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Abstract. For S ⊆ {0, 1}n, a Boolean function f : S → {−1, 1} is a halfspace over S if there
exist w ∈ Rn and θ ∈ R such that f(x) = sign(w · x − θ) for all x ∈ S. We give bounds on the
size of integer weights w1, . . . , wn ∈ Z that are required to represent halfspaces over Hamming balls
S = {x ∈ {0, 1}n : x1 + · · · + xn ≤ k}. Such weight bounds for halfspaces over Hamming balls
have immediate consequences for the performance of learning algorithms in the common scenario of
learning from very high-dimensional categorical examples which are such that only a small number
of features are active in each example.

We give upper and lower bounds on weight both for exact representation (when sign(w · x−θ)
must equal f(x) for every x ∈ S) and for ε-approximate representation (when sign(w · x−θ) may
disagree with f(x) for up to an ε fraction of points x ∈ S). Our results show that extremal bounds
for exact representation are qualitatively rather similar whether the domain is all of {0, 1}n or the
Hamming ball {0, 1}n≤k, but extremal bounds for approximate representation are qualitatively very

different between these two domains.
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1. Introduction. Let S be a subset of the Boolean hypercube {0, 1}n. We say
that a Boolean function f : S → {−1, 1} is a halfspace over S if there exist w ∈ Rn
and θ ∈ R such that f(x) = sign(w · x − θ) for all x ∈ S. The pair (w, θ) is an
integer representation of f if w ∈ Zn. The weight of an integer representation is
maxi=1,...,n |wi|. The weight of a halfspace f over S is the smallest weight of any
integer representation which computes f correctly on all x ∈ S.

Many researchers have studied the weight of halfspaces over the entire Boolean
cube (corresponding to taking S = {0, 1}n), see e.g. [15, 14, 17, 7, 18, 16, 19, 13, 9,
1, 22, 4]. Upper and lower bounds have been obtained both for exact representation
as described above, and for a relaxed scenario in which the integer-weight halfspace
sign(w · x − θ) need only ε-approximate the function f (i.e. we allow Prx∈S [sign(w ·
x − θ) 6= f(x)] to be at most ε for some given approximation parameter ε > 0). We
describe these previous results in detail in Section 1.1.

In this paper we give a detailed study of the weight of halfspaces, both exact
and approximate, over Hamming balls of radius k, i.e. we study halfspaces over the
domain

S = {0, 1}n≤k
def= {x ∈ {0, 1}n : x1 + · · ·+ xn ≤ k}.

Motivation. In machine learning scenarios involving categorical (as opposed to
numerical) data, the most common way to represent an unlabeled example is as a
vector in {0, 1}n, where each coordinate corresponds to a binary feature and a value
of 1 indicates that the feature is active in the example. In many modern machine
learning problems, the set of all possible features is extremely large (e.g. the set of
all possible words) but each example has only a small number of active features (e.g.
the set of words in a given search query). In such a setting, the space of all possible
examples is contained in a Hamming ball {0, 1}n≤k where k � n. A natural question
is what types of learning algorithms are particularly well suited to this sort of data.
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In machine learning, various notions of the “margin” of a binary classifier on an
input formalize in different ways the extent to which the classifier makes a clear-cut
prediction on that input [2, 21]. The margin of a classifier on a set of inputs is taken
to be the minimum margin over all inputs in the set. Upper and lower bounds on the
margin of a halfspace classifier f over a set of inputs are known to be closely related
to the weight of f [11, 5, 21, 23]. Thus, bounds on the weights of halfspaces provide
a way to bound their margins. Since halfspaces play a fundamental role in machine
learning, and the margin of a halfspace H is an important measure of the difficulty
of learning H, we are naturally motivated to understand the weight of halfspaces
over Hamming balls, as an initial step toward understanding the impact of sparsity
in feature vectors on learning complexity.

1.1. Previous Work and Our Results. In this section we review prior work
on the weight of halfspaces (all of the previous work that we are aware of deals with
halfspaces over the entire Boolean cube {0, 1}n), and state our results for halfspaces
over the Hamming ball {0, 1}n≤k.

Prior work on exact representation of halfspaces over {0, 1}n. It has been
known at least since the 1960s [15] that every halfspace over {0, 1}n has weight at
most nO(n) (this fact has been rediscovered several times, see e.g. [10, 17]). Since
there are 2Ω(n2) halfspaces over {0, 1}n a counting argument shows that there exist
halfspaces over {0, 1}n that require weight 2Ω(n), and specific halfspaces that require
weight 2Ω(n) have been known for decades [14, 8]. H̊astad [9] exhibited a specific
halfspace that has weight nΩ(n) and his construction was subsequently refined in [1].
So the weight of exact representations of halfspaces over all of {0, 1}n is by now quite
well understood.

Our results on exact representation of halfspaces over {0, 1}n≤k.We give an
essentially complete picture of the weight of halfspaces over Hamming balls {0, 1}n≤k
for all values of k. First, it is easy to see that for k ∈ {0, 1} every halfspace over
{0, 1}n≤k has an integer representation of weight 1. For k = 2, by analyzing a greedy
construction we show (Theorem 2.2) that every halfspace over {0, 1}n≤2 has weight
O(n), and we observe that a simple explicit halfspace has weight Θ(n).

Things get more interesting beyond k = 2. Using a linear programming argument,
we show (Theorem 2.1) that for every k ≥ 3, every halfspace over {0, 1}n≤k has an
integer representation of weight (k + 2)(n+1)/2, and we show that already for k = 3
there is a simple explicit halfspace for which any integer representation must have
weight 2Ω(n). Our main lower bound result for exact representation (Theorem 3.1) is
a general lower bound showing that for every k ≥ 3, there is an explicit halfspace over
{0, 1}n≤k that requires integer weight kΩ(n). This is established via a construction that
carefully combines H̊astad’s halfspace [9] with a “decision list” type construction. Our
lower bound shows that our upper bound on the weight of halfspaces over {0, 1}n≤k is
essentially the best possible.

Prior work on approximation over {0, 1}n. The lower bound of [9] immedi-
ately implies that there is an n-variable halfspace f over {0, 1}n which is such that
any ε-approximating halfspace sign(w · x− θ) (i.e. w satisfies Prx∈{0,1}n [sign(w · x) 6=
f(x)] ≤ ε) must have weight 1/εΩ(log log(1/ε)). [22] showed that every n-variable half-
space over {0, 1}n can be ε-approximated by a halfspace of weight

√
n · 2Õ(1/ε2), and

showed an Ω(
√
n) lower bound for constant ε. The upper bound was subsequently

improved (as a function of ε) to weight n3/2 · 2Õ(1/ε2/3) by [4], and very recently [3]
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have further improved the upper bound to
√
n · (1/ε)O(log2(1/ε)).

Our results on approximation over {0, 1}n≤k. We study the weight required
to ε-approximate halfspaces over {0, 1}n≤k, i.e. given a halfspace f we now allow
the integer-weight halfspace sign(w · x − θ) to disagree with f(x) on an ε fraction
of all points in {0, 1}n≤k. (For the informal discussion here k should be viewed as
“small” compared to n; precise bounds on k are given in the actual detailed theorem
statements.) As our main positive result (Theorem 5.1), we show that for every
halfspace f over {0, 1}n≤k there is a halfspace that ε-approximates f and has integer
weights each of which is at most kO(k/ε), independent of n. This proof combines
linear programming arguments with upper bounds on the edge boundary of monotone
Boolean-valued functions over the discrete domain {1, . . . , t}k.

As our main negative result (Theorem 6.1), we show that for any constant k ≥ 3
there is a simple explicit halfspace f (the “decision list” halfspace, which we denote
DL) which is such that any ε-approximator of f over {0, 1}n≤k must have weight

kΩ(1/ε1/(k−1)). This shows that an inverse exponential dependence on 1/ε is necessary
in any upper bound for {0, 1}n≤k when k = O(1), in contrast to the

√
n·(1/ε)O(log2(1/ε))

upper bound over all of {0, 1}n recently established by [3].
Finally, we give a detailed analysis of the specific “decision list” halfspace DL and

show (Theorem 7.1) that for this particular function the general weight upper bound
of Theorem 5.1 can be strengthened to kO(k/

√
ε). This shows that strengthening the

analysis of the DL function that is given in Theorem 6.1 will not be enough to improve
that lower bound to match the general upper bound of Theorem 5.1.

Discussion. Our results show that (as long as k ≥ 3) the extremal bounds on the
weights required for exact representation of halfspaces are fairly similar whether the
domain is {0, 1}n≤k or {0, 1}n; in the former case the “right” weight bound is kΘ(n),
while in the latter case it is nΘ(n). For ε-approximate representation, though, our
results show that there are two interesting qualitative differences between the “right”
weight bounds for the two domains. First, our kO(k/ε) upper bound (independent of
n) for {0, 1}n≤k stands in contrast with the Ω(

√
n) lower bound of [22] for {0, 1}n; so

for Hamming balls no dependence on n is necessary in the weights, whereas for the
Boolean cube a polynomial dependence is required. Second, our kΩ(1/ε1/(k−1)) lower
bound shows that for any fixed constant k, some halfspaces over {0, 1}n≤k require
any ε-approximator to have weights that are exponential in 1/ε. This is in sharp
contrast with the recent [3] upper bound, which shows that over {0, 1}n it is always
possible to construct an ε-approximating halfspace with integer weights that are only
quasipolynomial in 1/ε. Intuitively, this disparity may be viewed as a consequence of
the “nice structure” of the uniform distribution over {0, 1}n (with attractive properties
such as independence between coordinates, sub-Gaussian tails for linear forms w · x,
etc.) which is not present in the uniform distribution over {0, 1}n≤k.

Preliminaries. Note that under the correspondence −1↔ 0, 1↔ 1 an integer-
weight halfspace sign(w ·x−θ) over the hypercube {−1, 1}n corresponds to an integer-
weight halfspace sign(2w·x−(θ+w1+· · ·+wn)) over the hypercube {0, 1}n. So we may
work either over the Hamming ball {0, 1}n≤k = {x ∈ {0, 1}n : x1 + · · ·+xk ≤ k} of the
0/1 hypercube, or over the Hamming ball {−1, 1}n≤k = {x ∈ {−1, 1}n : x1 + · · ·+xk ≤
−n+2k} of the +1/−1 hypercube; weight bounds obtained for one domain will carry
over to the other one with at most a factor of 2 difference. Similarly we may also
work over {−1, 1}n≥n−k = {x ∈ {−1, 1}n : x1 + · · ·+xk ≥ n− 2k}; sometimes this will
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be the most convenient.
Some more useful observations: If sign(w · x − θ) is a halfspace with integer

coefficients over any subset S ⊆ {−1, 1}n or S ⊆ {0, 1}n, then it is easy to see that
w.l.o.g. we may modify the threshold θ to be of the form (integer + 1

2 ). We also
note that if sign(w · x − θ) is an integer-weight halfspace with such a threshold that
computes a function f over {−1, 1}n≤k, then sign(−w ·x+θ) is a halfspace of the same
weight computing −f over {−1, 1}n≤k; so to bound the weight of f over {−1, 1}n≤k it
is enough to bound the weight of −f .

Finally, we establish some useful notation. We denote {1, . . . , n} by [n]. For
i ∈ [n] we write ei to denote the unit vector in Rn whose only nonzero entry is a 1
in the i-th coordinate. We let DL(x) denote the “decision list” halfspace over {0, 1}n
that is defined as follows: DL(x) equals (−1)i, where i is the largest index such
that xi = 1. (If x is the all-0 string (0)n then DL(x) = 1.) To see that DL(x) is a
halfspace, we observe that it can be represented as DL(x) = sign(

∑n
i=1(−2)ixi+1).

The function is called the “decision list” halfspace because it computes the decision
list “if xn = 1 then output (−1)n, else if xn−1 = 1 then output (−1)n−1, else . . . .”

2. Upper bounds for exact representation. We start with a general upper
bound. The proof is a straightforward modification of standard integer weight upper
bound arguments for halfspaces over {0, 1}n (see e.g. [15, 9]) adapted to the domain
{0, 1}n≤k.

Theorem 2.1. For 3 ≤ k ≤ n, every halfspace over {0, 1}n≤k has weight at most
(k + 2)(n+1)/2.

Proof. Fix f to be any halfspace over {0, 1}n≤k. Each point x in {0, 1}n≤k with
f(x) = y ∈ {−1, 1} provides a linear constraint

y(w1x1 + · · ·+ wnxn + wn+1) ≥ 1

over the weights w1, . . . , wn+1 which define the halfspace f(x) = sign(w1x1 + · · · +
wnxn+wn+1). Since f is a halfspace the above system of

∑k
j=0

(
n
j

)
linear inequalities

over variables w1, . . . , wn+1 is feasible. A standard result in the theory of linear
programming (see e.g. [15, 9]) implies that there is a subset of n + 1 of the above
inequalities which is such that if each inequality is replaced with equality, the resulting
set of n+ 1 equalities defines a unique weight vector (w1, . . . , wn+1) ∈ Rn+1 which is
a feasible solution to the entire set of

∑k
j=0

(
n
j

)
inequalities. In other words, there is

a representation sign(w · x+wn+1) computing f where (w1, . . . , wn+1) ∈ Rn+1 is the
solution to a linear system

Aw = b

where b ∈ {−1, 1}n+1 and A is an (n + 1) × (n + 1) 0/1 matrix in which the first
n entries of each row have at most k ones and the last entry is 1. Let det(Ai)

det(A) be
the expression for a solution wi using Cramer’s rule. Since scaling the components
of w by the same constant factor does not affect the behavior of f , setting each
wi = det(Ai) also works. Fix an arbitrary i, let B = Ai, and let B1, ..., Bn+1 be the
rows of B. Hadamard’s inequality (see e.g. [6] p. 233) gives det(B) ≤

∏n+1
j=1 ‖Bj‖,

where ‖Bj‖ denotes the 2-norm of Bj viewed as a vector in Rn+1. Let `j≤ k + 2 be
the number of nonzero components in Bj ; since these components are all ±1, we have
‖Bj‖ =

√
`j , so that det(B) ≤

∏n+1
j=1

√
`j≤ (k + 2)(n+1)/2. So f can be realized using

integer weights of at most this magnitude.
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We note that the proof given above actually holds for all k ≥ 1 (not just k ≥ 3 as
in the theorem statement), but much stronger bounds are possible for k = 1, 2. For
k = 1, it is easy to see that every halfspace over {0, 1}n≤1 has an integer representation
of weight 1. For k = 2 Theorem 2.1 only gives an upper bound that is exponential in
n, but the true extremal value for k = 2 is actually linear in n:

Theorem 2.2. Every halfspace f over {0, 1}n≤2 has weight O(n).
Before giving the proof, here is some high-level intuition. Since we are working

over {0, 1}n≤2, intuitively in order to set the weight vj of variable xj correctly the
“only constraint that matters” is how many of the other n − 1 variables xi are such
that f(ei + ej) = 1. The proof shows that a suitable greedy approach of setting the
weights can satisfy all these constraints taking all the weights to be O(n) in absolute
value.

Proof (of Theorem 2.2): Since f is a halfspace over {0, 1}n≤2, it has some repre-
sentation as f(x) = sign(w · x− θ) where w1, . . . , wn, θ are real numbers. We will use
this representation to construct an integer-weight representation sign(v · x− θ′) that
agrees with f on all points in {0, 1}n≤2 and where each |vi| ≤ O(n).

By negating f if necessary (which does not change the integer weight required for
a representation) we may assume that f(0n) = −1. This means that sign(−θ) = −1
and thus we have θ > 0.

We may suppose without loss of generality that w1 < · · · < wn and all n weights
w1, . . . , wn are nonzero (since if the weights do not satisfy these conditions they can
be reordered and perturbed to satisfy them). We note that if wn < 0 then every input
x ∈ {0, 1}n≤2 (and indeed every input in {0, 1}n) has w · x ≤ 0 < θ; in this case f is
the constant-(−1) function and f trivially has a representation of weight 0. Thus we
assume going forth that wn > 0.

Let ` ∈ {1, . . . , n} be such that w`−1 < 0 < w` (so ` = 1 if w1 > 0). Now,
• Let w′ ∈ Rn+1 be (w1, ..., w`−1, 0, w`, ..., wn).
• For each x ∈ {0, 1}n=2, let x′ ∈ {0, 1}n+1

=2 = (x1, ..., x`−1, 0, x`, ..., xn).
• For each x ∈ {0, 1}n=1, let x′ ∈ {0, 1}n+1

=2 = (x1, ..., x`−1, 1, x`, ..., xn).
• When x = 0n, let x′ ∈ {0, 1}n+1 be (0, . . . , 0).

Note that, for all x ∈ {0, 1}n≤2, sign(w′ · x′ − θ) = sign(w · x − θ), and, for all x
except 0n, x′ has exactly two ones. Furthermore, if we have a weight vector v ∈ Rn+1

such that v` = 0, if we define v̂ ∈ Rn by v̂ = (v1, ..., v`−1, v`+1, vn+1), then, for all
x ∈ {0, 1}n≤2 and all real θ, we have sign(v · x′ − θ) = sign(v̂ · x− θ). So, our problem
reduces to the problem of finding a vector v ∈ Rn+1 with small integer weights for
which v` = 0 and there is a θ′ such that

sign(v · x− θ′) = sign(w′ · x− θ)

for all x ∈ {0n+1} ∪ {0, 1}n+1
=2 .

Now let us define an (n+ 1)× (n+ 1) matrix (M(i, j))i,j∈{1,...,n+1} with entries
in {−1, 1} as follows. The matrix M will be symmetric, i.e. M(i, j) = M(j, i).
It will also be monotone nondecreasing within each row and column, i.e. for each
value i, the string M(i, 1) . . .M(i, n+ 1) will be of the form (−1)r(1)n+1−r for some
r ∈ {0, . . . , n+ 1}, i.e. the first r characters will be −1 and the remaining characters
1. Here is how M is defined:

• For {i, j} ⊂ {1, . . . , n + 1} we have M(i, j) = 1 if and only if sign(w′ · (ei +
ej)) = 1.
• Define M(`, `) = −1 (recall that f(0n) = −1), and define the other diagonal

values, M(i, i) for i 6= `, as follows. For i > 1 simply set M(i, i) equal to
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M(i, i− 1). For i = 1 set M(1, 1) equal to M(1, 2).
For example, if

w = (−3,−5/2, 1, 4/3, 6, 7), θ = 1/2 (2.1)

then

w′ = (−3,−5/2, 0, 1, 4/3, 6, 7)

and

M =



−1 −1 −1 −1 −1 1 1
−1 −1 −1 −1 −1 1 1
−1 −1 −1 1 1 1 1
−1 −1 1 1 1 1 1
−1 −1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1


.

It is easy to check that, in general, the matrix M is indeed symmetric. By virtue
of the fact that w1 < · · · < w`−1 < 0 < w`+1 < · · · < wn, we have that M is monotone
increasing within each row and column. Finally, the construction of M ensures that
it faithfully reflects the structure of f over {0, 1}n≤2, in the following sense. Suppose
we can define weights v1 ≤ ... ≤ vn+1 and a threshold θ′ with v` = 0 such that

M(i, j) = 1 if and only if vi + vj ≥ θ′. (2.2)

Then the halfspace

sign(v1x1 + · · ·+ v`−1x`−1 + v`+1x`+1 + · · ·+ vn+1xn+1 − θ′)

correctly computes f over {0, 1}n+1
≤2 , and therefore correctly solves the original prob-

lem. (In fact (2.2) is stronger than what is needed – all of the correct classifications
are already enforced by the off-diagonal elements, with the exception of 0n, whose
correct classification is enforced by the constraint associated with M(`, `).)

In the rest of the proof we will construct the desired v1, . . . , vn+1 satisfying (2.2)
where

v1 ≤ · · · ≤ v`−1 ≤ v` = 0 ≤ v`+1 ≤ · · · ≤ vn+1, (2.3)

each vi is an integer, and each vi satisfies |vi| ≤ O(n).
Going forth the following notation will be useful: we write Mi to denote the i-th

row of M , which we view as an (n + 1)-character string M(i, 1) . . .M(i, n + 1) over
the alphabet {−1, 1}, and is, of course, the same as the i-th column of M .

We may assume that M is not the (n+ 1)× (n+ 1) identically-(−1) matrix (since
if it is then f is the constant-(−1) function over {0, 1}n=2), so in particular the bottom
right entry M(n + 1, n + 1) equals 1. On the other hand, we know that the M(`, `)
entry is −1. Since M is monotone increasing within each row and column, and is
symmetric, the only way that M could have all its rows M1 = · · · = Mn+1 equal to
each other is if M were either the identically +1 or identically −1 matrix. Since M
is neither of these matrices, there are at least two distinct rows in M .

The weights v1, . . . , vn+1 are constructed as follows. We partition {1, . . . , n+ 1}
into 2 ≤ A ≤ n + 1 intervals I1, . . . , IA in the following way. The interval I1 is
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{1, . . . , i1} where i1 is such that rows 1, . . . , i1 satisfy M1 = · · · = Mi1 6= Mi1+1. Let
j1 be such that M1 = · · · = Mi1 = (−1)n+1−j1(1)j1 . Then interval I2 is {i1 +1, . . . , i2}
where similarly i2 is such that Mi1+1 = · · · = Mi2 6= Mi2+1. As before j2 denotes the
value such thatMi1+1 = · · · = Mi2 = (−1)n+1−j2(1)j2 (note that j2 > j1). Continuing
in this way we get intervals I1, . . . , IA and values 0 ≤ j1 < · · · < jA ≤ n + 1, where
the right endpoint of IA is n + 1. If a < b are both in the same interval Ii then our
construction will assign the same weight to va and vb.

Returning to the example shown in (2.1), we have
• I1 = {1, 2}, I2 = {3}, I3 = {4, 5}, I4 = {6, 7}, and
• i1 = 2, i2 = 3, i3 = 5, i4 = 7, and
• j1 = 2, j2 = 4, j3 = 5, j4 = 7.

Let t be the index for which ` ∈ It. Fix any index i ∈ {1, . . . , A} and consider
any element a ∈ Ii. We have that M(a, n+ 1− ji) = −1 while M(a, n+ 2− ji) = 1.
The idea of our construction is that we will maintain

va + vn+1−ji = A− 2t and va + vn+2−ji = A− 2t+ 1. (2.4)

Together with (2.3) this ensures that (2.2) holds as required, taking θ′ = A−2t+1/2.
We claim that (2.4), along with v` = 0, is satisfied if, for each interval Ii, the

following holds:

∀a ∈ Ii, va = i− t. (2.5)

Consider the case that i = 1, and fix an a ∈ I1. Recall M(a, j) = −1 for j = 1, ..., n+
1 − j1, and M(a, j) = 1 from j = n + 2 − j1 on; in particular, M(a, n + 2 − j1) = 1.
The monotonicity of M implies that columns n + 2− j1 through n + 1 consist of all
1’s, and since M(a, n+ 1− j1) = −1, this is not true of column n+ 1− j1. Since M
is symmetric, rows n+ 2− j1 through n+ 1 consist of all 1’s, and row n+ 1− j1 does
not. Thus IA = {n+ 2− j1, ..., n+ 1}, so, referring back to (2.5), we have

vn+2−j1 = A− t

and since vn+1−ji ∈ IA−1, we have

vn+1−j1 = A− 1− t.

Since va = 1− t, we have that (2.4) holds when i = 1.
This pattern continues for i = 2, 3, .... Using induction, we can see that, for each

i, the boundary between IA−i+1 and IA−i is between n+ 2− ji and n+ 1− ji, so

vn+1−ji = A− t− i and vn+2−ji = A− t+ 1− i,

which, since va = i− t, implies (2.4), and therefore (2.2).
We have constructed v1, . . . , vn+1 that satisfy (2.3) where each vi is an integer. It

follows easily from the construction that each |vi| is at most O(n), and the theorem
is proved.

We note that for odd n the decision list halfspace DL(x) = sign(
∑n
i=1(−2)ixi)

requires integer weight at least (n−1)/2 over {0, 1}n≤2, and thus the O(n) upper bound
of Theorem 2.2 is tight up to a constant factor. To see this, suppose that sign(v ·x−θ)
has integer weights and computes DL correctly over {0, 1}n≤2. By considering inputs
of the form ei where i ranges from 1 to n we see that vi ≥ θ for i even and vi < θ for i
odd. By considering inputs of the form ei + ei+1 we see that v1 > v3 > v5 > · · · > vn
and v2 < v4 < v6 < · · · < vn−1, so there are n distinct integer weights and the largest
magnitude weight must be at least (n− 1)/2 as claimed.
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3. Lower bounds for exact representation. In this section we give lower
bounds on the weight required to exactly represent various halfspaces over {−1, 1}n≤k
for k ≥ 3. We first note that simple counting arguments do not give very good lower
bounds. Let N(n, k) denote

∑k
i=0

(
n
i

)
, the number of points in {−1, 1}n≤k (note that

Nk ≤ (en/k)k). Since the VC dimension of halfspaces over {−1, 1}n≤k is known to be
n+ 1, the Sauer-Shelah lemma [20, 24] says that there are at most

n+1∑
j=0

(
Nk
j

)
≤
n+1∑
j=0

(
(en/k)k

j

)
≤
(
e(en/k)k

n+ 1

)n+1

halfspaces over {−1, 1}n≤k. A standard counting argument says that if there are more
than Cn halfspaces over a given domain S ⊆ {−1, 1}n≤k, then some halfspace over
S must require integer weight Ω(C). So the strongest weight lower bound that can
be obtained from this kind of counting argument is O((en/k)k/n). This is actually
quite weak; we will see that much stronger lower bounds can be obtained for explicit
functions.

An exponential lower bound for a simple function. We now observe that
even for k = 3 a simple halfspace gives an exponential lower bound.

Observation 1. The function DL(x) has weight 2Ω(n) over {0, 1}n≤3.
Proof. Let sign(v · x − θ) be a representation of DL over {0, 1}n≤3. As noted in

the preliminaries we may assume θ is of the form (integer + 1
2 ) so its magnitude is at

least 1/2.
Since DL(0n) = sign(0− θ) is +1 we have that θ < 0. Writing each vi as wiθ we

may divide through by |θ| and re-express sign(v · x − θ) as sign(w · x + 1). Here the
wi’s may not be integers, but since |θ| ≥ 1/2 it suffices to show that |wn| = 2Ω(n).

Since DL(ej) = −1 for j odd we have wj < −1 for j odd, and since DL(ek−1 +
ek) = 1 for k even we have wk ≥ −wk−1 − 1 and thus wk > 0 for even k. For even
k ≥ 4, since DL(ek + ek−1 + ek−3) = 1 we have

|wk| = wk ≥ −wk−1 − wk−3 − 1 = |wk−1|+ |wk−3| − 1 for even k ≥ 4. (3.1)

For odd k ≥ 5, since DL(ek + ek−1 + ek−3) = −1 we have wk < −wk−1 − wk−3 − 1,
and since wk is negative for odd k and positive for even k this means

|wk| > |wk−1|+ |wk−3|+ 1 for odd k ≥ 5 (3.2)

An easy induction using the inequalities (3.1) and (3.2) and the initial condition
wj < 1 for j odd gives that |wn| = 2Ω(n).

Main lower bound for exact representation. Proposition 1 gives an expo-
nential lower bound but in general it does not match the kO(n) upper bound provided
by Theorem 2.1. As our main lower bound result for exact representation we match
the upper bound of Theorem 2.1 (up to an absolute constant in the exponent) and
prove the following:

Theorem 3.1. Let k be an integer of the form k = 2`, and let n = rk + 1 for
some integer r. There is a halfspace G (defined explicitly below) over {−1, 1}n≥n−2k−1

for which the weight of any integer representation over {−1, 1}n≥n−2k−1 is at least
2(n log k)/2−O(n), i.e. kΩ(n).

We recall that in [9] H̊astad gave an explicit halfspace over {−1, 1}k and proved
that its weight over {−1, 1}k is kΘ(k). Our construction builds on his construction;
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indeed our n = (rk + 1)-variable halfspace may be viewed as r copies of H̊astad’s
halfspace “concatenated” in a careful way (the exact meaning of this will be clearer
when we describe our construction in detail below).

Setup. First some notational preliminaries: since k = 2` we may view a k-bit
string as a function from {−1, 1}` to {−1, 1}, where an index j ∈ {0, . . . , k − 1}
is interpreted as an `-bit vector. To keep the notation clean, we will refer to j ∈
{0, . . . , k−1} and its `-bit binary representation interchangeably. For f a k-bit string
and j ∈ {0, . . . , k − 1} we write f(j) to denote the j-th coordinate of such a string
(or, the function f applied to j’s `-bit representation). For f, g ∈ {−1, 1}k we write
(f, g) to denote the inner product

∑k−1
j=0 f(j)g(j). Note that for f, g ∈ {−1, 1}k we

have |(f, g)| ≤ k.
Following the notation from [9], for α ⊆ [`] = {1, . . . , `} let ϕα denote the parity

function ϕα(x) =
∏
i∈α xi over the variables in α. Again following [9], let α0, . . . , αk−1

be an ordering of subsets of [`] such that |αi| ≤ |αi+1| and the symmetric difference
αi∆αi+1 always satisfies |αi∆αi+1| ≤ 2. Note that α0 is the empty set and thus ϕα0

is the k-bit string consisting of all 1’s, while for each j = 1, . . . , k − 1 we have that
ϕαj is a k-bit string with exactly half of its entries −1.

Writing f : {−1, 1}` → {−1, 1} in terms of its Fourier representation as f(j) =∑k−1
i=0 f̂(αi)ϕαi(j) we see that (f, ϕαi) equals kf̂(αi), so we may view each inner

product (f, ϕαi) as a scaled Fourier coefficient of f.
For f ∈ {−1, 1}n we decompose f by writing it as (b, f1, . . . , fr) where b ∈ {−1, 1}

and each f i is a k-bit string. We sometimes refer to f i as the “i-th block” of f and
we write f i(j) to denote the j-th coordinate of the i-th block of f.

The construction. Let G : {−1, 1}n≥n−2k−1 → {−1, 1} denote the n-variable
function

G(b, f1, . . . , fr) def= sign

b+
r∑
i=1

k−1∑
j=1

(k + 1)k(i−1)+j(f i, ϕαj )

 . (3.3)

(Note that the inner sum starts with j = 1 and not 0; this will be important
later.) Since each (f i, ϕαj ) is a (±1)-weighted sum of the coordinates of f i, it is clear
that G is a halfspace with weight at most kO(n). We will show that any integer-weight
halfspace for G over {−1, 1}n≤n−2k−1 must have some weight that is at least kΩ(n).

To get some more intuition for the function G, note that for a block f i we have
that (f i, ϕα1) = · · · = (f i, ϕαk−1) = 0 if and only if f i is one of the two inputs
(1, . . . , 1) or (−1, . . . ,−1) (this is because the constant +1 function and the constant
−1 function are the only two Boolean functions that have all nonconstant Fourier
coefficients equal to zero). So in words, given an input f = (b, f1, . . . , fr) the value
G(f) is obtained as follows: If any block is neither constantly +1 nor constantly −1,
let i be the largest such block, and output the sign of the Fourier coefficient f̂ i(αj)
where j is the largest index such that f̂ i(αj) is nonzero. Otherwise output the bit b.

The high-level intuition behind the lower bound is as follows. Consider a single
block i and fix all other bits in other blocks i′ 6= i to be 1. By fixing the bit b
appropriately, the function G computes exactly H̊astad’s halfspace over the k variables
in block i. (We recall that H̊astad’s k-variable halfspace F over a k-bit input string
f ∈ {−1, 1}k is F (f) = sign((f, ϕαj )) where j is the largest index such that (f, ϕαj ) 6=
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0; equivalently, F (f) = sign
(∑k−1

i=0 (k + 1)i(f, ϕαi)
)

gives an explicit representation
of the halfspace F.) So applying H̊astad’s weight lower bound for his halfspace F ,
intuitively the variables in block i should require integer weights growing as kΩ(k).
Since higher blocks dominate lower blocks in G and there are r = (n − 1)/k blocks,
intuitively a kΩ(k) growth factor within each of (n − 1)/k blocks means that overall
the weights should grow as (kΩ(k))(n−1)/k = kΩ(n).

Unfortunately, this simple reasoning is not quite right when applied to the actual
weights wij of the input variables f i(j). This is because in H̊astad’s halfspace all
integer coefficients must be large but they do not actually increase by much; in fact,
the integer coefficients of all k variables in H̊astad’s function can be taken to be
within a factor of 2 of each other. But as we shall see the reasoning of the previous
paragraph is essentially correct when a different representation is used, namely when it
is applied to the “Fourier transformed” weights vij that are the coefficients of (f i, ϕαj )
(see Equation (3.5) below), and this suffices to give the desired overall weight bound.
We will show that the vij ’s must grow very rapidly, and hence some vij must be large,
and consequently some wij must be large.

The analysis. Our goal is to prove the following which immediately gives The-
orem 3.1. (Throughout this section β denotes the constant log2(3/2).)

Theorem 3.2. If the function G defined in (3.3) satisfies

G(f) = sign

 r∑
i=1

k−1∑
j=0

wijf
i(j) + w0b− θ

 for all f ∈ {−1, 1}n≥n−2k−1 (3.4)

where each wij and w0 is an integer, then for some j ∈ {0, . . . , k − 1} we have wrj ≥
(e−4kβ2(k log k)/2−k)(n−1)/k/k.

Following [9], the main step is to prove the following:
Theorem 3.3. Suppose that the function G defined in (3.3) satisfies

G(f) = sign

 r∑
i=1

k−1∑
j=0

vij(f
i, ϕαj ) + v0b− t


for all f = (b, f1, . . . , fr) ∈ {−1, 1}n≥n−2k−1 (3.5)

where each vij and v0 is an integer. Then vrk−1 ≥ (e−4kβ2(k log k)/2−k)(n−1)/k.
To show that Theorem 3.3 implies Theorem 3.2 we use the following claim which

is a simple consequence of Fourier analysis (see Lemma 2.3 of [9]):
Claim 1. For any f ∈ {−1, 1}k and any (w0, . . . , wk−1) ∈ Rk, setting

va =
1
k

k−1∑
j=0

wjϕαa(j) for each a ∈ {0, . . . , k − 1},

we have that
∑k−1
j=0 wjf(j) =

∑k−1
a=0 va(f, ϕαa)

Proof of Theorem 3.2 using Theorem 3.3: Suppose that {wij}, w0, θ satisfy
(3.4). By Claim 1, for all f ∈ {−1, 1}n≥n−2k−1 we have that

G(f) = sign

(
r∑
i=1

k−1∑
a=0

via(f i, ϕαa) + w0b− θ

)
10



where via = 1
k

∑k−1
j=0 w

i
jϕαa(j). We have that kvia is an integer for all i, a and so by

Theorem 3.3 we get that kvrk−1 ≥ (e−4kβ2(k log k)/2−k)(n−1)/k, i.e.
∑k−1
j=0 w

r
jϕαk−1(j) ≥

(e−4kβ2(k log k)/2−k)(n−1)/k, which gives Theorem 3.2 since |ϕαk−1(j)| = 1 for all j.

3.0.1. Proof of Theorem 3.3. Throughout this section {vij}, v0, t are as in
(3.5). Since all weights are integers we may assume that t is of the form integer+1

2 .
We begin with some straightforward claims that will be useful later.
Claim 2. We have v0 ≥ 1. Moreover, for each i ∈ [r − 1] we have v0 ≥∑

i′ /∈{i,i+1},i′∈[r] v
i′

0 − t.
Proof. First we observe that for b ∈ {−1, 1} we have G(b, ϕα0 , . . . , ϕα0) = b, which

follows from the fact that (ϕα0 , ϕαi) = 0 for all i 6= 0. By (3.5) this means that we
have sign(v0b+

∑r
i=1 v

i
0− t) = b so it must be the case that v0 > 0 and since v0 is an

integer this means v0 ≥ 1. Furthermore, taking b = −1 we find that v0 >
∑r
i=1 v

i
0− t.

For the second part of the claim, fix any i ∈ [r − 1] and consider the input
f = (−1, f1, . . . , fr) where f i

′
= ϕα0 for i′ /∈ {i, i+1} and f i

′
= −ϕα0 for i′ ∈ {i, i+1}.

This input f has 2k+ 1 bits that are −1 (this is the only place in the proof where we
use an input with this many −1 bits) and since

G(f) = −1 = sign

−v0 +
∑

i′ /∈{i,i+1},i′∈[r]

vi
′

0 − vi0 − vi+1
0 − t


we have that v0 >

∑
i′ /∈{i,i+1},i′∈[r] v

i′

0 − vi0 − vi+1
0 − t. Averaging this with the earlier

inequality v0 >
∑r
i=1 v

i
0 − t gives the second statement of the claim.

Claim 3. For every i ∈ [r], j ∈ [k − 1] we have vij > v0 (in particular, all these
weights are positive).

Proof. Fix i ∈ [r], j ∈ [k − 1]. For ε, b ∈ {−1, 1} consider the input f =
(b, f1, . . . , fr) ∈ {−1, 1}n defined by f i = εϕαj and f i

′
= ϕα0= (1, 1, ..., 1) for

i′ 6= i. Since every ϕαj for j ≥ 1 corresponds to the truth table of a parity func-
tion over some nonempty subset of ` bits, the string f has either k/2 or k/2 + 1
entries that are −1 (depending on whether b is +1 or −1). By the definition of
G we have G(f) = sign(b + (k + 1)k(i−1)+jε) = ε, and, referring to (3.5), we have
G(f) = sign(εvij + v0b+

∑
i6=i′∈[r] v

i′

0 − t). When b is sign(
∑
i 6=i′∈[r] v

i′

0 − t) and ε = −b
this implies that vij ≥ v0 + |

∑
i 6=i′∈[r] v

i′

0 − t| which implies vij ≥ v0.
The proof uses two main lemmas. The first lemma says that weights do not get

smaller as we pass from the i-th to the (i+ 1)-st block:
Lemma 3.4. For every i ∈ [r − 1] and every j ∈ [k − 1] we have vi+1

j ≥ vik−1.

Proof. Fix i ∈ [r − 1], j ∈ [k − 1]. Consider the input f = (−1, f1, . . . , fr) ∈
{−1, 1}n defined by f i = −ϕαk−1 , f i+1 = ϕαj and f i

′
= ϕα0 for i′ /∈ {i, i+ 1}. This

f has exactly k+ 1 entries that are −1 and the definition of G implies that G(f) = 1.
So G(f) = sign(vi+1

j − vik−1 +
∑
i′ /∈{i,i+1},i′∈[r] v

i′

0 − v0 − t) = 1, which implies that

vi+1
j ≥ vik−1 −

∑
i′ /∈{i,i+1},i′∈[r]

vi
′

0 + v0 + t ≥ vik−1,

where the final inequality follows from the second statement of Claim 2.
The crucial lemma for us is Lemma 3.6, which says that the vij weights grow quite

significantly (by a factor of kΩ(k)) from the “beginning” to the “end” of each block i.
Because of the way the function G has been set up we will be able to show this by a
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reduction to a weight lower bound that H̊astad proves for his halfspace over k = 2`

variables.
Definition 3.5. Let t0 be the index of the first set in the enumeration of subsets

of [`] such that αt0 has size 2.
Lemma 3.6. For every i ∈ [r] we have

vik−1 ≥ e−4kβ2(k log k)/2−k · vit0 .

Proof. Fix any i ∈ [r]. Consider the (k + 1)-variable function defined as

A(b, f i) def= G(b, ϕα0 , . . . , ϕα0 , f
i, ϕα0 , . . . , ϕα0) (3.6)

= sign

v0b+
k−1∑
j=0

vij(f
i, ϕαj ) +

∑
i 6=i′∈[r]

kvi
′

0 − t

 (3.7)

where in line (3.6) f i appears in the i-th of the r blocks and all other blocks are set
to ϕα0 . The equality (3.7) holds because for each i′ 6= i we have that (ϕα0 , ϕαj ) is 0
for j 6= 0 and is k for j = 0. For every (b, f i) ∈ {−1, 1}k+1 the corresponding input
to G in (3.6) has at most k + 1 variables set to −1, so by the definition of G we have
that

A(b, f i) =

{
Fk(f i) if f is neither ϕα0 nor − ϕα0

b if f i is either ϕα0 or − ϕα0

(3.8)

where Fk is H̊astad’s function on k variables, Fk(f i) = sign((f i, ϕαj )) where j is the
largest index such that (f, ϕαj ) 6= 0. Recall that since ϕα0 is the constant 1 function,
we have (f i, ϕα0) =

∑k−1
j=0 f

i(j). Thus (3.8) gives us that

A

sign

k−1∑
j=0

f i(j)

 , f i

 = Fk(f i) for all f i ∈ {−1, 1}k.

Now it is clear that flipping the value of b changes the value of A(b, f i) only if f i

is either ϕα0 or −ϕα0 . By (3.7) this implies that for all f i /∈ {ϕα0 ,−ϕα0} we must
have

|v0| <

∣∣∣∣∣∣
k−1∑
j=0

vij(f
i, ϕαj ) +

∑
i 6=i′∈[r]

kvi
′

0 − t

∣∣∣∣∣∣ .
But this means that the k-variable function A′ : {−1, 1}k → {−1, 1}

A′(f i) def= sign

v0

1
k

k−1∑
j=0

f i(j)

+
k−1∑
j=0

vij(f
i, ϕαj ) +

∑
i 6=i′∈[r]

kvi
′

0 − t

 (3.9)

must equal Fk(f i) for all f i ∈ {−1, 1}k, because 1
k

∑k−1
j=0 f

i(j) is always at most

1 in magnitude and equals sign
(∑k−1

j=0 f
i(j)
)

when f i is ϕα0 or −ϕα0 . Scaling the
argument to sign(·) by a factor of k in (3.9), we have that

A′(f i) = sign

v0

k−1∑
j=0

f i(j) + k

k−1∑
j=0

vij(f
i, ϕαj ) +

∑
i6=i′∈[r]

kvi
′

0 − t


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is a halfspace over {−1, 1}k that computes precisely H̊astad’s function Fk. As H̊astad
notes (Lemma 2.2 of his paper) we may remove the constant term k(

∑
i 6=i′∈[r] kv

i′

0 −t)
without changing the function. Recalling again that (f i, ϕα0) =

∑k−1
j=0 f

i(j), we
rewrite the resulting expression for A′(f i) as

A′(f i) = sign

k−1∑
j=0

v′j(f
i, ϕαj )


where v′j equals kvij for j 6= 0 and equals kvi0 + v0 for j = 0. Since these coefficients
are all integers, we are in precisely the situation of H̊astad’s Theorem 2.4. The proof
of that theorem explicitly establishes (see the second to last highlighted equation on
p. 489) that v′k−1 ≥ e−4kβ2(k log k)/2−k · v′t0 , and the lemma is proved.

Applying Lemmas 3.4 and 3.6 repeatedly and taking j in Lemma 3.4 to be t0
each time, we get that

vrk−1 ≥ (e−4kβ2(k log k)/2−k)(n−1)/kv1
t0

which is at least (e−4kβ2(k log k)/2−k)(n−1)/k since v1
t0 is at least 1 by Claim 3. This

proves Theorem 3.3.

4. Preliminaries on ε-approximating halfspaces over Hamming balls.
Let f be a halfspace over a domain S. We say that f has an ε-approximator of weight
W over S if there is an integer vector (v1, . . . , vn) ∈ Zn with maxi |vi| ≤ W and a
threshold θ ∈ R such that

Pr
x∈S

[sign(v · x− θ) 6= f(x)] ≤ ε,

where the probability is with respect to a uniform choice of x from S. In the rest of
this paper we prove upper and lower bounds on the weight of ε-approximators over
the Hamming ball {0, 1}n≤k, where k is viewed as “small” compared to n.

Related work. In [4] it was shown that for any fixed p ∈ (0, 1) and any halfspace
f over {0, 1}n, there is an ε-approximating halfspace sign(w·x−θ) of weight n·2Õp(1/ε2)

for f with respect to the product distribution Dp, i.e. Prx∼Dp [sign(w ·x−θ) 6= f(x)] ≤
ε. Here the distribution Dp is the product distribution over {0, 1}n such that each
coordinate xi of a draw from Dp is independently set to be 1 with probability p. The
“Õp” in the exponent of the weight bound hides a dependence on p.

For constant p ∈ (0, 1/2) the distribution Dp is rather similar to the uniform
distribution on {0, 1}n≤pn since both distributions are close to being uniform over
strings of weight pn. In contrast, we give upper and lower bounds that depend only
on k and ε, independent of n, but our bounds require that k be “small” relative to n.
Thus the [4] results may be viewed as addressing the case where k is “large” (linear
in n) while our results may be viewed as addressing the case where k is “small.”

Some useful distributions. In proving our upper and lower bounds it will often
be simpler for us to work with “nice” distributions which are close to the uniform
distribution over {0, 1}n≤k. First we prove some simple observations which we will
use in the following sections:

Observation 2. Let D denote the uniform distribution over {0, 1}n≤k and let
D1 denote the uniform distribution over {0, 1}n=k, the set of all strings with exactly k
ones. The total variation distance ‖D − D1‖1 between D and D1 is at most 4k/n.
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Moreover, let D2 denote the distribution over [k]n defined as follows: a draw of
x ∼ D2 is obtained by taking x to be ei1 +ei2 +· · ·+eik where each of i1, . . . , ik is drawn
independently and uniformly from [n]. Then the total variation distance ‖D − D2‖1
is at most (k2 + 4k)/n.

Proof. For the first claim, if k > n/4 then the claimed bound is trivially true so
we assume that k < n/4. We recall that

(
n
j−1

)
/
(
n
j

)
= j/(n − j + 1), and that this is

at most 1/2 for j ≤ n/4. So induction gives us that
(
n
k−2

)
≤ 1

2

(
n
k−1

)
,
(
n
k−3

)
≤ 1

4

(
n
k−1

)
,

and so on, so

|{0, 1}n≤k−1| ≤
k−1∑
j=0

1
2j
× |{0, 1}n=k−1| ≤ 2|{0, 1}n=k−1|.

and hence

|{0, 1}n≤k−1|
|{0, 1}n≤k|

≤
2|{0, 1}n=k−1|
|{0, 1}n≤k|

≤
2|{0, 1}n=k−1|
|{0, 1}n=k|

=
2
(
n
k−1

)(
n
k

) ≤ 4k/n. (4.1)

So, the total variation distance between D and D1 is

∑
x:D(x)>D1(x)

(D(x)−D1(x)) =
|{0, 1}n≤k| − |{0, 1}n=k|

|{0, 1}n≤k|
=
|{0, 1}n≤k−1|
|{0, 1}n≤k|

≤ 4k/n.

For the second claim, let dup be the event that xi > 1 for some i. We have

D2(dup) =
k−1∑
i=1

i

n
≤ k(k − 1)

2n
. (4.2)

Conditioned on the event (¬dup), the distribution D2 is identical to D1. Thus for any
event E we have

|D1(E)−D2(E)| = |D1(E)−D2(E | ¬dup)D2(¬dup)−D2(E | dup)D2(dup)|
≤ |D1(E)−D2(E | ¬dup)D2(¬dup)|+D2(dup)
= |D1(E)−D1(E)D2(¬dup)|+D2(dup)
= D1(E) · (1−D2(¬dup)) +D2(dup)

≤ 1−D2(¬dup) +D2(dup) = 2D2(dup) ≤ k(k − 1)
n

,

by (4.2). So ‖D2−D1‖1 ≤ k(k−1)
n which together with the first claim and the triangle

inequality for variation distance gives the desired bound.
We close this section with the following notation which will be useful later. Let

Zn,k denote the set

Zn,k = {x = (x1, . . . , xn) ∈ Zn : xi ≥ 0 for all i and x1 + · · ·+ xn = k}.

Let Φ : [n]k → Zn,k denote the mapping Φ(a) =
∑k
i=1 eai . Thus a draw of x ∼ D2 is

obtained by drawing a uniformly from [n]k and setting x = Φ(a).
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5. Upper bound for approximating halfspaces. In this section we prove our
main positive result on approximating halfspaces over {0, 1}n≤k using small weights,
which is the following:

Theorem 5.1. Let f be any halfspace over {0, 1}n≤k. Let ε, k satisfy k2

n ≤ cε
where c > 0 is a (small) universal constant. Then there is an ε-approximator for f
over {0, 1}n≤k that has weight kO(k/ε).

As noted in the introduction, it is easy to see that there are halfspaces over the
entire Boolean cube {0, 1}n that require weight Ω(

√
n) for ε-approximation even when

ε is (say) 1/5; an example of such a halfspace is sign(x1 + x2 + · · ·+ xn−1 +nxn) (see
[22] for the proof). In contrast, Theorem 5.1 shows that over Hamming balls of any
constant radius, every halfspace can be approximated to any constant accuracy using
weights that are independent of n.

Here is some intuition before the formal proof. The proof works by showing that
every halfspace can be ε/2-approximated with respect to the distribution D2 (this is
sufficient to establish the theorem by Observation 2). To ε/2-approximate an arbitrary
halfspace f with respect to D2, the argument proceeds as follows. After sorting the
weights, we first define a collection of t = O(k/ε) “key coordinates” in {1, . . . , n}
(these are just t coordinates which are evenly spaced out in {1, . . . , n}). Then we
define a set S ⊂ Zn,k of “key inputs,” which are the elements of Zn,k that have
nonzero entries only in the key coordinates. Using a linear programming argument,
we show that there is a halfspace h′ that depends only on the t key coordinates, has
weight kO(t), and agrees with f on all key inputs. An additional crucial property
of h′ is that its weights are sorted in the same order as the weights of f . We then
define an n-variable halfspace h by basing the weights of the other n − t non-key
coordinates in a natural way on the weights that h assigns to the key coordinates. We
use the sortedness of the weights of h′ to characterize the error points of h. Finally,
we upper bound the error of h by using this characterization together with a simple
upper bound on the edge-boundary of monotone Boolean-valued functions over the
domain [t]k.

Proof of Theorem 5.1. We first note that if k ∈ {0, 1} then there is a weight-1
exact representation of f , so we henceforth assume that k ≥ 2.

Let w1, . . . , wn, θ
′ be a weight representation of f over {0, 1}n≤k, so f(x) = sign(w ·

x− θ′) for all x ∈ {0, 1}n≤k. We may assume that each wi is an integer and that θ′ is
of the form (integer +1/2). Additionally, we may assume that the weights are sorted
w1 ≤ · · · ≤ wn, since if this is not the case we can rename variables to make this
condition hold. We use the representation w, θ′ to extend the domain of f to all of
Rn, i.e. we define f(x) = sign(w · x− θ′) for all x ∈ Rn.

Key coordinates and key inputs. Let t = O(k/ε). Note that if t ≥ n then
by Theorem 2.1 in fact there is an exact representation for f over {0, 1}n≤k that has
weight kO(k/ε); thus we may assume that t < n. In fact, by the assumptions on ε, k
and n in the statement of the theorem we may assume that k ≤ n/t; this will be
useful later.

We define the set KC ⊂ [n], |KC| = t of “key coordinates” to be a fixed set

KC = {key1 = 1, key2, . . . , keyt = n}

of values in [n] that are equally spaced as much as possible, i.e. for all j, j′ ∈ [t − 1]
we have keyj+1 − keyj = keyj′+1 − keyj′ ± 1.
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We next define the set KI ⊂ Zn,k of “key inputs” as

KI = {x ∈ Zn,k : for all i, if xi > 0 then i ∈ KC},

so x ∈ Zn,k is a key input if and only if all of its nonzero coordinates are key coordi-
nates.

A low-weight halfspace h that agrees with f on all key inputs. Our
next step is to establish the existence of a low-weight halfspace that depends only on
the key coordinates and agrees with f on all key inputs. This is done via a linear
programming argument quite similar to the proof of Theorem 2.1.

Lemma 5.2. There is a halfspace h′(x) = sign(v′ · x − θ) with the following
properties:

(1) For each i /∈ KC we have v′i = 0 (so h depends only on the key coordinates);
(2) For each i ∈ KC we have that v′i is an integer satisfying |v′i| ≤ kO(t);
(3) For each j ∈ [t− 1] we have v′keyj

≤ v′keyj+1
; and

(4) h′(x) = f(x) for every key input x ∈ KI.
Proof. We obtained the desired integer weights (v′i)i∈KC and the threshold θ as

the solution to a linear program, which we now describe. Each key input x ∈ KI
defines a linear constraint over the t+ 1 variables (v′i)i∈KC , θ in the following way:

f(x) ·

( ∑
i∈KC

v′ixi − θ

)
≥ 1.

The linear program additionally contains t− 1 constraints of the form

v′keyj
≤ v′keyj+1

for all j ∈ [t− 1].

This is a feasible linear program, since taking v′i = 2wi for all i ∈ KC, v′i = 0 for
all i /∈ KC, and θ = 2θ′ is a feasible solution. (To see that this works, observe that
for any x ∈ KI the total value of w · x is entirely contributed by coordinates in KC.)
It is clear that any feasible solution satisfies items (1), (3) and (4) of the Lemma, so it
remains only to show that there is a feasible solution satisfying the weight bound (2).
This follows from the same arguments used in the proof of Theorem 2.1 with trivial
modifications (the fact that there are now t+ 1 unknowns in the linear program leads
to the claimed bound of kO(t) rather than kO(n) as was the case in Theorem 2.1).

Filling in the other weights. We now define the halfspace h that has weights
for all coordinates (not just the key coordinates). The halfspace h is defined as
h(x) = sign(v · x − θ) in a very natural way as follows: for each key coordinate
i ∈ KC we take vi = v′i. For each non-key coordinate i /∈ KC, let j be such that
keyj−1 < i < keyj , i.e. keyj is the first key coordinate immediately after i; we take
vi = v′keyj

. For example, if v′ = (3, 0, 0, 4, 0, 6) then v = (3, 4, 4, 4, 6, 6). Note that the
weights vi satisfy v1 ≤ v2 ≤ · · · ≤ vn; this will be useful later.

We will show that this halfspace h(x) is the ε-approximator for f claimed in the
theorem statement. It is clear that the weight of h is at most kO(t) = kO(k/ε) as
desired; it remains to show that Prx∼D2 [h(x) 6= f(x)] ≤ ε/2, or equivalently, that at
most an ε/2 fraction of points a ∈ [n]k have h(Φ(a)) 6= f(Φ(a)).

Bounding Pra∈[n]k [h(Φ(a)) 6= f(Φ(a))]. We define a function up : [n− 1]→ KC
as follows: up(i) = keyj where keyj is the smallest element of KC satisfying i < keyj .
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Similarly we define down : [n− 1]→ KC as down(i) = keyj where keyj is the largest
element of KC satisfying keyj ≤ i. Each i ∈ [n− 1] has up(i) = down(i) + 1.

For an arbitrary a ∈ [n−1]k we define the “upper key neighbor” of a and “down-
ward key neighbor” of a as

ukn(a) = (up(a1), . . . ,up(ak)) ∈ (KC)k,
dkn(a) = (down(a1), . . . ,down(ak)) ∈ (KC)k

respectively. It is easy to see that for each a ∈ [n−1]k, both Φ(ukn(a)) and Φ(dkn(a))
are key inputs. Thus Lemma 5.2 ensures that sign(v · Φ(ukn(a)) − θ) = sign(w ·
Φ(ukn(a))− θ′) for all a ∈ [n− 1]k, and likewise for Φ(dkn(a)).

We next observe that by the monotonicity of the weights v1, . . . , vn, we have that
every a ∈ [n− 1]k satisfies

v · Φ(dkn(a)) ≤ v · Φ(a) ≤ v · Φ(ukn(a)).

Consequently if a ∈ [n−1]k is such that sign(v·Φ(dkn(a))−θ) = sign(v·Φ(ukn(a))−θ),
then sign(v · Φ(a)− θ) must equal the same value, and hence for such an a we have

sign(w · Φ(dkn(a))− θ′) = sign(v · Φ(dkn(a))− θ) = sign(v · Φ(a)− θ)
= sign(v · Φ(ukn(a))− θ) = sign(w · Φ(ukn(a))− θ′).(5.1)

By monotonicity of the weights w1, . . . , wn we have that w·Φ(dkn(a)) ≤ w·Φ(a) ≤
w · Φ(ukn(a)), so, if (5.1) holds, all the quantities in (5.1) above are also equal to
sign(w · Φ(a) − θ′). Thus we have shown that if a ∈ [n − 1]k is such that sign(v ·
Φ(dkn(a))− θ) = sign(v ·Φ(ukn(a))− θ), then sign(v ·Φ(a)− θ) = sign(w ·Φ(a)− θ′),
i.e. h(Φ(a)) = f(Φ(a)). We observe that at most a k/n fraction of all inputs a ∈ [n]k

have ai = n for any i; by the conditions on k, ε and n in the statement of the theorem,
k/n may be assumed to be at most ε/4. So to finish the proof of the theorem, it suffices
to show the following, which we refer to as statement (*):

(*): At most an ε/4 fraction of all points a ∈ [n−1]k have sign(v ·Φ(dkn(a))−θ) =
−1 and sign(v · Φ(ukn(a))− θ) = 1.

We first note that for any two elements i, j ∈ [t− 1] we have

|down−1(keyi)|, |down−1(keyj)| ∈ {bn/tc, bn/tc+ 1}

and we recall from the bounds on t stated at the beginning of the proof that conse-
quently |down−1(i)|, |down−1(j)| ≥ k. As a result, for any two vectors (i1, . . . , ik) ∈
[t− 1]k and (j1, . . . , jk) ∈ [t− 1]k, we have that the two sets

{a ∈ [n− 1]k : down(a`) = i` for all ` = 1, . . . , k} and
{b ∈ [n− 1]k : down(b`) = j` for all ` = 1, . . . , k}

have sizes that differ by at most a multiplicative factor of (1 + 1
k )k < 3. Hence to

establish (*) it suffices to show that at most a ε/12 fraction of all vectors (i1, . . . , ik) ∈
[t− 1]k have

sign(v ·Φ(keyi1 , . . . , keyik)− θ) = −1 and sign(v ·Φ(keyi1+1, . . . , keyik+1)− θ) = 1.

We define a Boolean-valued function F : [t− 1]k → {−1, 1} as follows:

F (i1, . . . , ik) = sign
(
v · Φ(keyi1 , . . . , keyik)− θ

)
.
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The monotonicity of the weights vkey1
, . . . , vkeyt−1

implies that F is a monotone non-
decreasing function over [t− 1]k: if r, s ∈ [t− 1]k satisfy ri ≤ si for all i ∈ [k] then it
cannot be the case that F (r) = 1 and F (s) = −1. Now we upper bound the desired
probability using a union bound:

Pr
(i1,...,ik)∈[t−1]k

[F (i1, . . . , ik) 6= F (i1 + 1, . . . , ik + 1)] ≤

Pr
(i1,...,ik)∈[t−1]k

[F (i1, . . . , ik) 6= F (i1 + 1, i2, . . . , ik)] +

Pr
(i1,...,ik)∈[t−1]k

[F (i1 + 1, i2, . . . , ik) 6= F (i1 + 1, i2 + 1, i3, . . . , ik)] + · · ·+

Pr
(i1,...,ik)∈[t−1]k

[F (i1 + 1, . . . , ik−1 + 1, ik) 6= F (i1 + 1, . . . , ik + 1)].

By the monotonicity of F , each of the k probabilities on the RHS is at most
1/(t − 1) (since fixing all the values of the other k − 1 coordinates, there can be at
most one setting of the remaining free coordinate which causes the value of F to
change). For a suitable choice of the hidden constant in t = O(k/ε), we have that
1/(t− 1) ≤ ε/(12k). Thus the RHS above is at most ε/12 as desired. This concludes
the proof of Theorem 5.1.

6. Lower bounds for approximating halfspaces. Recall that the n-variable
halfspace DL is defined as DL(x) = sign(

∑n
i=1(−2)ixi+1). Our main result in this

section is a lower bound on the weight of any ε-approximator for DL:
Theorem 6.1. For sufficiently large n, k ≥ 3 and 1

2 ·
(

1
400k

)k
>ε ≥ 4k/n, any

ε-approximator for DL over {0, 1}n≤k must have weight at least kΘ(1)/ε1/(k−1)−1.
Discussion. It is easy to see that for all ε, the functionDL has an ε-approximator

over {0, 1}n of weight O(1/ε). So Theorem 6.1 shows that for a specific natural
function, taking k to be constant and letting ε vary, getting an ε-approximator over
the Hamming ball {0, 1}n≤k (for k constant) requires weights that are exponentially
larger than the weights required for ε-approximation over the entire Boolean cube.
Theorem 6.1 is also in sharp contrast with the recent upper bound of [3] which shows
that any boolean halfspace has an ε-approximator over the entire Boolean cube which
has weight at most quasipoly(1/ε) (as a function of ε).

6.1. Proof Sketch of Theorem 6.1. Since the proof of Theorem 6.1 is some-
what involved we give an outline here. At a very high level, the idea is that in order
for an LTF sign(v · x − θ) to be a good approximator for DL, it should be the case
that (roughly speaking) vi > 0 for even i, vi < 0 for odd i, and the magnitudes of the
weights |vi| increase sharply with i; the essence of the proof is to show that if any of
these conditions are “badly violated” then sign(v · x − θ) must disagree with DL on
many inputs.

In more detail, let sign(v ·x− θ) be an arbitrary integer weight halfspace which is
a 2ε-approximator for DL with respect to D1 (by Observation 1 it suffices to consider
such approximators). We first show (Claim 4) that without loss of generality we
may assume that the threshold θ is 0 and the weights vi are positive for even i and
negative for odd i. This is not too difficult; the bulk of our work is to show that
overall the magnitudes of the weights must increase significantly from smallest to
largest, and thus the largest magnitude weight must be very large (since the smallest
magnitude weight has magnitude at least 1). To do this, we consider the weights in
order of increasing magnitude and consider disjoint “blocks” of the smallest-magnitude
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weights, the next-smallest-magnitude weights, and so on. We show (Lemma 6.2) that
either there are large weights, or else almost all of the blocks are “pure,” meaning
that they either consist almost entirely of positive (even-index) weights, or consist
almost entirely of negative (odd-index) weights. Finally, the argument concludes by
showing that if almost all of the blocks are “pure” as described above, then in fact
the halfspace must err on a significant fraction of all inputs.

6.2. Proof of Theorem 6.1. Let ε ≥ 4k/n, and assume that sign(v · x− θ) is
an integer-weight halfspace which is a 2ε-approximator for DL with respect to D1.
(Recall that D1 is the uniform distribution over {0, 1}n=k.) We will show that if no
|vi| exceeds kΘ(1)/ε1/(k−1)−1 then sign(v · x− θ) cannot be a 2ε-approximator for DL.

We first observe that the upper bound on ε in the theorem statement gives us
ε ≤ 1000−k, and that combining the upper and lower bounds on ε we may assume
k ≤ O( logn

log logn ); these bounds will be useful later.
Claim 4. We may assume without loss of generality that all of the following

conditions hold:
1. θ = 0;
2. each coordinate vi is a nonzero integer;
3. vi > 0 for i even and vi < 0 for i odd.

Proof. We first show how to obtain conditions (1) and (2) at the cost of only a
multiplicative-factor increase of Θ(k) in the weights (this factor of Θ(k) corresponds
to the “−1” at the end of the exponent of the weight bound of Theorem 6.1). Then
we show how to further obtain condition (3) at the cost only of decreasing n from its
original value down to some n′ ∈ [n/2, n] and of increasing ε from its original value
by at most a factor of 2.

As noted in the preliminaries we may assume that θ is of the form (integer)+1/2.
Let u ∈ Rn denote the vector u = (1, . . . , 1). It is easy to verify that the halfspace
sign ((2kv − 2θu) · x) agrees with sign(v · x − θ) on every x ∈ {0, 1}n=k, because for
x ∈ {0, 1}n=k we have

(2kv − 2θu) · x = 2kv · x− 2kθ = 2k(v · x− θ).

Next, we observe that since 2kvi is even and 2θ is odd, we have that each coordinate
of (2kv − 2θu) is a nonzero integer. Thus we have achieved conditions (1) and (2) at
the cost of at most a Θ(k) multiplicative factor for the largest weight.

So, let us suppose that sign(v ·x) achieves conditions (1) and (2); we now deal with
the signs of the weights. Let P ⊆ [n] be the set of positive weights, P def= {i : vi > 0},
and N = [n] \ P be the set of negative weights N = {i : vi < 0}. Let E ⊂ [n] denote
the set {2, 4, . . . , 2bn/2c} of even indices and O = [n]\E denote the set of odd indices
in [n].

We claim that we have |N ∩E| ≤ n
200k and |P ∩O| ≤ n

200k . To see why this must
be true, suppose |N ∩E| > n

200k . Then there are at least
(|N∩E|

k

)
≥
(
n/(200k)

k

)
inputs

x ∈ {0, 1}n=k of the form x = ei1 + · · ·+ eik where i1, . . . , ik are distinct and all belong
to N ∩E. For each such x we have v ·x < 0 (because all the weights which contribute
to v · x are negative) but DL(x) = 1 (because all the bits that are set to 1 in x are in
even coordinates), and hence sign(v · x) is in error on each such x. This means that
sign(v · x) has error rate at least(

n/(200k)
k

)(
n
k

) ≥
(
n/(200k)− (k − 1)

n

)k
=
(

1
200k

− k − 1
n

)k
>

(
1

400k

)k
, (6.1)
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where the second (strict) inequality holds for sufficiently large n because k = o(log n)
as noted above. From our bounds on ε and k the quantity (6.1) is greater than 2ε; but
this contradicts the assumption that sign(v ·x) is a 2ε-approximator of f over {0, 1}n=k.
Thus it must indeed be the case that |N ∩ E| ≤ n

200k . The same argument works for
P ∩O. Thus, we have established that indeed |N ∩ E| ≤ n

200k and |P ∩O| ≤ n
200k .

So an overwhelming majority of the even i lie in P and an overwhelming majority
of the odd i lie in N . Let G′ be defined as G′ = (P ∩E) ∪ (N ∩O); intuitively, G′ is
the set of “good” indices i for which vi has the “right” sign. The preceding paragraph
gives us that |G′| ≥ (1− 1

100k )n.
Viewing the elements of G′ as being sorted in increasing order, it may be the

case that G′ contains multiple consecutive even elements or multiple consecutive odd
elements, i.e. we could have G′ = {1, 3, 5, 7, 8, 10, 11, 14, . . . } and the first 4 points in
G′ would all belong to O. Let G be the subset of G′ obtained by going through the
points of G′ from smallest to largest and greedily keeping the first (odd, even, odd,
even, . . . ) points of alternating parity that we encounter (so if G′ were as in the above
example we would have G′ = {1, 8, 11, 14, . . . }). For a point i (like 3 in the above
example) to be discarded from G′, it must be the case that i − 1 does not belong to
G′. Since at most n

100k points do not belong to G′, we have that the number of points
in G′ that are discarded in constructing G from G′ is at most n

100k . Thus overall we
have that |G| ≥ (1− 1

50k )n. Consequently, of the
(
n
k

)
points in {0, 1}n=k, at least(

|G|
k

)
≥
(

(1− 1
50k )n
k

)
of them are of the form x =

∑k
j=1 eij where all k of the distinct indices i1, . . . , ik

belong to G. Since(
(1−1/(50k))n

k

)(
n
k

) ≥
(
n(1− 1/(50k))− (k − 1)

n

)k
=
((

1− 1
50k

)
− k − 1

n

)
≥
(

1− 1
25k

)k
≥ 1

2
,

this is at least half of the points in {0, 1}n=k. Let us restrict the halfspace sign(v ·x) to
the domain {0, 1}G=k. Even if all the error points of sign(v · x) were to lie in {0, 1}G=k,
since sign(v · x) has error rate at most 2ε over {0, 1}n=k, it must have error rate at
most 4ε over {0, 1}G=k. Moreover, since the points in G (going from smallest to largest)
alternate parity (odd, even, odd, even, . . . ) we have that DL over the domain {0, 1}G
is completely isomorphic to DL over the domain {0, 1}|G|. Thus it suffices to analyze
the halfspace sign(v · x) over the domain {0, 1}|G|=k . As claimed in the first paragraph
of the proof the number of variables has gone down by at most a factor of 2 (from n
to |G|) and the error bound has at most doubled from 2ε to 4ε, so the claim is proved.

Using the above claim, for the rest of the proof we assume that the halfspace
sign(v · x) satisfies conditions (1)-(3). Next, as described in the overview at the
start of this subsection, we divide the weights into disjoint blocks according to their
magnitudes and show that almost all the blocks are “pure” (almost entirely comprised
of even-indexed weights, or almost entirely comprised of odd-indexed weights).

Fix π : [n] → [n] to be a permutation which sorts the weights v1, . . . , vn in
increasing order of magnitude, i.e. 0 < |vπ(1)| ≤ |vπ(2)| ≤ · · · ≤ |vπ(n)|. (If the
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weights vi have all distinct magnitudes then there is a unique such permutation π,
and otherwise we fix any such π.) Let b def= Θ(1)/ε1/(k−1). If any weight has |vi| >
(k/2)b/1000 then we are done, so we assume that each i has |vi| ≤ (k/2)b/1000. We
partition [n] into b blocks S1, . . . , Sb whose sizes are as nearly even as possible, i.e.

S1 = {π(1), . . . , π(|S1|)}, . . . , Sb = {π(n− |Sb|+ 1), . . . , π(n)}

where there is a fixed value s ≈ n/b such that |Si| ∈ {s, s+ 1} for all 1 ≤ i ≤ b. Note
that S1 consists of the smallest-magnitude weights, S2 consists of the next-smallest-
magnitude weights, and so on.

We say that a block Si is pure if at least 999
1000 of the coefficients (vj)j∈Si have the

same sign; equivalently, Si is pure if at least this fraction of the elements of Si have
the same parity (almost all are even, or almost all are odd). We say that a pure block
is “pure odd” (“pure even”) if 999

1000 of its elements are odd (even). A block which is
not pure is said to be impure.

We have the following lemma:
Lemma 6.2. At least 998

1000b blocks are pure.
Proof. We introduce a different notion, that of a block being “narrow,” and use

this notion to prove the lemma. We show that at least 999
1000 of all blocks are narrow,

and that at most 1
1000 of all blocks are both narrow and impure; this gives the lemma.

For a block Sj let Rj ≥ 1 denote the ratio (largest magnitude of any weight in
the block)/(smallest magnitude of any weight in the block), i.e. Rj = |vπ(i1)|/|vπ(i2)|
where π(i1), π(i2) ∈ Sj and |vπ(i1)| ≤ |vπ(i′)| ≤ |vπ(i2)| for all π(i′) ∈ Sj . (Note that
this ratio is well defined for all j = 1, . . . , b because each weight vi is nonzero.) We
say that a block Sj is narrow if Rj ≤ k/2.

We first show that at least 999
1000b blocks are narrow. Recall that |vπ(n)| ≤

(k/2)b/1000. Since |vπ(n)| ≥ |vπ(n)|/|vπ(1)| ≥
∏b
i=1Ri it must be the case that at

least 999
1000b blocks are narrow, since otherwise we would have

∏b
i=1Ri > (k/2)b/1000.

We next claim that if more than b/1000 blocks Si are both narrow and impure
then we have Prx∈{0,1}n=k [sign(v · x) 6= DL(x)] > 2ε. To see this, fix any block ` that
is both narrow and impure. Consider an input x =

∑k
j=1 eij chosen uniformly from

{0, 1}n=k conditioned on i1, . . . , ik all belonging to S`. Some sign – either positive or
negative – must constitute the majority of the largest 1

2000 elements of {vi}i∈S` ; say
that sign is positive. With probability at least 1

4000 the element vik will belong to this
positive subset of the 1

2000 largest elements of {vi}i∈S` . On the other hand, the smallest
(1 − 1

2000 ) of the elements of {vi}i∈S` must also contain at least 1
2000 · |S`| negative

elements, (because S` is impure), and with probability 1
2O(k) the elements vi1 , . . . , vik−1

will all belong to this set of negative elements. Thus, under the conditioning on x
described above, with probability at least 1/2O(k) we have that

(−1)i1 = · · · = (−1)ik−1 6= (−1)ik , (6.2)

i.e. i1, . . . , ik−1 all have the same parity (odd or even) but ik has the opposite parity
(even or odd respectively). However, since S` is narrow, the magnitude of vik can be at
most k/2 times the minimum magnitude of any of vi1 , . . . , vik−1 . Since k ≥ 3, it follows
that we have that sign(v · x) = (−1)i1 ; but this is incorrect since DL(x) = (−1)ik
(because ik is the largest value in i1, . . . , ik). Thus, conditioned on i1, . . . , ik all
belonging to S`, we have that x is classified incorrectly by sign(v ·x) with probability
at least 1/2O(k). The probability (over a random x ∈ {0, 1}n=k) that all k coordinates
of x belong to S` is easily seen to be at least at least 1/(2b)k. Assuming that at
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least b/1000 blocks are both narrow and impure, we get that overall the error rate
Prx∈{0,1}n=k [sign(v · x) 6= DL(x)] is at least

b

1000
· 1

(2b)k
· 1

2O(k)
,

which exceeds 2ε by our choice of b.
From the above paragraph, we may conclude that at most b/1000 blocks Si are

both narrow and impure. Since at least 999
1000b blocks are narrow, at least 998

1000b of the
b blocks are both narrow and pure, and Lemma 6.2 is proved.

At this point we have shown that at least 998/1000 of the b blocks are pure. Let
pure1 < pure2 < · · · < pureb′ be the indices of the pure blocks, where from the above
lemma we have b′ ≥ 998

1000b. To conclude the proof we now show that if there are so
many pure blocks then the error of sign(v · x) must exceed 2ε.

The following terminology will be useful: Given an index κ ∈ [n − 1] we define
the “up-shift” up(κ) to be up(κ) = κ+ 1. For a set S ⊂ [n] we define up(S) to be the
set

up(S) = {j + 1 : j ∈ S}.

It is clear that |up(S)| = |S| for all S, and that if a ρ fraction of S is even (odd) then
a ρ fraction of up(S) is odd (even).

Consider any ` ∈ {1, . . . , b′} for which Spure` is a pure even block. (There are at
least 49

100 such `’s, since half of all indices are odd and half are even and 99.8% of all
indices belong to a pure block.) We say that Spure` is upshift-decreasing if at least
45
100 of the elements j ∈ Spure` are even and have up(j) ∈ S`′ for some `′ < pure`, and
we say that Spure` is upshift-increasing if at least 45

100 of the elements j ∈ Spure` are
even and have up(j) ∈ S`′ for some `′ > pure`. Since (at least) 99.9% of the elements
j ∈ Spure` are even, and thus have up(j) odd, at least 99.8% of the elements j ∈ Spure`
are even and have up(j) in some block Sk with k 6= pure`, so Spure` must be either
upshift-decreasing or upshift-increasing.

We consider two cases:
Case I: at least half of all pure even blocks Spure` are upshift-decreasing. In this

case, there are at least 49
200b pure even upshift-decreasing blocks Spure` .

For Spure` a pure even upshift-decreasing block, let Gpure` ⊂ Spure` denote the set

Gpure` = {j ∈ Spure` : j is even and up(j) ∈ S`′ for some `′ < pure`}

so |Gpure` | ≥
4
10 ·

n
b (since |Spure` | ≈

n
b ). Let Lpure` denote the lower half of the elements

in Gpure` and Upure` = Gpure` \ Lpure` denote the upper half of the elements (so for
every α ∈ Lpure` and β ∈ Upure` we have α < β). We have |Lpure` |, |Upure` | ≥

2
10 ·

n
b .

Fix an ` such that Spure` is a pure even upshift-decreasing block. Consider the set
of all inputs x = ei1 + · · · + eik ∈ {0, 1}n=k for which i1, . . . , ik−1 all belong to Lpure`
and ik belongs to up(Upure`). By the cardinality bounds of the previous paragraph
there are at least

|up(Upure`)| ·
(
|Lpure` |
k − 1

)
≥
(

2n
10b

)
·
( 2n

10b

k − 1

)
possible such outcomes for x, so the probability that a random x ∈ {0, 1}n=k is of this
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sort is at least(
2n
10b

)
·
( 2n

10b
k−1

)(
n
k

) >
k · 2n

10b

(
2n
10b − (k − 2)

)k−1

nk
> k · 2

10b
·
(

2
10b
− k − 2

n

)k−1

> k · 2
10b
·
(

1
10b

)k−1

≥ 1
2Θ(k)

· 1
bk
.

For such an x we have that vi1 , vi2 , . . . , vik−1 > 0 (since i1, . . . , ik−1 are even), vik < 0
(since ik is odd), and |vi1 |, . . . , |vik−1 | ≥ |vik | (since ik belongs to S′` for some `′ < pure`
and i1, . . . , ik−1 all belong to Spure`). These conditions together give that sign(v ·(ei1 +
· · ·+ eik)) = +1. But since we have ik ∈ up(Upure`) and i1, . . . , ik−1 ∈ Lpure` , it must
be the case that i1, . . . , ik−1 < ik; since ik is odd this means DL(x) = −1, so sign(v ·x)
is incorrect on such x. Taking a union bound across all 49

200b possibilities for ` that
make Spure` a pure even upshift-decreasing block, we get that overall

Pr
x∈{0,1}n=k

[sign(v · x) 6= DL(x)] ≥ 49
200

b · 1
2Θ(k)bk

which is larger than 2ε.
We now turn to
Case II: at least half of all pure even blocks Spure` are upshift-increasing, so

there are at least 49
200b pure even upshift-increasing blocks Spure` . Recall that in a

upshift-increasing block, at least 4
10 of the elements j ∈ Spure` are even and have

up(j) ∈ S`′ for some `′ > pure`.
This analysis of this case is quite similar to Case I; the difference is that we

consider a slightly different event. For Spure` a pure even upshift-increasing block, let
Gpure` ⊂ Spure` denote the set

Gpure` = {j ∈ Spure` : j is even and up(j) ∈ S`′ for some `′ > pure`}
1 so |Gpure` | ≥

4
10 ·

n
b . As before, let Lpure` denote the lower half of the elements in

Gpure` and Upure` = Gpure` \Lpure` denote the upper half of the elements (so for every
α ∈ Lpure` and β ∈ Upure` we have α < β). As before, we have |Lpure` |, |Upure` | ≥
2
10 ·

n
b .
Fix an ` such that Spure` is a pure even upshift-increasing block. Consider the set

of all inputs x = ei1 +· · ·+eik ∈ {0, 1}n=k for which i1, . . . , ik−1 all belong to up(Lpure`)
and ik belongs to Upure` .

2 As in Case I the probability that a random x ∈ {0, 1}n=k
is of this sort is at least 1

2Θ(k) · 1
bk

. For such an x we have that vik > 0 (since ik is
even), vi1 , . . . , vik−1 < 0 (since i1, . . . , ik−1 are all odd), and |vi1 |, . . . , |vik−1 | ≥ |vik |
(since i1, . . . , ik−1 belong to S`1 and S`2 respectively for some `1, `2 > pure` whereas A
belongs to Spure`). These conditions together give that sign(v · (ei1 + · · ·+ eik)) = −1.
But since we have ik ∈ Upure` and i1, . . . , ik−1 ∈ up(Lpure`) it must be the case that
ik > i1, . . . , ik−1; since ik is even this means DL(x) = +1, so sign(v · x) is incorrect
on such an x. The rest of the argument (analyzing the probability) proceeds exactly
as in Case I: taking a union bound across all 49

200b possibilities for ` that make Spure`
a pure even upshift-increasing block, we get that overall

Pr
x∈{0,1}n=k

[sign(v · x) 6= DL(x)] ≥ 49
200

b · 1
2Θ(k)bk

1Note that in Case I we had “`′ < pure`” where now we have “`′ > pure`” in the definition of
Gpure`

2Note the difference from Case I.
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which is larger than 2ε. We are done in Case II, and done with the proof of Theo-
rem 6.1.

7. An upper bound for approximating decision lists. At this point we
have established that every halfspace over {0, 1}n≤k can be ε-approximated using
weight kO(k/ε), and that for the DL halfspace any ε-approximator must use weight
kΘ(1)/ε1/(k−1)−1. It is a natural goal to close the gap between these upper and lower
bounds; while we have not yet succeeded in doing this, we give a detailed analysis
of the DL halfspace and prove a stronger kO(k/

√
ε) upper bound for it. This tells us

that if the kO(k/ε) upper bound of Theorem 5.1 is in fact the “right answer,” then
any lower bound proof establishing this must use a halfspace other than DL.

Theorem 7.1. Let ε, k, n satisfy ε = ω(k2/n). Then there is an ε-approximator
for the function DL over {0, 1}n≤k that has weight kO(k/

√
ε).

Proof. Recall that the obvious halfspace representation for DL as

sign(
n∑
i=1

(−2)ixi)

has weight 2n. We first present a simple construction with an easy analysis that
gives an ε/2-approximator of weight kO(k/ε) under distribution D2 (this yields an ε-
approximator over {0, 1}n≤k by Observation 2 and our choice of ε). This of course only
recovers the general result of Theorem 5.1, but then we will sharpen this DL-specific
simple construction and analysis to prove the theorem.

We assume that ε is of the form 1/integer and we define r def= k/ε. Note that
r < n by the assumed lower bound on ε.

We partition [n] into r blocks S1, . . . , Sr whose sizes are as nearly even as possible,
i.e.

S1 = {1, . . . , |S1|}, . . . , Sr = {n− |Sr|+ 1, . . . , n}

where there is a fixed value s ≈ n/r such that |Si| ∈ {s, s + 1} for all 1 ≤ i ≤ r.
For j ∈ [n] let bl(j) ∈ [r] denote the index of the block Sbl(j) that contains j. For

1 ≤ j ≤ n let wj
def= (−1)j(2k)bl(j). It is clear that maxj∈[n] |wj | = (2k)r = (2k)k/ε.

We claim that sign(w ·x) is an O(ε)-approximator for DL(x) over D2. To establish
this, consider an input x = ei1 + · · · + eik drawn from D2, i.e. (i1, . . . , ik) is drawn
uniformly from [n]k. Let b? denote max{bl(i1), . . . , bl(ik)}. Since the weights increase
by a factor of 2k between successive blocks, it is easy to see that if there is precisely one
index j ∈ [k] for which bl(ij) = b?, then sign(w ·x) = (−1)max{i1,...,ik} agrees with the
value DL(x). So we have that Prx∼D2 [sign(w ·x) 6= DL(x)] is at most the probability
that there are at least two distinct indices j1, j2 ∈ [k] such that bl(ij1) = bl(ij2) = b?.
It is clear that for each ` ∈ [r], the probability that both (none of bl(i1), . . . , bl(ik) lie
in [`+ 1, . . . , r]) and (at least two of bl(i1), . . . , bl(ik) equal `) is at most

O(1) ·
(
`

r

)k
· k

2

`2
.

Summing over ` = 1, . . . , r we get that Prx∼D2 [sign(w · x) 6= DL(x)] is at most

r∑
`=1

O(1) · k
2

rk
· `k−2 = O

(
k

r

)
= O(ε)
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by our choice of r = k/ε. This concludes the initial simple construction and analysis.
We now build on the above simple construction to prove Theorem 7.1. The idea

is to have the magnitude of the weights increase gradually within each block while
keeping the sign of each weight correct as in the earlier construction. This lets us
argue that in order for an input to be misclassified, it must have the “top two” bits
that are set to 1 being quite close to each other, as well as a third input bit set to 1
that is also close to these top two. This more stringent condition lets us give a stronger
bound on the probability of failure, which lets us use smaller weights to achieve an
overall failure probability of ε.

We now take r = k/
√
ε. As before we may assume this is an integer which is less

than n. We define r blocks of variables S1, . . . , Sr and bl(·) as before.
We define integer weights w1, . . . , wn as follows. For each j the sign of wj is (−1)j .

The magnitude of the weights is defined as follows: first, |w1| = (2k)r. If the first
weight in block Si (say its index is αi + 1) has |wαi+1| = C, then the magnitudes of
weights increase linearly in that block from C to (2k)C, i.e. for j ∈ {1, . . . , |Si|} we
have

|wαi+j | = C + C ·
⌈

(2k − 1) · j
|Si|

⌉
so the final weight in block Si has magnitude |wαi+|Si|| = (2k)C. If the final weight
wαi+|Si| of block Si has magnitude (2k)C then the first weight wαi+|Si|+1 = wαi+1+1

of the next block has magnitude (4k2)C (so there is a factor-of-(2k) increase in the
weights between each pair of successive blocks). It is clear that all weights are integers
and that the largest one has magnitude |wn| ≤ (2k)r · (2k)2r = kO(r). The halfspace
we consider is sign(w · x).

Consider an input x = ei1 + · · · + eik drawn from D2, so (i1, . . . , ik) is drawn
uniformly from [n]k. As before let b? denote max{bl(i1), . . . , bl(ik)}. As before, the
only way that it is possible for sign(w · x) to disagree with DL(x) is if there is some
` ∈ [r] such that both (none of bl(i1), . . . , bl(ik) lie in [`+1, . . . , r]) and (at least two of
bl(i1), . . . , bl(ik) equal `). (Our subsequent analysis will impose even more conditions
that must be satisfied in order for sign(w · x) to be incorrect on x.)

Fix any ` ∈ [r]. The probability that both
none of bl(i1), . . . , bl(ik) lie in [`+ 1, . . . , r]

and
at least two of bl(i1), . . . , bl(ik) equal `

is at most k2 times the probability that both
none of bl(i1), . . . , bl(ik) lie in [`+ 1, . . . , r]

and
bl(i1) = bl(i2) = `;

let us condition on this event. Let us write i1 = α` + j1 and i2 = α` + j2; we have
that j1, j2 are selected independently and uniformly from {1, . . . , |S`|} ≈ {1, . . . , n/r}.
This means that ||wi1 | − |wi2 || is essentially distributed as∣∣∣∣wα`+1 ·

(2k − 1) · (j1 − j2)
|S`|

∣∣∣∣
(we have omitted ceiling operators for readability; it is easy to check that this omis-
sion does not significantly affect the subsequent analysis), and consequently x is clas-
sified incorrectly only if at least one of the k − 2 values (|wij |)j=3,...,k is at least
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∣∣∣wα`+1 · (j1−j2)
|S`|

∣∣∣, for otherwise the cumulative effect of the other k− 2 weights would
not be large enough to offset the effect of wi1 and wi2 .

Let c ∈ {0, 1, . . . , } be such that |j1 − j2|/|S`| ∈ ((2k)−(c+1), (2k)−c]. Since every
possible outcome for |j1− j2| (where j1, j2 are drawn independently from {1, . . . , |S`|}
has probability at most O(1)/|S`|, we have that for each c the value Pr[|j1−j2|/|S`| ∈
((2k)−(c+1), (2k)−c] is at most O((2k)−c). Because the weights increase by a factor of
2k between successive blocks, this means that the only way that |wij | can be at least∣∣∣wα`+1 · (j1−j2)

|S`|

∣∣∣ is if bl(ij) belongs to {` − c − 1, ` − c, . . . , `} (recall that because of
our conditioning we have bl(ij) ≤ `). Because of the conditioning described earlier,
for each fixed j ∈ {3, . . . , k} this occurs with probability O(1 + c)/`. Taking a union
bound over k − 2 different j’s, the probability that any |wij | is as large as would be
necessary to cause an error is at most O((1 + c)k)/`.

Putting all the pieces together and summing over all possible values ` = 1, . . . , r,
we have that

Pr
x∼D2

[sign(w · x) 6= DL(x)] ≤ =
r∑
`=1

O(1) ·
(
`

r

)k
k2

`2
·
∞∑
c=0

O((2k)−c) · O((1 + c)k)
`

= O(1) · k
3

rk

r∑
`=1

`k−3
∞∑
c=0

1 + c

(2k)c

= O(1) · k
2

r2

which is O(ε) by our choice of r. The theorem is proved.

8. Conclusion. We have studied exact and approximate representations of half-
spaces over the Hamming ball {0, 1}n≤k, giving upper and lower bounds on the weight
of such representations. While our upper and lower bounds are fairly close, there are
still several open questions that naturally suggest themselves for followup work. In
particular, our Theorem 5.1 gives a weight upper bound of kO(k/ε) which is indepen-
dent of n but depends super-exponentially on k; we suspect that it may be possible
to improve this dependence on k. Even for fixed k there is a gap between our upper
bound, which is exponential in ε−1, and our lower bound, which is exponential in
ε−1/(k−1). It would be interesting to close this gap.

Finally, a broader goal for future work is to explore the implications of our newly
established weight bounds on the effectiveness of various margin-based learning algo-
rithms over {0, 1}n≤k.
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