
Testing Monotone High-Dimensional Distributions∗

Ronitt Rubinfeld
Computer Science & Artificial Intelligence Lab.

MIT
Cambridge, MA 02139

ronitt@theory.lcs.mit.edu

Rocco A. Servedio†

Department of Computer Science
Columbia University
New York, NY 10027

rocco@cs.columbia.edu

Abstract

A monotone distribution P over a (partially) ordered domain has P (y) ≥ P (x) if y ≥ x in the
order. We study several natural problems of testing properties of monotone distributions over the n-
dimensional Boolean cube, given access to random draws from the distribution being tested. We give a
poly(n)-time algorithm for testing whether a monotone distribution is equivalent to or ε-far (in the L1

norm) from the uniform distribution. A key ingredient of the algorithm is a generalization of a known
isoperimetric inequality for the Boolean cube. We also introduce a method for proving lower bounds
on testing monotone distributions over the n-dimensional Boolean cube, based on a new decomposition
technique for monotone distributions. We use this method to show that our uniformity testing algorithm
is optimal up to polylog(n) factors, and also to give exponential lower bounds on the complexity of
several other problems (testing whether a monotone distribution is identical to or ε-far from a fixed known
monotone product distribution and approximating the entropy of an unknown monotone distribution).

Keywords: Sublinear algorithms, property testing, distribution testing, monotone distributions.

1 Introduction

We study the complexity of testing several natural global properties of monotone probability distributions
over large high-dimensional discrete domains. When no assumptions are made on the distributions, classical
techniques, such as a naive use of Chernoff bounds or Chi-squared tests, require a number of samples that is
at least linear in the size of the domain. In recent years, a number of algorithms for these testing problems
have been designed which require a number of samples that is only sublinear in the size of the domain,
while making no assumptions on the form of the distribution. For example, on arbitrary domains of size N ,
testing whether a distribution is close to uniform in statistical distance can be performed with only Õ(

√
N)

samples [7, 2], and distinguishing whether two distributions are the same or far in statistical distance can
be performed with Õ(N2/3) samples [4]. Similar results have been obtained for testing whether a joint
distribution is independent and estimating the entropy [2, 3]. Still, in many settings, where N may be
extremely large, such sample complexities can be quite daunting. Unfortunately, one cannot do much better
for general distributions, since known information theoretic lower bounds show that a sample complexity
with a polynomial dependence on N is required for all of these problems (see e.g. [2, 3, 4] and references
therein).
∗A preliminary version of this work appeared in the 2005 ACM Symposium on Theory of Computing (STOC), see [12].
†Supported in part by NSF CAREER award CCF-0347282. Any opinions, findings and conclusions or recommendations ex-

pressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

1

This leads us naturally to the question of whether there are interesting classes of distributions for which
these testing problems are exponentially easier in terms of sample complexity. Recently a number of algo-
rithms that use exponentially fewer samples on monotone and unimodal distributions over totally ordered do-
mains have been devised [3, 5]. A distribution over a totally ordered discrete domain (w.l.o.g. {1, 2, . . . , N})
is monotone if for all x, y in the domain such that x ≤ y, we have that the probability assigned to x is at most
the probability assigned to y. For monotone distributions on totally ordered domains, the tasks of estimating
the entropy and of testing whether two distributions are close can both be done in polylogarithmic time in
the size of the domain [3, 5]. In [5] it is also shown that for constant k, testing whether a joint distribution
over k-tuples is close to independent, given a guarantee that the distribution is monotone, can be done in
polylogarithmic time in the size of the domain; however, this result depends exponentially on the number of
variables k being tested for independence.

Our results. In this paper we give a detailed study of testing probability distributions that are monotone over
a natural and important partially ordered domain, namely the Boolean cube {−1, 1}n. Such distributions
can be viewed as distributions in which the probability of an element depends monotonically on several
different features of the element. Thus, throughout the paper we deal with distributions over {−1, 1}n, and
we assume throughout that the distributions we are testing are guaranteed to be monotone.

We investigate whether the monotonicity of distributions over such domains allows us to test various
properties of these distributions with query complexity polylogarithmic in the domain size (i.e. polynomial
in the dimension n), as it does in the case of totally ordered domains. We will refer to distribution testing
problems for which the answer is affirmative as easy, and we refer to all other distribution testing problems
as hard.

Our first result shows that there is an interesting property which is easy, that is, testing uniformity. More
precisely, we show that it is possible to efficiently distinguish distributions that are uniform over the Boolean
cube {−1, 1}n from monotone distributions that are far from uniform in statistical distance (see Theorem 4
for the precise statement). Our algorithm uses Õ(n) many draws from the distribution; we also give a lower
bound which shows that this algorithm is essentially the best possible (see Theorem 8).

Somewhat surprisingly, we next exhibit closely related testing problems which are hard. For example,
we show that any algorithm which distinguishes whether an unknown monotone distribution is equal to
or very far from the product distribution P4/5 over {−1, 1}n must use 2Ω(n) samples (see Theorem 15).1

It is interesting to note that this exponential gap between the problems of testing whether a distribution is
uniform or a product distribution is quite different from the behavior commonly found in other combinatorial
and learning settings where the Boolean cube is studied. For example, in learning theory, most problems
that have efficient learning algorithms under the uniform distribution also have efficient algorithms under
product distributions, see e.g. [10, 6, 13].

We also give lower bounds with exponential dependence on n for other problems, such as estimating
the entropy of a monotone distribution over {−1, 1}n (see Theorem 21) and distinguishing whether a mono-
tone distribution over {−1, 1}n is independent, i.e. a product distribution, or far from any independent
distribution (see Theorem 18). All of these lower bounds are in contrast to the known results for monotone
distributions over totally ordered domains [3, 5], where there exist algorithms that require only a polyloga-
rithmic in the total domain size number of samples.

Finally, we study many of these testing problems in the evaluation oracle model, where one can query
the probability that distribution p assigns to any domain element x. Our results for this model are summa-
rized in Theorem 25.

Our techniques. In [3, 5], an efficient test is given for determining whether a monotone distribution over a
totally ordered domain is uniform. The test estimates whether the weight of the largest half of the elements

1P4/5 independently picks every entry xi of x ≡ (x1, . . . , xn) ∈ {−1, 1}n to be 1 with probability 4/5 and −1 otherwise.

2

(according to the total order on the domain) is approximately 1/2. In order to achieve our upper bound for
testing whether a monotone distribution p on the cube is uniform, our test is somewhat different. Our test
essentially estimates the expected value, according to a choice of x = (x1, . . . , xn) ∈p {−1, 1}n, of the sum
of the xi’s, and rejects if the estimated value is too big. In order to show correctness, we generalize a known
isoperimetric inequality for the Boolean cube. In particular, we show that any monotone distribution which
is far from uniform must have many pairs of neighboring nodes whose probabilities differ significantly. We
use this to show that for any monotone distribution p that is ε-far from uniform in statistical distance, the
expected value of the sum of the xi’s when x is chosen from p must be at least ε/2.

For our negative results, we present a general technique for proving lower bounds on testing problems
for monotone distributions, and apply this technique to construct a number of lower bounds. Our technique
is based on describing a class of special monotone distributions, namely those with subcube decomposi-
tions. A monotone subcube distribution rooted at x is a distribution that is uniform over the set of all points
y such that y ≥ x. A monotone distribution has a subcube decomposition if can be expressed as a weighted
average of a number of monotone subcube distributions. Not every monotone distribution has a subcube
decomposition. Roughly speaking, our main claim essentially shows that it is hard to distinguish between
a monotone distribution p which has a subcube decomposition, and a distribution q that is a weighted av-
erage of randomly chosen monotone subcube distributions from the decomposition of p. However, if q is a
weighted average of a not too large subset of the distributions that make up p, it is easy to see that p and q
are very different distributions. All our lower bounds use this approach with a suitable choice of p and q.

We note that the techniques used to achieve upper bound results for the problem of testing various prop-
erties of distributions over totally ordered domains [3, 5] essentially relied on showing that every monotone
distribution p over a totally ordered domain could be approximated by a distribution q with a very concise
description of the following form: the domain is partitioned into a polylogarithmic (in the size of the do-
main) number of contiguous segments, such that the distribution q is uniform over each segment. The testing
algorithms efficiently find an approximation to this segmentation. However, in contrast with this situation
for totally ordered domains, our strong negative results suggest that no such analogous decomposition of
monotone distributions over the cube may exist.

Other related results. In [5], algorithms are given for testing whether a distribution over a totally ordered
domain is close to monotone using Θ̃(

√
N) draws. The proofs of [5] show that the complexity of testing

monotonicity is linked to the complexity of testing uniformity. The algorithm was extended to domains of
dimension 2 (i.e., each element is a member of M ×M for M2 = N), using Õ(N3/4) queries.

Outline of paper. In the next section, we describe the necessary preliminaries. Our testing algorithm
for uniformity is described in Section 3. In Section 4 we describe a general technique for obtaining lower
bounds, and then use the technique in order to obtain lower bounds for several problems. Finally, in Section 5
we consider the query complexity of these problems in the evaluation oracle model.

2 Preliminaries

Throughout the paper we use {−1, 1}n as our representation for the n-dimensional Boolean cube. For
x ∈ {−1, 1}n we write bias(x) to denote

∑n
i=1 xi, and we write ones(x) to denote the number of indices i

such that xi = 1. (Of course we have ones(x) = bias(x)+n
2 , but it is convenient to have both notations.) For

x, y ∈ {−1, 1}n we write y ≥ x if yi ≥ xi for all i = 1, . . . , n. We refer to the (n− ones(x))-dimensional
subcube {y ∈ {−1, 1}n : y ≥ x} as the monotone subcube rooted at x, and we write Ux to denote the
uniform distribution over this subcube, i.e. Ux(y) = 1/2n−ones(x) if y ≥ x and Ux(y) = 0 if y 6≥ x. We
refer to such a distribution Ux as a uniform monotone subcube distribution. A probability distribution p over
{−1, 1}n is monotone if y ≥ x implies p(y) ≥ p(x). It is clear that any convex combination of uniform

3

monotone subcube distributions is a monotone distribution. We write U to denote the uniform distribution
over all 2n points of {−1, 1}n.

If p, q are two probability distributions over {−1, 1}n we write ‖p − q‖1 to denote the L1 distance∑
x |p(x) − q(x)| between p and q. We write S ← (p)t to indicate that S is the random variable which is

the output of t independent draws from p (so S is a t-tuple of strings from {−1, 1}n).
Given a vector τ = (τ1, . . . , τn), the product distribution with parameter τ , which we denote Pτ , is

the distribution over {−1, 1}n where the i-th bit is chosen independently to be 1 with probability τi. For
τ ∈ [0, 1] we write Pτ to denote the product distribution with τi = τ for all i = 1, . . . , n. Each string x has
weight τ ones(x)(1− τ)n−ones(x) under Pτ . Note that the distribution Pτ is monotone iff 1

2 ≤ τ ≤ 1, and that
P1/2 is equivalent to U .

A generation oracle, or simply generator, for a probability distribution D over {−1, 1}n is an oracle
which takes no input and, at each invocation, returns a random element x from {−1, 1}n drawn according to
D independently from all previous invocations of the oracle. An evaluation oracle, or simply evaluator, for
a distributionD over {−1, 1}n is an oracle which, when supplied with x ∈ {−1, 1}n, returns the probability
weight D(x) which D assigns to x.

We will use the following version of the “data processing inequality.”

Fact 1. Let X1, X2 be two random variables over the same domain. For any (possibly randomized) algo-
rithm A, we have that ‖A(X1)−A(X2)‖1 ≤ ‖X1 −X2‖1.

(Note that A(X) can be viewed as a random variable over the product probability space which has one
component being the sample space ofX , and the other component corresponding to the internal randomness
of the algorithm.) We will typically use this fact in the following way: let S1 and S2 be random variables
which denote samples of t draws taken from two distributions p1 and p2, and let A be an algorithm which,
given a draw from Si (where i ∈ {1, 2} is unknown to A), is supposed to output the correct value of
i with high probability. If we know that ‖S1 − S2‖1 is small, then |PrS1←(p1)t [A(S1) outputs “1”] −
PrS2←(p2)t [A(S2) outputs “1”]| must be small as well by Fact 1, and thus A cannot succeed.

Finally, we will frequently use standard Chernoff bounds, see e.g. [11]:

Fact 2. [Additive Chernoff Bound] Let X1, . . . , Xm be i.i.d. random variables which take values in the
range [−a, a]. Let µ denote 1

m

∑m
i=1Xi and let µ denote E[µ]. Then for all γ > 0 we have Pr[|µ − µ| >

γ] ≤ 2 exp
(
− γ2

2a2
m
)
.

Fact 3. [Multiplicative Chernoff Bound] LetX1, . . . , Xm be i.i.d. 0/1-valued random variables with E[Xi] =

p. Let X denote
∑m

i=1Xi. Then for all 0 < γ < 1 we have Pr[X ≤ (1 − γ)mp] ≤ 2 exp
(
−γ2µ

2

)
and

Pr[X ≥ (1 + γ)mp] ≤ 2 exp
(
−γ2µ

3

)
.

Throughout the paper log denotes logarithm base two.

3 A uniformity testing algorithm

In this section we give an efficient algorithm that can distinguish the uniform distribution over {−1, 1}n
from any monotone distribution which is far from uniform:

Theorem 4. There is an efficient algorithm TestUniform (see Figure 1) which, given generator access
to an unknown monotone distribution p over {−1, 1}n, makes O(n

ε2
log n

ε) draws and satisfies the following
properties: (i) If p ≡ U then TestUniform outputs “uniform” with probability at least 4

5 ; (ii) If ‖p −
U‖1 ≥ ε then TestUniform outputs “nonuniform” with probability at least 4

5 .

4

Algorithm TestUniform

1. Draw a sample S = x1, . . . , xs of s = Θ(n
ε2

log n
ε) draws from the generator for p.

2. If any xi in the sample has |bias(xi)| >
√

2n log(20s), stop and output “nonuniform.”
3. Let µ = 1

s

∑s
i=1 bias(xi), the empirical estimate of Ep[bias(x)] obtained from S.

4. Output “uniform” if µ ≤ ε
4 , and output “nonuniform” if µ > ε

4 .

Figure 1: Algorithm for testing whether an unknown monotone distribution over {−1, 1}n is uniform or
ε-far from uniform.

The algorithm’s analysis uses the following technical result:

Lemma 5. Let δ : {−1, 1}n → R be a monotone real-valued function with
∑

x δ(x) = 0 and
∑

x |δ(x)| =
ε2n. Then 1

2n
∑

x δ(x)
∑n

i=1 xi ≥ ε/2.

In the special case in which δ(x) always takes values from {−1,+1} (i.e. δ is a balanced monotone
Boolean function), this result reduces to the well-known fact that any such labeling of the vertices of the
hypercube {−1, 1}n must contain Ω(2n) edges whose endpoints are assigned different labels.

Proof. Let POS = {x ∈ {−1, 1}n : δ(x) ≥ 0}, i.e. the positive inputs for δ, and let NEG = {−1, 1}n \
POS. Note that

∑
x∈POS δ(x) =

∑
y∈NEG |δ(y)| = ε

22n.
Given x ∈ POS, y ∈ NEG we refer to ∆(x, y) := |δ(x)− δ(y)| = |δ(x)|+ |δ(y)| as the displacement

between x and y. If z = (z0 = x, z1, . . . , zk = y) is a path between x and y along the edges of the cube, we
refer to distz(x, y) :=

∑k−1
i=0 |δ(zi) − δ(zi+1)| as the z-distance between x and y. For any path z between

x and y we have distz(x, y) ≥ ∆(x, y).
The total displacement between all pairs (x, y) with x ∈ POS, y ∈ NEG is∑

x∈POS,y∈NEG
∆(x, y)=

∑
x,y

|δ(x)|+ |δ(y)|=
∑
x,y

|δ(x)|+
∑
x,y

|δ(y)|

=
|NEG|ε

2
· 2n +

|POS|ε
2

· 2n =
ε

2
· 22n

Now for each pair (x, y) ∈ POS × NEG, let zx,y be the canonical path from x to y, i.e. zx,y is the
path starting from x where we scan through the bits from left to right flipping bits as required. Let e be
any directed edge of the Boolean cube, i.e. e = (abc, a(−b)c) where b ∈ {−1, 1} and a, c are strings of
+1/− 1’s whose total length is n− 1. The edge e occurs on at most 2n−1 canonical paths zv1,v2 (since if e
is on the canonical path from v1 to v2 it must be the case that the prefix of v2 is a(−b) and the suffix of v1

is bc).
Now let Sdist denote

∑
x∈POS,y∈NEG distz(x, y) where each z in the above sum is the canonical path.

Since each directed edge e = (u, v) lies on at most 2n−1 canonical paths, each such edge contributes at most
2n−1|δ(u)− δ(v)| to Sdist. Summing over all edges (u, v) in the directed edge set E of {−1, 1}n, we have
that ∑

(u,v)∈E

2n−1(|δ(u)− δ(v)|) ≥ Sdist ≥
∑

x∈POS,y∈NEG
∆(x, y)

and thus we have
∑

(u,v)∈E |δ(u)− δ(v)| ≥ ε · 2n.
Let Ei denote the set of all directed edges in the i-th direction of the cube, i.e. Ei is the set of all 2n

5

ordered pairs (u, v) where u, v ∈ {−1, 1}n differ only in the i-th bit. Then
∑

(u,v)∈E |δ(u)− δ(v)| equals

n∑
i=1

∑
(u,v)∈Ei

|δ(u)− δ(v)| = 2
n∑
i=1

∑
(u,v)∈Ei:ui=1

|δ(u)− δ(v)|

= 2
n∑
i=1

∑
(u,v)∈Ei:ui=1

(δ(u)− δ(v))

= 2
n∑
i=1

∑
x∈{−1,1}n

xiδ(x)

where the second equality follows from the monotonicity of δ. This proves the lemma.

Lemma 5 has the following easy corollary:

Corollary 6. If p is a monotone distribution over {−1, 1}n with ‖p− U‖1 ≥ ε, then Ep[bias(x)] ≥ ε/2.

Proof. Define δ(x) = 2np(x)− 1. Since ‖p− U‖1 =
∑

x |p(x)− 1
2n |, it is easy to check that this function

δ(x) satisfies the condition of Lemma 5. We thus have

Ep[bias(x)] =
∑
x

p(x)
n∑
i=1

xi =
∑
x

n∑
i=1

(
δ(x) + 1

2n

)
xi

=
∑
x

n∑
i=1

δ(x)

2n
xi ≥ ε/2

where the inequality is by Lemma 5.

As an immediate consequence of Corollary 6, we have that if p is a monotone distribution satisfying
‖p − U‖1 ≥ ε, then there must be some index i such that Ep[xi] ≥ ε

2n . Since the uniform distribution
has EU [xi] = 0 for all i, this fact can be used to obtain a very simple polynomial-time algorithm to test
whether p is equivalent to U or satisfies ‖p−U‖1 ≥ ε: simply estimate each value Ep[xi] for i = 1, . . . , n to
within additive accuracy at most ε

8n , and output “nonuniform” if any estimate exceeds ε
4n . Using a standard

additive Chernoff bound, this algorithm is easily seen to require Θ(n
2

ε2
log n) many draws from p (the extra

log n factor is because we want each estimate to be sufficiently accurate with probability at least 1− 1
n). As

we now show, Algorithm TestUniform achieves a substantially better bound.
We now give the proof of Theorem 4. The basic idea is to estimate bias(x) and use Corollary 6; however

we must be careful to bound the variance in order for the algorithm to succeed with a small number of draws.

Proof of Theorem 4.
Part (i): Since p ≡ U , the true expected value Ep[bias(x)] is 0. By an additive Chernoff bound, for

each fixed i the probability that |bias(xi)| > γn is at most 2 exp(−γ2n/2). Taking γ =
√

2 log(20s)/n,
this probability is at most 1

10s , so a union bound over i = 1, . . . , s implies that we output “nonuniform” in
step 2 with probability at most 1

10 .
If we reach step 3, then each value bias(xi) is drawn from the binomial distribution (sum of n inde-

pendent uniform ±1 values) conditioned on having each draw satisfy |bias(xi)| ≤
√

2n log(20s). This
conditional random variable has range [−

√
2n log(20s),

√
2n log(20s)] and has zero mean (by symmetry),

so we may apply the additive Chernoff bound (Fact 2) with a =
√

2n log(20s), γ = ε
4 and m = s, and we

get that Pr[µ > ε
4] is at most 2 exp(− ε2s

64n log(20s)). It is easily verified that taking s = Θ(n
ε2

log n
ε) makes

this bound at most 1
10 ; so the overall probability that we do not output “uniform” is at most 1

5 .

6

Part (ii): We consider two cases.
Case 1: Prp[|bias(x)| >

√
2n log(20s)] ≥ 10

s , i.e. p assigns probability at least 10
s to “unbalanced”

strings. In this case, the probability that we do not output “nonuniform” in step 2 is at most (1− 10
s)s < 1

100 .
Case 2: Prp[|bias(x)| >

√
2n log(20s)] < 10

s , i.e. p assigns probability less than 10
s to unbalanced

strings. Since our goal is to show that the algorithm outputs “uniform” with probability at most 1
5 , we

may assume that the algorithm reaches step 3, i.e. that each sample value bias(xi) which is obtained is
conditioned on satisfying |bias(xi)| ≤

√
2n log(20s). Since Prp[|bias(x)| >

√
2n log(20s)] < 10

s in this
case and bias(x) always lies in [−n, n], we have that the conditional expectation Ep[bias(x) | |bias(x)| ≤√

2n log(20s)] differs from the unconditional expectation Ep[bias(x)] by at most 2n · 10
s = Θ(ε2

log n
ε

) which
is less than ε

8 for n sufficiently large. Corollary 6 thus implies that the true value of the conditional ex-
pectation Ep[bias(x) | |bias(x)| ≤

√
2n log(20s)] is at least 3ε

8 . Thus, as in the proof of part (i) we may
apply Fact 2 (now with a =

√
2n log(20s), γ = ε

8 , and m = s) and we get that Pr[µ < ε
4] is at most

2 exp(− ε2s
256n log(20s)). Taking s = Θ(n

ε2
log n

ε) makes this bound at most 1
5 , and we are done.

4 Lower bounds

In Section 4.1 we introduce a new general lower bound technique for testing monotone distributions given
access to a generator. We then apply this technique on several different problems. Section 4.2 gives an
Ω(n/ log2(n)) lower bound on testing whether a monotone distribution is uniform or far from uniform.
This bound is optimal up to polylog(n) factors by the positive results of Section 3. Section 4.3 gives a
2Ω(n) lower bound on testing whether a monotone distribution is a particular known product distribution or
is far from this distribution. Section 4.4 gives lower bounds on approximating the entropy of an unknown
monotone distribution.

4.1 The lower bound technique

Let p be a monotone distribution over {−1, 1}n. We say that a monotone subcube decomposition of p is a
list (w1, z

1), . . . , (wM , z
M) with the following properties:

1. Each wi ≥ 0 and
∑M

i=1wi = 1.

2. Each zi ∈ {−1, 1}n and zi 6= zj for i 6= j.

3. The distribution p is the wi-weighted convex combination of the uniform monotone subcube distribu-
tions Uzi , i.e. p(x) =

∑M
i=1wiUzi(x) for each x ∈ {−1, 1}n.

Thus a draw from p can be simulated by the following two-stage process: (i) first choose an index i ∈
{1, 2, . . . ,M} by picking each value i with probability wi; and then (ii) make a draw from Uzi , i.e. pick a
random point in the monotone subcube rooted at zi.

Not every monotone distribution over {−1, 1}n admits a monotone subcube decomposition (for exam-
ple, one can easily show that the monotone distribution p(−1,−1) = 0, p(−1, 1) = p(1,−1) = p(1, 1) = 1

3
has no such decomposition).

In this section, we show that given a monotone subcube decomposition of p, we can define a probability
distribution P over distributions on {−1, 1}n, each of which is far from p, with the property that it is hard to
distinguish a sample drawn from p from a sample drawn from q, where q is a distribution chosen randomly
from P. In the following subsections we will use this fact to obtain lower bounds on the sample complexity
of various distribution testing problems.

So let p be a monotone distribution over {−1, 1}n which is decomposable into (w1, z
1), . . . , (wM , z

M).
Consider the following randomized procedure for constructing a probability distribution q: for i = 1, . . . , T,

7

let ai ∈ {−1, 1}n be obtained by independently choosing ai to be zj with probability wj for j = 1, . . . ,M.

Once a1, . . . , aT have been selected, the distribution q is defined as q(x) =
∑T

i=1
1
T Uai(x), i.e. q is a

uniform mixture of the Uai’s. (The value of T is unconstrained; Claim 7 below holds for any choice of T.)
We writeD(p, T) to denote the probability distribution over distributions q which results from the procedure
described above.

Fix r to be any positive value which is at most
√
T/10. Let S1 be a random variable which takes

values from the set of all r-tuples of strings from {−1, 1}n, where a draw from S1 is obtained by making r
independent draws from p. Let S2 be a random variable which takes values over the same domain, where
a draw from S2 is obtained by (i) first randomly selecting q from D(p, T) as described above, and then (ii)
making r independent draws from q. The following claim is the key to all our generator lower bounds:

Claim 7. ‖S1 − S2‖1 ≤ 1
50 .

Proof. We first note that since p is decomposable into (w1, z
1), . . . , (wM , z

M), we may view each string in
S1 as being obtained by independently (i) first choosing a j ∈ {1, . . . ,M}where j is chosen with probability
wj ; and then (ii) making a draw from Uzj .

On the other hand, once the strings a1, . . . , aT defining q have been chosen, we may view each string
in S2 as being obtained by independently (i) first choosing a uniform random value ` from {1, . . . , T}; and
then (ii) making a draw from Ua` . For i = 1, . . . , r let `i be the uniform value from {1, . . . , T} which is
chosen in step (i) when the i-th string in S2 is selected, i.e. `i is the index for which of the T uniform
monotone subcube distributions Ua1 , . . . ,UaT the i-th string is drawn from. A straightforward application
of the Birthday Paradox shows that with probability at least 99

100 , all r indices `1, . . . , `r take distinct values
from each other. Conditioned on all these indices being distinct, we may view the i-th string in S2 as being
obtained by independently (i) first choosing the string a`i by taking it to be zj with probability wj ; then
(ii) making a draw from Ua`i . (We have independence across all i because all indices `1, . . . , `r are distinct
from each other.) But this is precisely the same procedure which is used to obtain S1. So conditioned on all
indices `1, . . . , `r being distinct, the distribution of S2 is identical to the distribution of S1.

Thus, with probability at least 99
100 over the random choice of indices `1, . . . , `r in the construction of S2,

the distributions of S2 and S1 are identical. Even if the remaining 1
100 probability mass for S2 completely

misses the support of S1, we have that ‖S1 − S2‖ ≤ 1
50 .

4.2 A lower bound for testing uniformity

Our main result in this section is a Ω(n/ log2 n) lower bound on the number of draws required to distinguish
the uniform distribution over {−1, 1}n even from monotone distributions which are quite far from uniform:

Theorem 8. Any algorithm A which, given generator access to an unknown monotone distribution p over
{−1, 1}n, determines correctly (with probability at least 4/5) whether p ≡ U or ‖p − U‖1 > 2 − 1

n9 must
make Ω(n/ log2 n) draws from the generator.

(It will be clear from the proof of Theorem 8 that the 2− 1
n9 lower bound on ‖p− U‖1 could in fact be

taken to be 2 − 1
nk

for any constant k > 0; we give the proof for 2 − 1
n9 for simplicity.) This lower bound

shows that in terms of the dependence on n, the Θ(n log n) query algorithm given in Section 3 is optimal
up to a polylog(n) factor. It is interesting to contrast this lower bound with the case of testing uniformity for
monotone distributions over the domain [N] = {1, 2, . . . , N}, where (as shown in [5]) there is an algorithm
that makes Θ(1/ε2) queries independent of N.

The high-level idea of our lower bound for testing uniformity is as follows. We first show that the uni-
form distribution U cannot be distinguished from the product distribution Pτ ′ over {−1, 1}n with parameter
τ ′ = 1

2 + 12 logn
n using fewer than Ω(n/ log2 n) many draws. We then use the probabilistic method and the

8

technique of Section 4.1 to show that there is a distribution q which is very far from U , but which cannot
be distinguished from Pτ ′ using fewer than Ω(n/ log2 n) many draws. Combining these bounds, it follows
that q cannot be distinguished from U using fewer than Ω(n/ log2 n) many draws.

PROOF OF THEOREM 8. The proof is by contradiction; so suppose that A is an algorithm which makes
N = o(n

log2 n
) draws from the generator and satisfies PrS←(U)N [A(S) outputs “uniform”] ≥ 4

5 . We will

show that any such algorithm must also satisfy PrS←(q)N [A(S) outputs “uniform”] ≥ 1
2 for some monotone

distribution q which satisfies ‖q −U‖1 ≥ 2− 1
n9 . This proves the theorem, since a correct algorithm would

have PrS←(q)N [A(S) outputs “uniform”] ≤ 1
5 for all such distributions q.

Let τ ′ = 1
2 + 12 logn

n . We have the following claim.

Claim 9. PrS←(Pτ ′)N [A(S) outputs “uniform”] ≥ 79
100 .

PROOF OF CLAIM 9. If PrS←(Pτ ′)N [A(S) outputs “uniform”] < 79
100 , then Θ(1) runs of A gives an

algorithm which distinguishes with high success probability (say at least 9/10) between U and Pτ ′ using
Θ(N) many draws from the unknown generator. But as we show below, any algorithm which with proba-
bility at least 9

10 can correctly determine whether an unknown generator is U or Pτ ′ must make Ω(n
log2 n

)

draws to the generator.

We show that the uniform distribution U and the product distribution Pτ , where τ = 1
2 + ε, are indistin-

guishable with fewer than Ω(1
ε2n

) many draws:

Fact 10. Any algorithm which with probability at least 9
10 can correctly determine whether an unknown

generator is U or is Pτ must make Ω(1
ε2n

) many draws to the generator.

Proof. Suppose that A is an algorithm which, given an unknown coin of bias either 1
2 or 1

2 + ε, can output
the right answer with probability at least 9

10 . It is well known that A must make at least Ω(1
ε2

) many coin
tosses (see e.g. [4]). It is clear that T fair coin tosses can be converted into T/n draws from U , and T biased
coin tosses can be converted into T/n draws from Pτ , simply by grouping the tosses into strings of length
n. Thus any distinguisher as described in the statement of Fact 10 must make Ω(1

ε2n
) many draws from the

generator, since otherwise it would yield a distinguisher for the coin problem which requires o(1
ε2

) many
coin tosses.

Now we use the lower bound technique of Section 4.1 to show that Pτ ′ is indistinguishable from some
distribution q which is far from U . Given a value τ = 1

2 + ε with ε ≥ 0, the following claim shows
that making a draw from Pτ is equivalent to the following two-step process: (i) first pick a random y
from {−1, 1}n according to the distribution P2ε (i.e. each y with ones(y) = i is chosen with probability
(2ε)i(1− 2ε)n−i); and then (ii) pick a random x from Uy.

Claim 11. For any τ = 1
2 + ε ∈ [1

2 , 1] the product distribution Pτ is decomposable as

Pτ (x) =
n∑
i=0

∑
y∈{−1,1}n: ones(y)=i

(2ε)i(1− 2ε)i · Uy(x). (1)

Proof. For i = 0, 1, . . . , n let αi denote (2ε)i(1 − 2ε)n−i. We first note that
∑n

i=0

(
n
i

)
αi = 1 and thus

the right side of (1) is a convex combination of uniform monotone subcube distributions. Now fix an
x ∈ {−1, 1}n which has ones(x) = k. There are

(
k
i

)
points y ≤ x which have ones(y) = i, and each

such y contributes αiUy(x) = (2ε)i (1− 2ε)n−i /2n−i = (2ε)i
(

1
2 − ε

)n−i to the probability of x on the

9

right side of (1). We thus have that the probability of x on the right side of (1) is

k∑
i=0

(
k

i

)
(2ε)i(1

2 − ε)
n−i

=(1
2 − ε)

n−k
k∑
i=0

(
k

i

)
(2ε)i(1

2 − ε)
k−i

= (1
2 − ε)

n−k
(1

2 + ε)
k

and thus the right side of (1) is indeed a decomposition of the product distribution Pτ as desired.

Now let q be a distribution over {−1, 1}n which is drawn from D(Pτ ′ , n2) as described in Section 4.1
(i.e. n2 points a1, . . . , an

2
are independently selected from {−1, 1}n where each point of weight i is chosen

with probability (2ε)i(1 − 2ε)n−i, and q is the uniform convex combination of the corresponding uniform
monotone subcube distributions). Let S1 be the random variable defined by making N independent draws
from Pτ ′ , and let S2 be the random variable defined by (i) first selecting q randomly as described above, and
then (ii) making N independent draws from q.

Since N < n
10 , by Claim 7 we have that ‖S1 − S2‖1 ≤ 1

50 . Combining this with Fact 1, we have
that |PrS←(Pτ ′)N [A(S) outputs “uniform] − Prq←D(Pτ ′ ,n2), S←(q)N [A(S) outputs “uniform]| ≤ 1

50 , and
combining this with Claim 9 we have that Prq←D(Pτ ′ ,n2), S←(q)N [A(S) outputs “uniform”] ≥ 77

100 . This
latter inequality immediately yields the following lemma:

Lemma 12. With probability at least 54
100 over the random selection of q from D(Pτ ′ , n2) we have that

PrS←(q)N [A(S) outputs “uniform”] ≥ 1
2 .

Now we use the following lemma which we prove shortly:

Lemma 13. With probability 1−o(1) over the random choice of q fromD(Pτ ′ , n2), we have that ‖q−U‖1 ≥
2− 2

n9 .

Combining Lemmas 12 and 13, we may conclude that there exists some distribution q in the support of
D(Pτ ′ , n2) which has both PrS←(q)N [A(S) outputs “uniform”] ≥ 1

2 and ‖q − U‖1 ≥ 2 − 2
n9 . Since every

distribution q in the support of D(Pτ ′ , n2) is monotone, this proves Theorem 8.

PROOF OF LEMMA 13. Let ε = 12 logn
n . The distribution q is selected fromD(Pτ ′ , n2) by independently

drawing n2 many points a1, . . . , an
2

from the product distribution P2ε and taking q =
∑n2

i=1
1
n2Uai . For any

fixed i, the expected value of ones(ai) is 2εn = 24 log n, and the multiplicative Chernoff bound implies that
Pr[ones(ai) ≤ 12 log n] is at most exp(−3 log n) < 1

n3 . A union bound across i = 1, . . . , n2 gives that with
probability 1 − o(1), no ai has ones(ai) < 12 log n. If each of the n2 many ai’s has ones(ai) ≥ 12 log n,
then each Uai is supported on at most 2n/n12 points, and thus the support of q contains at most 2n/n10

points. It follows immediately from this that ‖q − U‖1 must be at least 2 − 2
n10 , and the lemma is proved.

(Lemma 13)

In terms of ε, it is easy to see that at least 1/ε2 many queries are required for testing ε-closeness to the
uniform distribution:

Observation 14. Any algorithm which determines correctly (with probability at least 4/5) whether a mono-
tone distribution p is equivalent to U or has ‖p− U‖1 > ε must make at least Ω(1/ε2) draws from p.

Proof. We assume without loss of generality that n is odd, so exactly half the points x ∈ {−1, 1}n have
|x| > 0 and exactly half have |x| < 0. Let q be the distribution which puts weight (1+ ε

2)/2n on each x with
|x| > 0 and puts weight (1− ε

2)/2n on each x with |x| < 0. Consider the problem of determining whether p
is equivalent to U or to q (with a guarantee that it is one of the two). If there were an o(1

ε2
)-query algorithm

10

for this problem, then there would be an o(1
ε2

)-query algorithm to determine whether a coin is perfectly
fair or has bias ε. (Given a coin to be tested, we can convert each “heads” to a string x ∈ {−1, 1}n chosen
uniformly at random from all strings satisfying |x| > 0, and convert each “tails” to a string chosen uniformly
at random from all strings satisfying |x| < 0.) But it is well known (see e.g. [4]) that any algorithm for the
coin problem requires Ω(1

ε2
) many samples.

4.3 An exponential lower bound for testing equivalence to a fixed product distribution

In the previous sections we have seen that Θ̃(n) draws from a generator for a monotone distribution are
necessary and sufficient to distinguish between the two cases of it being either equivalent to U or far from
U . In contrast, we now prove a 2Ω(n) lower bound on the number of draws which are required to distinguish
between a generator for an unknown monotone distribution being either equivalent to P4/5 or far from P4/5:

Theorem 15. Any algorithm A which, given generator access to an unknown monotone distribution p over
{−1, 1}n, determines correctly (with probability at least 4/5) whether p ≡ P4/5 or ‖p − P4/5‖1 > 2 − 1

n

must make at least 216n/100 draws from the unknown generator.

(Here too the bound 2− 1
n can be strengthened to 2− 1

nk
for any constant k > 0.) As mentioned earlier,

Theorem 15 is in sharp contrast with known results for a similar question of testing whether two unknown
generators p and q for monotone distributions over [N] are identical or have ‖p− q‖1 ≥ ε.

PROOF OF THEOREM 15. The proof is again by contradiction; so suppose that A is an algorithm
which makesN < 216n/100 draws from the generator and satisfies PrS←(P4/5)N [A(S) outputs “P4/5”] ≥ 4

5 .
By Claim 11 the distribution P4/5 is decomposable; as described in Section 4.1 we consider the distribu-
tion D(P4/5, T) over distributions q, where now we take T = 100 · 232n/100. Let S1 be the random variable
defined by makingN independent draws from P4/5, and let S2 be the random variable defined by (i) first se-
lecting q randomly fromD(P4/5, T) and then (ii) makingN independent draws from q. SinceN <

√
T/10,

by Claim 7 and Fact 1 we have that |Prq←D(P4/5,T), S←(q)N [A(S) outputs “P4/5”] − PrS←(P4/5)N [A(S)

outputs “P4/5”]| ≤ 1
50 so consequently Prq←D(P4/5,T), S←(q)N [A(S) outputs “P4/5”] ≥ 78

100 . Analogous to
Lemma 12, from this we immediately obtain

Lemma 16. With probability at least 56
100 over the random selection of q from D(P4/5, T) we have that

PrS←(q)N [A(S) outputs “P4/5”] ≥ 1
2 .

The following lemma now suffices to prove Theorem 15.

Lemma 17. For T = 100 · 232n/100, with probability 1 − o(1) over the choice of q from D(P4/5, T) we
have that ‖q − P4/5‖1 ≥ 2− 2

n .

Proof. Taking τ = 4
5 and ε = 3

10 in Claim 11, the distribution q is selected from D(P4/5, T) by indepen-
dently drawing T points a1, . . . , aT from the product distribution P3/5 and taking q =

∑T
i=1

1
T Uai . For any

fixed i, since ai is drawn from P3/5, using the multiplicative Chernoff bound we have that ones(ai) lies
outside the interval [3n

5 −c
√
n log n, 3n

5 +c
√
n log n] with probability at most 1

2n2 , where c is some absolute
constant. Consequently, the expected fraction of ai’s which have ones(ai) outside this interval is at most

1
2n2 ; another multiplicative Chernoff bound gives that with probability 1 − o(1), at most a 1

n2 fraction of
a1, . . . , aT have ones(ai) outside of [3n

5 − c
√
n log n, 3n

5 + c
√
n log n]. We will refer to the ai’s which have

ones(ai) ∈ [3n
5 − c

√
n log n, 3n

5 + c
√
n log n] as good ai’s, and to the other ai’s as bad ai’s. Thus, we may

henceforth assume that at most a 1
n2 fraction of the probability weight assigned by q corresponds to bad ai’s.

We now analyze how the remaining (at least) 1 − 1
n2 weight assigned by q via the good ai’s is distributed

11

relative to the weight distribution of P4/5; we will show that this 1− 1
n2 weight of q almost entirely misses

the weight assigned by P4/5.

The multiplicative Chernoff bound implies that under the distributionP4/5, all but (at most) a 1
n2 fraction

of probability weight is on points z which have ones(z) ∈ [4n
5 − c2

√
n log n, 4n

5 + c2
√
n log n] for some

absolute constant c2. Fix any integer value r ∈ [4n
5 − c2

√
n log n, 4n

5 + c2
√
n log n]. It is clear that the

distribution P4/5 puts equal weight on all points z with ones(z) = r. Now, for any i such that ai is good,
the support of Uai contains at most 22n/5+c

√
n logn points, and thus such an ai contributes nonzero weight

to at most 22n/5+c
√
n logn many points z which have ones(z) = r. The fact that there are at most T good

ai’s implies that the total number of points z ∈ {−1, 1}n with ones(z) = r which receive nonzero weight
from any good ai is at most T22n/5+c

√
n logn = 100 · 2.72n+c

√
n logn. Since there are

(
n
r

)
> 2(H(r/n)−o(1))n

many points with ones(z) = r, where H(x) = −x log x− (1−x) log(1−x) is the standard binary entropy
function (see e.g. [8]), since H(4/5) > .72 we have that for each r ∈ [4n

5 − c2
√
n log n, 4n

5 + c2
√
n log n],

all but an exponentially small fraction of the weight which P4/5 assigns to points of weight r goes to points
z which receive zero weight from the good ai’s under q. Thus we have that all but at most 1/n2 weight
under P4/5 is on such r’s, and all but at most 1/n2 weight under q is assigned by good ai’s, and this proves
the lemma.

We can use the approach of Theorem 15 to give a lower bound which provides an interesting contrast
to the upper bound provided by an algorithm given in [5]. In [5] an O(lognm) time algorithm is given for
determining whether a generator for an unknown monotone distribution over {1, . . . ,m}n is (i) a product
of n independent distributions over {1, . . . ,m}, or (ii) is ε-far in L1 norm from any such product distribu-
tion. The following theorem shows that any algorithm for this problem must indeed have an exponential
dependence on the dimension n:

Theorem 18. Let A be an algorithm which, given generator access to an unknown monotone distribution
p over {−1, 1}n, outputs “product” with probability at least 4/5 if p is a product distribution, and outputs
“not product” with probability at least 4/5 if for every product distribution Pτ1,...,τn the distance ‖p −
Pτ1,...,τn‖1 is at least 1

8n . Then A must make at least 216n/100 many queries.

Proof. Suppose that A is an algorithm which makes N < 216n/100 draws from the generator and, for any
product distribution P, satisfies

Pr
S←(P)N

[A(S) outputs “product”] ≥ 4

5
.

Then A must in particular output “product” with probability at least 4/5 when run using a generator for
P4/5. The proof now follows that of Theorem 15 up to Lemma 17. The following variant of Lemma 17
suffices to give Theorem 18:

Lemma 19. For T = 100 · 232n/100, with probability 1 − o(1) over the choice of q from D(P4/5, T) we
have that ‖q − P‖1 > 1

8n for all product distributions P .

PROOF OF LEMMA 19. Fix some i ∈ {1, 2, . . . , n}.A Chernoff bound shows that with overwhelmingly
high probability (much higher than 1− 1

n2) a randomly chosen q drawn fromD(P4/5, T) will have |Prq[xi =

1] − 4
5 | ≤

1
8n . Taking a union bound across all i = 1, . . . , n we have that with probability at least 1 − 1

n ,
a random q has |Prq[xi = 1] − 4

5 | ≤
1

8n for all i. Now, given any such distribution q, it is immediately
clear that if Pτ1,...,τn has |τi − 4

5 | >
1

4n for any τi, then we have ‖q − Pτ1,...,τn‖1 ≥ 1
8n . Thus we need only

consider product distributions Pτ1,...,τn with |τi− 4
5 | <

1
4n for all i. We now use the following standard fact:

Fact 20. Let D1,D2 be two distributions over X and D3, D4 be two distributions over Y. Then we have

‖(D1 ×D3)− (D2 ×D4)‖1 ≤ ‖D1 −D2‖1 + ‖D3 −D4‖1.

12

Applying this fact repeatedly, we have that any distribution Pτ1,...,τn with |τi − 4
5 | <

1
4n for all i must

satisfy ‖P4/5−Pτ1,...,τn‖1 ≤ 1
2 . Now applying Lemma 17, we have that with probability 1− o(1) a random

q will satisfy ‖q − Pτ1,...,τn‖1 ≥ 3
2 −

2
n . This proves the lemma.

4.4 Lower bound for approximating entropy

For p a distribution over a finite set, the entropy of p is H(p) :=
∑

x−p(x) log p(x). This easily implies the
well-known fact that the largest possible entropy of any distribution over a 2n-element set is n. For h > 0 we
write Dh to denote the set of all monotone distributions over {−1, 1}n which have entropy at least h. For
γ > 1, we say that algorithm A γ-approximates the entropy of distributions inDh if the following condition
holds: given access to a generator p for any distribution in Dh, with probability at least 4/5 algorithm A
outputs a value A(p) such that H(p)/γ ≤ A(p) ≤ γH(p).

In [3] it was shown that for any constant γ > 1, given generator access to a monotone distribution over
[N] with entropy at least Ω(γ5/2/(log

√
γ + 1)(

√
γ − 1)), it is possible to γ-approximate the entropy of the

distribution using O(log6N) many draws from the generator. In contrast to this positive result, using the
technique of Section 4.1 we can show that approximating the entropy of an unknown monotone distribution
over {−1, 1}n to within a fixed constant requires 2Ω(n) draws, even if the distribution is guaranteed to
have entropy Ω(n). A variant of the construction yields ω(1)-inapproximability for algorithms which make
Ω(2

√
n) generator draws, even if the distribution is guaranteed to have entropy Ω(

√
n).

Theorem 21. 1. Any algorithm that 1.16-approximates the entropy of any monotone distribution from
Dn/2 must make at least 1

102n/20 many draws from the generator.

2. Any algorithm that Ω(
√

log n)-approximates the entropy of any monotone distribution fromD√n must
make at least 1

102
√
n many draws from the generator.

We now prove these results.
PROOF OF THEOREM 21. Let pMAJ be the distribution p =

∑
y: ones(y)=n/2 Uy, i.e. p is a uniform

convex combination of all
(
n
n/2

)
uniform monotone subcube distributions rooted at points of weight n/2

(we assume throughout that n is even; the case where n is odd is entirely similar). We have:

Claim 22. H(pMAJ) > .81n.

Proof. It is easy to see that for i = n/2, n/2 + 1, . . . , n we have Prx←pMAJ [ones(x) = i] =
(n/2
i−n/2

)
/2n/2;

we write p(i)
MAJ to denote this quantity. It is also clear that pMAJ puts the same probability weight, which

is
(n/2
i−n/2

)
/(2n/2 ·

(
n
i

)
), on each of the

(
n
i

)
strings x with ones(x) = i. Now consider the contribution

to H(pMAJ) =
∑

x−pMAJ(x) log pMAJ(x) which comes from those x which have ones(x) = 3n
4 . This

contribution is

p
(3n/4)
MAJ · log

2n/2
(

n
3n/4

)(n/2
n/4

) = p
(3n/4)
MAJ · (H(3/4)− o(1))n,

where we have used the standard entropy estimate for binomial coefficients (see e.g. [8]). Since H(3/4) is
greater than 0.8112, we have that the contribution toH(pMAJ) from these strings is at least p(3n/4)

MAJ ·(.811n).
Now for each i in [3n/4−

√
n log n, 3n/4 +

√
n log n], a similar calculation shows that the contribution to

H(pMAJ) from those strings x with ones(x) = i is at least p(i)
MAJ · (.8105n). Since only a 1− o(1) fraction

of the weight of pMAJ is on strings i with i /∈ [3n/4−
√
n log n, 3n/4 +

√
n log n], we have that H(pMAJ)

is at least (1− o(1))(.8105n) > .81n.

13

Now consider the distribution D(pMAJ , T) over probability distributions q obtained from the decom-
position of pMAJ into

(
n
n/2

)
uniform monotone subcube distributions. Using the techniques of the previous

sections, we can show that if A is any algorithm which makes fewer than
√
T/10 draws from the gen-

erator, then there is some distribution q in the support of D(pMAJ , T) which is indistinguishable from
pMAJ with high probability. However, it is easy to see that any distribution q which may be drawn from
D(pMAJ , T) puts nonzero weight on at most T · 2n/2 many points in {−1, 1}n, and consequently we have
H(pMAJ) ≤ (n/2) + log T. We also have that q is a convex combination of distributions with entropy n/2,
so we must have n/2 ≤ H(q) ≤ (n/2) + log T.

Thus, even with the guarantee that the unknown distribution has entropy at least n/2, it is hard to
distinguish (with fewer than

√
T/10 draws) between H(·) > .81n and H(·) < (n/2) + log T. This gives

rise to a range of lower bounds; if we take for example T = 2.1n, then since
√
.81/.6 > 1.16 we obtain part

1 of Theorem 21.
A variant of this construction yields ω(1)-inapproximability for algorithms which make poly(n) many

draws from the generator. Let p? denote the probability distribution p? =
∑

y: ones(y)=n−
√
n Uy. An ar-

gument similar to that of Claim 22 shows that H(p?) = Ω(
√
n log n). Taking T = 2

√
n, we have that

if A is any algorithm which makes fewer than 1
102
√
n/2 many draws from the generator, then there is

some distribution q in the support of D(p?, 2
√
n) which is indistinguishable from p?. This q must have√

n ≤ H(q) ≤
√
n+ log T = 2

√
n, and we obtain part 2 of the theorem..

5 The evaluator access model

In this section, we study the complexity of the testing problems for monotone distributions over {−1, 1}n
that we considered earlier, but now in the evaluator model rather than the generator model. We show that
testing uniformity can be done with a single evaluator query, and that testing equivalence versus ε-distance
from a known distribution can be done with Θ(1/ε) evaluator queries, independent of n. While these
problems are substantially easier in the evaluator model than the generator model, we also show strong
(superpolynomial in n) lower bounds on the query complexity of approximating the entropy of monotone
distributions on {−1, 1}n in the evaluator model, and on the query complexity of determining whether two
unknown monotone distributions over {−1, 1}n (given as evaluators) are equivalent or far apart.

Previous authors have considered the evaluator model, and in particular have studied the problem of
estimating the entropy [3]. For general distributions, it was shown that the number of queries required to
estimate the entropy is Ω(N) where N is the size of the domain. However, for monotone distributions over
a totally ordered domain, the entropy can be estimated to within a multiplicative factor of γ > 1 in time
O(d1/ log γe logN) in the evaluator model [3].

It is trivially easy to test whether monotone distributions are uniform in the evaluator model:

Observation 23. There is a deterministic 1-query evaluator algorithm which correctly decides whether a
monotone distribution p over {−1, 1}n is identical to U .

Proof. The algorithm queries p(1n) and outputs “uniform” if the result is 1/2n and “not uniform” otherwise.
If p(1n) 6= 1/2n the distribution is not uniform. On the other hand, if p(1n) = 1/2n, then since p is
monotone we must have p(x) ≤ 1/2n for each x ∈ {−1, 1}n. However, the total sum of all 2n probabilities
must be 1, and thus it must be the case that all domain elements have probability 1/2n.

It is also easy to test whether a distribution is identical to or far from a known distribution.

Observation 24. Let q be a known distribution over {−1, 1}n (not necessarily monotone). Given evaluator
access to a distribution p over {−1, 1}n (not necessarily monotone) and a parameter ε, there is an algorithm

14

which makes 5/ε evaluator queries and has the following behavior: (i) if p ≡ q then the algorithm outputs
“equal” with probability 1; and and (ii) if ‖p − q‖1 > ε then the algorithm outputs “not equal” with
probability at least 2/3.

Proof. The testing algorithm chooses s = 5/ε points x1, . . . , xs ∈ {−1, 1}n independently according to q,
and queries the evaluator oracle for p at each. If at any xi it finds that p(xi) 6= q(xi), the algorithm outputs
“not equal”, otherwise it outputs “equal”. Note that the algorithm can sample from q (since it is a known
distribution) but cannot sample from p (since we are in the evaluator model).

It is clear that if p ≡ q, the algorithm will always output “equal”. Say that x ∈ {−1, 1}n is good if
p(x) = q(x). Let ρ be the probability that x is not good when chosen according to distribution q and ρ′ be
the probability that x is not good when chosen according to distribution p. Note that ρ = ρ′ since both equal
1
2‖p − q‖1. To show that if ‖p − q‖1 > ε then the algorithm outputs “not equal” with probability at least
2/3, we equivalently show the contrapositive, i.e., that if the algorithm outputs “equal” with probability
greater than 1/3 then ‖p − q‖1 ≤ ε. If the algorithm outputs “equal” with probability at least 1/3, then
ρ ≤ ε/2. (To see this, note that if ρ > ε/2 then Pr[some x which is not good occurs in the s examples] =
1 − (1 − ρ)s > 1 − (1 − ε/2)5/ε which is at least 2/3 for 0 < ε < 2.) Thus ‖p − q‖1 =

∑
x good |p(x) −

q(x)|+
∑

x not good |p(x)− q(x)| ≤
∑

x not good(p(x) + q(x)) ≤ ρ+ ρ′ ≤ ε.

5.1 Lower bounds in the evaluator model

In this section, we prove the following three lower bounds.

Theorem 25. In the evaluator model,

1. Any algorithm that
√
n/ log3 n-approximates the entropy of any monotone distribution from Dlog3 n

must make Ω(nlogn) calls to the evaluator.

2. Any algorithm in the evaluator model that 1.58-approximates the entropy of any monotone distribution
from Dn/10 must make Ω(2n/10) calls to the evaluator.

3. Any algorithm that, given access to a pair of evaluators for two unknown monotone distributions p
and q over {−1, 1}n, correctly distinguishes the case p ≡ q from the case that ‖p − q‖1 ≥ 1/2 with
probability at least 4/5 must make 2Ω(n) calls to the evaluator.

In order to prove the above results, we describe two families P and Q of monotone distributions over
{−1, 1}n that are hard to distinguish when given access to an evaluator oracle. Since distributions p ∈ P
and q ∈ Q have very different entropies and are very far from each other in L1 distance, this will give us
lower bounds for both of those testing problems which are superpolynomial in n, the dimension of the cube.
Thus, unlike the case of a totally ordered domain, these testing problems for monotone distributions over
{−1, 1}n cannot be performed with a number of queries that is polylogarithmic in the size of the domain.

Two families of distributions. Let N denote
∑b

i=0

(
n
i

)
, the number of points x ∈ {−1, 1}n which have

ones(x) ≥ n− b. The value of b will be set later; it will always be set to a value between log n and n/100.
Let ` be chosen as the least positive integer which satisfies

∑`−b−1
i=0

(
`
i

)
≥ N , and letN ′ denote

∑`−b−1
i=0

(
`
i

)
.

Note that if y ∈ {−1, 1}n has ones(y) = n− `, then there are precisely N ′ many points z in {−1, 1}n such
that z ≥ y and ones(z) < n − b. Given y ∈ {−1, 1}n with ones(y) = n − `, the distribution py is defined
as follows: py puts weight 1/(2N) on each of the N points x in {−1, 1}n which have ones(x) ≥ n− b, and
puts weight 1/(2N ′) on each of the N ′ points z ∈ {−1, 1}n which have z ≥ y and ones(z) < n − b. It is
easy to see that py is a monotone distribution. The family P of distributions is P =

⋃
py where the union is

over all y with ones(y) = n− `.

15

We now define the other familyQ. Given y ∈ {−1, 1}n with ones(y) = n/2, we define the distribution
qy as follows: like the distributions in P, qy puts weight 1/(2N) on each of the N points x in {−1, 1}n
which have ones(x) ≥ n − b. However, qy distributes the remaining 1/2 weight equally over all M ≡∑n/2−b−1

i=0

(
n/2
i

)
many points z which satisfy z ≥ y and ones(z) < n − b. Note that since M � N ′, each

distribution inQ has much more entropy than each distribution in P; we make this precise in the next claim.

Claim 26. (i) We have N ≤ (enb)b < 2n/10, ` ≤ b log(enb) + 1 < n/10, and M ≥ 1
22n/2.

(ii) The entropy of each py ∈ P is H(p) ≤ b log(enb) + 2.

(iii) The entropy of each qy ∈ Q is H(q) ≥ n/4.

(iv) For all p ∈ P, q ∈ Q, |p− q| ≥ 1− o(1).

Proof. (i): Recall that N =
∑b

i=0

(
n
i

)
≤ (enb)b (see e.g. Section 3.4 of [9]), and note that log((enb)b) =

b log(enb) which is easily shown to be at most 9n
100 since b ≤ n/100. For `′ = log((enb)b) + 1 we have that

`′−b−1∑
i=0

(
`′

i

)
= 2`

′ −
b∑
i=0

(
`′

i

)
≥ 2N −

b∑
i=0

(
`′

i

)
≥ 2N −

b∑
i=0

(
n

i

)
= N,

so ` ≤ `′. The bound on M follows easily from the fact that b ≤ n/100.
(ii): This follows from the above arguments which show that the support of py contains at most 2`

′+1

many points, using the well-known fact that every distribution has entropy at most the log of the size of its
support.

(iii): This follows from the fact that at least half the weight of qy is uniform over a set of at least 1
22n/2

many points, and the other half of the weight is uniform over a set of at least two points.
(iv): This follows easily by comparing the support sizes of any py ∈ P and qy ∈ Q and performing a

routine calculation.

Difficulty of distinguishing P,Q. Members of P andQ have very different entropies; but randomly chosen
p ∈ P and q ∈ Q are hard to tell apart given access only to an evaluator. To see why, first note that in both
cases the value of an evaluator query at any point x with ones(x) ≥ n− b is exactly 1/(2N). Thus one can
assume that the distinguishing algorithm only queries points z with ones(z) < n− b. Next, note that if the
distinguishing algorithm does manage to find a point z with ones(z) < n− b which has nonzero probability
weight, then it is immediately evident whether the distribution is from P or Q based on whether the weight
on z is large or small. If the unknown distribution is chosen at random from P orQ, it is hard to find a point
z with nonzero weight; but points with 0 weight do not give much information about whether the distribution
is from P or Q, and thus many queries are required. The following makes this intuition more precise.

Let z : {−1, 1}n → [0, 1] be the function that assigns value 1/(2N) to each of the N points x with
ones(x) ≥ n− b, and assigns value 0 to all other points in {−1, 1}n. In the following lemma, we show that
randomly drawn elements of P and Q are hard to distinguish from z, and thus are hard to distinguish from
each other.

Lemma 27. Any algorithm that for all a ∈ P
⋃
{z} (respectivelyQ

⋃
{z}), correctly distinguishes whether

a is from P (respectively Q) or a = z with probability greater than 2/3 must make Ω((n/`)b) (respectively
Ω(2b)) evaluator queries to a.

Proof. We give the proof for P and then sketch the modifications required for proving the result for Q.
We use Yao’s principle [14] which says the following: if there is a probability distribution A over

the union of all positive and negative inputs which is such that any deterministic distinguishing algorithm

16

making t queries is correct with probability less than 4/5 for an input chosen fromA, then one can conclude
that t is a lower bound on the query complexity of any randomized distinguishing algorithm.

We define a distribution over all inputs as follows: the negative input z is assigned probability 1/2, and
each member of P (the positive inputs) is assigned probability 1/(2|P|).

Let A be a deterministic distinguishing algorithm which makes at most t queries when run on any
evaluator from P

⋃
{z}. By the discussion above we may assume that A never queries a string x with

ones(x) ≥ n − b, and also that A halts and outputs the correct answer if it ever receives a nonzero answer
in response to a query. Thus we may view A as a binary decision tree of depth at most t, where each node
represents a query to a particular string x (which satisfies ones(x) < n− b) and the two outgoing edges are
labelled with “= 0” or “ 6= 0”. Each edge labelled “6= 0” can be assumed to lead to a leaf at which A outputs
“positive,” i.e. a 6= z (note that if the input is z the algorithm will never follow a “ 6= 0” edge). Each leaf
of A represents the end of a possible computation and is labelled “negative” (a = z) or “positive” (a 6= z)
according to the output of A. Note that the number of leaves in the tree is only one more than the depth
of the tree (because the “ 6= 0” edges all lead to leaves as described above). The error of A, the sum of the
probabilities of those inputs for which A outputs the wrong answer, is all incurred by inputs a ∈ P which
always follow the “= 0” edge at each node.

If A is incorrect on z, then A is incorrect with probability at least 1/2; thus we may assume that A is
correct on z. Hence A should output “negative” (a = z) if all t tested locations are equal to 0. Since inputs
from P for which A does not find a nonzero location end up at the same leaf as z, they will be labelled
incorrectly by A.

We now upper bound the number of inputs from P that follow the “6= 0” labelled edge at any step
in the algorithm in order to lower bound the number of leaves required for any A that is incorrect with
probability at most 1/5 (and thus incorrect on at most 2/5 of inputs from P). Consider a particular step in
the algorithm at which a string x ∈ {−1, 1}n is queried. Let w be such that ones(x) = n − w. As noted
above we can assume that ` ≥ w > b, since the query answers for locations of weight outside that range
are known in advance. There are

(
n−w
n−`
)

=
(
n−w
`−w
)

many strings y with ones(y) = n − ` and y ≤ x; this
number is maximized (for b < w ≤ `) by taking w = b + 1. Since there are

(
n
`

)
many strings y with

ones(y) = n − `, in order for at least 3/5 of the inputs in P to reach a different leaf than z there must be
at least 3

5 ·
(
n
`

)
/
(
n−b−1
`−b−1

)
> Θ(1) ·

(
n
`

)
/
(
n−b
`−b
)

many leaves (here the inequality holds because of our bound
` < n/10 from Claim 26). Therefore the depth of the tree is at least Θ(1) ·

(
n
`

)
/
(
n−b
`−b
)
, which is

Θ(1)
n(n− 1) · · · (n− b+ 1)

`(`− 1) · · · (`− b+ 1)
> Θ(1) · (n/`)b.

To show the result forQ, consider a query on string x with ones(x) = n−w where now b < w ≤ n/2.
There are

(
n−w
n/2

)
many strings y with ones(y) = n/2 and y ≤ x. Since there are

(
n
n/2

)
many strings y with

ones(y) = n/2, arguing as above we have that the depth of the tree must be at least Θ(1) ·
(
n
n/2

)
/
(
n−b
n/2−b

)
=

Ω(2b).

Lemma 27 gives us the following corollary:

Corollary 28. Any evaluator algorithm that for all a ∈ P
⋃
Q correctly distinguishes whether a is from P

or Q with probability greater than 4/5 must make Ω(2b) queries.

Taking b = log2 n and b = n/100, by combining Claim 26 with Corollary 28 we get parts (1) and (2)
of Theorem 25 respectively. Part (3) of the theorem follows by taking b = n/100 and combining part (iv)
of Claim 26 with Lemma 27.

17

6 Acknowledgements

We thank the referees for their helpful suggestions, as well as the anonymous referees of a preliminary
conference version [12]. We also thank Eli Ben-Sasson for helpful comments.

References

[1] D. Aldous. On the Markov chain simulation method for uniform combinatorial distributions and sim-
ulated annealing. Probability in Engineering and Information Sciences, 1:33–46, 1987.

[2] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. Testing random variables for
independence and identity. In IEEE Symposium on Foundations of Computer Science, pages 442–451,
2001.

[3] Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity of approximating
entropy. In ACM Symposium on Theory of Computing, pages 678–687, 2002.

[4] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Testing that
distributions are close. In IEEE Symposium on Foundations of Computer Science, pages 259–269,
2000.

[5] Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing monotone and
unimodal distributions. In ACM Symposium on Theory of Computing, pages 381–390, 2004.

[6] M. Furst, J. Jackson, and S. Smith. Improved learning of AC0 functions. In Proceedings of the Fourth
Annual Workshop on Computational Learning Theory, pages 317–325, 1991.

[7] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Electronic Colloqium on
Computational Complexity, 7(20), 2000.

[8] W. C. Huffman and V. Pless. Fundamentals of Error Correcting Codes. Cambridge University Press,
2003.

[9] M. Kearns and U. Vazirani. An introduction to computational learning theory. MIT Press, Cambridge,
MA, 1994.

[10] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and learnability. J.
ACM, 40(3):607–620, 1993.

[11] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press, New York, NY,
1995.

[12] R. Rubinfeld and R. Servedio Testing monotone high-dimensional distributions. In ACM Symposium
on Theory of Computing, pages 147–156, 2005.

[13] R. Servedio. On learning monotone DNF under product distributions. In Proc. 14th ACM Conference
on Computational Learning Theory, pages 473–489, 2001.

[14] A. Yao. Probabilistic computations: Towards a unified measure of complexity. In Symposium on
Foundations of Computer Science, pages 222–227, 1977.

18

