boolean

functions without using Theorem 3. For any Boolean function f on n variables, the polynomial

(x1 + 1)(x2 + 1) · · · (xn−1 + 1)y

is easily seen to be a weak representative of f which has density 1
22n, where y ∈ {−1, 1,−xn, xn}

is suitably chosen depending on the two values of f(1n−1, 1) and f(1n−1,−1).
By looking at subcubes of dimension greater than 1 it is possible to improve this bound. A

straightforward case analysis shows the following:

14



Fact 16 Every Boolean function on 3 variables has weak density at most 3.

Together with Lemma 15, this yields

Corollary 17 Every Boolean function has weak density at most 3
82n.

While Corollary 17 already gives a strong negative answer to the question of Saks, we can obtain
the stronger upper bound of Theorem 14 by using more powerful tools from Ramsey theory. A
k-dimensional affine subspace of a vector space V is a translate of a k-dimensional vector subspace
of V. The following is a special case of the Affine Ramsey Theorem of Graham et al. [15, 16]:

Theorem 18 Let A be a finite field. For all r, k ≥ 1 there exists n such that if the points of An

are r-colored, then some k-dimensional affine subspace of An has all of its points the same color.

Taking r = 2 and A = GF2, we can rephrase this as:

Corollary 19 There is a function g(n) = ω(1) such that for any Boolean function f : (GF2)
n →

{−1, 1}, there is some g(n)-dimensional affine subspace of (GF2)
n on which f is constant.

Proof of Theorem 14: Let f be any Boolean function on n variables and let W ′ be the affine
subspace whose existence is asserted by Corollary 19. Any g(n)-dimensional vector subspace W of
(GF2)

n is the set of solutions to some system of n − g(n) homogeneous linear equations, i.e.,

W = {x ∈ (GF2)
n : Ax = (0)n−g(n)}

where A is an (n − g(n)) × n matrix over GF2. Thus the g(n)-dimensional affine subspace W ′ is
the set of solutions to some system of n − g(n) not necessarily homogeneous linear equations, i.e.,

W ′ = {x ∈ (GF2)
n : Ax = b}

for some b ∈ (GF2)
n−g(n). If we identify GF2 with the set {+1,−1}, then this system of equations

becomes:
∏

j:A1,j=1

xj = b1,

∏

j:A2,j=1

xj = b2,

...
∏

j:An−g(n),j=1

xj = bn−g(n).

Without loss of generality we may suppose that f(x) = 1 for all x ∈ W ′. It is easy to see that the
points of {+1,−1}n on which the polynomial

n−g(n)
∏

i=1



bi





∏

j:Ai,j=1

xi



+ 1





is nonzero are exactly the points in W ′, and that moreover this polynomial always takes value
exactly 2n−g(n) on W ′. Thus this polynomial is a weak representative for f of density 2n−g(n) =
o(1)2n, and Theorem 14 is proved. 2
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6.2 Lower bounds for weak PTF density

Here we give our lower bounds for weak PTF density. The first lower bound holds for almost every
Boolean function:

Theorem 20 Almost all Boolean functions have weak PTF density at least 1
2
√

n
2n/2.

Proof: Recall the proof of Theorem 8; in particular, equation (7). If we take ε = 9
10 (this choice is

somewhat arbitrary since any value less than 1 will do) and consider a fixed set S of size (1− τ)2n,
then Equation (7) tells us that the probability that f has no PTF over S is bounded by

2 exp

(

− ε2|S|
4(2n − |S|)

)

· 2n = 2n+1 exp

(

−81(1 − τ)

400τ

)

< 2n+1 exp

(

− 1

5τ

)

where the extra 2n factor comes from a union bound over all x ∈ {+1,−1}n and the last inequality
holds for small enough τ (any τ = o(1) suffices). There are exactly

( 2n

τ2n

)

sets S of size (1 − τ)2n.

Hence if we select τ such that
(

2n

τ2n

)

2n+1 exp
(

− 1
5τ

)

is at most 1/2n, then a union bound tells us
that all but a 1/2n fraction of Boolean functions can be sign-represented using any set of (1− τ)2n

monomials. In this case Theorem 3 implies that for almost every Boolean function, no set of τ2n

monomials can serve as the support of a weak sign-representation. Taking τ = 1
2
√

n
2−n/2, it is

easily shown that
( 2n

τ2n

)

· 2n+1 exp
(

− 1
5τ

)

� 1/2n, and the theorem is proved. 2

We can give a slightly better bound for an explicit Boolean function. For n = 2k let IP denote
the “inner product mod 2” function, i.e. IP (x1, . . . , xk, y1, . . . , yk) = ⊕k

i=1(xi∧yi) where ⊕ denotes
exclusive-OR (parity) and ∧ denotes AND.

Theorem 21 IP has weak density at least 2n/2.

Proof: It is known [10, 22] that IP is a bent function, i.e. a function for which |f̂(S)| = 1
2n/2 for

all S ⊆ [n]. Consequently, for any set S of 2n − 2n/2 + 1 monomials, the function sgn(fS(x)) is
a strong representative of f by Fact 4. By Theorem 3 this means that for any set T of 2n/2 − 1
monomials, it is not the case that f has a weak representative whose support is contained in T .
Hence the weak density of f is at least 2n/2. 2

7 PTF degree of sparse functions

The following question was posed by R. Beigel [7]: are sparse sets easy for low-degree polynomial
threshold functions? More concretely, let f : {+1,−1}n → {+1,−1} be a Boolean function such
that |f−1(1)| = m � 2n, so f is the characteristic function of a sparse subset of the Boolean cube.
What is the maximum polynomial threshold function degree for such an f? The following theorem
gives a complete answer for all values of m:

Theorem 22 For 1 ≤ m ≤ 1
22n, let Fm be the set of all Boolean functions f : {+1,−1}n →

{+1,−1} such that m = min{|f−1(1)|, |f−1(−1)|}. Then the maximum PTF degree over all f ∈ Fm

is exactly blog mc + 1.

Proof: We assume without loss of generality that 1 ≤ |f−1(1)| = m ≤ 1
22n. For the lower bound,

let f be any function which is such that if the last n − (blog mc + 1) inputs are fixed to 1 then f
computes parity on the first blog mc+ 1 inputs. (Note that this uses up 2blog mc ≤ m of the ones in
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f ’s output; any remaining ones can be located arbitrarily). Since any polynomial threshold function
which computes parity on k variables must have degree at least k, it follows that any polynomial
threshold function for f must have degree at least blog mc + 1.

For the upper bound, we begin by constructing an m-leaf decision tree over variables x1, . . . , xn

such that each string in f−1(1) arrives at a different leaf. Such a tree can be constructed by a
greedy algorithm: initially all strings in f−1(1) are at the root of the tree. Let xi be any variable
such that there are two strings in f−1(1) which disagree on xi (such a variable must exist as long
as |f−1(1)| ≥ 2). Label the root with xi. The strings {x : x ∈ f−1(1), xi = −1} go to the left child
and the strings {x : x ∈ f−1(1), xi = 1} go to the right child. Now recurse on each child. At the
end of this process we have an m-leaf tree in which each (unlabeled) leaf has a unique string in
f−1(1) which reaches that leaf.

Let ` be a leaf in this tree and let z be the element of f−1(1) which reaches that leaf. We label
` with the degree-1 polynomial threshold function sgn(p(x)) where p(x) = x1z1 + · · ·+xnzn−n+ 1

2 .
Note that p(z) = 1

2 , and p(x) ≤ − 1
2 for all binary inputs x 6= z. Thus we now have an m-leaf

decision tree T in which internal nodes are labeled with variables and leaves are labeled with
degree-1 polynomial threshold functions, such that T computes exactly f.

The rest of our proof follows the proof of Theorem 2 in [20]. Recall that the rank of a decision
tree T is defined inductively as follows:

• If T is a single leaf then rank(T ) = 0.

• If T has subtrees T0 and T1 then rank(T ) equals max (rank(T0), rank(T1)) if rank(T0) 6=
rank(T1) and equals rank(T0) + 1 if rank(T0) = rank(T1).

It follows from this definition that the rank of an m-leaf tree is at most blog mc. Now we use
the fact (see [9]) that a rank-r decision tree with functions f1, f2, . . . , fm at the leaves is equivalent
to some r-decision list, i.e., to a function “if C1(x) then output f1(x) else if C2(x) then output
f2(x) else . . . else output fm(x)” where each Ci is a conjunction on at most r variables. Thus, our
decision tree T is equivalent to such a decision list, where r = blog mc and each fi is a degree-1
polynomial threshold function sgn(pi) as described above.

We now show that the degree-(blog mc+1) polynomial threshold function sgn(P (x)) computes
T, where P (x) equals

A1C̃1(x)p1(x) + A2C̃2(x)p2(x) + · · ·AmC̃m(x)pm(x).

Here C̃i is the polynomial of degree at most blog mc which outputs 1 if Ci is true and 0 if Ci is
false, and A1 � A2 � A3 � · · · � Am > 0 are appropriately chosen positive values. To see that
this works, note that if Ci is the first conjunction in the decision list which is satisfied by x, then
we have

P (x) = Aipi(x) +
∑

j>i,Cj(x)=1

Ajpj(x).

Since |pi(x)| ≥ 1
2 and Ai � Aj > 0 for j > i, the sign of P (x) is the same as the sign of pi(x), and

we are done. 2

8 Conclusion

While we have made significant progress on extremal bounds for PTF degree and PTF density, there
is still room for improvement. One goal is to improve the lower order term in our n/2+O(

√
n log n)
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upper bound for the PTF degree of almost every Boolean function. Another goal is to give tighter
bounds on the maximum PTF density of Boolean functions. Saks [28] has asked whether almost
all Boolean functions have PTF density at least (1 − ε)2n for some ε > 0. We conjecture that the
answer is “no” in a strong sense:

Conjecture 23 For n sufficiently large, every Boolean function f : {+1,−1}n → {+1,−1} has
PTF density at most 1

22n.

Finally, a large gap remains between our upper and lower bounds for weak PTF density; it would
be interesting to tighten these bounds.
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