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Abstract

We prove two main results on how arbitrary linear threshold functions f(x) =
sign(w · x − θ) over the n-dimensional Boolean hypercube can be approximated by
simple threshold functions.

Our first result shows that every n-variable threshold function f is ε-close to a
threshold function depending only on Inf(f)2 · poly(1/ε) many variables, where Inf(f)
denotes the total influence or average sensitivity of f. This is an exponential sharpening
of Friedgut’s well-known theorem [Fri98], which states that every Boolean function f
is ε-close to a function depending only on 2O(Inf(f)/ε) many variables, for the case of
threshold functions. We complement this upper bound by showing that Ω(Inf(f)2 +
1/ε2) many variables are required for ε-approximating threshold functions.

Our second result is a proof that every n-variable threshold function is ε-close
to a threshold function with integer weights at most poly(n) · 2Õ(1/ε2/3). This is an
improvement, in the dependence on the error parameter ε, on an earlier result of
[Ser07] which gave a poly(n) · 2Õ(1/ε2) bound. Our improvement is obtained via a new
proof technique that uses strong anti-concentration bounds from probability theory.
The new technique also gives a simple and modular proof of the original [Ser07] result,
and extends to give low-weight approximators for threshold functions under a range of
probability distributions other than the uniform distribution.
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1 Introduction

Linear threshold functions (henceforth simply called threshold functions) are functions f :
{−1, 1}n → {−1, 1} of the form f(x) = sign(w · x − θ) where the weights w1, . . . , wn and
the threshold θ may be arbitrary real values. Threshold functions are a fundamental type
of Boolean function and have played an important role in computer science for decades,
see e.g. [Der65, Mur71, SRK95]. Recent years have witnessed a flurry of research activity
on threshold functions from many perspectives of theoretical computer science, including
hardness of learning [FGKP06, KS08], efficient learning algorithms in various models [Kal07,
OS08, KKMS08], property testing [MORS10, GS07], communication complexity and circuit
complexity [She07], monotone computation [BW06], derandomization [RS10, DGJ+10], and
more.

Despite their seeming simplicity threshold functions can have surprisingly rich structure,
and basic questions about them can be unexpectedly challenging to answer. As one exam-
ple, a moment’s thought shows that every threshold function f can be realized with integer
weights w1, . . . , wn: how large do those integer weights need to be? A fairly straightfor-
ward argument gives a bound of 2O(n logn), but while this upper bound was known at least
since 1961 [MTT61] and rediscovered several times (e.g. [Hon87, Rag88]), more than thirty
years elapsed before a matching lower bound of 2Ω(n logn) was finally obtained via a fairly
sophisticated construction and proof [H̊as94, AV97].

This paper is about approximating arbitrary threshold functions using “simple” threshold
functions, meaning ones that depend on few variables or have small integer weights. We use
a natural notion of approximation with respect to the uniform distribution: throughout the
paper “h is an ε-approximator for f” means that Pr[h(x) 6= f(x)] ≤ ε. (All probabilities and
expectations over x ∈ {−1, 1}n are taken with respect to the uniform distribution, unless
otherwise specified. In Section 4 we shall consider more general notions of approximation
with respect to other distributions as well.) We prove two main results about approximating
threshold functions, which we motivate and describe below.

1.1 First main result: optimally approximating threshold func-
tions by juntas.

The influence of coordinate i on f : {−1, 1}n → {−1, 1} is Infi(f)
def
= Pr[f(x) 6= f(x⊕i)],

where x⊕i denotes x with the i-th bit flipped. The total influence of f , written Inf(f),
is
∑

i Infi(f); it is a normalized measure of the fraction of edges in the hypercube that are
rendered bichromatic by f , and is equal to the “average sensitivity” of f . It is well known (see
[FK96] or [BT96] for an explicit proof) that every threshold function has Inf(f) ≤

√
n, and

that the majority function on n variables achieves Inf(f) = Θ(
√
n) – and in fact maximizes

Inf(f) over all threshold (or even all unate1) functions.
In [Fri98], Friedgut proved the following:

Theorem. [Fri98] Every Boolean function f is ε-approximated by a 2O(Inf(f)/ε)-junta, i.e. a
function depending only on 2O(Inf(f)/ε) of the n input variables.

1We remind the reader that a boolean function f : {−1, 1}n → {−1, 1} is called unate if, for every i, f is
either monotone increasing or monotone decreasing as a function of its i-th coordinate.
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Friedgut’s theorem is an important structural result about boolean functions and has been
usefully applied in several areas of theoretical computer science, including hardness of approx-
imation [DS05, CKK+06, KR08], metric embeddings [KR06], and learning theory [OS07]. In
Section 2.5 we discuss the role of this theorem in a sequence of results on the Fourier repre-
sentation of Boolean functions.

Friedgut showed that his bound is best possible for general Boolean functions, by giving
an explicit family of functions which require 2Ω(Inf(f)/ε)-juntas for any ε-approximation. A
bound of the form 2O(Inf(f)/ε) is of course nontrivial only if Inf(f) � log n, which is rather
small; thus, it is natural to ask whether various restricted classes of functions, such as
threshold functions, might admit stronger bounds.

Our first main result is an exponentially stronger version of Friedgut’s theorem for thresh-
old functions:

Theorem 1 (First Main Theorem). Every threshold function f is ε-approximated by an
Inf(f)2 · poly(1/ε)-junta (which is itself a threshold function).

The dependence on each parameter in the above bound is essentially optimal; easy ex-
amples show that Ω(Inf(f)2 +1/ε2) many variables may be required for ε-approximation (see
Section 2.5).

We conjecture that Theorem 1 extends to degree-d polynomial threshold functions with
an exponential dependence on d in the bound, and also conjecture a different extension of
Theorem 1 that is inspired by a theorem of Bourgain; see Section 2.5.

Techniques. The proof of Friedgut’s theorem makes essential use of the Bonami-Gross-
Beckner hypercontractive inequality [Bon70, Gro75, Bec75]. Our proof of Theorem 1 takes a
completely different route and does not use hypercontractivity; instead, the main ingredients
are recent Fourier results on threshold functions from [OS08] and a probabilistic construc-
tion which is reminiscent of Bruck and Smolensky’s randomized construction of polynomial
threshold functions [BS92].

In more detail, a key notion in our proof is that of a regular threshold function; roughly
speaking, this is a threshold function where each of the weights wi is “small” relative to the
2-norm of the weight vector. Given a regular threshold function g(x) = sign(w · x − θ), we
use the weights wi to define a probability distribution over approximators to g (this is done
similarly to [BS92]). We show (Lemmas 8 and 9) that a randomly drawn approximator from
this distribution has high expected accuracy and does not depend on too many variables
(the upper bound is given in terms of the weights wi and the regularity parameter).

An obvious problem in using this construction to approximate arbitrary threshold func-
tions is that not every threshold function is regular. To get around this, we use a recent
result from [OS08] which shows that every threshold function f can be well approximated by
a threshold function f ′ which has two crucial properties: f ′ is almost regular (in the sense
that it only has a few “large” weights), and its “small” weights are (appropriately scaled
versions of) the influences of the corresponding variables in f. For each restriction ρ that fixes
the large-weight variables of f ′, then, we may use f ′|ρ as the regular threshold function g of
the previous paragraph, and we obtain a distribution over approximators to f ′|ρ where the
number of relevant variables for each such approximator is at most Inf(f)2 · poly(1/ε). From
this, using the probabilistic method, we are able to argue that there is a single high-accuracy
approximator for f that depends on at most Inf(f)2 · poly(1/ε) variables, as required.
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1.2 Second main result: approximating threshold functions to
higher accuracy.

The second main result of this paper is about approximating an arbitrary n-variable thresh-
old function f using a threshold function g with small integer weights. Goldberg [Gol06]
and Servedio [Ser07] have observed that, because of the 2Ω(n logn) lower bound [H̊as94] on
integer weights to exactly represent arbitrary threshold functions, it is not possible in gen-
eral to construct an ε-approximator g with integer weights poly(n, 1/ε). Servedio [Ser07]
gave the first positive result, by showing that for every threshold function f there is an ε-
approximating threshold function g in which each weight is an integer of magnitude at most
poly(n) · 2Õ(1/ε2). This result and the ingredients in its proof have since played an important
role in subsequent work on threshold functions, e.g. [OS08, MORS10, DGJ+10].

Given the usefulness of [Ser07] and the poor dependence on ε in its bound, it is natural
to seek a stronger quantitative bound with a better dependence on ε; in fact, this was posed
as a main open question in [Ser07]. Our second main result makes progress in this direction:

Theorem 2 (Second Main Theorem). Every n-variable threshold function f is ε-approximated
by a threshold function g(x) = sign(w · x − θ) with w1, . . . , wn all integers of magnitude

n3/2 · 2Õ(1/ε2/3).

Another question posed in [Ser07] asked about small integer-weight approximators with
respect to other probability distributions other than the uniform distribution. As described
below, Theorem 2 can be generalized to hold under a range of non-uniform distributions.

Theorem 2 is proved using a new approach which we believe may lead to better bounds
for a range of problems considered in [OS08, MORS10, DGJ+10] which use the approach
from [Ser07]. Roughly speaking, the proof in [Ser07] and the applications in [OS08, MORS10,
DGJ+10] all rely on the fact that for suitable weight vectors w, the random variable w · x
(with x uniform over {−1, 1}n) can be approximated by a Gaussian. Such approximation
provides a great deal of information about w · x, but the drawback is that the Gaussian
is only a fairly coarse approximator of w · x even for a weight vector as well-behaved as
w = (1, . . . , 1), and this inevitably seems to lead to bounds that are exponential in 1/ε2

(as in [Ser07, OS08, DGJ+10]). We now briefly describe how our new approach that yields
Theorem 2 gets around this barrier.

Techniques. The main conceptual difference between our new approach and the approach
in [Ser07] is this. The proof in [Ser07] starts with an arbitrary vector of weights that represent
some threshold function; intuitively this could be problematic because these weights may
provide an inconvenient representation to work with for the underlying function. In contrast,
we focus on the function itself, and prove that every threshold function has a “nice” weight
vector that represents it. This allows us to exploit strong anti-concentration bounds [Hal77]
that apply only under certain assumptions on the weights; we elaborate below.

The notion of anti-concentration is an important ingredient in our approach: a random
variable has good anti-concentration if it does not assign too much mass to any small interval
of the real line. The study of anti-concentration has a rich history in probability theory, see
e.g. [DL36, Kol60, Ess68, Rog73, RV08]. Anti-concentration inequalities for discrete random
variables of the form w · x are known to be significantly more delicate than concentration

3



inequalities (i.e. “tail bounds”): while concentration typically depends on the 2-norm of w,
anti-concentration depends on the additive structure of the coefficients in a subtle way.2

We remark that [Ser07] also (implicitly) uses anti-concentration bounds, in particular
ones based on Gaussian approximation (that follow from the Berry-Esséen Theorem; see
Theorem 4). In hindsight it can be seen that no stronger anti-concentration bounds can be
used in the arguments of [Ser07] because that proof considers all possible representations of
the form sign(w ·x−θ), where w ranges over all of Rn. As an example, consider the majority
function. For the standard representation as sign(

∑
i xi), the anti-concentration bound given

by the Berry-Esséen Theorem is the best possible, since any interval that contains the origin
has probability mass Ω(1/

√
n). On the other hand, it is possible to come up with alternate

representations sign(w · x) for the majority function that have better anti-concentration;
this is essentially what our proof does. We prove a structural theorem which states that
every threshold function has a representation in which “many” weights are “well-separated;”
under this condition on the weights, we obtain strong anti-concentration using a result of
of Halász [Hal77]. Finally, we show that strong anti-concentration yields low-weight integer
approximation to get our final desired result.

Discussion: Our general approach is both modular and robust. It yields a simple and
modular proof of the poly(n) · 2Õ(1/ε2) upper bound from [Ser07] which was proved there

via a rather elaborate case analysis. More importantly, the new poly(n) · 2Õ(1/ε2/3) bound
and its proof generalize easily to a wide range of distributions. These include constant-
biased product distributions and, using the recent result of [DGJ+10], all K-wise independent
distributions for sufficiently large K (K = Õ(1/ε2) suffices for ε-approximation).

Organization. We prove Theorem 1 in Section 2 and Theorem 2 in Section 3. Section 4
contains the extension of Theorem 2 to certain nonuniform distributions.

2 Theorem 1: Optimally approximating threshold func-

tions by juntas

This section is structured as follows: after giving some mathematical preliminaries, in Sec-
tion 2.2 we describe a randomized construction of approximators for regular threshold func-
tions. In Section 2.3 we recall the result from [OS08] that lets us approximate any threshold
function by a threshold function that is “almost” regular. In Section 2.4 we put these pieces
together to prove Theorem 1. We give some discussion and conjectures in Sections 2.5.

2.1 Preliminaries.

2.1.1 Basic Probabilistic Inequalities.

In this section we record some standard probabilistic inequalities that we will use. We first
recall the following standard additive Hoeffding bound (which can be found in many places,
e.g. [DP09]):

2Roughly speaking, if one forbids more and more additive structure in the wi’s, then one gets better and
better anti-concentration; see e.g. [Vu08, TV09] and Chapter 7 of [TV06].
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Theorem 3. Let X1, . . . , Xn be independent random variables such that for each j ∈ [n],
Xj is supported on [aj, bj] for some aj, bj ∈ R, aj ≤ bj. Let X =

∑n
j=1 Xj. Then, for any

t > 0,

Pr
[
|X − E[X]| ≥ t

]
≤ 2 exp

(
−2t2∑n

j=1(bj − aj)2

)
.

The Berry-Esséen theorem (see e.g. [Fel68]) is a version of the Central Limit Theorem with
explicit error bounds:

Theorem 4. (Berry-Esséen) Let X1, . . . , Xn be independent random variables satisfying
E[Xi] = 0 for all i ∈ [n],

√∑
i E[X2

i ] = σ, and
∑

i E[|Xi|3] = ρ3. Let S = (X1 + · · ·+Xn)/σ
and let F denote the cumulative distribution function (cdf) of S. Then

sup
x
|F (x)− Φ(x)| ≤ ρ3/σ

3

where Φ denotes the cdf of a standard Gaussian random variable.

([Shi86] has shown that the right-hand side above can be strengthened to 0.7915 · ρ3/σ
3,

but the above version will suffice for us.) As an immediate corollary, we obtain that a
weighted linear combination of independent random signs with “small” weights does not
assign too much mass to any small interval. This simple but useful property will be used ex-
tensively throughout the paper; for the sake of completeness we include a detailed statement
and proof below.

Corollary 5. Let x1, . . . , xn denote independent uniformly random ±1 signs and let w1, . . . , wn ∈
R. Write σ =

√∑
iw

2
i , and assume |wi|/σ ≤ τ for all i ∈ [n]. Then for any interval

[a, b] ⊆ R, ∣∣∣Pr
[ n∑
i=1

wixi ∈ (a, b]
]
− Φ([ a

σ
, b
σ
])
∣∣∣ ≤ 2τ,

where Φ([c, d])
def
= Φ(d)− Φ(c). In particular,

Pr
[ n∑
i=1

wixi ∈ (a, b]
]
≤ |b− a|

σ
+ 2τ.

Proof. We apply Theorem 4 twice for the independent zero-mean random variables Xi =
wixi, i ∈ [n]. Note that ρ3 =

∑n
i=1 |wi|3 ≤ maxi |wi| · σ2 ≤ σ3 · τ (by our assumption on the

magnitudes of the weights). By definition, we have that Pr[
∑n

i=1wixi ≤ b] = Pr[S ≤ b/σ]
and an application of Theorem 4 gives

∣∣Pr[
∑n

i=1 wixi ≤ b]− Φ( b
σ
)
∣∣ ≤ τ . We analogously

obtain that
∣∣Pr[

∑n
i=1 wixi ≤ a]− Φ( a

σ
)
∣∣ ≤ τ . Since

Pr
[ n∑
i=1

wixi ∈ (a, b]
]
− Φ([ a

σ
, b
σ
]) = Pr

[ n∑
i=1

wixi ≤ b
]
− Φ( b

σ
) + Φ( a

σ
)−Pr

[ n∑
i=1

wixi ≤ a
]

the first inequality follows by the triangle inequality. The second inequality follows from the
fact that Φ([c, d]) ≤ |d− c| for all c, d ∈ R.
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2.1.2 Fourier Analysis over {−1, 1}n.

We consider functions f : {−1, 1}n → R (though we often focus on Boolean-valued functions
which map to {−1, 1}), and we think of the inputs x to f as being distributed according
to the uniform probability distribution. The set of such functions forms a 2n-dimensional
inner product space with inner product given by 〈f, g〉 = E[f(x)g(x)]. The set of functions
(χS)S⊆[n] defined by χS(x) =

∏
i∈S xi forms a complete orthonormal basis for this space. We

will often simply write xS for
∏

i∈S xi.

Given a function f : {−1, 1}n → R we define its Fourier coefficients by f̂(S)
def
=

E[f(x)xS], and we have that f(x) =
∑

S f̂(S)xS. We refer to the maximum |S| over all

nonzero f̂(S) as the Fourier degree of f. When |S| = 1 we usually abuse notation and write
f̂(i) instead of f̂({i}).

As an easy consequence of orthonormality we have Plancherel’s identity 〈f, g〉 =
∑

S f̂(S)ĝ(S),

which has as a special case Parseval’s identity, E[f(x)2] =
∑

S f̂(S)2. From this it follows

that for every f : {−1, 1}n → {−1, 1} we have
∑

S f̂(S)2 = 1.
We recall the well-known fact (see e.g. [KKL88]) that the total influence Inf(f) of any

Boolean function equals
∑

S f̂(S)2|S|. Moreover, for every threshold function f (in fact for

every unate function), we have that Infi(f) = |f̂(i)|.

2.1.3 Other Technical Preliminaries.

A function f : {−1, 1}n → {−1, 1} is said to be a “junta on J ⊆ [n]” if f only depends on
the coordinates in J . As stated earlier, we say that f is a J-junta, 0 ≤ J ≤ n, if it is a junta
on some set of cardinality at most J . For a vector u ∈ Rm we write ‖u‖1 to denote the L1

norm of u, i.e. ‖u‖1 =
∑m

i=1 |ui|. We write “X ← D” to indicate that random variable X is
distributed according to distribution D.

Finally, we give a precise definition of the notion of a “regular” threshold function:

Definition 6. Let f(x) = sign(w0 +
∑n

i=1wixi) be a threshold function where
∑n

i=1 w
2
i = 1.

We say that f is τ -regular if |wi| ≤ τ for all i ∈ [n].3

2.2 Randomly constructing approximators to regular threshold
functions.

Fix hθ(x) = sign(θ +
∑m

i=1 uixi) to be a τ -regular threshold function, so
∑m

i=1 u
2
i = 1 and

|ui| ≤ τ for all i ∈ [m]. Our notation emphasizes the threshold parameter θ since it will play
an important role later.

We begin by defining a distribution D over linear forms L(x) =
∑m

i=1 cixi. The distribu-
tion D is defined using the weights ui similarly to how Bruck and Smolensky [BS92] define
a distribution over polynomials using the Fourier coefficients of a Boolean function. A draw
of L(x) from D is obtained as follows: L(x) is first initialized to 0. Then the following is

3Strictly speaking, τ -regularity is a property of a particular representation sign(w0 +
∑n

i=1 wixi) and not
of a threshold function f , which could have different representations some of which are τ -regular and some
of which are not. The particular representation we are concerned with will always be clear from context. A
similar remark holds for Definition 7.
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independently repeated N
def
= Θ(‖u‖2

1 · 1
τ2
· ln(1/τ)) times: an index i ∈ [m] is selected with

probability |ui|
‖u‖1 , and we update L(x) by adding sign(ui)xi to its previous value.

Fix any z ∈ {−1, 1}m. For L← D, we may view L(z) as a sum of N i.i.d. ±1-valued ran-

dom variables Z1(z), . . . , ZN(z), where the expectation of each Zj(z) is
∑m

i=1
|ui|
‖u‖1 sign(ui)zi =

1
‖u‖1u · z. We thus have:

EL←D[L(z)] =
N∑
j=1

E[Zj(z)] =
N

‖u‖1

(u · z). (1)

With D in hand we define a distribution D′ over threshold functions gθ in the following
natural way: to draw a function gθ ← D′ we draw L← D and set

gθ(x) = sign

(
θ +
‖u‖1

N
L(x)

)
. (2)

We would like to show that for gθ ← D′, the probability that gθ(z) disagrees with hθ(z)
is “small,” i.e. at most O(τ). But such a bound cannot hold for every z ∈ {−1, 1}m for
the following reason: if the value of θ+u · z is arbitrarily close to 0, then the expected value
of the argument to sign in (2) may be arbitrarily close to 0. On the other hand, for z such
that θ + u · z is not too close to 0, it is possible to argue that gθ(z) is incorrect only with
small probability (over the draw of gθ ← D′). Moreover, the regularity of hθ lets us argue
that only a small fraction of inputs z have θ + u · z close to 0, so we can conclude that the
expected error of gθ is low. We now provide the details.

We will use the following notion of the “margin” of an input relative to a threshold
function:

Definition 7. Let f(x) = sign(w0 +
∑n

i=1 wixi) be a threshold function where the weights are

scaled so that
∑n

i=1 w
2
i = 1. Given a particular input z ∈ {−1, 1}n we define marg(f, z)

def
=

|w0 +
∑n

i=1 wizi|.

Let MARGθ,τ
def
= {z ∈ {−1, 1}m : marg(hθ, z) ≥ τ} denote the set of points in {−1, 1}m

with margin at least τ under hθ. We now show that a random gθ ← D′ has high expected
accuracy on each point z ∈ MARGθ,τ :

Lemma 8. For each z ∈ MARGθ,τ we have Prgθ←D′ [hθ(z) 6= gθ(z)] ≤ τ. Moreover, each
gθ ← D′ is an N-junta.

Proof. The latter claim is immediate so it suffices to prove the former. Fix any z ∈ MARGθ,τ ,
so |θ + u · z| ≥ τ . We need to bound from above the probability of the “bad” event (over
the random choice of gθ ← D′) that hθ(z) 6= gθ(z); we refer to this bad event as B.

The key claim is that if B occurs then it must be the case that |L(z) − EL←D[L(z)]| ≥
Nτ
‖u‖1 . For suppose that hθ(z) = 1 and gθ(z) = −1 (the other case is handled similarly).

By definition, we have that θ + u · z ≥ 0 and θ + (‖u‖1/N)L(z) < 0. Since z belongs
to MARGθ,τ , the first inequality gives that θ + u · z ≥ τ , which implies, via (1), that
E[L(z)] ≥ (N/‖u‖1)(τ − θ). The second inequality θ + (‖u‖1/N)L(z) < 0 is equivalent to
L(z) < −θN/‖u‖1, and consequently we have E[L(z)]− L(z) ≥ Nτ/‖u‖1.
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We thus have that Prgθ←D′ [hθ(z) 6= gθ(z)] ≤ PrL←D[|L(z) − E[L(z)]| ≥ Nτ
‖u‖1 ]. Now we

again view L(z) as the sum of N i.i.d. {−1, 1} random variables. The Hoeffding bound
(Theorem 3) yields

PrL←D

[∣∣L(z)− E[L(z)]
∣∣ ≥ Nτ

‖u‖1

]
≤ 2 exp

(
−2

(Nτ/‖u‖1)2

4N

)
≤ τ,

where the second inequality follows by our choice of N (recall that N = Θ(‖u‖2
1 · 1
τ2
·ln(1/τ))).

This completes the proof of the lemma.

We next note that by the regularity of hθ, most points in {−1, 1}m have a large margin
(and hence are covered by Lemma 8):

Lemma 9. Prx∈{−1,1}m [x /∈ MARGθ,τ ] ≤ 4τ .

Proof. The proof is a consequence of regularity via the Berry-Esséen theorem (see Sec-
tion 2.1.1); it follows directly by applying (the last statement of) Corollary 5 noting that∑m

i=1 u
2
i = 1.

Combining Lemmas 8 and 9, we get the main result of this subsection:

Lemma 10. Egθ←D′ [Prx∈{−1,1}m [gθ(x) 6= hθ(x)]] ≤ 5τ.

2.3 Approximating threshold functions using their influences as
(almost all of) the weights.

Our next tool is the following theorem on approximating threshold functions. Roughly, it
says that every threshold function f can be well approximated by a threshold function f ′

where all but the poly(1/ε) largest weights of f ′ have a special structure: up to sign, they

are the values Infi(f). (Recall that for a threshold function f we have |f̂(i)| = Infi(f); see
Section 2.1.2.)

Theorem 11. [Theorem 7.1 of [OS08]] There is a fixed polynomial function κ(ε) = Θ(ε144)
such that the following holds: Let f(x) = sign

(
w0 +

∑
i∈H wixi +

∑
i∈T wixi

)
be a threshold

function over head indices H and tail indices T , where H
def
= {i : |f̂(i)| ≥ κ(ε)2} and T

satisfies
∑

i∈T w
2
i = 1. Then either:

(i) f is O(ε)-close to a junta over H; or,

(ii) f is O(ε)-close to the threshold function f ′(x) = sign
(
w0 +

∑
i∈H wixi +

∑
i∈T

f̂(i)
σT
xi

)
,

where σT denotes
√∑

i∈T f̂(i)2.

Moreover, in the latter case we have σT = Ω(ε2).
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Remark 12. We remark that the above is a slight rephrasing of the original statement of
Theorem 7.1 in [OS08]. In particular, the original statement does not specify the degree of
the polynomial κ(ε) and does not contain the last sentence in the above regarding the lower
bound on σT . To verify that we can choose κ(ε) = Θ(ε144), see the discussion immediately
before Equation (8.8) of [OS08]; our κ(ε) is the τ(ε) of [OS08]. The last sentence in the
above statement follows from Equation (8.8) of [OS08].

Note that
∑

i∈T (f̂(i)/σT )2 = 1, and since σT = Ω(ε2), for each i ∈ T we have

|f̂(i)/σT | < κ(ε)2/σT ≤ O(ε288)/Ω(ε2) = O(ε286). (3)

This means that for any restriction ρ fixing the variables in H, the function f ′|ρ is poly(ε)-
regular; this is important since it will allow us to apply the results of Section 2.2 to these
restrictions.

2.4 Proof of Theorem 1.

Now we are ready to prove Theorem 1. We first show that every threshold function f is
O(ε)-approximated by a (1 + Inf(f)2) · poly(1/ε)-junta threshold function, and then argue
that this yields Theorem 1. For brevity, in the rest of this subsection we write I for Inf(f).

Let 0 < ε < 1
2

be given and let f be any n-variable threshold function. W.l.o.g. we may
consider a representation f(x) = sign(w0 +

∑n
i=1wixi) in which each wi 6= 0, and by scaling

the weights we may further assume that T = [n] \H has
∑

i∈T w
2
i = 1.

We apply Theorem 11 to f . Parseval’s identity implies that at most 1/κ(ε)4 many indices
i can have |f̂(i)| ≥ κ(ε)2, so we have |H| ≤ 1/κ(ε)4 = poly(1/ε). In Case (i) we immediately
have that f is O(ε)-close to a poly(1/ε)-junta, so we suppose that Case (ii) holds, and
henceforth argue about the O(ε)-approximator f ′ defined in Case (ii).

We consider all 2poly(1/ε) restrictions ρ obtained by fixing the head variables inH. Our goal
is to apply the results of Section 2.2 to the functions f ′|ρ. As noted in Section 2.3, for each
restriction ρ the resulting function f ′|ρ over the tail variables in T is a τ(ε)-regular threshold
function, where τ(ε) = O(ε286) is the function implicit in the RHS of (3) (for brevity we
henceforth write τ for τ(ε)). Moreover, all these restrictions are threshold functions defined
by the same linear form over the variables in T : they only differ in their threshold values,

i.e. the values θρ
def
= w0 +

∑
i∈H wiρi.

In keeping with the notation of Section 2.2, for each restriction ρ we write hθρ to denote

f ′|ρ, i.e. hθρ(xT )
def
= sign(θρ +

∑
i∈T uixi) where ui

def
= f̂(i)

σT
and xT

def
= (xi)i∈T . We observe that

‖u‖1 =
∑
i∈T
|ui| =

1

σT

∑
i∈T
|f̂(i)| ≤ 1

σT

n∑
i=1

|f̂(i)| ≤ I · poly(1/ε). (4)

where the last inequality uses Infi(f) = |f̂(i)| and σT = Ω(ε2). Recalling that N equals
Θ(‖u‖2

1 · 1
τ2
· ln(1/τ)), we have that N is at most I2 · poly(1/ε).

We consider a distribution D′′ over threshold functions on {−1, 1}n defined as follows: a
draw of g ← D′′ is obtained by drawing L ← D and setting g(x) = sign(w0 +

∑
i∈H wixi +

‖u‖1
N
· L(xT )). For every outcome of g ← D′′, the function g depends on at most |H| + N =

(1 + I2)poly(1/ε) many variables.
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It remains only to argue that some g drawn from D′′ is O(ε)-close to f ′. Via the proba-
bilistic method, to do this it suffices to show that Eg←D′′ [Prx∈{−1,1}n [g(x) 6= f ′(x)]] = O(τ)
(recall that τ � ε). We now do this using the results of Section 2.2.

Fix any assignment ρ to the variables in H. By Lemma 10 we have

Eg←D′′
[
PrxT←{−1,1}|T | [f ′|ρ(xT ) 6= g|ρ(xT )]

]
≤ 5τ.

Averaging over all ρ, we get

Eg←D′′
[
Prx←{−1,1}n [f ′(x) 6= g(x)]

]
≤ 5τ

which is the desired bound.

So, we have shown that every threshold function f is O(ε)-close to a (1 + I2) · poly(1/ε)-
junta; we finish the proof of Theorem 1 by arguing that this implies a I2 ·poly(1/ε) junta size
bound. Let c be an absolute constant such that every f is ε-close to a (1 + I2) · (1/ε)c-junta;
we consider different cases based on the size of I. If I > 1, then it is clear that (1+I2)(1/ε)c <

2I2(1/ε)c < I2(1/ε)c+1 (using ε < 1/2). If I < ε2, since
∑
|S|≥1 f̂(S)2 ≤

∑
|S|≥1 |S|f̂(S)2 = I

(see Section 2.1.2), by Parseval’s identity we get that |f̂(∅)| ≥ 1 − ε. This means that f
is ε-close to a constant function, which is of course a 0-junta. Finally, if ε2 ≤ I ≤ 1, then
1 + I2 ≤ 2 ≤ 2I2ε−4 ≤ I2ε−5, so f can be ε-approximated by a I2(1/ε)c+5-junta. So in every
case f is ε-close to an Inf(f)2 · (1/ε)c+5-junta, and Theorem 1 is proved.

2.5 Discussion and Conjectures.

2.5.1 Improved low-weight approximators of threshold functions.

Recall the main result of [Ser07]:

Theorem 13. [Ser07] Every n-variable threshold function f is ε-approximated by a threshold

function g = sign(w · x− θ) with w1, . . . , wn all integers satisfying
∑n

i=1 w
2
i ≤ n · 2Õ(1/ε2).

While a linear dependence on n is the best possible bound which can hold uniformly for
all n-variable threshold functions, it is possible to give a sharper bound that depends on
f. Applying Theorem 13 to the threshold function junta which is given by Theorem 1, we
obtain:

Corollary 14. Every n-variable threshold function f is ε-approximated by a threshold func-
tion g = sign(w · x− θ) with w1, . . . , wn all integers satisfying

∑n
i=1w

2
i ≤ Inf(f)2 · 2Õ(1/ε2).

Since Inf(f)2 is at most n (but can be much less) for every threshold function f , this strength-
ens Theorem 13.

2.5.2 A lower bound.

We observe that the Inf(f)2 · poly(1/ε) upper bound of Theorem 1 is nearly best possible:
no strengthening can replace this with a bound smaller than Ω(Inf(f)2 + 1/ε2).

For the Ω(Inf(f)2) term, straightforward probability arguments (see e.g. [Ser07]) show
that any 1/10-approximator for the majority function sign(x1+· · ·+xn) must depend on Ω(n)
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variables. Since the total influence of majority is Θ(
√
n), this shows that no subquadratic

dependence on Inf(f) is possible.
For the Ω(1/ε2) term, we use the following:

Proposition 15. There is a threshold function f with Inf(f) = Θ(1) such that any ε-
approximator g must depend on Ω(1/ε2) variables.

Proof. Let a = log(1/ε)− 5 and b = 1/ε2. The desired f is f(x) = sign(`(x)), where

`(x) = x1 + · · ·+ xa +
1

2b
xa+1 + · · ·+ 1

2b
xa+b − a.

It is easy to verify that if any of the bits x1, . . . , xa are −1 then `(x) is guaranteed to be
negative, while if all bits x1, . . . , xa are 1 then f computes the majority function over the
b input bits xa+1, . . . , xa+b, which outputs 1 with probability 1/2. From this it follows that
each i ∈ [a] has Infi(f) = Θ(ε), since flipping bit i changes the value of f if and only if both
(i) all other bits in [a] \ {i} are set to 1 (which occurs with probability Θ(ε)) and (ii) the
majority of the bits xa+1, . . . , xa+b are 1 (which occurs independently with probability 1/2).
Similar reasoning, using the fact that each input variable to a k-variable majority function
has influence Θ(1/

√
k), gives that Infi(f) = Θ(ε2) for each i ∈ [a + 1, b]. Consequently we

have Inf(f) = Θ(1).
Any ε-approximator for f must be a 1/16-approximator of the subfunction f |ρ obtained

by setting all the first a bits to 1. But f |ρ is the majority function over b variables, and as
mentioned above any 1/16-approximator must depend on Ω(b) variables.

2.5.3 Extending to degree-d?

It is natural to wonder whether Theorem 1 extends to polynomial threshold functions (PTFs)
of degree d, i.e. Boolean functions f(x) = sign(p(x)) where p is a degree-d polynomial. We
pose the following conjecture which is a broad generalization of Theorem 1:

Conjecture 1. Every degree-d PTF f is ε-approximated by a (Inf(f)/ε)O(d)-junta.

We suspect that even the d = 2 case of Conjecture 1 may be challenging, as the total
influence of low-degree polynomial threshold functions does not seem to be well understood.

2.5.4 An exponential sharpening of Bourgain’s theorem?

Recall that by Parseval’s identity, every Boolean function f has
∑

S⊆[n] f̂(S)2 = 1. Since

the total influence Inf(f) equals
∑

S f̂(S)2|S| and the degree of each monomial xS is |S|, we
may interpret Inf(f) as the “average” Fourier degree of f.

With this point of view, Friedgut’s theorem may be viewed as part of a sequence of three
results, all of which essentially say that Boolean functions with low degree (in some sense)
are close (in some sense) to juntas. The first and earliest of these results is the following
theorem of Nisan and Szegedy:

Theorem 16. [NS94] Every Boolean function with (maximum) Fourier degree k is a k2k-
junta.
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This theorem imposes a strong degree condition on f – that it have zero Fourier weight above
degree k – and gets a strong conclusion, that f is identical to a k2k-junta. Next, Friedgut’s
theorem [Fri98] relaxed both the degree condition on f and the resulting conclusion: if the
“average” Fourier degree of f (i.e. Inf(f)) is at most k, then f is ε-close to a 2O(k/ε)-junta.
Finally and most recently, Bourgain relaxed the degree condition even further, by showing
that if f puts most of its Fourier weight on low-degree monomials, then regardless of where
the remaining Fourier weight lies, f must be close to a junta:

Theorem 17. [Bou02] Every Boolean function f with
∑
|S|>k f̂(S)2 ≤ (ε/k)1/2+o(1) is ε-close

to a 2O(k) · poly(1/ε)-junta.

Let us consider how each junta size bound changes when we restrict our attention to
threshold functions in the above theorems. We first observe that the [NS94] bound can be
exponentially improved in this case:

Proposition 18. Every threshold function with (maximum) Fourier degree k is a (2k − 1)-
junta.

(This follows from the easy fact that any threshold function with r relevant variables contains
a subfunction which is an ( r+1

2
)-way AND or OR.) Our Theorem 1, of course, tells us that

Friedgut’s theorem can also be exponentially sharpened if f is a threshold function. This
motivates the natural question of whether Bourgain’s theorem can be similarly sharpened
for threshold functions. We state the following:

Conjecture 2. Every threshold function f with
∑
|S|>k f̂(S)2 ≤ (ε/k)1/2+o(1) is ε-close to a

poly(k/ε)-junta.

3 Theorem 2: approximating threshold functions to

higher accuracy.

As outlined in Section 1.2, our new approach can be conceptually broken into the following
steps:

1. Show that every threshold function has a representation in which many weights are
“nice”.

2. Use the “niceness” of the weights to establish anti-concentration of w · x.

3. Finally, use the anti-concentration of w ·x to obtain an approximator with small integer
weights.

Note that there is a delicate relationship between the first two steps: the structural result
for the weights that is established in the first step must match the necessary conditions for
anti-concentration in the second step. The third step is a simple generic lemma translating
anti-concentration into low-weight approximation.

The structure of this section is as follows: In Section 3.1 we recall the anti-concentration
results that we need to implement Step 2 in our above proof template and prove the simple
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lemma that implements Step 3 in our proof template. In Section 3.2 we give a “warmup”
to our main result by using the template to give a clean and modular proof of the main
result of [Ser07]. In Section 3.3 we show how the template yields a variant of Theorem 2

which has an nO(1/ε2/3) bound. This subsection includes the main new technical contribution
of Section 3, a new result on representations of threshold functions, Lemma 27. Roughly
speaking, this lemma says that every threshold function has a representation such that many
of the differences between consecutive weights are not too small. Then in Section 3.4 we
show how this nO(1/ε2/3) bound can be improved to fully prove Theorem 2.

Finally, all the results of this section can be appropriately generalized to constant-biased
product distributions and K-wise independent distributions (but as we show, they provably
cannot be generalized to every distribution). We give these extensions in Section 4.

3.1 Anti-concentration of weighted sums of Bernoulli random vari-
ables.

We start with the formal definition of anti-concentration:

Definition 19. Let a ∈ Rn be a weight–vector and r ∈ R+. The Lévy (anti-)concentration
function of a is defined as

pr(a)
def
= sup

v∈R
Prx←U [|a · x− v| ≤ r].

Thus, the anti-concentration of a weight vector a is an upper bound on the probability
that a · x lies in any small interval (of length 2r). An early and important result on anti-
concentration was given by Erdős [Erd45]; improving on an earlier result of Littlewood and
Offord [LO43], he proved

Theorem 20 (Erdős). Let a = (a1, . . . , ak) ∈ Rk, r ∈ R+ be such that |ai| ≥ r for all i ∈ [k].
Then pr(a) ≤

(
k
k/2

)
/2k = O(k−1/2).

A large body of subsequent work generalized this result in many different ways (see
e.g. Chapter 7 of [TV06]); anti-concentration results of this general flavor have come to be
known as “Littlewood-Offord theorems.” We shall require an extension of Theorem 20 which
is due to Halász [Hal77], improving upon Erdős-Moser [Erd65] and Sárközy-Szemerédi [SS65].
While Erdős’s theorem gives the best (smallest) possible anti-concentration bound assuming
that each weight ai is large, Halász’s theorem gives a stronger bound under the stronger
assumption that the difference between any two weights is large:

Theorem 21 (Halász). Let a = (a1, . . . , ak) ∈ Rk, r ∈ R+ be such that |ai − aj| ≥ r for all
i 6= j ∈ [k]. Then pr(a) ≤ O(k−3/2).

Looking ahead, we note that the “3/2” exponent instead of “1/2” is the key to our

improvement from 2Õ(1/ε2) to 2Õ(1/ε2/3).
The last fact about anti-concentration that we shall need is the following simple lemma,

which says that if we extend a weight vector a by adding more weights, its anti-concentration
can only improve:
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Lemma 22 (Extension). Let a ∈ Rk be any k-dimensional weight vector and r ∈ R+ be any
non-negative real. For any n > k, let a′ ∈ Rn be the vector (a1, . . . , ak, a

′
k+1, . . . , a

′
n) where

the weights a′k+1, . . . , a
′
n may be any real numbers. Then we have pr(a

′) ≤ pr(a).

The proof is by a simple averaging argument, using the fact that for x ← {−1, 1}n
uniform random, conditioned on any outcome of the variables xk+1, . . . , xn, the distribution
of x1, . . . , xk is still uniform.

From anti-concentration to a low-weight approximator. The following simple lemma
takes us from anti-concentration to a low-weight approximator. We use it to implement Step
3 in our proof template.

Lemma 23. Let g(x) = sign(
∑n

i=1 wixi−θ) be any threshold function. If pr(w1, . . . , wn) ≤ ε,
then there exists a 2ε-approximator h for g, where h is a threshold function with integer
weights each of magnitude O(maxi |wi| ·

√
n ln(1/ε)/r).

Proof. Let α = r/(
√
n ln(2/ε)). For each i ∈ [n], let ui be the value obtained by round-

ing wi to the nearest integer multiple of α and vi = ui/α ∈ Z. We claim that h(x) =
sign(

∑n
i=1 vixi−θ/α) is the desired approximator. It is clear that maxi |vi| = O(maxi |wi|/α),

so it suffices to show that h is (ε+ ε)-close to g.
For i ∈ [n], let ei = wi− ui, so that u · x = w · x− e · x. We have that g(x) 6= h(x) only if

|e · x| ≥ r or |w · x− θ| ≤ r. We bound from above the probability of each of these events by
ε. The probability of the second event is bounded by ε since Pr[|w · x− θ| ≤ r] ≤ pr(w) ≤ ε.
For the first event we have Pr[|e · x| ≥ r] ≤ Pr[|e · x| ≥ ‖e‖2

√
2 ln(2/ε)] ≤ ε, where the first

inequality uses the fact ‖e‖2 ≤ (r/
√

2 ln(2/ε)) and the second follows from the Hoeffding
bound (Theorem 3).

3.2 Warmup: Simple Proof of [Ser07] Main Result.

In this section we give a simple and modular proof of nearly the same bound as the main
result of [Ser07], following the proof template from the start of Section 3. Let f : {−1, 1}n →
{−1, 1} be any threshold function.

First step: This is provided for us by the following result, which is an immediate conse-
quence of Lemma 5.1 in [OS08]. Intuitively, this result says that every threshold function
has a representation in which the k-th largest weight is not too small compared with the
largest weight.4

Claim 24. Let f : {−1, 1}n → {−1, 1} be any threshold function, let ε > 0, and let k ∈ [n].
There is an ε-approximator g(x) = sign(

∑n
i=1wixi − θ) for f with the following property:

Suppose (reordering and rescaling weights if necessary) that 1 = |w1| ≥ · · · ≥ |wn|. Then
|wk| ≥ 1/(kk

√
3n ln(2/ε)).

4We do not repeat the proof of Claim 24 or Lemma 5.1 from [OS08] here but we note that the proof is
self-contained and rather straightforward; it follows along the lines of [MTT61]’s classic argument to upper
bound the weights required to represent any threshold function.
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Second step: We apply Erdős’s theorem, Theorem 20, to the weight vector (w1, . . . , wk)
from Claim 24 (we will fix k later), taking r = 1/(kk

√
3n ln(2/ε)) to be the bound from

Claim 24. Theorem 20 gives pr(w1, . . . , wk) ≤ O(1/
√
k), and the Extension Lemma 22 gives

that in fact pr(w1, . . . , wn) ≤ O(1/
√
k).

Third step: It remains only to fix k = min{1/ε2, n} and observe that the h obtained from
Lemma 23 is an O(ε)-approximator for f . We provide the details below.

Note that if 1/ε2 > n, then integer weights 2Õ(1/ε2) suffice to exactly represent f by
[MTT61]. Hence, we can assume that 1/ε2 ≤ n, in which case k = 1/ε2. By applying
Lemma 23 for the threshold function g from Claim 24, we obtain a 2ε-approximator h for
g, which is a 3ε-approximator to f (since g is ε-close to f). Note that, by Claim 24, the
maximum absolute weight in g has unit magnitude. Recalling that the value of the radius
was selected so that 1/r = kk

√
3n ln(2/ε) =

√
n · 2Õ(1/ε2) (by our choice of k), Lemma 23

implies that h has integer weights each of magnitude n · 2Õ(1/ε2).
We have thus proved:

Theorem 25. Every n-variable threshold function f is ε-approximated by a threshold func-
tion h = sign(v · x− θ) with v1, . . . , vn all integers of magnitude n · 2Õ(1/ε2).

This is almost identical to the main result of [Ser07]; the bound of [Ser07] is slightly
stronger (it has

√
n in place of n).

3.3 Toward Theorem 2: An nO(1/ε2/3) bound.

In this section we prove an intermediate result towards our ultimate goal of poly(n)·2Õ(1/ε2/3):

Theorem 26. Every n-variable threshold function f is ε-approximated by a threshold func-
tion h = sign(v · x− θ) with v1, . . . , vn all integers of magnitude nO(1/ε2/3).

We follow the same high-level proof template as the previous section. Let f : {−1, 1}n →
{−1, 1} be a threshold function. We may assume w.l.o.g. that f depends on all n input
variables, and since the claimed bound follows again from [MTT61] if 1/ε2/3 > n − 2, we
assume 1/ε2/3 ≤ n− 2.

First step: Our goal now is to apply Halász’s anti-concentration bound in Step 2 rather
than Erdős’s theorem. To do this we need the following new result on representing threshold
functions, which intuitively says that every threshold function has a representation using
weights such that many of the differences between consecutive weights are not too small
compared to the largest weight:

Lemma 27. Let f : {−1, 1}n → {−1, 1} be a threshold function that depends on all n
variables. There is a representation sign(

∑n
i=1wixi − θ) for f with the following property:

Suppose (reordering and rescaling weights if necessary) that 1 = |w1| ≥ · · · ≥ |wn| > 0. For

i ∈ [n − 1] let ∆i
def
= |wi| − |wi+1|. Then for any k ∈ [n − 2], the k-th biggest element of the

sequence ∆1, . . . ,∆n−1 is at least 1
(2n+2)2k+8 .
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We pause to contrast this result with an earlier theorem due to H̊astad [H̊as05] that
appeared in [Ser07]. Under the same hypotheses as Lemma 27, the earlier theorem asserted
that for any k ∈ [n] the k-th largest weight wk satisfies |wk| ≥ 1

k!(n+1)
. The proof of the earlier

theorem centers on a careful analysis of a linear program in which the variables are the weights
w1, . . . , wn and there are 2n constraints corresponding to the 2n points x ∈ {−1, 1}n. To
prove Lemma 27, we must now analyze a linear program with some additional constraints
which, intuitively, ensure that there are “gaps” between the weights.5 We prove Lemma 27
at the end of this subsection.

Second step: We take k = 1/ε2/3 and consider the k largest differences ∆i1 = |wi1| −
|wi1+1|, . . . ,∆ik = |wik | − |wik+1|. Lemma 27 implies that for all a 6= b ∈ [k] we have |wia −
wib| ≥ r, for r = 1/(2n + 2)2k+8. Applying Halász’s anti-concentration bound, Theorem 21,
we get that pr(wi1 , . . . , wik) ≤ O(k−3/2) = O(ε), and the Extension Lemma 22 further gives
pr(w1, . . . , wn) = O(ε).

Third step:. We simply apply Lemma 23. Recalling that r = 1/(2n+ 2)Θ(1/ε2/3), the proof
of Theorem 26 is complete (modulo the proof of Lemma 27).

Proof of Lemma 27. Let f(x) be a threshold function. We first consider the case that f
is odd, i.e. f(x) = −f(−x) for all x ∈ {−1, 1}n; in this case f can be represented with a
threshold of zero. Once we have established the result for such threshold functions we will
use it to establish the general case.

By symmetry of {−1, 1}n we may assume that f is monotone increasing in each coordinate
xi. By reordering coordinates we may assume that Inf1(f) ≥ Inf2(f) ≥ · · · ≥ Infn(f) > 0
(the final inequality is strict because f depends on all n coordinates).

We consider the setW ⊆ Rn of weight vectors w = (w1, . . . , wn) that satisfy the following
properties:

1. w · x ≥ 1 for every x ∈ {−1, 1}n such that f(x) = 1. Note that since f is odd these
inequalities imply the corresponding inequalities for negative points, w · x ≤ −1 for
every x ∈ {−1, 1}n such that f(x) = −1.

2. wi − wi+1 ≥ 1 for all i ∈ [n− 1], and wn ≥ 1.

The first set of 2n−1 constraints says that sign(w · x) is a valid representation for f (i.e.
f(x) = sign(w · x) for all x ∈ {−1, 1}n). The second set of n constraints says that no two
weights are precisely the same and moreover all the weights are positive. (These are the new
constraints that did not feature in the proof of [H̊as05].)

Thus W is the feasible set of a linear program LP consisting of 2n−1 + n inequalities on
w1, . . . , wn: 2n−1 inequalities correspond to points of the hypercube {−1, 1}n and n inequal-
ities correspond to the set

Dn = {(1,−1, 0, . . . , 0)1×n, (0, 1,−1, 0, . . . , 0)1×n, . . . , (0, . . . , 1,−1)1×n, (0, . . . , 0, 1)1×n}.
5In fact, by considering the majority function one can verify that the 2n-constraint linear program of the

earlier proof is not sufficient; that LP yields a representation in which each wi is the same and hence the
“gaps” ∆i are all 0.
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We claim that the linear program LP is feasible, or equivalently W 6= ∅. Indeed, by
simple standard arguments it can be shown that every odd threshold function f : {−1, 1}n →
{−1, 1} has a representation sign(w·x) such that (i) for all x ∈ {−1, 1}n, it holds sign(w·x) 6=
0, and (ii) every partial sum of the weights is distinct, i.e. for all I 6= J ⊆ [n] it holds∑

i∈I wi 6=
∑

i∈J wj. The latter in particular implies that w1 6= w2 6= . . . 6= wn. Now
recall that Inf1(f) ≥ Inf2(f) ≥ . . . ≥ Infn(f) > 0 and that f is monotone increasing in all its
coordinates. It is well known and easy to show (see e.g. [FP04]) that there is a representation
sign(w · x) of such a threshold function that satisfies w1 ≥ w2 ≥ . . . wn > 0. Therefore, we
can scale the weights so that all the constraints in the linear program LP are simultaneously
satisfied.

Having established that W 6= ∅, we select a weight vector w∗ ∈ W that maximizes the
number of tight inequalities (i.e. satisfied with equality) in LP . If more than one weight
vector satisfies a maximum number of tight inequalities, we choose one arbitrarily. At this
point, we invoke the following crucial claim:

Claim 28. There exists a set of n points y(1), . . . , y(n) ∈ f−1(1) ∪ Dn such that w∗ is the
unique solution of the linear system: {w · y(i) = 1 | i = 1, 2, . . . , n}. (Henceforth, we shall
denote this system by (∗).)

The proof of the claim is essentially the same as in the proof of Muroga et al.’s [MTT61]
classic upper bound on the size of integer weights that are required to express LTF’s over
{−1, 1}n. For completeness we include a proof of the claim in the Appendix.

Note that (∗) is a system of n linear equations in the variables w1, . . . , wn where each
coefficient of each variable in the equations is −1, 0 or 1 and the right-hand side of each
equation is 1. Since our goal is to prove a statement about the magnitude of the differences
wi − wi+1, i = 1, 2, . . . , n − 1, we define an appropriate set of n new variables and rewrite
(∗). In particular, we define the set of variables δ1, . . . , δn as follows:

δn = wn, δi = wi − wi+1 for i ∈ [n− 1].

This is equivalent to

wi =
n∑
j=i

δj for i ∈ [n].

We let δ denote [δ1, . . . , δn]. By rewriting (∗), we get an equivalent system (∗∗) of n
equations in variables δ1, . . . , δn where the coefficients of each variable in each equation are
integers in the range [−n, n] and all the right-hand sides remain 1.

(We note that in a more general setting, where the variables xi, i ∈ [n − 1] are still
±1-valued while xn may take values in {−R, . . . , R} for some integer R > 0, the equivalent
system (∗∗) has n − 1 equations with integer coefficients in [−n, n] and a single equation
with integer coefficients in [−(R + n− 1), R + n− 1]. We use this fact in Lemma 31.)

Hence, the linear system (∗∗) has the unique strictly positive solution

δ∗n = w∗n, δ∗i = w∗i − w∗i+1 for i ∈ [n− 1].

At this point we reorder the variables δi in decreasing order of magnitude of the δ∗i ’s. We
thus get a new set of variables τ1, . . . , τn such that

τ ∗i = i-th largest of {δ∗1, . . . , δ∗n},
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breaking ties arbitrarily. We similarly denote τ = [τ1, . . . , τn].

So (∗∗) is now a system of n equations in variables {τi}i∈[n], where the coefficients of each
variable in each equation are integers in the range [−n, n] and all the right-hand sides are
still 1. The values τ ∗1 , . . . , τ

∗
n in the unique solution of this system are strictly positive and

ordered in decreasing order of magnitude. Let us write

αj1τ1 + αj2τ2 + . . .+ αjnτn = 1

for the j-th equation where αji, i, j ∈ [n] are integers in [−n, n]. We claim that the above
system is equivalent to the following system of n equations in τ1, . . . , τn:

αj1τ1 +αj2τ2 + . . .+αjnτn = α11τ1 +α12τ2 + . . .+α1nτn for j = 2, 3, . . . , n, and τn = τ ∗n.

Indeed, it is straightforward to verify that τ ∗ = [τ ∗1 , . . . , τ
∗
n] is a feasible solution to the latter

system. Moreover, this system has a unique solution, since its matrix is non-singular. This
can be seen as follows: Let A = [αji]j,i∈[n] be the matrix of (∗∗) and denote by α(j) the vector
corresponding to the j-th row of A. This matrix is non-singular, i.e. det(A) 6= 0 since (∗∗)
has a unique solution. Let Z denote the n × n matrix of the latter system. Note that the
n-th row z(n) of Z corresponds to the vector [0, . . . , 0, 1], while the j-th row z(j), j ∈ [n−1] is
obtained from the j-th row of A by subtracting its first row, i.e. z(j) = α(j)−α(1). Therefore,
we conclude that det(Z) 6= 0.

Consider the latter equivalent system. Each of the first n− 1 equations is homogeneous
and can be rewritten as τ · z(j) = 0, where z(j) is a vector whose entries are integers in
[−2n, 2n]. So we have that τ ∗ = [τ ∗1 , . . . , τ

∗
n] is the unique solution to a linear system:

Zτ = b (5)

where Z is a non-singular n× n matrix with entries that are integers in [−2n, 2n] and with
last row [0, . . . , 0, 1], and b is [0, . . . , 0, τ ∗n].

Recall that τ ∗1 ≥ · · · ≥ τ ∗n > 0. We now show that each τ ∗k is somewhat large compared
to w∗1. The case k = 1 is easy: since

∑n
i=1 τ

∗
i = w∗1, we have τ ∗1 ≥ w∗1/n.

Fix any k ∈ {2, . . . , n}. After possibly reordering the first n − 1 rows of Z, the (k − 1)-
dimensional vector [1, 0, . . . , 0] can be expressed as a linear combination a1R1+· · ·+ak−1Rk−1

where Ri is the i-th row of the (k − 1)× (k − 1) upper left submatrix of Z. Since all entries
in Z are integers in [−2n, 2n], Cramer’s Rule implies that each |ai| is at most the maximum
determinant of any (k − 1)× (k − 1) matrix with all entries in [−2n, 2n]; this is easily seen
to be at most (k − 1)!(2n)k−1. It follows that there is a linear combination of the first k − 1
equations of (5) which yields

τ1 =
n∑
j=k

γkj τj (6)

where each |γkj | is at most (k − 1) · (2n) · (k − 1)!(2n)k−1 ≤ (2(k − 1)n)k. From (6), setting
τ = τ ∗ and recalling that the τ ∗i ’s are positive and ordered by magnitude, we now get
τ ∗1 ≤ (n− k + 1)(maxj |γkj |)τ ∗k which implies

τ ∗k ≥
τ ∗1

(2(k − 1)n)k(n− k + 1)
≥ τ ∗1

(2n)2k+1
(7)
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Recalling that τ ∗1 ≥ w∗1/n (which follows from the equality
∑n

i=1 τ
∗
i = w∗1), we obtain

τ ∗k ≥
w∗1

(2n)2k+2
.

Finally, we observe that for k ∈ [n − 1], the k-th biggest element of the sequence
∆1, . . . ,∆n−1 (see the lemma statement) is at least τ ∗k+1. (It is either τ ∗k+1 or τ ∗k depending
on whether or not δ∗n = w∗n is among the k largest elements of {δ∗1, . . . , δ∗n}.) Renormalizing
so that the largest weight is 1, we have shown that for odd f , the k-th biggest element of
the sequence ∆1, . . . ,∆n−1 is at least 1

(2n)2k+4 . This completes the proof of Lemma 27 for the
case that f is odd.

We now treat the case where f is not odd, i.e. f has a nonzero threshold. We do this
by considering the threshold function g : {−1, 1}n+1 → {−1, 1} which has zero threshold,
the n first weights the same as f , and an additional weight which is the threshold of f . The
result for the zero-threshold case shows that g has a representation sign(w1x1 + · · ·+wnxn +
wn+1xn+1) where |w1| ≥ · · · ≥ |wn+1|, and letting ∆i = |wi| − |wi+1| for i ∈ [n], the k-th

biggest element of ∆1, . . . ,∆n is at least |w1|
(2n+2)2k+4 for any k ∈ [n].

We now observe that for k ∈ [n − 2], the k-th biggest gap between the magnitudes of
the wi’s that correspond to actual weights of f is at least the (k + 2)-th biggest element of
∆1, . . . ,∆n. This holds since at most two of the values ∆j = |wj| − |wj+1| can involve the
weight wj? which corresponds to the threshold of f , as opposed to one of its actual weights.
Since |w1| is at least as large as the absolute value of the largest actual weight of f , we get
that for k ∈ [n− 2], the k-th biggest gap between the magnitudes of the actual weights of f
is at least (largest weight of f)/(2n + 2)2k+8. Renormalizing so that the largest magnitude
weight of f is 1, Lemma 27 is proved.

3.4 Proof of Theorem 2: A poly(n) · 2Õ(1/ε2/3) bound.

In this section we show how to use Theorem 26 and ideas from [Ser07] to prove Theorem 2.
We proceed by case analysis, as in [Ser07], based on the value of the critical index of the
threshold function, which we define shortly.

Some notation: Given a threshold function f(x) = sign(w · x− θ) such that |w1| ≥ · · · ≥
|wn| > 0 (wlog), for k ∈ [n] we denote by σk the quantity

√∑n
i=k w

2
i .

Definition 29 (critical index). We define the τ -critical index `(τ) of a threshold function
f = sign(w ·x− θ) as the smallest index i ∈ [n] for which |wi| ≤ τ ·σi. If this inequality does
not hold for any i ∈ [n], we define `(τ) =∞.

Given a threshold function f(x) = sign(w · x − θ) such that |w1| ≥ · · · ≥ |wn| > 0 and
ε > 0, we will prove the existence of an O(ε)-approximating threshold function for f with

integer weights of magnitude n3/2 · 2Õ(1/ε2/3). The proof combines Theorem 26 with a case
analysis, similar to [Ser07], based on the value of the ε-critical index ` = `(ε) of f . To obtain
our improved bound, we employ a case analysis that is more refined than the one in [Ser07]
and, in addition to Theorem 26, requires a technical extension of Lemma 27 for threshold
functions with non-boolean domains (Lemma 31).
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Before we proceed with the actual proof, we briefly summarize the approach of [Ser07].
Note that a threshold function is ε-regular if `(ε) = 1. In this case, one can obtain
an ε-approximating threshold function by rounding the weights to an appropriately cho-
sen granularity. (This is Case I in [Ser07].) In particular, the construction yields an ε-
approximation with integer weights each of magnitude O(

√
n log(1/ε)). More generally, for

every value of `, [Ser07] constructs an integer ε-approximation with weights of magnitude√
n log(1/ε) ·2O(` log `). (This corresponds to Case IIb in [Ser07].) Note that the latter bound

is not useful for ` being very large. To complement this, [Ser07] shows that if ` is bigger

than some appropriate quantity L
def
= Θ̃(1/ε2), then we can obtain an ε-approximation just

by truncating the smallest n− L weights. (This corresponds to Case IIa.)
The following theorem summarizes the above discussion.

Theorem 30 ([Ser07]). Let f(x) = sign(w · x− θ) be a threshold function. Given ε > 0, fix

a parameter L
def
= Θ̃(1/ε2) and let ` denote `(ε), the ε-critical index of f. Then the following

hold true:
(i) There exists an ε-approximator for f with integer weights of magnitude

√
n log(1/ε) ·

2O(` log `);
(ii) If ` > L, f is ε-close to the L-junta g(x) = sign(

∑L
i=1 wixi − θ), i.e. the threshold

function obtained by truncating the smallest (n− L) weights.

At this point, we have all the necessary ingredients to prove Theorem 2. We consider the
following three cases:

Case 1: ` > L. In this case, Theorem 30 (ii) says that f is ε-close to the L-junta g(x) =
sign(

∑L
i=1wixi − θ). By applying Theorem 26 to g, we obtain an ε-approximator h with

integer weights of magnitude LO(1/ε2/3) = 2Õ(1/ε2/3), which is a 2ε-approximator for f .

Case 2: ` < K
def
= 2/ε2/3. In this case, Theorem 30 (ii) directly implies an ε-approximator

with integer weights of magnitude
√
n · 2Õ(1/ε2/3) and we are done.

Case 3: K ≤ ` ≤ L. To handle this case, we construct the desired approximation in two
stages, similarly to Case IIb in [Ser07]. First, we round the n − ` + 1 smallest weights to
obtain an ε-approximator g in which these weights are small integers. In the second stage,
we argue that g can be ε-approximated by a threshold function h all of whose weights are
small integers. The first stage is identical to the one in [Ser07], relying on Gaussian anti-
concentration (for the n − ` + 1 smallest weights). The main difference lies in the second
stage; our analysis combines a structural lemma (Lemma 31) generalizing our Lemma 27
and “Halász-type” anti-concentration (for the largest `− 1 weights).

Let us now provide the details. We start by rounding the weights w`, . . . , wn, exactly as
in Case IIb in [Ser07], to get an ε-approximator g(x) = sign(

∑n
i=1 vixi − θ′) for f with the

following properties (see Lemma 4.11 in [Ser07]):

(i) For i ≥ `, each vi is an integer of magnitudeO(
√
n log(1/ε)) and

∑n
i=` v

2
i = O(n log(1/ε)/ε2);

(ii) It holds |v1| ≥ |v2| ≥ . . . ≥ |v`−1| > 1.
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Our goal is to establish the existence of an ε-approximation h for g with small integer
weights. To achieve this, we will use the fact that the “tail” of g has small integer coefficients,

i.e. the integer–valued random variable t(x)
def
=
∑n

i=` vixi has bounded support.

Let R, k > 0 be integers. Denote by Ω(R, k) the set {±1}k−1×{−R,−R+1, . . . , R−1, R}.
Now fix an integer R0 = Θ(

√
n log(1/ε)/ε) and denote Ω0

def
= Ω(R0, `). Consider the threshold

function h : Ω0 → {±1} defined by

h(y) = sign(
`−1∑
i=1

viyi + y` − θ′), y ∈ Ω0.

We claim that the threshold function g′ : {−1, 1}n → {−1, 1} defined by6

g′(x) = h(x1, . . . , x`−1, t(x))

is ε-close to g. To see this note that g′(x) equals g(x) whenever |t(x)| = |
∑n

i=` vixi| ≤ R0,
and this holds for a random x with probability 1 − ε by a Hoeffding bound (since R0 ≥√

2 ln(2/ε)
∑n

i=` v
2
i by the definition of R0 and property (i) of g).

At this point we use the following technical generalization of Lemma 27, whose proof is
deferred to the end of this subsection:

Lemma 31. Let h′ : Ω(R, k)→ {±1} be a threshold function that depends on all k variables.
Suppose that h′(y) has a representation as sign(

∑k
i=1w

′
iyi− θ′) such that |w′1| ≥ |w′2| ≥ . . . ≥

|w′k| > 0. There exists an alternate representation of h′ as sign(
∑k

i=1 uiyi − θ′′) satisfying

1 = |u1| ≥ · · · ≥ |uk| > 0, with the following property: For i ∈ [k − 1] let ∆i
def
= |ui| − |ui+1|.

Then for any j ∈ [k − 2], the j-th biggest element of the sequence ∆1, . . . ,∆k−1 is at least
1

(2k+2R)·(2k+2)2j+8 .

Applying this lemma to h, i.e. setting h′ = h, R = R0 and k = `, and fixing j
def
= 1/ε2/3 +2 <

K − 2 ≤ `− 2, we obtain a representation sign(
∑`

i=1 uiyi − θ′′) for h such that the j largest
differences ∆i1 = |ui1| − |ui1+1|, . . . ,∆ij = |uij | − |uij+1| are at least r0, for

r0 =
1

(2`+ 2R0) · (2`+ 2)2j+8
= (1/

√
n) · 2−Õ(1/ε2/3).

(Note that the latter equality uses the fact that ` ≤ L.)
This yields a set of j′ = 1/ε2/3 weights ul1 , . . . , ulj′ – not including u` – whose absolute

differences are at least r0, i.e. for all a 6= b ∈ [j′], we have |ula − ulb| ≥ r0.

We are now ready to use our proof template again. The alternate representation for h
from above and the definition of g′ imply that g′(x) can be represented as

sign(
`−1∑
i=1

uixi +
n∑
i=`

u′ixi − θ′′),

6We are being slightly informal here, since g′ is not well–defined when |t(x)| > R0, but in this case we
can simply assign g′ an arbitrary boolean value.

21



where u′i
def
= u`vi, ` ≤ i ≤ n. By Halász’s bound, Theorem 21, applied to the weights

ul1 , . . . , ulj′ , and the Extension Lemma 22 as before, we conclude that pr0(u1, . . . , u
′
n) = O(ε).

Finally, since the maximum weight in (the new representation for) g′ is O(
√
n log(1/ε)) (as

follows from the fact that |ui| ≤ 1, i ∈ [`], and property (i) of g), Lemma 23 implies the

existence of an O(ε)-approximator for g′ with integer weights each at most n3/2 · 2Õ(1/ε2/3).
This concludes the proof of Theorem 2.

Proof of Lemma 31: The proof is a technical extension of Lemma 27 taking into account
the fact that the last variable of h′ has a non-boolean range. We consider the same linear
program as in Lemma 27 and the analysis extends essentially by following the previous proof
line-by-line. We therefore omit some details.

We similarly start with the case that h′ can be represented with θ′ = 0. Once we
have established the result for such threshold functions the general case follows easily. By
symmetry of Ω(R, k) we may assume that h′ is monotone increasing in each coordinate yi.
The linear program LP is the set W ⊆ Rk of weight vectors w = (w1, . . . , wk) with the
following properties:

1. w · y ≥ 1 for every y ∈ Ω(R, k) such that h′(y) = 1.

2. wi − wi+1 ≥ 1 for all i = 1, 2, . . . , k − 1, and wk ≥ 1.

Now the LP consists of (2R + 1) · 2k−1 + k inequalities: (2R + 1) · 2k−1 inequalities
correspond to points of Ω(R, k) and k inequalities correspond to the set

Dk = {(1,−1, 0, . . . , 0)1×k, (0, 1,−1, 0, . . . , 0)1×k, . . . , (0, . . . , 1,−1)1×k, (0, . . . , 0, 1)1×k}.

We claim that the linear program LP is feasible. This follows from the fact that h′ is
assumed to have a representation as sign(

∑k
i=1w

′
iyi − θ′) such that |w′1| ≥ |w′2| ≥ . . . ≥

|w′k| > 0. (Even if some of the w′i’s are equal, we can slightly perturb them without changing
the function. Then, we can scale everything up if necessary and obtain a feasible solution
to the LP .) Given that W 6= ∅, we similarly select a weight vector w∗ ∈ W that maximizes
the number of tight inequalities in LP (breaking ties arbitrarily). We invoke the following
claim which is proved virtually identical to Claim 28:

Claim 32. There exists a set of k points y(1), . . . , y(k) ∈ (h′)−1(1) ∪Dk such that w∗ is the
unique solution of the linear system: {w · y(i) = 1 | i = 1, 2, . . . , k}. (Henceforth, we shall
denote this system by (∗).)

Note that (∗) is a system of k linear equations in the variables w1, . . . , wk where each
coefficient of the variables w1, . . . , wk−1 in the equations is in {−1, 0, 1}, the coefficients of
wk are in {−R,−R + 1, ..., R − 1, R} and the right-hand side of each equation is 1. Now,
following the analysis of Lemma 27 line-by-line, we obtain the final system Zτ = b, where Z
is a non-singular k × k matrix with entries that are integers in [−2k, 2k] with the exception
of one column with entries in [−2k − 2R, 2k + 2R] and with last row (0, . . . , 0, 1); similarly,
b equals [0, 0, . . . , 0, τ ∗k ].

This system has a unique solution τ ∗ = [τ ∗1 , . . . , τ
∗
k ], where τ ∗1 ≥ · · · ≥ τ ∗k > 0. We

similarly show that each τ ∗j is somewhat large compared to w∗1. Fix any j ∈ {2, . . . , k}.
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After possibly reordering the rows of Z, the (j − 1)-dimensional vector [1, 0, . . . , 0] can be
expressed as a linear combination a1R1 + · · · + aj−1Rj−1 where Ri is the i-th row of the
(j − 1)× (j − 1) upper left submatrix of Z. Since all entries in Z are integers in [−2k, 2k],
except for one column with entries in [−2k− 2R, 2k+ 2R], Cramer’s Rule implies that each
|ai| is at most (2k + 2R)(j − 1)!(2k)j−1. It follows that there is a linear combination of the
first j − 1 equations of the final system, which yields τ1 =

∑k
i=j γ

j
i τi, where each |γji | is at

most (j − 1) · (2k) · (2k + 2R)(j − 1)!(2k)j−1 ≤ (2k + 2R)(2(j − 1)k)j. Setting τ = τ ∗ in the
equation above, we get τ ∗1 ≤ (k − j + 1)(maxi |γji |)τ ∗j which implies

τ ∗j ≥
τ ∗1

(2k + 2R) · (2(j − 1)k)j(k − j + 1)
≥ τ ∗1

(2k + 2R) · (2k)2j+1
(8)

Observing that
∑k

i=1 τ
∗
i = w∗1, we have τ ∗1 ≥ w∗1/k, which gives

τ ∗j ≥
w∗1

(2k + 2R) · (2k)2j+2
.

Finally, we observe that for j ∈ [k − 1], the j-th biggest element of the sequence
∆1, . . . ,∆k−1 (see the lemma statement) is at least τj+1. (It is either τj+1 or τj depending
on whether or not δ∗k = w∗k is among the j largest elements of {δ∗1, . . . , δ∗k}.) Renormalizing
so that the largest weight is 1, we have shown that for odd h′, the j-th biggest element of
the sequence ∆1, . . . ,∆k−1 is at least 1

(2k+2R)·(2k)2j+4 . This completes the proof for the case

that h′ is odd. The extension to general h′ is identical to the argument of Lemma 27. This
concludes the proof of Lemma 31.

4 Extensions to other distributions

Thus far the notion of approximation that we have dealt with has been approximation
under the uniform distribution. In this section we show how our results on small-weight
integer approximators can be extended to a fairly broad class of distributions which includes
constant-biased product distributions and K-wise independent distributions. Our proofs in
this more general setting follow the same new approach we have used throughout Section 3,
of constructing a “nice” representation and then using anti-concentration.

Formally, given a probability distribution D on {−1, 1}n, the distance between f, g :

{−1, 1}n → {−1, 1} with respect to D is defined as distD(f, g)
def
= Prx←D[f(x) 6= g(x)]. If

distD(f, g) ≤ ε, we say that f and g are ε-close w.r.t. D and that g is an ε-approximator to
f (w.r.t. D). We consider the following question: Given a threshold function f : {−1, 1}n →
{−1, 1}, an error parameter ε > 0 and a distribution D, does there exist an ε-approximator
g for f w.r.t. D with small integer weights?

In Section 4.1 we discuss anti-concentration under general distributions and record the
anti-concentration inequalities that we will use. In Section 4.2 we generalize the basic
poly(n) · 2Õ(1/ε2) result of [Ser07] and in Section 4.3 we generalize the poly(n) · 2Õ(1/ε2/3)

bound of Theorem 2. Because full proofs would be quite lengthy and occasionally repetitive
in some cases we only provide sketches.
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4.1 Anti-concentration under general distributions.

We start by defining the notion of anti-concentration for general measures on the hypercube
{−1, 1}n.

Definition 33. Fix a distribution D on {−1, 1}n. Let a ∈ Rn be a weight vector and r ∈ R+.
The Lévy (anti-)concentration function of a w.r.t. D is defined as

pr(a,D)
def
= sup

v∈R
Prx←D[|a · x− v| ≤ r].

Let x ∈ {−1, 1}n be drawn from D and consider the random variable S = a·x =
∑n

i=1 aixi
where a ∈ Rn. While it is clear that the random variable S can be very concentrated if D
is arbitrary, there are broad classes of interesting distributions for which it is possible to
establish good anti-concentration under suitable assumptions for the weights. In particular,
as we now describe, this is possible for constant-biased product distributions and K-wise
independent distributions for large enough K.

Product Distributions. We start with the case of product distributions. Let pi ∈ (0, 1),
i ∈ [n]. Let µpi be the distribution on the two point space {−1, 1} with µpi(1) = pi. We
denote the corresponding product distribution by

⊗n
i=1 µpi . For such a product distribution

we denote
p

def
= min

j∈[n]
{pj, 1− pj} ∈ (0, 1/2].

We henceforth writeDprod to denote a generic product distribution for which p = Θ(1) (we
call such distributions constant-biased product distributions), and we omit the dependence
on p in our bounds.

We mention two anti-concentration inequalities under product distributions. The follow-
ing results intuitively say that, for any constant-bounded product distribution, the random
variable S = a · x =

∑n
i=1 aixi has good anti-concentration if the weights have appropriate

structure.

The first such result is a generalization of Erdős’s theorem, Theorem 20:

Theorem 34. Let a = (a1, . . . , ak) ∈ Rk, r ∈ R+ be such that |ai| ≥ r for all i ∈ [k]. Then
pr(a,Dprod) ≤ O(k−1/2).

For the case that pi = p for all i ∈ [k], Theorem 34 can be proved in an elementary way
using Sperner theory (similar to the proof of Theorem 20). For the case of different pi’s, a
proof can be obtained using the Fourier analytic methods in [Hal77] (see [AGKW09] for an
explicit reference).

The second theorem is a generalization of Halász’s Theorem, Theorem 21:

Theorem 35. Let a = (a1, . . . , ak) ∈ Rk, r ∈ R+ be such that |ai−aj| ≥ r for all i 6= j ∈ [k].
Then pr(a,Dprod) ≤ O(k−3/2).

This theorem can also be obtained using the techniques of [Hal77] (see [AGKW09] for
an explicit reference).

Finally, the extension lemma will again be useful for us:
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Lemma 36 (Extension). Let a ∈ Rk be any k-dimensional weight vector and r ∈ R+ any
non-negative real. For any n > k, let a′ ∈ Rn be the vector (a1, . . . , ak, a

′
k+1, . . . , a

′
n) where

the weights a′k+1, . . . , a
′
n may be any real numbers. Then we have pr(a

′,Dprod) ≤ pr(a,Dprod).

As in the uniform distribution case, this follows directly from independence.

K-wise Independent Distributions. A distribution D on {−1, 1}n is K-wise independent
if the projection of D onto any K indices is uniformly distributed over {−1, 1}K . The
class of K-wise independent distributions over {−1, 1}n is a broad and important class of
distributions that has received much study (see [Wig94, BR94] and many other references)
because of its usefulness in derandomization and other applications.

We note that the extension lemma fails for K-wise independent distributions, since one
cannot fix most of the bits and argue that the remaining bits are independent. For K-wise
independent distributions, we thus need to establish anti-concentration in a different way.
This can be done using the recent result of [DGJ+10].

We shall denote by DKwise a generic K-wise independent distribution on {−1, 1}n. We
recall the main result of [DGJ+10]:

Theorem 37 ([DGJ+10]). Let h(x) = sign(
∑n

i=1wixi − θ) be any threshold function. Then
we have ∣∣Prx←DKwise

[h(x) = 1]−Prx←U [h(x) = 1]
∣∣ ≤ O

(
logK√
K

)
.

As an immediate corollary we obtain:

Fact 38. Let a ∈ Rn and r ∈ R+. Then

pr(a,DKwise) ≤ pr(a,U) +O

(
logK√
K

)
.

We require the above two anti-concentation probabilities to be ε-close to each other, so we
henceforth fix

K
def
= Θ(1/ε2 · log2(1/ε)) = Õ(1/ε2).

Fact 38, Theorem 20 and Lemma 22 now yield:

Theorem 39. Let a = (a1, . . . , an) ∈ Rn, r ∈ R+ and suppose that |ai| ≥ r for all i ∈ [`].
Then

pr(a,DKwise) ≤ O(`−1/2) + ε.

Similarly Fact 38, Theorem 21 and Lemma 22 together yield:

Theorem 40. Let a = (a1, . . . , an) ∈ Rn, r ∈ R+ and suppose that |ai − aj| ≥ r for all
i 6= j ∈ [`]. Then

pr(a,DKwise) ≤ O(`−3/2) + ε.

We will also make use of the following concentration bound for K-wise independent
distributions:
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Theorem 41. ([BR94]) Let K ≥ 4 be an even integer. Suppose that X1, . . . , Xn are K-wise
independent random variables supported on [−1, 1]. Let X =

∑n
j=1Xj. Then, for any t > 0,

Pr
[
|X − E[X]| ≥ t

]
≤ 8 ·

(
K · E[X] +K2

t2

)K/2
.

Note that, if E[X] = 0, the LHS is bounded from above by 8 · (K/t)K.

4.2 A poly(n) · 2Õ(1/ε2) bound for product distributions and K-wise
independent distributions.

The following lemma translates anti-concentration to low-integer weight approximation for
any distribution D.

Lemma 42. Fix a distribution D on {−1, 1}n. Let g = sign(w · x − θ) be any threshold
function. If pr(w,D) ≤ ε, then there exists an ε-approximator h for g w.r.t. D, where h is
a threshold function with integer weights each of magnitude O(maxi |wi| · n/r).

We note that the bound on the magnitude of the weights is now linear in n (as opposed to
√
n

in Lemma 23) and that no dependence on ε appears in the bound. The proof is essentially
the same as the proof of Lemma 23 but with the following small change: in Lemma 23, we
rounded to integer multiples of r/

√
n log(1/ε) and used a Hoeffding bound to show that the

probability that the error vector e has |e · x| ≥ r, for a uniformly random x ∈ {−1, 1}n, is
upper bounded by ε. Since the Hoeffding bound does not apply for general distributions, we
now round to multiples of r/n. (This is what makes the dependence on n worse by a

√
n

factor.) As a consequence, the corresponding error probability is now 0, since ‖e‖1 < r.

To obtain the desired poly(n) ·2Õ(1/ε2) bound, we will use the following claim, that follows
from Claim 24 by setting ε = 1/(2n + 1). (The claim also follows as an immediate corollary
of a theorem, due to H̊astad [H̊as05], that appears as Theorem 6.5 in [Ser07].)

Claim 43. Let f : {−1, 1}n → {−1, 1} be any threshold function and let k ∈ [n]. There is
an exact representation for f as sign(

∑n
i=1wixi − θ) with the following property: Suppose

(reordering and rescaling weights if necessary) that 1 = |w1| ≥ · · · ≥ |wn|. Then |wk| ≥
1/(4 · kk · n).

At this point we have the tools to obtain a weight bound of n2 · 2Õ(1/ε2) for both product
distributions and K-wise independent distributions. However, the following easily verified
remarks can be used to improve the dependence on n to linear in both cases.

1. For the class of product distributions, Lemma 42 applies with the same quantitative
bound as Lemma 23 (i.e. O(maxi |wi| ·

√
n log(1/ε)/r)). The proof is essentially the

same as that of Lemma 23, since the Hoeffding bound only requires independence.

2. For the class of K-wise independent distributions, we can obtain the quantitative
bound maxi |wi| · (

√
n/r) · Õ(1/ε2) in Lemma 42. The proof is essentially the same as

Lemma 23; the only difference is the granularity of the rounding. In particular, we
round each weight to an integer multiple of α′ = O(r/(

√
nK)) and to bound the error

we use the tail bound from Theorem 41 instead of the Hoeffding bound (Theorem 3).
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3. Claim 24 applies with the same quantitative bound for any constant-biased product
distribution and with the bound 1/(kk ·

√
n · Õ(1/ε2)) for any K-wise independent dis-

tribution. For product distributions the proof remains essentially unchanged from the
uniform distribution proof in [OS08], again because the Hoeffding bound only requires
independence. For K-wise independent distributions, again we follow the analysis line-
by-line and use the tail bound for K-wise independent distributions (Theorem 41).

Thus we have the main results of this subsection:

Theorem 44. Let f be any n-variable threshold function. Then

1. f is ε-approximated with respect to Dprod by a threshold function g = sign(w · x − θ)
with w1, . . . , wn all integers of magnitude n · 2Õ(1/ε2); and

2. f is ε-approximated with respect to DKwise by a threshold function g = sign(w · x − θ)
with w1, . . . , wn all integers of magnitude n · 2Õ(1/ε2).

Proof. For part (1), we set ` = min{1/ε2, n}. We apply Theorem 34 to the weight vector
(w1, . . . , w`) from Claim 24 (or more precisely from the variant described in remark 3 above)

taking r = (1/
√
n) · 2−Õ(1/ε2). Theorem 34 gives pr((w1, . . . , wl),Dprod) ≤ ε, and Lemma 36

gives pr(w,Dprod) ≤ ε. An application of Lemma 42 (see remark 1 above) completes the
proof.

For part (2), we set ` = min{1/ε2, n}. We apply Theorem 39 to the weight vector

(w1, . . . , w`) from the modified Claim 24 (see remark 3, above), taking r = (1/
√
n) · 2Õ(1/ε2).

Theorem 39 directly yields pr(w,DKwise) ≤ 2ε. An application of Lemma 42 (see Remark 2
above) completes the proof.

4.3 A poly(n) ·2Õ(1/ε2/3) bound for product distributions and K-wise
independent distributions.

In this subsection we first prove a bound of nO(1/ε2/3) (analogous to Section 3.3). We then
sketch how the arguments of [Ser07] can be extended to the product distribution and K-wise
independent distribution settings to obtain the final result (analogous to Section 3.4).

4.3.1 An nO(1/ε2/3) bound.

With the required machinery in place it is straightforward to prove:

Theorem 45. Let f be any n-variable threshold function. Then:

1. f is ε-approximated with respect to Dprod by a threshold function g = sign(w · x − θ)
with w1, . . . , wn all integers of magnitude nO(1/ε2/3).

2. f is ε-approximated with respect to DKwise by a threshold function g = sign(w · x − θ)
with w1, . . . , wn all integers of magnitude nO(1/ε2/3).
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Proof. For (1), we set ` = min{1/ε2/3, n}. We apply Theorem 35 to the weight vector

(wi1 , . . . , wi`) obtained from Lemma 27, taking r = 1/(2n + 2)2`+8 = n−Ω(1/ε2/3). Theo-
rem 35 gives pr((wi1 , . . . , wi`),Dprod) ≤ O(ε), and Lemma 36 gives pr(w,Dprod) ≤ O(ε). An
application of Lemma 42 completes the proof.

For (2), we again set ` = min{1/ε2/3, n}. We apply Theorem 40 to the weight vector

(wi1 , . . . , wi`) from Lemma 27, taking r = 1/(2n+ 2)2`+8 = n−Ω(1/ε2/3). Theorem 39 directly
yields pr(w,DKwise) ≤ 2ε. An application of Lemma 42 completes the proof.

4.3.2 Completing the proof: a poly(n) · 2Õ(1/ε2/3) bound.

Finally, in this section we show how to obtain a poly(n) ·2Õ(1/ε2/3) bound for constant-biased
product distributions and for K-wise independent distributions:

Theorem 46. Let D be either a constant-biased product distribution or a K-wise independent
distribution. Every n-variable threshold function f is ε-approximated w.r.t. D by a threshold
function g = sign(w · x− θ) with w1, . . . , wn all integers of magnitude poly(n) · 2Õ(1/ε2/3).

Proof. The theorem is proved following an approach analogous to Section 3.4. To do this,
one needs to check that the approach of [Ser07] can be appropriately extended to product
distributions and K-wise independent distributions. We do not present the full details of
the proofs since this would be lengthy and repetitive, but only sketch the ingredients that
make these generalizations possible.

Fix a distribution D in either of the two aforementioned classes. Let f be a threshold
function and ε > 0 be given. We claim that a variant of Theorem 30 applies in both cases with
appropriate parameters. This follows straightforwardly by mimicking the analysis in [Ser07];
the only difference is the use of the appropriate concentration and anti-concentration in-
equalities in either case (i.e. for the case of product distributions and the case of K-wise
independent distributions). These inequalities dictate the modification of the parameters in
the two settings.

We now provide some explanation. We first sketch how part (ii) of Theorem 30 can be
generalized. That is, one must argue that for an appropriate threshold L = Θ̃(1/ε2), if the
ε-critical index ` is bigger than L, then f is ε-close with respect to D to the L-junta g obtained
by truncating the smallest n − L weights. If D is a constant-biased product distribution,
this can be done by following the analysis in [Ser07] line-by-line. The only difference is in
constant factors that eventually lead the threshold L to increase by a factor of 1/p (the
bias of the distribution). If D is a K-wise independent distribution, one can no longer use
the Hoeffding bound that is used in [Ser07]. However, it turns out that Chebyshev’s bound
can be used instead; indeed, [DGJ+10] does precisely this (see the proof of Theorem 5.4
of [DGJ+10]) to show that if the ε-critical index is greater than L, then f is ε-close to the
L-junta g. w.r.t. any K-wise independent distribution.

We now explain how part (i) of Theorem 30 can be generalized. That is, it suffices
to argue that, for every value of `, there exists an ε-approximator for f (w.r.t. D) with
integer weights of magnitude poly(n/ε) · 2O(` log `). For constant-biased product distributions
this follows straightforwardly from the analysis in [Ser07]. In fact one obtains a bound of√
n log(1/ε)2O(` log `)) on the magnitude of the integer weights; this follows from the fact that

the Hoeffding bound and Gaussian anti-concentration (Corollary 5) still apply, when the bias
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of the bias p of the underlying product distribution is a constant. For K-wise distributions,
the analysis also remains essentially the same as in [Ser07]; we use Theorem 41 in place of
the Hoeffding bound, and Gaussian anti-concentration that in this case follows from Fact 38.
Because of the quantitative difference in the tail bound, one obtains an upper bound of√
n · Õ(1/ε2) · 2O(` log `)) for the magnitude of the weights.

Now using Lemma 31, the proof follows exactly as in Section 3.4.

4.4 Discussion: some distributions require large-weight approxi-
mators.

We have shown that for some non-uniform distributions such as constant-biased product
distributions and K-wise independent distributions, every threshold function can be ε-
approximated using integer weights at most poly(n) · 2Õ(1/ε2/3). An optimist might wonder
whether it is possible that under any distribution D, every threshold function can be ε-
approximated with integer weights poly(n) · 2Õ(1/ε2/3), or perhaps nÕ(1/ε2/3). Here we observe
that such a strong bound cannot hold for every distribution:

Proposition 47. There is a probability distribution D over {−1, 1}n and a threshold function
f such that any integer-weight threshold function that 1/(n+2)-approximates f under D must
have weight 2Ω(n).

Proof. The function f is the “ODD-MAX-BIT” function [Bei94] which, on input x, outputs
(−1)i where i is the first index such that xi = 1. It is straightforward to verify that f is a
threshold function, and it is well known that any integer-weight representation of f must
have weight 2Ω(n) (see e.g. [HV86]).

Anthony et al. [ABST95] give an explicit set S of n + 1 points from {−1, 1}n and show
that any threshold function h that agrees with f on all n + 1 points in S must in fact be
identical to f on all of {−1, 1}n (the set S is said to be a “specifying set” for f). Under the
uniform distribution on S any 1/(n + 2)-approximator must be correct on all points of S,
and hence identical to f , and the result follows.

5 Conclusions and Future Work

We have already discussed directions for future work relating to Theorem 1 in Section 2.5.
Regarding Theorem 2, we feel that our high-level approach using anti-concentration holds
promise for substantial further progress. Significant strengthenings of Halász’s anti-concentration
bound are known under stronger restrictions on the additive structure of the weights w1, . . . , wn,
see e.g. [Vu08, TV09]. Can corresponding extensions of Lemma 27 be established, proving
that every threshold function admits a representation with weights that have the required
structure? Perhaps every threshold function f can be ε-approximated using integer weights
at most poly(n) · 2polylog(1/ε). We hope that further study of our anti-concentration based
approach may yield such a bound.

Acknowledgements. We thank Ryan O’Donnell for asking a question that led to Theo-
rem 1.
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[KR06] Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embeddings
into l1. In 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1010–1017, 2006.

[KR08] S. Khot and O. Regev. Vertex cover might be hard to approximate to within
2− ε. Journal of Computer & System Sciences, 74(3):335–349, 2008.

[KS08] S. Khot and R. Saket. On hardness of learning intersection of two halfspaces. In
Proc. 40th Annual ACM Symposium on Theory of Computing (STOC), pages
345–354, 2008.

[LO43] J. E. Littlewood and A. C. Offord. On the number of real roots of a random
algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S., 12:277–286, 1943.

[MORS10] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing halfspaces.
SIAM J. on Comput., 39(5):2004–2047, 2010.

[MTT61] S. Muroga, I. Toda, and S. Takasu. Theory of majority switching elements. J.
Franklin Institute, 271:376–418, 1961.

[Mur71] S. Muroga. Threshold logic and its applications. Wiley-Interscience, New York,
1971.

32



[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polyno-
mials. Computational Complexity, 4:301–313, 1994.

[OS07] R. O’Donnell and R. Servedio. Learning monotone decision trees in polynomial
time. SIAM Journal on Computing, 37(3):827–844, 2007.

[OS08] R. O’Donnell and R. Servedio. The Chow Parameters Problem. SIAM
Journal on Computing, to appear. Available at http://www.cs.columbia.edu/˜
rocco/papers/stoc08.html . Preliminary version appeared in Proc. 40th Annual
ACM Symposium on Theory of Computing (STOC), pp. 517-526, 2008.

[Rag88] P. Raghavan. Learning in threshold networks. In First Workshop on Computa-
tional Learning Theory, pages 19–27, 1988.

[Rog73] B.A. Rogozin. An integral-type estimate for concentration functions of sums of
independent random variables. Dokl. Akad. Nauk SSSR, 211:1067–1070, 1973.

[RS10] Y. Rabani and A. Shpilka. Explicit construction of a small epsilon-net for linear
threshold functions. SIAM J. on Comput., 39(8):3501–3520, 2010.

[RV08] M. Rudelson and R. Vershynin. The Littlewood-Offord Problem and invertibility
of random matrices. Advances in Mathematics, 218(2):600–633, 2008.

[Ser07] R. Servedio. Every linear threshold function has a low-weight approximator.
Computational Complexity, 16(2):180–209, 2007.

[She07] A. Sherstov. Halfspace matrices. In Proc. 22nd Annual IEEE Conference on
Computational Complexity (CCC), pages 83–95, 2007.

[Shi86] I.S. Shiganov. Refinement of the upper bound of the constant in the central
limit theorem. Journal of Soviet Mathematics, pages 2545–2550, 1986.

[SRK95] K.-Y. Siu, V.P. Roychowdhury, and T. Kailath. Discrete Neural Computation:
A Theoretical Foundation. Prentice-Hall, Englewood Cliffs, NJ, 1995.
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Appendix

Proof of Claim 28.

Recall Claim 28:

Claim 28. There exists a set of n points y(1), . . . , y(n) ∈ f−1(1) ∪ Dn such that w∗ is the
unique solution of the linear system {w · y(i) = 1 | i = 1, 2, . . . , n}, denoted (*).

Proof. By definition, w∗ ∈ Rn is a weight vector that satisfies a maximum number of con-
straints in LP with equality. That is, there exist s ∈ N∗ input vectors y(i1), y(i2), . . . , y(is) ∈
f−1(1) ∪Dn such that 

y(i1)

y(i2)

. . .
y(is)

w∗ = Aw∗ = 1n×1 (9)

and no other weight vector satisfies more than s of the constraints with equality. Also note
that for all input vectors x ∈ f−1(1) ∪Dn \ {y(ij)}j∈[s] it holds w∗ · x > 1.

Consider the linear system Aw = 1n×1. By definition, w∗ is a solution to this system.
We will show that the system has a unique solution or equivalently that rank(A) = n. Then
by selecting n linearly independent rows of the matrix A, we get the linear system (∗).

Suppose, for the sake of contradiction, that rank(A) < n. Then, there exists a non-zero
vector that lies in the right null-space of A, i.e. there exists 0n×1 6= u ∈ Rn such that

Au = 0s×1. Consider the family of weight vectors {w∗ε
def
= w∗ + εu}ε∈R. We will argue that

there exists ε0 ∈ R∗ such that the vector w∗ε0 6= w∗ satisfies at least s + 1 of the constraints
of LP with equality, which is a contradiction.

We now proceed with the argument. We have the following:

1. For all ε ∈ R and for all j ∈ [s] it holds w∗ε · y(ij) = w∗ · y(ij) + ε(u · y(ij)) = 1, since
u · y(ij) = 0, by (9).

2. There exists at least one vector y ∈ (f−1(1)∪Dn)\{y(ij)}j∈[s] such that u · y 6= 0. This
holds true because the set f−1(1) ∪ Dn (in fact f−1(1) itself) spans Rn, while we are
assuming that the rank of A is strictly less than n. (Recall that f was assumed to be
odd, hence f−1(1) contains either x or −x for every x ∈ {−1, 1}n.) Let U 6= ∅ be the

corresponding set, i.e. U
def
= {y ∈ f−1(1) ∪ Dn \ {y(ij)}j∈[s] | u · y 6= 0}. Let us also

denote U
def
= {y ∈ f−1(1) ∪Dn \ {y(ij)}j∈[s] | u · y = 0} for its complement.

We now claim that one can choose an appropriate value ε0 for ε such that for some
y′ ∈ f−1(1) ∪Dn \ {y(ij)}j∈[s] we have w∗ε0 · y

′ = 1 and for all x ∈ f−1(1) ∪Dn \ {y(ij)}j∈[s] it
holds w∗ε0 · x ≥ 1. The latter statement provides the desired contradiction, since, combined
with (1) above, it implies that the corresponding vector w∗ε0 is a feasible solution to LP and
satisfies (at least) s+ 1 constraints with equality – in particular, those corresponding to the
points {y(ij)}j∈[s] ∪ {y′}.
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Partition the set U into U+
def
= {y ∈ f−1(1) ∪ Dn \ {y(ij)}j∈[s] | u · y > 0} and U−

def
=

U \ U+. By (2) above, we know that at least one of the sets U+ and U− is nonempty. We
analyze the case that U+ 6= ∅, the case U− 6= ∅ being very similar. Recall that for every
x ∈ f−1(1) ∪Dn \ {y(ij)}j∈[s] it holds w∗ · x > 1. Now consider some x+ ∈ U+; we have that
w∗ · x+ > 1 and u · x+ > 0. We therefore select:

ε0
def
= max

x+∈U+

1− w∗ · x+

u · x+

(10)

First, it is clear that ε0 < 0, which implies that w∗ε0 6= w∗. It is also straightforward to
verify that the remaining desired properties are satisfied. Indeed, there exists at least one
point y′ ∈ U+ ⊆ f−1(1) ∪ Dn \ {y(ij)}j∈[s] – a maximizer of (10) – such that w∗ε0 · y

′ =
w∗ · y′ + ε0(u · y′) = 1. Also, if x ∈ U+, then by the definition of ε0 above, we have that
1 ≤ w∗ε0 · x < w∗ · x. Now if x ∈ U−, then w∗ε0 · x > w∗ · x > 1. Finally, if x ∈ U , then
w∗ε0 · x = w∗ · x > 1. Hence, we have w∗ε0 · x ≥ 1 for all x ∈ f−1(1) ∪Dn \ {y(ij)}j∈[s] which
completes the proof of Claim 28.
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