
Learning random log-depth decision trees under the uniform

distribution

Jeffrey C. Jackson∗

Department of Mathematics and Computer Science
Duquesne University, Pittsburgh, PA 15282

jackson@mathcs.duq.edu

Rocco A. Servedio†

Department of Computer Science
Columbia University, New York, NY 10027

rocco@deas.harvard.edu

November 30, 2004

Abstract

We consider three natural models of random logarithmic depth decision trees over Boolean

variables. We give an efficient algorithm that for each of these models learns all but an inverse

polynomial fraction of such trees using only uniformly distributed random examples from {0, 1}n.
The learning algorithm constructs a decision tree as its hypothesis.

Keywords: PAC learning, decision trees

∗This material is based upon work supported by the National Science Foundation under Grant No. CCR-0209064.
†Partially supported by NSF Early Career Development (CAREER) Grant CCF-0347282.

1 Introduction

Decision trees are widely used to represent various forms of knowledge. The apparent ease with
which humans can understand and work with decision trees has also made them a popular form
of representation for knowledge obtained through heuristic machine learning algorithms (see, e.g.,
[4, 9]). While heuristic algorithms have proved reasonably successful for many applications, there
is some reason to believe that arbitrary decision trees are not efficiently learnable from random
examples alone, as the class of decision trees is provably not efficiently learnable in the Statistical
Query model, even when the examples are uniformly distributed [3].

Given the apparent difficulty of learning decision trees in polynomial time, many researchers
have considered alternate learning scenarios. One line of work which has been pursued is to con-
sider algorithms that run in superpolynomial time. Ehrenfeucht and Haussler [6] have shown that
the class of size-s decision trees over {0, 1}n can be PAC learned in nlog s time steps. This result
was later simplified by Blum [1]. Another approach which has been pursued is to study decision
tree learnability in alternate learning models in which the learner has more power and the classifier
produced need not itself be a decision tree. Kushilevitz and Mansour [8] gave a polynomial time
algorithm which uses membership queries and can learn decision trees under the uniform distribu-
tion. The hypothesis produced by this algorithm is a weighted threshold of parity functions. Using
different techniques, Bshouty [5] gave a polynomial time algorithm which learns decision trees in
the model of exact learning from membership and (non-proper) equivalence queries; this implies
that decision trees can be PAC learned in polynomial time under any distribution if membership
queries are allowed. The hypothesis in this case is a depth-three Boolean circuit.

1.1 Our approach and results

In this work we propose a third approach to coping with the difficulty of learning decision trees:
looking at the average case. Since we have been unable to design algorithms which can learn all
decision trees, we focus instead on algorithms which can efficiently learn most decision trees. Also,
unlike some of the earlier approaches, our hypothesis is a decision tree.

We consider three natural models of random log-depth decision trees, i.e. decision trees over n
Boolean variables which are of depth O(log n). (Note that decision trees of logarithmic depth are
a natural class to study in the context of uniform distribution learning, since under the uniform
distribution any decision tree of poly(n) size can be approximated to any inverse polynomial accu-
racy by a decision tree of O(log n) depth.) Our main result is a polynomial time algorithm that for
each of these models learns, using decision tree hypotheses, all but a 1/p(n) fraction of such trees
using only uniformly distributed random examples, where p(n) is any polynomial function of n.

There are several motivations for this study. One natural motivation is that since decision tree
learning is an interesting and important problem, but worst-case theoretical analyses seem quite
hard, it is natural to consider the average case. Another motivation comes from work of Blum et
al. [2], who proposed an approach to constructing cryptographic primitives such as pseudorandom
generators and one-way functions based on the (presumed) intractability of certain learning prob-
lems. They defined a framework of learning from uniformly random examples in which the target
function is also selected at random from the concept class according to some distribution. One of
the main results of [2] is a proof that the existence of concept classes which are hard to learn in
this average-case sense implies the existence of corresponding one-way functions whose circuit com-
plexity is closely related to the circuit complexity of the concepts in the hard-to-learn class. Since
decision trees are “simple” in terms of circuit complexity yet are widely viewed as an intractable
learning problem, one natural application of the Blum et al. paradigm would be to construct one-

2

way functions based on the presumed intractability of decision tree learning. However, our results
(which show that log-depth decision trees are not hard to learn in the average case) indicate that
this approach does not yield secure one-way functions.

In Section 2 we give the necessary background on uniform distribution learning and decision
trees, and describe the three models of random decision trees which we consider. Section 3 gives
useful Fourier properties of decision trees. In Section 4 we present the learning algorithm, and
Sections 5 through 9 contain the proofs of correctness for the learning algorithm. We conclude in
Section 10.

2 Preliminaries

A Boolean decision tree T is a rooted binary tree in which each internal node has two children and is
labeled with a variable, and each leaf is labeled with a bit b ∈ {−1, +1}. Children are ordered, i.e.,
each internal node has a definite left child and right child. We refer to an internal node whose two
children are both leaves as a pre-leaf node. Because we will deal exclusively with Boolean decision
trees in this paper, for convenience we will refer to them simply as decision trees.

A decision tree T computes a Boolean function f : {−1, 1}n → {−1, 1} in the obvious way: on
input x, if variable xi is at the root of T we go to either the left or right subtree depending on
whether xi is −1 or 1. We continue in this fashion until reaching a bit leaf; the value of this bit is
f(x).

We define the depth of a node in a decision tree as follows. First, every decision tree must have
at least one node; we do not admit the empty (0-node) decision tree. In a tree consisting of a single
leaf node (labeled with some bit), the depth of this node is −1; we call such a tree trivial. The
depth of the root in a non-trivial tree is 0, and the depth of any non-root node is one greater than
the depth of its parent. The depth of a decision tree T is −1 if T is trivial and the maximum depth
over all pre-leaf nodes of T otherwise.

A decision tree is non-redundant if no variable occurs more than once on any root-to-leaf path.
We consider only non-redundant decision trees in this paper.

We let U be the uniform distribution on {−1, 1}n. We write EX(f,U) to denote a uniform
random example oracle for f : {−1, 1}n → {−1, 1} which, when invoked, outputs a labeled example
〈x, f(x)〉 where x is drawn from U .

We consider three models of random decision trees. Our primary model is the uniform distri-
bution over the set of all non-redundant decision tree representations of depth at most d on the
variable set {x1, . . . , xn}. We call this the uniform model and will represent this distribution by
T U

d,n. Note that not every Boolean function that can be represented by a depth-d tree has the same

probability mass under T U
d,n; some functions may have more T U

d,n-good trees which represent them

than others. That is, T U
d,n is a distribution over syntactic representations of decision tree functions,

and not over the functions themselves.
In each of our other two models, the internal nodes form a complete tree of depth d and are

labeled uniformly at random using the variables {x1, . . . , xn}, with the restriction that the tree
must be non-redundant. These models, denoted by T C

d,n and T B
d,n, differ in that the leaves in T C

d,n

are selected independently and uniformly from {−1, 1} while in T B
d,n each sibling pair must have

opposite signs, although the sign of the left node is independently and uniformly chosen from
{−1, 1}. We call these the complete and balanced models, respectively.

We assume throughout that d is O(log n), and that the learning algorithm knows the exact
value of d. This latter assumption is without loss of generality since the algorithm can try all values
d = 1, 2, . . . until it succeeds.

3

3 Fourier properties of decision trees

We will be interested in carefully measuring the correlation between a decision tree f and each of
f ’s variables. Define ei to be the n-bit vector that has a 1 in position i and 0’s elsewhere and define
f̂(ei) to be Ea∼U [aif(a)]. Since f(a) and ai take values in {−1, 1} we have f̂(ei) = Pra∼U [f(a) =
ai] − Pra∼U [f(a) 6= ai]. Each f̂(ei) is a first-order Fourier coefficient of f .

Kushilevitz and Mansour [8] showed that decision trees have some particularly useful Fourier
properties.1 Define L(i) to be the set of all leaves in a decision tree f that are descendants of some
node labeled by variable xi, and let d(`) represent the depth of a leaf ` in f . The analysis of [8]
directly implies:

Corollary 1 (Kushilevitz Mansour) For every decision tree f and every 1 ≤ i ≤ n, there is a
function σi : L(i) → {−1, 1} such that

f̂(ei) =
∑

`∈L(i)

2−d(`)σi(`).

Note that this corollary implies that in any tree of depth d, each f̂(ei) is of the form j/2d for some
integer j. This is because any leaf at depth d + 1 must have a sibling leaf, so the total number
of ±1/2d+1 contributions to f̂(ei) is even. We say that any first-order Fourier coefficient of the
form 2k+1

2d for some integer k is an odd coefficient, and all other first-order coefficients are even
coefficients.

From the above corollary we can obtain the following:

Lemma 2 For every decision tree f of depth d and every 1 ≤ i ≤ n, f̂(ei) is an odd coefficient if
and only if the total number of occurrences of the following conditions is odd for xi:

1. A node at depth d is labeled with xi and the children of this node (both leaves) have opposite
signs;

2. A leaf at depth d has an ancestor labeled with xi;

3. A pair of sibling leaves at depth d + 1 have the same sign, xi labels an ancestor of this pair of
leaves, and xi is not the label of the parent of the pair.

Proof: Fix an arbitrary i. By the corollary, only leaves in L(i) that are at depth d or d + 1 can
affect whether f̂(ei) is an even or odd coefficient. Also, as noted earlier, each leaf at depth d+1 has
a sibling leaf. Let “leaf set” denote either a leaf at depth d or a sibling pair of leaves at depth d+1.
Then notice that every leaf set in L(i) is covered by at most one of the conditions of the lemma.
We will show that each leaf set in L(i) that is not covered by a condition contributes nothing to
f̂(ei) while every covered leaf set contributes ±1/2d. From this, the lemma follows.

First, again by the corollary, each leaf in L(i) at depth d contributes ±1/2d to f̂(ei). For sibling
leaves at depth d+1 there are two cases: the siblings either have the same sign or different signs. If
sibling leaves at depth d+1 have the same sign, then their immediate parent is irrelevant: the tree
is equivalent to one with a leaf at depth d in place of the parent node. Thus, in this case, the non-
parent ancestor nodes each receive a ±1/2d contribution to their corresponding Fourier coefficients
while the parent node receives no contribution to its coefficient. For the case in which the siblings
have different signs, it is not hard to see from the definition of f̂(ei) that the net contribution to

1[8] considered decision trees in which internal nodes can contain arbitrary parity functions; however as noted
earlier we only allow single variables at internal nodes.

4

f̂(ei) of the set of all bit-vectors a that reach these two leaves will be ±1/2d if xi is the parent of
the leaves and 0 if xi is a non-parent ancestor of the leaves.

Conditions 2 and 3 of this lemma may seem redundant, since a tree with two sibling leaves
having the same sign is equivalent to a tree that has a single leaf in place of the parent of the
siblings. We include both conditions because these are syntactically different structures both of
which may arise in the various trees we consider.

A key observation which follows from this lemma is:

Lemma 3 Fix any Boolean decision tree structure of depth d and assign variables x1 through
xn arbitrarily to the internal nodes of the tree, with the constraint that the resulting tree is non-
redundant. Assign each leaf bit by independently and uniformly selecting from {−1, 1}. Then
for every 1 ≤ i ≤ n such that xi is an ancestor of at least one leaf at depth d + 1, we have
Pr[f̂(ei) is an odd coefficient] = 1

2 .
Moreover, let S be any subset of variables x1, . . . , xn with the following property: there is a

collection C of |S| pre-leaves in T , each of which is at depth d and is labeled with a different
element of S, such that no variable in S occurs on any of the paths from the root to any of these
pre-leaves. Then we have that Pr[∀i ∈ S f̂(ei) is an even coefficient] = 1

2|S| .

Proof: We can view certain leaves of the tree as defining the “parity” of the internal nodes in a
way that corresponds to the conditions of Lemma 2. More precisely, all internal nodes begin with
even parity, and then their parities are computed by applying the following rules to each leaf and
each pair of leaves (each leaf or leaf pair will meet the conditions of at most one rule):

1. If a pair of sibling leaves are at depth d + 1 and have opposite signs, then the parity of their
depth-d parent node is toggled.

2. If a leaf is at depth d then the parity of each ancestor node is toggled.

3. If a pair of sibling leaves are at depth d + 1 and have identical signs, then the parity of each
ancestor node except their parent node is toggled.

We can then define the parity of a variable xi as the parity of the parity of all nodes that are labeled
by xi. It is clear that for each i, the first-order Fourier coefficient f̂(ei) is odd if and only if xi has
odd parity according to this definition.

Next, notice that since sibling leaves are labeled uniformly at random, any pair of sibling leaves
at depth d + 1 is equally likely to satisfy rule 1 or rule 3 above. So the probability that any given
ancestor node of a pair of such sibling leaves has its parity toggled by a random assignment to these
leaf bits is exactly 1/2. The same is true of the parity of the variable labeling the node. Since all
leaves at depth d + 1 have sibling leaves (because the tree depth is d), all possible assignments to
leaves at depth d + 1 are covered by the conditions of rules 1 and 3. Thus, any variable xi that
is an ancestor of at least one leaf at depth d + 1 will have odd parity with probability exactly 1/2,
and the first equation is proved.

To see that the second equation also holds, observe that the |S| pre-leaves in C will each toggle
the parity of the corresponding variable with probability 1/2. Since no variable in S occurs on any
path to a node in C, the final parities of these variables are all independent of each other, and the
lemma follows.

Kushilevitz and Mansour also observed that it follows from Corollary 1 and Chernoff bounds
that for any decision tree f and any δ > 0, a uniformly distributed sample S of m labeled pairs
〈x, f(x)〉 is—with probability at least 1 − δ over the choice of S—sufficient to compute all of

5

the first-order Fourier coefficients of f exactly, for m exponential in the depth d of f and poly-
nomial in log(n/δ). In particular, with probability at least 1 − δ over the random draw of S,
f̂(ei) = R

(

(
∑

a∈S aif(a))/m
)

where R(·) represents “rounding” the argument to the nearest ratio-
nal number having denominator 2d. Therefore, we also have

Corollary 4 (Kushilevitz Mansour) There is an algorithm FCExact such that, given δ > 0
and access to EX(f,U) for any decision tree f of depth O(log n), with probability at least 1 − δ
FCExact(n, δ, EX(f,U)) computes all of the first-order Fourier coefficients of f exactly in time
poly(n, log(1/δ)).

For our algorithm we will need uniform random examples which are labeled not only according
to the original tree f, but also according to certain subtrees obtained by restricting a subset of
the variables of f . Each such subset will lie along a root-to-leaf path in f and—since we consider
only trees of depth O(log n)—will therefore have cardinality O(log n). We can simulate exactly an
example oracle for such a restricted f ′ given an oracle EX(f,U) by simply drawing examples from
EX(f,U) until we obtain one that satisfies the restriction on the O(log n) variables. Since each
example from EX(f,U) will satisfy such a restriction with probability 1/poly(n), the probability
of failing to obtain such an example after poly(n) many draws from EX(f,U) can be made expo-
nentially small. Thus the simulation of these subtree oracles is both exact and efficient. We will
use EX(f ′,U) to represent the simulated oracle for a restriction f ′.

4 The algorithm for learning random decision trees

Our algorithm for learning random decision trees, which we call LearnTree, operates in two phases.
In the first phase (lines 4-11) the algorithm uses the Fourier properties outlined above to find a
root-like variable for the original tree. (Informally, a root-like variable has the property that it can
be taken as the root of the tree without increasing the depth of the tree; we give precise definitions
later.) Once this is done, it recursively finds a good root for each of the two subtrees induced by
this root, and so on. The process stops at depth d − 1

2 log n, so when it stops there are at most
2d/

√
n subtrees remaining, each of depth at most 1

2 log n. (Recall that w.l.o.g. we may assume the
algorithm knows the exact value of d.) In the second phase (lines 1-3) we employ an algorithm
UnikDTLearn(n, ε, δ, EX(T,U)) due to Hancock [7] to learn the remaining “shallow” decision
trees. (If d < 1

2 log n then our algorithm only performs the second phase.)
The intuition underlying the algorithm is that at each step in the first phase, each of the two

subtrees of the root xi of a decision tree T will obviously have depth at least one less than that of
the original tree. These subtrees will therefore contain no odd first-order Fourier coefficients by
Lemma 2, and thus the root xi will pass the test at line 8. On the other hand, we will show that
in our random decision tree models, if we consider a variable xj which is not the root (or, more
accurately, is not root-like in a sense defined below) then projecting on xj will result in at least one
projection containing odd first-order coefficients. (This will follow from our earlier Fourier analysis
of decision trees plus some combinatorial arguments showing that if xj is not root-like, then with
very high probability the trees resulting from restricting on xj will have an ω(log n) size collection
C of pre-leaves as in Lemma 3.)

Hancock’s UnikDTLearn is efficient, so LearnTree clearly runs in time poly(n) for any value
d = O(log n). The rest of this paper shows that the algorithm with high probability outputs an
accurate decision tree for our various models of random decision trees.

6

LearnTree(n, d, δ, ε, EX(T,U))
(is given number of variables n, the depth d of the tree T to be learned, desired confidence δ > 0,
desired accuracy ε > 0, and access to EX(T,U))

1. if d ≤ (1
2 log n)

2. return UnikDTLearn(n, ε, δ, EX(T,U))
3. endif
4. for i = 1 . . . n
5. for b = −1, 1
6. Call FCExact(n − 1, δ/(4n2), EX(Txi←b,U)) to compute

T̂xi←b(ej) for all j 6= i
7. endfor
8. if none of the coefficients T̂xi←b(ej) is odd
9. return tree consisting of root xi and children defined by

LearnTree(n − 1, d − 1, δ/4, ε, EX(Txi←b),U) for b = −1, 1.
10. endif
11. endfor
12. return “fail”

Figure 1: The algorithm for learning random log-depth decision trees.

5 Bottlenecks and recursing the algorithm

The first phase of our algorithm attempts to recursively select the root of the original tree T and
its subtrees. One difficulty is that T may have more than one variable that “acts like” a root, in
the sense that putting any of these variables at the root does not increase the depth of the tree.
For example, consider a decision tree representation of the function x1 ⊕ x2. Although we might
represent this with a tree T having x1 at the root, it can be represented equally well by a tree with
x2 at the root.

The following definition captures the notion of a “root-like” variable for us:

Definition 5 A variable xi is a bottleneck for a decision tree T if T is non-trivial and xi occurs
on every root-to-leaf path in T .

Clearly the variable labeling the root is always a bottleneck for any tree. We note that if xi is
the root of a tree T , then a variable xj 6= xi is a bottleneck in T if and only if xj is a bottleneck
in both the left and right subtrees of T . Notice also that any bottleneck variable will pass the test
at line 8 of LearnTree, so some variable xi will pass the test at every stage of the recursion given
that FCExact returns accurate values for all first-order Fourier coefficients.

For the rest of this section let Td,n denote any fixed one of the three random tree models
T B

d,n, T C
d,n, T U

d,n. In later sections we will show that for a random tree T drawn from Td,n, any non-
bottleneck variable will with very high probability not pass the test of line 8. Thus each recursive
call of LearnTree is performed by restricting on some bottleneck variable; however, the bottleneck
may or may not be the root. If the root is the bottleneck chosen, then it is easy to see that each
of the two subtrees will be drawn from Td−1,n−1 (over a suitable set of n − 1 variables) as desired,
and the inductive assumption of LearnTree (that the tree it is given is drawn from Td,n) will be
valid. If a non-root bottleneck is chosen, however, it is not a priori clear that the two resulting
subfunctions for the recursive call correspond to draws from Td−1,n−1.

7

xi

xj xj xi xi

xj

T1 T2 T3 T4 T1 T3 T2 T4

Figure 2: Applying a root swap operation to the tree on the left (right) produces the tree on the
right (left). Note that the tree produced by a root swap computes the same function as the original
tree.

We will show shortly that as long as any bottleneck is chosen, the two resulting subfunctions do
indeed correspond to draws from Td−1,n−1. (The correspondence is exact for the complete model;
for the other models the subfunctions correspond to draws from a distribution which has negligible
statistical difference from Td−1,n−1.) While the two draws are not independent of each other, this
does not negatively impact the algorithm.

First, we define some terms. Figure 2 defines a tree restructuring operation we call a root swap.
Notice that this operation can be performed on a tree only if the children of the root are both
labeled with the same variable; we call a tree with this property root swappable. More generally,
a swap operation takes a tree T and a node η in the tree such that the subtree S rooted at η is
root swappable, and returns a tree T ′ which is identical to T except that the subtree rooted at η
is replaced with the root swap of S.

We next define an equivalence relation on decision trees which we call structural equivalence.
Formally, this relation is defined inductively as follows:

Definition 6 (i) Two decision trees T and T ′ both of depth d < 1 are structurally equivalent if
and only if they are identical. (ii) Two decision trees T and T ′ both of depth d ≥ 1 are structurally
equivalent if and only if there exists a sequence of swap operations that will transform T ′ to a tree
T ′′ such that T and T ′′ have the same root variable and each of the child subtrees of the root of T ′′

is structurally equivalent to its corresponding subtree in T . (iii) Two decision trees T and T ′ of
different depths are not structurally equivalent.

Informally, two decision trees T and T ′ are structurally equivalent if T ′ can be obtained from
T by performing a sequence of swaps. Note that if two trees are structurally equivalent then
they compute the same function. The following lemma, which we prove in Appendix A, shows
that bottleneck variables can be swapped to the root of a tree in a way that preserves structural
equivalence.

Lemma 7 Let T be any decision tree. If variable xi is a bottleneck for T , then there is a tree T ′

having xi at its root that is structurally equivalent to T .

Let T i
d,n be the induced distribution over trees obtained by restricting T C

d,n to trees for which xi is

a bottleneck, and let T ĩ
d,n be the distribution over trees obtained by first selecting a tree T according

to T i
d,n and then performing a minimal sequence of swap operations (as implicitly described in the

proof Lemma 7) to produce a structurally equivalent T̃ having xi as its root. Finally, let T −1
d−1,n−1

(resp. T 1
d−1,n−1) represent the distribution over trees corresponding to a random variable that selects

a tree T̃ according to T ĩ
d,n and then returns the left (resp. right) subtree as the value of the random

variable. Then for the complete model, it suffices to prove the following lemma:

8

Lemma 8 Let T i
d,n, T −1

d−1,n−1 and T 1
d−1,n−1 be as defined above. Then for all 1 ≤ i, d ≤ n, T −1

d−1,n−1

and T 1
d−1,n−1 are both identical to T C

d−1,n−1.

Proof: The proof is by induction on d. For the base case d = 1, any tree T drawn from T i
1,n either

has xi at the root or some other variable xj at the root and xi as the root of both children of xj .

In either case, the corresponding tree T̃ of the process defining T ĩ
1,n will have xi at the root with

two depth 0 children. It is easy to see that, over random draws from T ĩ
1,n, the root variables of

these children of xi are each uniformly distributed over the n − 1 variables excluding xi (although
the distributions of these root variables are not necessarily independent). The values of the leaves
are also uniformly and independently distributed. Therefore, the base case has been shown.

For the inductive case, consider a tree T drawn from T i
d,n, for fixed d > 1. Since xi must be

a bottleneck in T , it is either the root of T or is a bottleneck in both children of the root of T .
If xi is the root of T , the lemma obviously holds. So we are left with the case in which some
variable xj—uniformly chosen from the n− 1 variables excluding xi—labels the root of T and xi is
a bottleneck in both children of xj . Let T−1 (T1) represent the left (right) subtree of T , and let T̃−1

(T̃1) represent the tree obtained by swapping xi to the root of T−1 (T1). Since xi is a bottleneck
in T−1 (T1), the children of xi in T̃−1 (T̃1) are drawn from T C

d−2,n−2, by the inductive hypothesis.2

Notice also that, although the distribution over each child of xi in T̃−1 may be dependent on its
sibling’s distribution, each is independent of both of the distributions over children of xi in T̃1.
Therefore, after performing a final swap of the xi’s at the roots of T̃−1 and T̃1 with the root xj

of T , we obtain a tree T̃ in which each child of the root xi is a tree rooted at uniformly (over
n− 1 variables) chosen xj and in which the children of xj are independently distributed according
to T C

d−2,n−2. That is, each child of xi in T̃ is distributed according to T C
d−1,n−1. Since T̃ is by

construction distributed according to T ĩ
d,n, the lemma follows.

This proof does not immediately apply to either of the other two tree models. The problem for
balanced trees is in the base case: a swap in a balanced tree of depth 1 can produce a tree that is
no longer balanced. For uniform trees, there is a technical difficulty in that the distribution over
children will only be exactly T U

d−1,n−1 in the case in which no swap is performed (the root is chosen
as the bottleneck variable). If a non-root bottleneck is chosen, a swap must be performed, and the
children of the root then must not be leaves. But leaves have nonzero probability in T U

d−1,n−1, so

the children are not distributed according to T U
d−1,n−1 in this case.

We can, however, still say that with very high probability over the choice of tree according
to either T B

d,n or T U
d,n, the choice of bottleneck variable on which to recurse will not affect the

distribution over the recursive subtree problems. We use two lemmas to show this. First, we
will later prove the following lemma in the context of some of our other combinatorial lemmas in
Appendix E.

Lemma 9 Let T be drawn from Td,n where d ≥ 1
2 log n and d = O(log n). The probability that T

has any bottleneck variable which occurs at some depth k ≥ 1
8 log n is 1/nω(1).

For the balanced model, this means that the sequence of swaps performed to transform T chosen
according to T B

d,n into T̃ having bottleneck xi at the root will almost certainly not perform a swap
involving xi nodes whose children are leaf bits. And a simple modification to the proof of Lemma 8
shows the following:

2Strictly speaking, the children of xi are fixed for any given T . What we are actually claiming here is that over
draws of T from T

i
d,n, for fixed d > 1, the children of xi in T̃−1 are distributed according to T

C
d−2,n−2. But for ease

of exposition, here and below we often blur the distinction between a single tree produced by one application of a
random process defining a distribution over trees and the distribution itself.

9

Lemma 10 Let T ī
d,n be the induced distribution over trees obtained by restricting T B

d,n to trees for

which xi is a bottleneck that does not appear at depth d. Let T −1
d−1,n−1 and T 1

d−1,n−1 be induced

distributions defined as before except relative to T ī
d,n rather than T i

d,n. Then for all 1 ≤ i, d ≤ n,

T −1
d−1,n−1 and T 1

d−1,n−1 are both identical to T B
d−1,n−1.

So in the balanced model, there is negligible chance that the choice of bottleneck variable will
negatively affect the algorithm. For the uniform model, we will also use the following lemma, which
is again proved in Appendix E.

Lemma 11 Let T be drawn from T U
d,n where d ≥ 1

4 log n. The probability that T has a leaf at depth

less than d − 1
4 log n is 1/2nΩ(1)

.

Combining this with Lemma 9, for d ≥ 1
2 log n, with probability at least 1 − 1/nω(1) (which

we will refer to in this section as “very high probability”), a tree T drawn from T U
d,n has no leaves

through depth d − 1
4 log n, while all bottleneck variables are at shallower depths. Fix t to be any

depth (3
16 log n will do) such that with very high probability all the bottleneck variables in T drawn

from T U
d,n have depth less than t and all leaves have depth greater than t.

Notice that (with very high probability) we have 2t nodes at depth t in T and that the subtrees
rooted at these nodes are independently and identically (up to variable renaming) distributed
according to T U

d−t,n−t. Furthermore, notice that all of the nodes labeled by any bottleneck variable
are with very high probability located in the portion of the tree above these new “leaves”. So
the proof of Lemma 8 shows that, with very high probability, swapping a bottleneck variable xi

to the root of T produces a tree T̃ in which the children of xi are each distributed according to
the complete distribution down to depth t − 1 and then according to T U

d−t,n−t. But this is just

T U
d−1,n−1 restricted to contain no leaves until depth t, which by Lemma 11 is negligibly different

from T U
d−1,n−1.

Therefore, in the uniform model, the recursive distributions obtained if a non-root bottleneck
is chosen are negligibly different from the distributions that would be obtained if the root variable
was selected. Thus, in both the balanced and the uniform models, the probability that LearnTree
fails as a result of distribution differences induced by selecting a non-root bottleneck is negligibly
small. This failure probability will be covered by a portion of the PAC confidence parameter δ.

It remains to show that LearnTree will with high probability choose a bottleneck at each stage
of the recursion in the first phase, and that Hancock’s algorithm can be used to efficiently learn
Td,n-random trees of depth 1

2 log n with high probability. We address the second point first in the
next section.

6 Learning random (1
2
log n)-depth trees

We stop the recursion in LearnTree at depth 1
2 log n because our analysis depends on trees being

somewhat deep. So we use another method for learning random trees of depth less than 1
2 log n,

which is based on the following lemma plus the UnikDTLearn algorithm due to Hancock [7].
Recall that a decision tree T is read-k if each variable labels at most k nodes in T . We again

write Td,n to represent any of our three random tree models. We prove the following easy lemma
in Appendix B:

Lemma 12 Let r = ((1 − ε) log n) − 2 for some constant ε > 0. Let C be any constant. Then we
have PrT∈Tr,n [T is not read-k] ≤ 1/nC for k = (C + 2)/ε.

10

Thus, if r = (1
2 log n), then for any constant C we may take k = 8C + 16, and with probability

at least 1− 4
(n−2)C a tree T drawn from Td,n is read-k (since each of the four subtrees of depth r−2

is not read-(2C + 4) with probability at most 1/(n − 2)C).
Hancock [7] has given an algorithm UnikDTLearn and shown that it (or more precisely, a

version which takes k as an input along with the parameters given earlier) efficiently learns read-k
trees with respect to the uniform distribution, producing a decision tree (not necessarily read-k) as
its hypothesis. Given any constant k, his algorithm terminates in time polynomial in n, 1/ε, and
1/δ, regardless of whether or not the target function f is actually a read-k decision tree. So our
version of UnikDTLearn(n, ε, δ, EX(T,U)) will begin by finding the smallest integer C such that
1/nC ≤ δ/2. If the δ originally provided to LearnTree is inverse polynomial in n, then this value
C will be a constant independent of n. Taking k = 8C + 16, this means that the target function
provided to UnikDTLearn is a read-k decision tree with probability at least 1−δ/2. Then running
Hancock’s original UnikDTLearn with this value of k and with δ/2 as the confidence parameter
will succeed at learning an ε-approximating tree with probability at least 1 − δ/2, for an overall
success probability at the bottom of the recursion of 1 − δ. In short, we have the following:

Lemma 13 If the function f in the oracle EX(f,U) in the call to UnikDTLearn in LearnTree
is distributed according to Td,n, then UnikDTLearn returns a decision tree that ε-approximates f
with probability (over the random choice of T and the randomness in EX(f,U)) at least 1 − δ.

It remains to show that the first stage of the algorithm successfully finds a bottleneck variable
with high probability given a decision tree drawn at random according to one of our tree models and
with depth at least 1

2 log n. Throughout the rest of the paper we thus have d = Θ(log n), d ≥ 1
2 log n.

We will consider each model separately, beginning with the complete model.

7 Identifying bottlenecks in the complete model T C
d,n

Since we have already shown that any bottleneck makes an equally good root in the hypothesis,
and since it is easily seen that all bottlenecks (including the root of T) will pass the test at line 8
of LearnTree, it remains to show the following: for each i = 1, . . . , n, if xi is not a bottleneck in
a random tree T then the probability that xi passes the test in line 8 is negligibly small.

Our general plan of attack is as follows: we will prove that if x1 is not a bottleneck, then with
1− 1

nω(1) probability there are many root-to-leaf paths in T that do not include x1. We then argue
that, conditioned on there being many such paths, among these pre-leaves there is a collection C
satisfying the condition of Lemma 3 which has |C| = ω(log n). Combining this with the Fourier
properties of random decision trees derived earlier gives us our result.

More precisely, the argument is as follows. Let S be a random variable which denotes the
number of x1-free paths from the root to a pre-leaf in T ∈ T C

d,n. (Note that each such path ends at
a depth-d pre-leaf since we are in the complete model. Note also that since we are in the complete
model, S > 0 iff x1 is not a bottleneck). We will prove the following lemmas in Appendix C.

Lemma 14 For 0 ≤ d ≤ n − 1 we have PrT∈T C
d,n

[S = 0] ≤ 1
n−d .

Lemma 15 For any value 1 ≤ k ≤ (log n)3/2 we have Pr[S = k] = 1/nω(1).

Lemma 16 Let T be drawn from T C
d,n conditioned on its having some set of (log n)3/2 pre-leaves

at depth d, each of which has no x1-labeled node as an ancestor. Then with probability 1 − 1/nω(1)

there is a set C of (log n)5/4 pre-leaves at depth d, each labeled with a distinct variable, each of
which has no ancestor labeled with x1 or with a variable that labels any element of C.

11

From these lemmas it is easy to prove that each non-bottleneck will pass the test at line 8 with
negligible probability:

Theorem 17 Let T ∈ T C
d,n where d = Θ(log n), d ≥ 1

2 log n. If x1 is not a bottleneck then the

probability that x1 passes the test in line 8 is 1/nω(1).

Proof: Since S = 0 iff x1 is a bottleneck, we have

Pr
T∈T C

d,n

[S < (log n)3/2 | x1 is not a bottleneck] =
Pr[S < (log n)3/2 & S > 0]

Pr[S > 0]

=
Pr[1 ≤ S < (log n)3/2]

Pr[S > 0]

= 1/nω(1)

where the last equality follows from Lemmas 14 and 15. Thus we may assume that S ≥ (log n)3/2.
Lemma 16 now implies that there is a set C of (log n)5/4 pre-leaves with the stated properties.
Now we observe that if a pre-leaf belongs to C, then under any restriction x1 ← b, the pre-leaf will
still occur at depth d with the desired property (that no variable labeling any node of C occurs as
an ancestor of any node of C) in the tree resulting from the restriction. Thus by Lemma 3, the
probability that all variables labeling nodes in C have even coefficients in the restricted tree is at
most 1/2(log n)5/4

= 1/nω(1). Hence x1 passes the test at line 8 with negligible probability and the
theorem is proved.

Combined with our earlier remarks, this establishes

Theorem 18 For any n, any polynomial p(·), any δ > 1/p(n), and any ε > 0, algorithm Learn-
Tree will with probability at least 1 − δ (over a random choice of tree T from T C

d,n and the ran-
domness of the example oracle) produce a hypothesis decision tree T ′ that ε-approximates the target
with respect to the uniform distribution. LearnTree runs in time polynomial in n and 1/ε.

Proof: By Lemma 13, the base case of the algorithm will succeed with probability at least 1 − δ
as long as it is run on a tree drawn from T C

c,n for some c ≤ 1
2 log n. In the recursive phase, all first-

order Fourier coefficients will be computed exactly with probability at least 1− δ/4. Furthermore,
assuming that the coefficients are correctly computed, every bottleneck variable will pass the test
at line 8 of LearnTree, and by the preceding theorem the probability is negligible that any non-
bottleneck variable will pass this test. Thus, in the recursive phase of the algorithm, with probability
at least 1 − δ/4 a bottleneck variable will be chosen by the test. By the arguments of Section 5,
the two functions obtained by restricting on either value of this bottleneck variable will both be
distributed according to T C

d,n. Therefore, the two recursive calls to LearnTree will succeed with
probability at least 1 − δ/2, so that overall the recursive phase succeeds with probability at least
1 − δ. Furthermore, it is easy to see that the tree returned by the recursive phase will be an ε-
approximator to the target if each of the subtrees returned by the recursive call is an ε-approximator.
Finally, for d = O(log n), the number of recursive calls is clearly polynomially bounded, and thus
the algorithm runs in the time claimed given the previously mentioned bounds on UnikDTLearn
and FCExact.

12

8 Identifying bottlenecks in the balanced model T B
d,n

We first need an analogue of Lemma 3 for the balanced model. Let T be a decision tree drawn from
T B

d,n. Let T ′ be the tree that results from applying the restriction x1 ← 1 to T , i.e. T ′ is obtained
from T by replacing each occurrence of x1 in T with its right subtree.

As in Lemma 3, each internal node of T ′ has a “parity” which is defined exactly as in the proof
of Lemma 3, and each variable xi has a parity which equals the parity of the parity of all nodes
labeled by xi in T ′. It is easily seen that rule 1 contributes to the parity of xi in T ′ precisely once
for each occurrence of xi as a pre-leaf in T which lies on an x1-free path from the root in T ; let
Ni,1 denote the number of such occurrences. Rule 2 contributes to the parity of xi in T ′ precisely
once for each occurrence of x1 as a pre-leaf in T which lies on a path from the root in T which
contains xi; let Ni,2 denote the number of such occurrences. (Rule 3 can never be satisfied since
each pair of sibling leaf bits in T ′ must have opposite signs.) Note that the values of Ni,1 and Ni,2

are independent of whether we defined T ′ by the restriction x1 ← −1 or x1 ← 1 in the previous
paragraph.

As in Section 7, to prove that LearnTree succeeds for random T drawn from T B
d,n, we must

show that if x1 is not a bottleneck in a random T drawn from T B
d,n, then the probability that x1

passes the test in line 8 is 1/nω(1). From the discussion of the previous paragraph, this is equivalent
to showing that

Pr[Ni,1 + Ni,2 is even for all i = 2, . . . , n] = 1/nω(1). (1)

We prove this as follows. As in Section 7 let S be a random variable which denotes the number
of x1-free paths from the root to a pre-leaf in T. (The difference is that now T is drawn from T B

d,n

instead of T C
d,n; however these two distributions are identical as regards the internal nodes of a

tree drawn from one of them.) By Lemmas 14 and 15 we know that conditioned on x1 not being
a bottleneck in T, we have PrT∈T B

d,n
[S > (log n)3/2] = 1 − 1/nω(1) (these lemmas are easily seen

to hold for T B
d,n as well as T C

d,n). We thus may safely assume that there are S ≥ (log n)3/2 many
root-to-pre-leaf x1-free paths in T .

Now fix any set of S pre-leaf nodes in a complete binary tree of depth d. Fix a labeling of
variables for each node on each of these paths except for the pre-leaves themselves (where the
labeling is non-redundant and never uses x1); call this labeling L. Fix any bit string v = v2, . . . , vn ∈
{0, 1}n−1 corresponding to the parities of N2,2, . . . , Nn,2. We will show that conditioned on L being
the labeling of the set of non-pre-leaf nodes on the x1-free paths in T, the probability (over the
random labeling of the S pre-leaf nodes) that each variable x2, . . . , xn occurs with the “right” parity
v2, . . . , vn among the S pre-leaf nodes is 1/nω(1). (In other words, we will show that regardless of
what parities N2,2, . . . , Nn,2 have, the probability that each Ni,1 exactly matches the corresponding
parity of Ni,2 is 1/nω(1).) This suffices to establish (1). Thus, it suffices to prove the following
lemma (the proof is given in Appendix D):

Lemma 19 Fix S ≥ 2(log n)3/2. For i = 1, . . . , S fix Pi to be some set of exactly n−d “permissible”
elements of {1, . . . , n}. Fix v = v1, . . . , vn ∈ {0, 1}n. Let P denote P1×P2×· · ·×PS, so |P | = (n−d)S .
Given z = (z1, . . . , zS) ∈ P , for j = 1, . . . , n let parj(z) denote the number of occurrences modulo
2 of j in z. Then we have Prz∈P [parj(z) = vj for all j = 1, . . . , n] = 1

nω(1) .

We thus have the following balanced model analogues of Theorems 17 and 18.

Theorem 20 Let T ∈ T B
d,n where d = Θ(log n), d ≥ 1

2 log n. If x1 is not a bottleneck then the

probability that x1 passes the test in line 8 is 1/nω(1).

13

Theorem 21 For any n, any polynomial p(·), any δ > 1/p(n), and any ε > 0, algorithm Learn-
Tree will with probability at least 1 − δ (over a random choice of tree T from T B

d,n and the ran-
domness of the example oracle) produce a hypothesis decision tree T ′ that ε-approximates the target
with respect to the uniform distribution. LearnTree runs in time polynomial in n and 1/ε.

9 Identifying bottlenecks in the uniform model T U
d,n

As in Section 7, it suffices to prove that if x1 is not a bottleneck in a random tree T drawn from
T U

d,n, then Pr[x1 passes the test in line 8] = 1/nω(1). Our basic approach is similar to Section 7 but
there are some differences as shown below.

We now let S be a random variable which denotes the number of x1-free paths from the root to
a pre-leaf of depth d in a random T drawn from T U

d,n. Note that in T U
d,n it is possible to have S = 0

even if x1 is not a bottleneck; this can happen if there exist x1-free root-to-pre-leaf paths in T but
all such pre-leaves have depth less than d. We will establish the following lemma in Appendix E:

Lemma 22 For any value 0 ≤ k ≤ (log n)3/2 we have PrT∈T U
d,n

[S = k | x1 is not a bottleneck

] = 1/nω(1).

With this lemma we can prove a uniform model analogue of Theorem 17:

Theorem 23 Let T ∈ T U
d,n where d = Θ(log n), d ≥ 1

2 log n. If x1 is not a bottleneck then the

probability that x1 passes the test in line 8 is 1/nω(1).

Proof: Since x1 is not a bottleneck, we have S ≥ (log n)3/2 with probability 1 − 1
nω(1) by Lemma

22. We now observe that Lemma 16 holds identically (with the same proof) if in its statement
T is drawn from T U

d,n and we further condition on x1 not being a bottleneck in T. We thus have

that with 1 − 1
nω(1) probability there is a set C of (log n)5/4 variables with the properties stated in

Lemma 16. The rest of the proof exactly follows the proof of Theorem 17.

Now a nearly3 identical proof to that of Theorem 18 gives us our main learning result for
uniform random trees:

Theorem 24 For any n, any polynomial p(·), any δ > 1/p(n), and any ε > 0, algorithm Learn-
Tree will with probability at least 1 − δ (over a random choice of tree T from T U

d,n and the ran-
domness of the example oracle) produce a hypothesis decision tree T ′ that ε-approximates the target
with respect to the uniform distribution. LearnTree runs in time polynomial in n and 1/ε.

10 Conclusions and Future Work

We have given positive results for learning several natural models of random log-depth decision trees
under uniform. Many interesting questions remain about related models of average case learning:

• Can similar results be established for natural models of random decision trees of polynomial
size (as opposed to logarithmic depth)?

• Can similar results be established for random DNF formulas or random monotone DNF?

3We need to fold the distribution irregularity noted in Section 5 into δ at the obvious point in the proof.

14

• Can our results be extended to learning under a broader class of distributions?

• Can similar ideas be used to learn with high probability when the target is drawn randomly
from an interesting non-uniform distribution over log-depth trees?

It seems possible that progress in these directions could eventually lead to useful practical
algorithms.

References

[1] A. Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing Letters,
42(4):183–185, 1992.

[2] A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic Primitives Based on Hard
Learning Problems. In Advances in Cryptology – CRYPTO ’93, pages 278–291, 1993.

[3] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF
and characterizing statistical query learning using Fourier analysis. In Proceedings of the 26th
Annual ACM Symposium on Theory of Computing, pages 253–262, 1994.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification of Regression Trees.
Wadsworth, 1984.

[5] N. Bshouty. Exact learning boolean functions via the monotone theory. Information and
Computation, 123(1):146–153, 1995.

[6] A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples. Information
and Computation, 82(3):231–246, 1989.

[7] T. Hancock. Learning kµ decision trees on the uniform distribution. In Proceedings of the Sixth
Annual Conference on Computational Learning Theory, pages 352–360, 1993.

[8] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. SIAM J.
on Computing, 22(6):1331–1348, 1993.

[9] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

A Proof of Lemma 7

The proof is by induction on the depth d of T. If d < 1 then the only possible bottleneck in T is
the root and the lemma holds vacuously. For the inductive step, consider a tree T of depth d ≥ 1.

• If xi is the root of T then T ′ is just T .

• If xi is not the root of T then T has some variable xj at the root with left subtree denoted
by T1 and right subtree T2. Since xi is a bottleneck in T but is not the root of T , xi must
be a bottleneck in T1 and in T2. By the induction hypothesis there are trees T ′

1, T
′
2 each of

which has xi at its root and such that each is structurally equivalent to T1, T2, respectively.
By definition of structural equivalence, the tree T ′′ with xj at its root and T ′

1, T ′
2 as the left

and right child subtrees of the root is structurally equivalent to T . Performing a root swap
on T ′′ gives the required T ′.

15

B Proof of Lemma 12

We prove the lemma for the complete tree model T C
d,n; the proof holds unchanged for T B

d,n and is

easily adapted to T U
d,n. We have

Pr[T is not read-k] ≤ n · Pr[x1 occurs k′ > k times in T for some k′].

Since T is of depth r, there are 2r+1−1 occurrences of variables in T. The probability that x1 occurs

k′ times in T is at most
(

2r+1−1
k′

)

·
(

1
n−r

)k′

. This is because there are at most
(

2r+1−1
k′

)

possible sets

of locations for the k′ occurrences of x1 in T, and for each location the probability that x1 actually
occurs there is at most 1/(n− r) (even conditioned on any labeling of the other nodes of the tree),
since each location has at most r ancestors.

Since
(

a
b

)

≤ ab and 1/(n − r) < 2/n, we can upper bound this probability by

2(r+1)k′ · 2k′
/nk′

= 2(r+2)k′
/nk′

= n(1−ε)k′
/nk′

= 1/nεk′ ≤ 1/nεk.

Since there are at most n possible values of k′ ≥ k (no variable can occur more than n times since
the size of the tree is less than n) all in all we have

Pr
T∈Tr,n

[T is not read-k] ≤ 1/nεk−2 = 1/nC .

C Proofs of Lemmas 14, 15, and 16

We first prove Lemma 14. Let us write pd,n to denote the probability that S = 0 for a random T
drawn from T C

d,n, i.e.
pd,n = Pr

T∈T C
d,n

[x1 is a bottleneck in T].

Lemma 14 follows directly from the following:

Proposition 25 For 0 ≤ d ≤ n − 1 we have pd,n ≤ 1
n−d .

Proof: Clearly p0,n = 1
n . For d ≥ 1, n ≥ 1 we have pd,n = 1

n + n−1
n (pd−1,n−1)

2. This is because
with probability 1/n the root is x1. With probability n−1

n the root is some xj 6= x1 in which case
each of the subtrees of the root is drawn from T C

d−1,n−1, and x1 is a bottleneck iff it is a bottleneck
in each of these two subtrees.

Fix any m > 0. We prove that for all d ≥ 0 we have pd,d+m ≤ 1
m ; the proof is by induction on

d. The base case holds since p0,m = 1
m . For the induction step, we have

pd+1,d+m+1 =
1

d + m + 1
+

d + m

d + m + 1
(pd,d+m)2 ≤ 1

d + m + 1
+

d + m

d + m + 1

(

1

m

)2

=
m2 + m + d

m2(m + d + 1)
.

This is at most 1/m iff m3+dm+m2 ≤ m3+dm2+m2 which is true since m ≥ 1, so the proposition
is proved.

We will prove Lemma 15 in a moment using Lemma 26 below. First, a definition and some
introductory analysis.

16

Let pk,d,n denote PrT∈T C
d,n

[S = k]. For k ≥ 1 and d ≥ 1 we have

pk,d,n =
n − 1

n

k
∑

i=0

pi,d−1,n−1pk−i,d−1,n−1. (2)

To see this, note that there are exactly k x1-free root-to-preleaf paths in T iff (1) the root is some
variable other than x1, and (2) the left and right subtrees (each of which is drawn from T C

d−1,n−1)
have i and k − i x1-free root-to-preleaf paths, respectively, for some 1 ≤ i ≤ k. For the base cases,
we have pc,0,n = 0 for c ≥ 2 since it is impossible to have two paths to pre-leaves in a tree of depth
0. p1,0,n = n−1

n since there is exactly one x1-free path as long as the root is not x1. p0,0,n = 1
n by

the same reasoning. Finally, p0,d,n ≤ 1
n−d by Lemma 14.

The following lemma is proved in section C.1:

Lemma 26 Let c = Θ(log n), c ≥ 3
8 log n and ` ≤ poly(n). Then

p`,c,n ≤ t(n) +

(log n)1/3
∑

j=1

`−(1/4) log n−1
∑

i=(1/4) log n+1

pi,c−j,n−j (3)

where t(n) = 1/nω(1).

Proof of Lemma 15. Recall that k ≤ (log n)3/2, d = Θ(log n) and d ≥ 1
2 log n. By Lemma 26 we

have

pk,d,n ≤ t(n) +

(log n)1/3
∑

j=1

k−(1/4) log n−1
∑

i=(1/4) log n+1

pi,d−j,n−j (4)

We now repeatedly apply Lemma 26 to the right-hand side of inequality (4). The key observation is
that each time we apply Lemma 26 to bound some p`,c,n′ by the right side of (3), the first subscript
(`) decreases by at least 1

4 log n in every new occurrence of p·,·,·. Hence the “depth” of this repeated

replacement will be at most 4(log n)1/2 (since k ≤ (log n)3/2), at which point the summation over
i in the right hand side of (3) will be empty.

We now observe that each application of Lemma 26 replaces one p·,·,· with at most (log n)1/3 ·
(log n)3/2 < (log n)2 new p·,·,·’s. Since the replacement depth is at most 4(log n)1/2 and t(n) =
1/nω(1), it follows that

pk,d,n ≤ 1

nω(1)
·
(

(log n)2
)4(log n)1/2

=
1

nω(1)
· 28(log n)1/2 log log n =

1

nω(1)

and Lemma 15 is proved.

Now we prove Lemma 16.

Proof of Lemma 16. Fix any set R of (log n)3/2 pre-leaf nodes in a complete binary tree structure of
depth d. Fix any non-redundant labeling of all of the ancestors of all of these pre-leaves which does
not use x1 anywhere. Now each labeling of the nodes in R which does not use x1 and maintains
non-redundancy is equally likely under the conditioning of the lemma. Note that for each node in
R there are n − d − 1 legal labelings (since the label must not use x1 or any of the d ancestors of
the node).

Consider a random legal labeling of the nodes in R. Partition the nodes of R into (log n)5/4

disjoint subsets R1, . . . , R(log n)5/4 each of size (log n)1/4. Let F denote a set of “forbidden” labels;

17

initially F is the set of all variables which label ancestors of nodes in R (plus x1). Let F0 denote the
size of this initial set, so initially we have |F | = F0 ≤ 1 + d(log n)3/2 = O((log n)5/2). We consider
the subsets R1, . . . in turn. The probability that every node in R1 is assigned a forbidden label is at

most
(

F0
n−d−1

)(log n)1/4

= 1/nω(1). Thus we may suppose that there is some pre-leaf v1 ∈ R1 which

receives a non-forbidden label; we add this label to F . Now the probability that every node in R2

receives a forbidden label is at most
(

F0+1
n−d−1

)(log n)1/4

= 1/nω(1), so we may suppose that there is

some pre-leaf v2 ∈ R2 which receives a non-forbidden label; we add this label to F. Continuing in
this fashion for (log n)5/4 steps, and noting that |F | never exceeds O((log n)5/2), we have that with
probability 1−1/nω(1) there is a set v1, . . . , v(log n)5/4 of nodes each of which receives a non-forbidden
label. This set is easily seen to satisfy the desired conditions for C.

C.1 Proof of Lemma 26

Our proof of Lemma 26 will use the following intermediate lemma. Note that we allow a slightly
weaker bound on d than usual in this lemma; we will need this slightly weaker bound later.

Lemma 27 For any value 1 ≤ k ≤ 1
4 log n and any value d ≥ 1

3 log n we have pk,d,n = PrT∈T C
d,n

[S =

k] = 1/nω(1).

Proof: We first consider the case k = 1. There are exactly 2d possible locations (pre-leaves) where
an x1-free path from the root to a pre-leaf could end. Consider any such location. In order for this
to be the only x1-free path to a pre-leaf in T, it must be the case that every node on this path
(except the root) has the property that the subtree rooted at its sibling has x1 as a bottleneck.
These d subtrees are clearly disjoint; the one at depth ` is drawn from T C

d−`,n−` (over a suitable set
of n− ` variables which includes x1 since the path is x1-free) and hence by Lemma 14 each subtree

has x1 as a bottleneck with probability at most 2
n . Thus Pr[S = 1] is at most 2d ·

(

2
n

)d
=

(

4
n

)d

which is 1/nω(1) since d ≥ 1
3 log n.

The general case for any 1 ≤ k ≤ 1
4 log n is similar. We use the following fact which we prove

later:

Fact 28 Fix any set of k root-to-preleaf paths in T . Let N be the number of subtrees of T which
are rooted at an internal node and (1) are not rooted on any of these k paths, but (2) have their
parent on one of these k paths. Then N ≥ d − log k.

There are
(

2d

k

)

possible sets of k pre-leaves where the x1-free paths might end. As in the case k = 1,
each subtree as in Fact 28 must have x1 as a bottleneck, but as in the k = 1 case each such subtree
has x1 as a bottleneck with probability at most 2/n. Thus the probability that S = k is at most
(by Fact 28)

(

2d

k

)

·
(

2

n

)d−log k

≤ 2dk

(

2

n

)d−log k

≤ nd/4 ·
(

2

n

)d

· nlog k = nlog k

(

2

n3/4

)d

,

where the second inequality uses k ≤ 1
4 log n. This is 1/nω(1) since d ≥ 1

3 log n and k ≤ 1
4 log n.

Proof of Fact 28. It is clear that there are exactly 2d−k pre-leaves contained in the desired subtrees
of T. Each subtree contains 2i of these pre-leaves for some i, and clearly different subtrees have
disjoint sets of pre-leaves. Since the binary representation of 2d −k starts with d− log k ones, there

18

must be at least d − log k such subtrees (it is impossible to add up t powers of 2 and get a binary
number with more than t ones).

Now we prove Lemma 26. From the recursive equation (2) we have

p`,c,n ≤ 2p0,c−1,n−1p`,c−1,n−1 +
`−1
∑

i=1

pi,c−1,n−1p`−i,c−1,n−1

≤ 4

n
p`,c−1,n−1 +

`−1
∑

i=1

pi,c−1,n−1p`−i,c−1,n−1 (5)

where the last inequality holds (with room to spare) by Lemma 14 since c = Θ(log n) < n/2.
Repeatedly applying (5) we have

p`,c,n ≤
(

4

n

)2

p`,c−2,n−2 +
4

n

`−1
∑

i=1

pi,c−2,n−2p`−i,c−2,n−2 +
`−1
∑

i=1

pi,c−1,n−1p`−i,c−1,n−1

≤ · · ·

≤
(

4

n

)c

p`,0,n−c +
c

∑

j=1

(

4

n

)j−1 `−1
∑

i=1

pi,c−j,n−jp`−i,c−j,n−j .

Since each value p·,·,· is a probability it is easy to see that for any value of j the inner sum over i is
at most ` =poly(n). Recalling that c ≥ 3

8 log n, we may truncate the sum over j at (say) (log n)1/3

and thus have

p`,c,n ≤ 1

nω(1)
+

(log n)1/3
∑

j=1

`−1
∑

i=1

pi,c−j,n−jp`−i,c−j,n−j

≤ 1

nω(1)
+

(log n)1/3
∑

j=1



2

(1/4) log n
∑

i=1

pi,c−j,n−j +

`−(1/4) log n−1
∑

i=(1/4) log n+1

pi,c−j,n−j



 .

Since c − (log n)1/3 is at least (1/3) log n, Lemma 27 implies that the first sum over i inside the
brackets is 1/nω(1) for all j = 1, . . . , (log n)1/3. We thus have

p`,c,n ≤ 1

nω(1)
+

(log n)1/3
∑

j=1

`−(1/4) log n−1
∑

i=(1/4) log n+1

pi,c−j,n−j

as desired, and Lemma 26 is proved.

D Proof of Lemma 19

We say that z ∈ P yields v ∈ {0, 1}n if parj(z) = vj for all j. Let V ⊆ P denote the set of all z
which yield v; thus our goal is to show that |V |/|P | = 1/nω(1). We do this by defining a mapping
M with the following properties:

1. M assigns to each z ∈ V a set of (n − d − 2 log n)log n strings all of which are in P − V.

2. For each z ∈ V, for any x ∈ M(z), the number of z′ ∈ V such that x ∈ M(z′) is at most
(1/nω(1)) · (n − d − 2 log n)log n.

19

These properties imply that |V |/|P − V | = 1/nω(1) which establishes the lemma.
The mapping M is defined as follows: given z ∈ V, the elements of M(z) are those x ∈ P which

satisfy the following conditions:

• xi = zi for all i = 1, . . . , S − log n.

• For i = S − log n+1, . . . , S, coordinate xi is an element of Pi which (a) does not occur in the
last log n coordinates of z, and (b) does not equal xj for any other value j ∈ S−log n+1, . . . , S.

There are at least (n− d− 2 log n)log n elements of M(z) since the second condition above rules out
at most 2 log n of the n − d elements of Pi for each i.

Fix some z ∈ V and some x ∈ M(z). We now show that there are few z′ ∈ V such that
x ∈ M(z′). Note first that in order for z′ to have x ∈ M(z′) it must be the case that z′i = zi for all
i = 1, . . . , S − log n. Let z∗ denote this S − log n character prefix z1 . . . zS−log n. We now show that
only a small number of the (n − d)log n possible completions σ ∈ PS−log n+1 × · · · × PS will be such
that z′ = z∗σ belongs to V.

We prove this by showing that in fact only a small number of the nlog n possible completions
σ ∈ {1, . . . , n}log n will be such that z∗σ belongs to V. To see this, note that in order for z∗σ to
belong to V, each j ∈ {1, . . . , n} must occur either an even or odd number of times in σ (depending
on whether parj(z

∗) does or does not match vj). Now we observe that the probability that these n
parity conditions are all satisfied by a random σ ∈ {1, . . . , n}log n is precisely the probability that
a uniform random walk in the Boolean cube {0, 1}n ends up, after precisely log n steps, at some
particular vertex w ∈ {0, 1}n (where the walk starts at 0n and proceeds to a randomly chosen
neighbor of the current node at each step). Since d = Θ(log n) we have (n−d−2 log n)log n/nlog n =
Θ(1), and thus Lemma 19 follows from the following elementary fact, which for completeness we
now prove:

Proposition 29 For all w ∈ {0, 1}n, the probability that a uniform random walk of precisely log n
steps starting at 0n ends at w is 1/nω(1).

Proof: Let |w| denote the number of nonzero coordinates in w. Let pw denote the probability that
the walk ends at w. We first observe that if |w| = |w′| then by symmetry pw = pw′ . Thus for any
w such that |w| ≥ 1

3 log n we clearly have pw ≤ 1/
(

n
(1/3) log n

)

= 1/nω(1). Thus we may suppose that

|w| ≤ 1
3 log n. Any walk of log n steps which ends at such a w must select at most 2

3 log n distinct
indices from {1, . . . , n} in total, since at most 1

3 log n of the indices selected are selected exactly
once. The number of possible log n step walks which select at most 2

3 log n distinct indices is at most
(

n
(2/3) log n

)

· (2/3 log n)log n, since there are
(

n
(2/3) log n

)

ways to choose the selected indices and then

(2/3 log n)log n ways to choose the walk using these indices. This is less than n2/3 log n · (n1/6)log n =
n(5/6) log n and hence such walks occur with total probability at most 1/n(1/6) log n since there are
nlog n possible walks in total.

E Proofs of Lemmas 22, 9, and 11

Before proving Lemma 22 we first establish some useful notation and observations.
Let Cd,n denote the number of non-redundant decision trees over {x1, . . . , xn} of depth at most

d. (So C−1,n = 2 since a single leaf can be either −1 or 1; C0,n = 2 + 4n since there are 4n
possibilities for a depth-0 tree depending on the variable at the root and the two leaf bits; etc.)
The following observation will be useful:

20

Observation 30 Drawing a random T from T U
d,n is equivalent to generating T via the following

randomized process which we call MakeTreed,n:

• With probability 1/Cd,n take T to be the one-node tree +1 and halt. Likewise, with probability
1/Cd,n take T to be the one-node tree −1 and halt.

• With probability 1−2/Cd,n pick a random variable from x1, . . . , xn as the root of T. Construct
its left and right subtrees by independently performing two calls to MakeTreed−1,n−1, using for
each call the set of n − 1 variables which were not selected for the root.

We write qd,n to denote 1− 2
Cd,n

, i.e. qd,n is the probability that a randomly drawn T from T U
d,n

is nontrivial (recall that there are exactly two trivial trees).

We now write pd,n to denote the probability that a random T drawn from T U
d,n has x1 as a

bottleneck:
pd,n ≡ Pr

T∈T U
d,n

[x1 is a bottleneck].

We have the following analogue of Lemma 14:

Lemma 31 For all 0 ≤ d ≤ n − 1, pd,n ≤ 1
n−d .

Proof: The proof differs only slightly from that of Lemma 14. We now have p0,n = 4
4n+2 < 1

n since
exactly four of the 4n + 2 trees of depth at most 0 have x1 as a bottleneck (i.e. as the root). For
d ≥ 1, n ≥ 1 we now have

pd,n = qd,n

(

1

n
+

n − 1

n
(pd−1,n−1)

2

)

(6)

To see this, note that x1 is a bottleneck only if T is nontrivial, which occurs with probability qd,n.
If T is nontrivial then with probability 1

n the root is x1 in which case x1 is a bottleneck. Otherwise,
x1 is a bottleneck if and only if x1 is a bottleneck in the left and right subtrees of T , each of which
is drawn from T U

d−1,n−1.
Comparing the initial conditions and recurrence relation for pd,n with those of Lemma 14 it is

clear that the current pd,n is dominated by the earlier recurrence, and the lemma is proved.

Now we can prove Lemma 22. We have that

Pr
T∈T U

d,n

[S = k | x1 is not a bottleneck] =
Pr[S = k & x1 is not a bottleneck]

Pr[x1 is not a bottleneck]

< 2 Pr[S = k & x1 is not a bottleneck]

≤ 2 Pr[S = k]

where the first inequality is by Lemma 31. Thus it suffices to prove the following two lemmas:

Lemma 32 For all 1 ≤ k ≤ (log n)3/2 we have PrT∈T U
d,n

[S = k] = 1/nω(1).

Lemma 33 For d ≥ 1
2 log n, d = Θ(log n), PrT∈T U

d,n
[S = 0 | x1 is not a bottleneck] = 1/nω(1).

(Note that bounding Pr[S = 0 | x1 is not a bottleneck] by 2 Pr[S = 0] is a bad idea since S = 0
whenever x1 is a bottleneck and this occurs with probability roughly 1/n; hence we use the above
approach of handling S = 0 separately by bounding the conditional probability directly.)

21

Proof of Lemma 32. We closely imitate the proof of Lemma 15. Let pk,d,n now denote PrT∈T U
d,n

[S =

k]. For k ≥ 1 and d ≥ 1 we now have

pk,d,n = qd,n · n − 1

n
·

k
∑

i=0

pi,d−1,n−1pk−i,d−1,n−1 (7)

(The qd,n · n−1
n is present because in order for S to be nonzero it must be the case that T is nontrivial

and that the root is not x1. If this is the case then the left and right subtrees (which, under this
conditioning, are drawn from T U

d−1,n−1) must have i and k − i x1-free paths from their respective
roots to pre-leaves at depth d − 1 in those subtrees.) As before we have pc,0,n = 0 for c ≥ 2 since
there cannot be two paths to pre-leaves in a depth-0 tree. We have p1,0,n = q0,n · n−1

n since there
is one x1-free path if and only if the tree is nontrivial and the root is not x1. Moreover, we have
p0,0,n = 6

4n+2 since the only trees of depth at most 0 which have S = 0 are the four trees with x1

at the root and the two trivial trees.
Finally, if k = 0 and d > 0 then we have

p0,d,n = (1 − qd,n) + qd,n · 1

n
+ qd,n · n − 1

n
(p0,d−1,n−1)

2. (8)

(We have that S = 0 if T is trivial, or if T is nontrivial and x1 is the root, or if T is nontrivial, some
other variable is the root, and both subtrees have no x1-free paths to pre-leaves at depth d − 1.)
Equation (8), combined with the fact that 1 − qd,n < 1

n for d ≥ 0, implies that for d ≥ 1 we have

p0,d,n ≤ 2

n
+

n − 1

n
(p0,d−1,n−1)

2.

A straightforward analysis of this recurrence shows that p0,d,n < 3
n for all d = O(log n).

Now let p̃k,d,n be defined by the same base case conditions (for k = 0 or d = 0) that we have
just given, but be defined for k ≥ 1, d ≥ 1 by the rule from Section C, i.e.

p̃k,d,n =
n − 1

n

k
∑

i=0

p̃i,d−1,n−1p̃k−i,d−1,n−1.

(Note that these base conditions differ only slightly from the base conditions on pk,d,n in Section
C; the bound 3

n which we have on p̃0,d,n is slightly weaker than the 2
n bound we used in the earlier

proof, and the p̃0,0,n bound of 6
4n+2 is slightly weaker than the old bound of 1

n .) A proof entirely

similar to that of Lemma 15 now establishes that p̃k,d,n = 1/nω(1) for 1 ≤ k ≤ (log n)3/2 and
d ≥ 1

2 log n, d = Θ(log n). We now observe that the recurrence for p̃k,d,n dominates the recurrence

which we have in this section for pk,d,n, and hence pk,d,n ≤ p̃k,d,n = 1/nω(1) as well. (Note that
we cannot argue directly that the old pk,d,n recurrence dominates the new one, since some initial
values of the new recurrence are as remarked earlier slightly higher than the old values.) This
proves Lemma 32.

It remains to prove Lemma 33.

Proof of Lemma 33. We have that

Pr
T∈T U

d,n

[S = 0 | x1 is not a bottleneck] =
Pr[S = 0 & x1 is not a bottleneck]

Pr[x1 is not a bottleneck]

< 2 Pr[S = 0 & x1 is not a bottleneck]

22

since Pr[x1 is not a bottleneck] = 1 − pd,n ≥ 1
2 by Lemma 31. Since S = 0 whenever x1 is a

bottleneck, we have that

Pr[S = 0 & x1 is not a bottleneck] = Pr[S = 0] − Pr[x1 is a bottleneck].

Thus it suffices to bound εd,n ≡ p0,d,n − pd,n. Combining Equations (6) and (8) we have

εd,n = (1 − qd,n) + qd,n · n − 1

n

[

(p0,d−1,n−1)
2 − (pd−1,n−1)

2
]

= (1 − qd,n) + qd,n · n − 1

n
[(p0,d−1,n−1 − pd−1,n−1)(p0,d−1,n−1 + pd−1,n−1)]

= (1 − qd,n) + qd,n · n − 1

n
[εd−1,n−1(p0,d−1,n−1 + pd−1,n−1)] .

Our bounds on p0,d,n and pd,n imply that p0,d−1,n−1 + pd−1,n−1 ≤ 5
n−1 . The above thus implies

εd,n ≤ (1 − qd,n) + εd−1,n−1 ·
5

n − 1
.

It is clear that for ` ≥ 1
4 log n, we have 1 − q`,n = 2

C`,n
= 1/2nΩ(1)

. Since ε 1
4

log n,n−d+ 1
4

log n is clearly

at most 1, expanding out the above recurrence we thus have

εd,n <
d − 1

4 log n

2nΩ(1)
+

(

10

n

)d− 1
4

log n

.

Since d ≥ 1
2 log n, d = Θ(log n) this is 1

nω(1) , and the lemma is proved.
Finally, we can also now prove two lemmas used in Section 5.

Proof of Lemma 11. It is easy to see that Ct,Ω(n) = 2nΩ(1)
for t ≥ 1

4 log n. Also, there are only

poly(n) chances for MakeTree to output a trivial tree down to depth d − 1
4 log n. Therefore, the

chance of any leaf being output before depth 1
4 log n is at most 2nΩ(1)

.

Proof of Lemma 9. In all three models we have that if d = O(log n) then pd,n < 2/n. If T is drawn
according to Td,n and has a bottleneck variable x1 labeling node v at depth k ≥ 1

8 log n, then the
sibling of v and the sibling of each of v’s non-root ancestors must have x1 as a bottleneck. These
probabilities are all independent, and each is at most (2/n).

23

