
Optimal Cryptographic Hardness of Learning
Monotone Functions

Dana Dachman-Soled, Homin K. Lee, Tal Malkin,
Rocco A. Servedio, Andrew Wan, and Hoeteck Wee

{dglasner,homin,tal,rocco,atw12,hoeteck}@cs.columbia.edu

Abstract. A wide range of positive and negative results have been established
for learning different classes of Boolean functions from uniformly distributed
random examples. However, polynomial-time algorithms have thus far been ob-
tained almost exclusively for various classes ofmonotonefunctions, while the
computational hardness results obtained to date have all been for various classes
of general (nonmonotone) functions. Motivated by this disparity between known
positive results (for monotone functions) and negative results (for nonmonotone
functions), we establish strong computational limitations on the efficient learn-
ability of various classes of monotone functions.
We give several such hardness results which are provably almost optimal since
they nearly match known positive results. Some of our results show cryptographic
hardness of learning polynomial-size monotone circuits toaccuracy only slightly
greater than1/2 + 1/

√
n; this accuracy bound is close to optimal by known

positive results (Blumet al., FOCS ’98). Other results show that under a plausible
cryptographic hardness assumption, a class of constant-depth, sub-polynomial-
size circuits computing monotone functions is hard to learn; this result is close to
optimal in terms of the circuit size parameter by known positive results as well
(Servedio, Information and Computation ’04). Our main toolis a complexity-
theoretic approach to hardness amplification via noise sensitivity of monotone
functions that was pioneered by O’Donnell (JCSS ’04).

1 Introduction

More than two decades ago Valiant introduced the Probably Approximately Correct
(PAC) model of learning Boolean functions from random examples [Val84]. Since that
time a great deal of research effort has been expended on trying to understand the in-
herent abilities and limitations of computationally efficient learning algorithms. This
paper addresses a discrepancy between known positive and negative results for uniform
distribution learning by establishing strong computational hardness results for learning
various classes ofmonotonefunctions.

1.1 Background and Motivation

In the uniform distribution PAC learning model, a learning algorithm is given access
to a source of independent random examples(x, f(x)) where eachx is drawn uni-
formly from then-dimensional Boolean cube andf is the unknown Boolean func-
tion to be learned. The goal of the learner is to construct a high-accuracy hypothe-
sis functionh, i.e., one which satisfiesPr[f(x) 6= h(x)] ≤ ǫ where the probability

2

is with respect to the uniform distribution andǫ is an error parameter given to the
learning algorithm. Algorithms and hardness results in this framework have interest-
ing connections with topics such as discrete Fourier analysis [Man94], circuit com-
plexity [LMN93], noise sensitivity and influence of variables in Boolean functions
[KKL88,BKS99,KOS04,OS07], coding theory [FGKP06], privacy [BLR08,KLN+08],
and cryptography [BFKL93,Kha95]. For these reasons, and because the model is natu-
ral and elegant in its own right, the uniform distribution learning model has been inten-
sively studied for almost two decades.

Monotonicity makes learning easier.For many classes of functions, uniform distri-
bution learning algorithms have been devised which substantially improve on a naive
exponential-time approach to learning via brute-force search. However, despite inten-
sive efforts, researchers have not yet obtained poly(n)-time learning algorithms in this
model for various simple classes of functions. Interestingly, in many of these cases re-
stricting the class of functions to the corresponding classof monotonefunctions has led
to more efficient – sometimes poly(n)-time – algorithms. We list some examples:

1. A simple algorithm learns monotoneO(log n)-juntas to perfect accuracy in poly(n)
time, and a more complex algorithm [BT96] learns monotoneÕ(log2(n))-juntas to
any constant accuracy in poly(n) time. In contrast, the fastest known algorithm for
learning arbitraryk-juntas runs in timen.704k [MOS04].

2. The fastest known uniform distribution learning algorithm for the general class of
s-term DNF, due to Verbeurgt [Ver90], runs in timenO(log s) to learn to any constant
accuracy. In contrast, fors-term monotone DNF [Ser04] gives an algorithm which
runs in sO(log s) time. Thus the class of2O(

√
log n)-term monotone DNF can be

learned to any constant accuracy in poly(n) time, but no such result is known for
2O(

√
log n)-term general DNF.

3. The fastest known algorithm for learning poly(n)-size general decision trees to
constant accuracy takesnO(log n) time (this follows from [Ver90]), but poly(n)-
size decision trees that compute monotone functions can be learned to any constant
accuracy in poly(n) time [OS07].

4. No poly(n)-time algorithm can learn the general class of all Boolean functions on
{0, 1}n to accuracy better than12 + poly(n)

2n , but a simple polynomial-time algo-

rithm can learn the class of all monotone Boolean functions to accuracy12 + Ω(1)√
n

[BBL98]. We note also that the result of [BT96] mentioned above follows from
a 2Õ(

√
n)-time algorithm for learning arbitrary monotone functionsonn variables

to constant accuracy (it is easy to see that no comparable algorithm can exist for
learning arbitrary Boolean functions to constant accuracy).

Cryptography and hardness of learning.Essentially all known representation-independent
hardness of learning results (i.e., results which apply to learning algorithms that do
not have any restrictions on the syntactic form of the hypotheses they output) rely on
some cryptographic assumption, or an assumption that easily implies a cryptographic
primitive. For example, under the assumption that certain subset sum problems are
hard on average, Kharitonov [Kha95] showed that the classAC

1 of logarithmic-depth,
polynomial-sizeAND/OR/NOT circuits is hard to learn under the uniform distribution.

3

Subsequently Kharitonov showed [Kha93] that if factoring Blum integers is2nǫ

-hard
for some fixedǫ > 0, then even the classAC

0 of constant-depth, polynomial-size
AND/OR/NOTcircuits similarly cannot be learned in polynomial time under the uniform
distribution. In later work, Naor and Reingold [NR04] gave constructions of pseudo-
random functions with very low circuit complexity; their results imply that if factoring
Blum integers is super-polynomially hard, then even depth-5 TC

0 circuits (composed
of MAJ and NOT gates) cannot be learned in polynomial time under uniform. We note
that all of these hardness results apply even to algorithms which may make black-box
“membership queries” to obtain the valuef(x) for inputsx of their choosing.

Monotonicity versus cryptography?Given that cryptographyprecludes efficient learn-
ing while monotonicity seems to make efficient learning easier, it is natural to investi-
gate how these phenomena interact. One could argue that prior to the current work
there was something of a mismatch between known positive andnegative results for
uniform-distribution learning: as described above a fairly broad range of polynomial-
time learning results had been obtained for various classesof monotone functions, but
there were no corresponding computational hardness results for monotone functions.
Can all monotone Boolean functions computed by polynomial-size circuits be learned
to 99% accuracy in polynomial time from uniform random examples? As far as we
are aware, prior to our work answers were not known even to such seemingly basic
questions about learning monotone functions as this one. This gap in understanding
motivated the research presented in this paper (which, as wedescribe below, lets us
answer “no” to the above question in a strong sense).

1.2 Our results and techniques: cryptography trumps monotonicity

We present several different constructions of “simple” (polynomial-time computable)
monotone Boolean functions and prove that these functions are hard to learn under the
uniform distribution, even if membership queries are allowed. We now describe our
main results, followed by a high-level description of how weobtain them.

In [BBL98] Blum et al.showed that arbitrary monotone functions cannot be learned
to accuracy better than12 + O(log n)√

n
by any algorithm which makes poly(n) many mem-

bership queries. This is an information-theoretic bound which is proved using randomly
generated monotone DNF formulas of size (roughly)nlog n. A natural goal is to obtain
computationallower bounds for learning polynomial-time-computable monotone func-
tions which match, or nearly match, this level of hardness (which is close to optimal
by the(1

2 + Ω(1)√
n

)-accuracy algorithm of Blumet al.described above). We prove near-
optimal hardness for learning polynomial-size monotone circuits:

Theorem 1 (informal). If one-way functions exist, then there is a class ofpoly(n)-size
monotone circuits that cannot be learned to accuracy1

2 + 1
n1/2−ǫ for any fixedǫ > 0.

Our approach yields even stronger lower bounds if we make stronger assumptions:

– Assuming the existence of subexponential one-way functions, we improve the bound
on the accuracy to1/2 + polylog(n)/n1/2.

– Assuming the hardness of factoring Blum integers, our hard-to-learn functions may
be computed in monotoneNC1.

4

Hardness assumption Complexity of f Accuracy bound Ref.

none randomnlog n-term mono. DNF 1
2 + ω(log n)

n1/2 [BBL98]

OWF (poly) poly-size monotone circuits 1
2 + 1

n1/2−ǫ Thm. 1

OWF (2nα

) poly-size monotone circuits 1
2 + poly(log n)

n1/2 Thm. 3

factoring BI (poly) monotoneNC
1-circuits 1

2 + 1
n1/2−ǫ Thm. 4

factoring BI (2nα

) depth-d, size 2(log n)O(1)/(d+1)

AND/OR/NOT circuits

1
2 + o(1) Thm. 5

Fig. 1. Summary of known hardness results for learning monotone Boolean functions.
The meaning of each row is as follows: under the stated hardness assumption, there is
a class of monotone functions computed by circuits of the stated complexity which no
poly(n)-time membership query algorithm can learn to the stated accuracy. In the first
column, OWF and BI denote one-way functions and Blum Integers respectively, and
“poly” and “2nα

” means that the problems are intractable for poly(n)- and2nα

-time
algorithms respectively (for some fixedα > 0). Recall that the poly(n)-time algorithm
of [BBL98] for learning monotone functions implies that thebest possible accuracy
bound for monotone functions is12 + Ω(1)

n1/2 .

– Assuming that Blum integers are2nǫ

-hard to factor on average (the same hardness
assumption used in Kharitonov’s work [Kha93]), we obtain a lower bound for learn-
ing constant-depth circuits of sub-polynomial size that almost matches the positive
result in [Ser04]. More precisely, we show that for any (sufficiently large) constant
d, the class of monotone functions computed by depth-d AND/OR/NOT circuits of
size2(log n)O(1)/(d+1)

cannot be learned to accuracy 51% under the uniform distribu-
tion in poly(n) time. In contrast, the positive result of [Ser04] shows thatmonotone
functions computed by depth-d AND/OR/NOT circuits of size2O((log n)1/(d+1)) can
be learned to any constant accuracy in poly(n) time.

These results are summarized in Figure 1.

Proof techniques.A natural first approach is to try to “pseudorandomize” [BBL98]’s
construction of randomnlog n-term monotone DNFs. We were not able to do this di-
rectly; indeed, as we discuss in Section 3, pseudorandomizing the [BBL98] construction
seems closely related to an open problem of Goldreichet al.from [GGN03]. However, it
turns out that a closely related approach does yield some results along the desired lines;
in Appendix C we present and analyze a simple variant of the [BBL98] information-
theoretic construction and then show how to “pseudorandomize” the variant. Since
our variant gives a weaker quantitative bound on the information-theoretic hardness of
learning than [BBL98], this gives a construction of polynomial-time-computablemono-
tone functions which, assuming the existence of one-way functions, cannot be learned
to accuracy12 + 1

polylog(n) under the uniform distribution. While this answers the ques-

5

tion posed above (even with “51%” in place of “99%”), the 1
polylog(n) factor is rather

far from theO(log n)√
n

factor that one might hope for as described above.
In Section 2 we use a different construction to obtain much stronger quantitative

results; another advantage of this second construction is that it enables us to show
hardness of learningmonotone circuitsrather than just circuits computing monotone
functions. We start with the simple observation that using standard tools it is easy to
construct polynomial-size monotone circuits computing “slice” functions which are
pseudorandom on the middle layer of the Boolean cube{0, 1}n. Such functions are
easily seen to be mildly hard to learn,i.e., hard to learn to accuracy1 − Ω(1)√

n
. We

then use the elegant machinery of hardness amplification of monotone functions which
was pioneered by O’Donnell [O’D04] to amplify the hardness of this construction to
near-optimal levels (rows 2–4 of Figure 1). We obtain our result for constant depth,
sub-polynomial-size circuits (row 5 of Figure 1) by augmenting this approach with an
argument which at a high level is similar to one used in [AHM+06], by “scaling down”
and modifying our hard-to-learn functions using a variant of Nepomnjaščiı̆’s theorem
[Nep70].

1.3 Preliminaries

We consider Boolean functionsf : {0, 1}n→{0, 1}. We view{0, 1}n as endowed with
the natural partial orderx ≤ y iff xi ≤ yi for all i = 1, . . . , n. A Boolean functionf is
monotoneif x ≤ y impliesf(x) ≤ f(y).

We establish that a classC of functions is hard to learn by showing that for a uniform
randomf ∈ C, the expected error of any poly(n)-time learning algorithmL is close to
1/2 when run withf as the target function. Thus we bound the quantity

Pr
f∈C,x∈{0,1}n

[Lf (1n)→h;h(x) = f(x)] (1)

where the probability is also taken over any internal randomization of the learning al-
gorithmL. We say thatclassC is hard to learn to accuracy12 + ǫ(n) if for every
poly(n)-time membership query learning algorithmL (i.e.,p.p.t. oracle algorithm), we
have(1) < 1

2 + ǫ(n) for all sufficiently largen. As noted in [BBL98], it is straight-
forward to transform a lower bound of this sort into a lower bound for the usualǫ, δ
formulation of PAC learning.

Our work uses various standard definitions from the fields of circuit complexity,
learning, and cryptographic psesudorandomness; for completeness we recall this mate-
rial in Appendix A.

2 Lower Bounds via Hardness Amplification of Monotone
Functions

In this section we prove our main hardness results, summarized in Figure 1, for learning
various classes of monotone functions under the uniform distribution with membership
queries.

6

Let us start with a high-level explanation of the overall idea. Inspired by the work
on hardness amplification withinNP initiated by O’Donnell [O’D04,HVV06], we study
constructions of the form

f(x1, . . . , xm) = C(f ′(x1), . . . , f
′(xm))

whereC is a Boolean “combining function” with low noise stability (we give pre-
cise definitions later) which is bothefficiently computableandmonotone. Recall that
O’Donnell showed that iff ′ is weakly hard to compute and the combining functionC
has low noise stability, thenf is very hard to compute. This result holds for general (not
necessarily monotone) functionsC, and thus generalizes Yao’s XOR lemma, which ad-
dresses the case whereC is the XOR ofm bits (and hence has the lowest noise stability
of all Boolean functions, see [O’D04]).

Roughly speaking, we establish an analogue of O’Donnell’s result for learning. Our
analogue, given in Section 2.2, essentially states that forcertain well-structured1 func-
tionsf ′ that are hard to learn to high accuracy, ifC has low noise stability thenf is
hard to learn to accuracy even slightly better than1/2. Since our ultimate goal is to es-
tablish that “simple” classes of monotone functions are hard to learn, we shall use this
result with combining functionsC that are computed by “simple” monotone Boolean
circuits. In order for the overall functionf to be monotone and efficiently computable,
we need the initialf ′ to be well-structured, monotone, efficiently computable, and hard
to learn to high accuracy. Such functions are easily obtained by a slight extension of an
observation of Kearnset al. [KLV94]. They noted that the middle slicef ′ of a random
Boolean function on{0, 1}k is hard to learn to accuracy greater than1 − Θ(1/

√
k)

[BBL98,KLV94]; by taking the middle slice of apseudorandomfunction instead, we
obtain anf ′ with the desired properties. In fact, by a result of Berkowitz [Ber82] this
slice function is computable by a polynomial-size monotonecircuit, so the overall hard-
to-learn functions we construct are computed by polynomial-size monotone circuits.

Organization. In Section 2.2 we adapt the analysis in [O’D04,HVV06] to reduce
the problem of constructing hard-to-learn monotone Boolean functions to construct-
ing monotone combining functionsC with low noise stability. In Section 2.3 we show
how constructions and analyses from [O’D04,MO03] can be used to obtain a “simple”
monotone combining function with low noise stability. In Section 2.4 we establish The-
orems 2 and 3 (lines 2 and 3 of Figure 1) by making different assumptions about the
hardness of the initial pseudorandom functions. Finally, we use more specific assump-
tions about the hardness of factoring Blum integers to establish Theorems 4 and 5 (lines
4 and 5 of Figure 1), which extend our hardness results to verysimple circuit classes;
because of space constraints these results are deferred to Appendix B.

2.1 Preliminaries

Functions. Let C : {0, 1}m→{0, 1} andf ′ : {0, 1}k→{0, 1} be Boolean functions.
We writeC ◦ f ′⊗m to denote the Boolean function over({0, 1}k

)m given by

C ◦ f ′⊗m(x) = C(f ′(x1), . . . , f
′(xm)), wherex = (x1, . . . , xm).

1 As will be clear from the proof, we require thatf ′ be balanced and have a “hard-core set.”

7

Forg : {0, 1}k→{0, 1}, we writeslice(g) to denote the “middle slice” function:

slice(g)(x) =











1 if |x| > ⌊k/2⌋
g(x) if |x| = ⌊k/2⌋
0 if |x| < ⌊k/2⌋.

It is immediate thatslice(g) is a monotone Boolean function for anyg.

Bias and noise stability.Following the analysis in [O’D04,HVV06], we shall study
the bias and noise stability of various Boolean functions. Specifically, we adopt the
following notations and definitions from [HVV06]. Thebiasof a 0-1 random variable
X is defined to be

Bias[X]
def
= |Pr[X = 0] − Pr[X = 1]|.

Recall that a probabilistic Boolean functionh on {0, 1}k is a probability distribution
over Boolean functions on{0, 1}k (so for each inputx, the outputh(x) is a0-1 random
variable). Theexpected biasof a probabilistic Boolean functionh is

ExpBias[h]
def
= Ex[Bias[h(x)]].

Let C : {0, 1}m→{0, 1} be a Boolean function and0 ≤ δ ≤ 1
2 . Thenoise stability of

C at noise rateδ, denotedNoiseStabδ[C], is defined to be

NoiseStabδ[C]
def
= 2 · Pr

x,η
[C(x) = C(x⊕ η)] − 1

wherex ∈ {0, 1}m is uniform random,η ∈ {0, 1}m is a vector whose bits are each
independently 1 with probabilityδ, and⊕ denotes bitwise XOR.

2.2 Hardness amplification for learning

Throughout this subsection we writem for m(n) andk for k(n). We shall establish
the following:

Lemma 1. Let C : {0, 1}m→{0, 1} be a polynomial-time computable function. Let
G′ be the family of all22k

functions from{0, 1}k to {0, 1}, wheren = mk andk =
ω(logn). Then the classC = {f = C ◦ slice(g)⊗m | g ∈ G′} of Boolean functions over
{0, 1}n is hard to learn to accuracy

1

2
+

1

2

√

NoiseStabΘ(1/
√

k)[C] + o(1/n).

This easily yields Corollary 1, which is an analogue of Lemma1 with pseudoran-
dom rather than truly random functions, and which we use to obtain our main hardness
of learning results.

Proof of Lemma 1: Let k,m be such thatmk = n, and letC : {0, 1}m→{0, 1} be a
Boolean combining function. We prove the lemma by upper bounding

Pr
g∈G′,x∈{0,1}n

[

Lf(1n) → h; h(x) = f(x)
]

(2)

8

whereL is an arbitrary p.p.t. oracle machine (running in timepoly(n) on input1n)

that is given oracle access tof
def
= C ◦ slice(g)⊗m and outputs some hypothesish :

{0, 1}n→{0, 1}.
We first observe that sinceC is computed by a uniform family of circuits of size

poly(m) ≤ poly(n), it is easy for a poly(n)-time machine to simulate oracle access to
f if it is given oracle access tog. So (2) is at most

Pr
g∈G′, x∈{0,1}n

[

Lg(1n) → h; h(x) = (C ◦ slice(g)⊗m)(x)
]

. (3)

To analyze the above probability, suppose that in the courseof its executionL never
queriesg on any of the inputsx1, . . . , xm ∈ {0, 1}k, wherex = (x1, . . . , xm). Then
the a posterioridistribution ofg(x1), . . . , g(xm) (for uniform randomg ∈ G′) given
the responses toL’s queries that it received fromg is identical to the distribution of
g′(x1), . . . , g

′(xm), whereg′ is an independent uniform draw fromG′: both distribu-
tions are uniform random over{0, 1}m. (Intuitively, this just means that ifL never
queries the random functiong on any ofx1, . . . , xm, then givingL oracle access tog
does not help it predict the value off onx = (x1, . . . , xm).) SinceL runs in poly(n)
time, for any fixedx1, . . . , xm the probability thatL queriedg on any ofx1, . . . , xm is
at mostm·poly(n)

2k . Hence(3) is bounded by

Pr
g,g′∈G′, x∈{0,1}n

[

Lg(1n) → h; h(x) = (C ◦ slice(g′)⊗m)(x)
]

+
m · poly(n)

2k
. (4)

The first summand in (4) is the probability thatL correctly predicts the valueC ◦
slice(g′)⊗m(x), given oracle access tog, whereg andg′ are independently random
functions andx is uniform over{0, 1}n. It is clear that the best possible strategy forL is
to use a maximum likelihood algorithm,i.e.,predict according to the functionh which,
for any fixed inputx, outputs1 if and only if the random variable(C ◦ slice(g′)⊗m)(x)
(we emphasize that the randomness here is over the choice ofg′) is biased towards1.
The expected accuracy of thish is precisely

1

2
+

1

2
ExpBias[C ◦ slice(g′)⊗m]. (5)

Now fix δ
def
=

(

k
⌊k/2⌋

)

/2k = Θ(1/
√
k) to be the fraction of inputs in the “middle

slice” of {0, 1}k. We observe that the probabilistic functionslice(g′) (whereg′ is truly
random) is “δ-random” in the sense of ([HVV06], Definition 3.1),i.e., it is balanced,
truly random on inputs in the middle slice, and deterministic on all other inputs. This
means that we may apply a technical lemma [HVV06, Lemma 3.7])to slice(g′) (see
also [O’D04]) to obtain

ExpBias[C ◦ slice(g′)⊗m] ≤
√

NoiseStabδ[C]. (6)

Combining (4), (5) and (6) and recalling thatk = ω(logn), we obtain Lemma 1. ⊓⊔

Corollary 1. LetC : {0, 1}m→{0, 1} be a polynomial-time computable function. Let
G be a pseudorandom family of functions from{0, 1}k to {0, 1} which are secure

9

againstpoly(n)-time adversaries, wheren = mk andk = ω(logn). Then the class
C = {f = C ◦ slice(g)⊗m | g ∈ G} of Boolean functions over{0, 1}n is hard to learn
to accuracy

1

2
+

1

2

√

NoiseStabΘ(1/
√

k)[C] + o(1/n).

Proof. The corollary follows from the fact that (3) must differ fromits pseudorandom
counterpart,

Pr
g∈G, x∈{0,1}n

[

Lg(1n) → h; h(x) = (C ◦ slice(g)⊗m)(x)
]

, (7)

by less than1/n2 (in fact by less than any fixed1/ poly(n)). Otherwise, we would
easily obtain a poly(n)-time distinguisher that, given oracle access tog, runsL to obtain
a hypothesish and checks whetherh(x) = (C ◦ slice(g)⊗m)(x) for a randomx to
determine whetherg is drawn fromG or G′. ⊓⊔

By instantiating Corollary 1 with a “simple” monotone functionC having low noise
stability, we obtain strong hardness results for learning simple monotone functions. We
exhibit such a functionC in the next section.

2.3 A simple monotone combining function with low noise stability

In this section we combine known results of [O’D04,MO03] to obtain:

Proposition 1. Given a valuek, letm = 3ℓd2d for ℓ, d satisfying3ℓ ≤ k6 < 3ℓ+1 and
d ≤ O(k.35). Then there exists a monotone functionC : {0, 1}m → {0, 1} computed
by a uniform family ofpoly(m)-size,log(m)-depth monotone circuits such that

NoiseStabΘ(1/
√

k)[C] ≤ O
(k6 logm

m

)

. (8)

Note that in this proposition we may havem as large as2Θ(k.35) but not larger.
O’Donnell[O’D04] gave a lower bound ofΩ(log2 m

m) onNoiseStabΘ(1/
√

k)[C] for ev-
ery monotonem-variable functionC, so the above upper bound is fairly close to the
best possible (within apolylog(m) factor ifm = 2kΘ(1)

).
Following [O’D04,HVV06], we use the “recursive majority of3” function and the

“tribes” function in our construction. We require the following results on noise stability:

Lemma 2 ([O’D04]). Let Rec-Maj-3ℓ : {0, 1}3ℓ→{0, 1} be defined as follows: for
x = (x1, x2, x3) where eachxi ∈ {0, 1}3ℓ−1

,

Rec-Maj-3ℓ(x)
def
= Maj(Rec-Maj-3ℓ−1(x

1),Rec-Maj-3ℓ−1(x
2),Rec-Maj-3ℓ−1(x

3)).

Then forℓ ≥ log1.1(1/δ), we haveNoiseStabδ[Rec-Maj-3ℓ] ≤ δ−1.1(3ℓ)−.15.

10

Lemma 3 ([MO03]). LetTribesd : {0, 1}d2d→{0, 1} denote the “tribes” function on
d2d variables, i.e., the read-once2d-term monotoned-DNF

Tribesd(x1, . . . , xd2d)
def
= (x1 ∧ · · · ∧ xd) ∨ (xd+1 ∧ · · · ∧ x2d) ∨ · · · .

Then ifη ≤ O(1/d), we haveNoiseStab 1−η
2

[Tribesd] ≤ O
(

ηd2

d2d

)

≤ O
(

1
2d

)

.

Lemma 4 ([O’D04]). If h is a balanced Boolean function andψ : {0, 1}r → {0, 1} is
arbitrary, then for anyδ we haveNoiseStabδ[ψ ◦h⊗r] = NoiseStab 1

2−
NoiseStabδ [h]

2

[ψ].

Proof of Proposition 1: We takeC to beTribesd ◦Rec-Maj-3⊗d2d

ℓ . SinceRec-Maj-3ℓ

is balanced, by Lemma 4 we have

NoiseStabδ[C] = NoiseStab 1
2−

NoiseStabδ[Rec-Maj-3ℓ]

2

[Tribesd].

Settingδ = Θ(1/
√
k) and recalling that3ℓ ≤ k6, we haveℓ ≥ log1.1(1/δ) so we may

apply Lemma 2 to obtain

NoiseStabΘ(1/
√

k)[Rec-Maj-3ℓ] ≤ Θ((
√
k)1.1)(k6)−.15 = O(k−.35).

SinceO(k−.35) ≤ O(1/d), we may apply Lemma 3 with the previous inequalities to
obtain

NoiseStabΘ(1/
√

k)[C] ≤ O
(1

2d

)

.

The bound (8) follows from some easy rearrangement of the bounds onk,m, d andℓ. It
is easy to see thatC can be computed by monotone circuits of depthO(ℓ) = O(logm)
and sizepoly(m), and the proposition is proved. ⊓⊔

2.4 Nearly optimal hardness of learning polynomial-size monotone circuits

Given a value ofk, letm = 3ℓd2d for ℓ, d as in Proposition 1. LetG be a pseudoran-
dom family of functions{g : {0, 1}k→{0, 1}} secure against poly(n)-time adversaries,
wheren = mk. Since we havek = ω(logn), we may apply Corollary 1 with the com-
bining function from Proposition 1 and conclude that the classC = {C ◦ slice(g)⊗m |
g ∈ G} is hard to learn to accuracy

1

2
+O

(k3
√

logm√
m

)

+ o(1/n) ≤ 1

2
+O

(k3.5
√

logn√
n

)

. (9)

We claim that in fact the functions inC can be computed bypoly(n)-size monotone
circuits. This follows from a result of Berkowitz [Ber82] which states that if ak-variable
slice function is computed by aAND/OR/NOT circuit of sizes and depthd, then it is
also computed by a monotoneAND/OR/MAJ circuit of sizeO(s + k) and depthd + 1.
Combining these monotone circuits forslice(g) with the monotone circuit forC, we
obtain a poly(n)-size monotone circuit for each function inC.

By making various different assumptions on the hardness of one-way functions,
Proposition 2 lets us obtain different quantitative relationships betweenk (the input

11

length for the pseudorandom functions) andn (the running time of the adversaries
against which they are secure), and thus different quantitative hardness results from
(9) above:

Theorem 2. Suppose that standard one-way functions exist. Then for anyconstantǫ >
0 there is a classC of poly(n)-size monotone circuits that is hard to learn to accuracy
1
2 + 1

n1/2−ǫ .

Proof. If poly(n)-hard one-way functions exist then we may takek = nc in Proposi-
tion 2 for arbitrarily small constantc; this corresponds to takingd = C log k for C a
large constant in Proposition 1. The claimed bound on (9) easily follows. (We note that
while not everyn is of the required formmk = 3ℓd2dk, it is not difficult to see that this
and our subsequent theorems hold for all (sufficiently large) input lengthsn by padding
the hard-to-learn functions.) ⊓⊔

Theorem 3. Suppose that subexponentially hard (2nα

for some fixedα > 0) one-way
functions exist. Then there is a classC of poly(n)-size monotone circuits that is hard to
learn to accuracy12 + polylog(n)

n1/2 .

Proof. As above, but now we takek = logC n for some sufficiently large constantC
(i.e.,d = c log k for a small constantc). ⊓⊔

3 Discussion and Future Work

An obvious goal for future work is to establish even sharper quantitative bounds on
the cryptographic hardness of learning monotone functions. [BBL98] obtain their1

2 +
ω(log n)

n1/2 information-theoretic lower bound by considering random monotone DNF which
are constructed by independently including each of the

(

n
log n

)

possible terms of length
logn in the target function. Can we match this hardness with a class of polynomial-size
circuits?

As mentioned in Section 1, it is natural to consider a pseudorandom variant of the
[BBL98] construction in which a pseudorandom rather than truly random function is
used to decide whether or not to include each of the

(

n
log n

)

candidate terms. However,
we have not been able to show that a functionf constructed in this way can be computed
by a poly(n)-size circuit. Intuitively, the problem is that for an inputx with (typically)
n/2 bits set to 1, to evaluatef we must check the pseudorandom function’s value on
all of the

(

n/2
log n

)

potential “candidate terms” of lengthlogn whichx satisfies. Indeed,
the question of obtaining an efficient implementation of these “huge pseudorandom
monotone DNF” has a similar flavor to Open Problem 5.4 of [GGN03]. In that ques-
tion the goal is to construct pseudorandom functions that support “subcube queries”
which give the parity of the function’s values over all inputs in a specified subcube of
{0, 1}n. In our scenario we are interested in functionsf which are pseudorandom only
over the

(

n
log n

)

inputs with preciselylogn ones (these inputs correspond to the “candi-
date terms” of the monotone DNF) and are zero everywhere else, and we only need to
support “monotone subcube queries” (i.e.,given an inputx, we want to know whether
f(y) = 1 for anyy ≤ x).

12

In Appendix C we present a variant of the [BBL98] construction in which a typical
input satisfies onlypoly(n) many candidate terms; this is the key feature enabling us to
“pseudorandomize” the construction.

References

[AHM +06] E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and M. Saks. Minimizing DNF
Formulas andAC0

d Circuits Given a Truth Table. InCCC, pages 237–251, 2006.
[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. AnO(n log n) sorting network.Combina-

torica, 3(1):1–19, 1983.
[BBL98] A. Blum, C. Burch, and J. Langford. On learning monotone boolean functions. In

39th FOCS, pages 408–415, 1998.
[Ber82] S. J. Berkowitz. On some relationships between monotone and non-monotone circuit

complexity. Technical report, Technical Report, University of Toronto, 1982.
[BFKL93] A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic Primitives Based on

Hard Learning Problems. InCRYPTO ’93, pages 278–291, 1993.
[BKS99] I. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of Boolean functions and

applications to percolation.Inst. HautesÉtudes Sci. Publ. Math., 90:5–43, 1999.
[BLR08] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory perspective on data

privacy: New hope for releasing useful databases privately. Manuscript, 2008.
[BT96] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions.Journal

of the ACM, 43(4):747–770, 1996.
[FGKP06] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami.New results for learning noisy

parities and halfspaces. In47th FOCS, pages 563–576, 2006.
[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random

functions.JACM, 33(4):210–217, 1986.
[GGN03] O. Goldreich, S. Goldwasser, and A. Nussboim. On theImplementation of Huge

Random Objects. Technical report, ECCC Technical Report 045, 2003.
[HILL99] J. Håstad, R. Impagliazzo, L. Levin, and M. Luby. Apseudorandom generator from

any one-way function.SIAM Journal on Computing, 28(4):1364–1396, 1999.
[HVV06] A. Healy, S. Vadhan, and E. Viola. Using Nondeterminism to Amplify Hardness.

SIAM Journal on Computing, 35(4):903–931, 2006.
[Kha93] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In25th

STOC, pages 372–381, 1993.
[Kha95] M. Kharitonov. Cryptographic lower bounds for learnability of Boolean functions on

the uniform distribution.JCSS, 50:600–610, 1995.
[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In

29th FOCS, pages 68–80, 1988.
[KLN +08] Shiva Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and

Adam Smith. What can we learn privately? Manuscript, 2008.
[KLV94] Michael J. Kearns, Ming Li, and Leslie G. Valiant. Learning boolean formulas.J.

ACM, 41(6):1298–1328, 1994.
[KOS04] A. Klivans, R. O’Donnell, and R. Servedio. Learningintersections and thresholds of

halfspaces.JCSS, 68(4):808–840, 2004.
[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and

learnability.Journal of the ACM, 40(3):607–620, 1993.
[Man94] Y. Mansour.Learning Boolean functions via the Fourier transform, pages 391–424.

Kluwer Academic Publishers, 1994.

13

[MO03] Elchanan Mossel and Ryan O’Donnell. On the noise sensitivity of monotone func-
tions. Random Struct. Algorithms, 23(3):333–350, 2003.

[MOS04] E. Mossel, R. O’Donnell, and R. Servedio. Learning functions ofk relevant variables.
J. Comput. & Syst. Sci., 69(3):421–434, 2004.

[Nep70] V.A. Nepomnjascii. Rudimentary predicates and Turing calculations.Math Dokl.,
11:1462–1465, 1970.

[NR04] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions.Journal of the ACM, 51(2):231–262, 2004.

[O’D04] R. O’Donnell. Hardness amplification within NP.JCSS, 69(1):68–94, 2004.
[OS07] R. O’Donnell and R. Servedio. Learning monotone decision trees in polynomial time.

SIAM Journal on Computing, 37(3):827–844, 2007.
[Raz85] A. Razborov. Lower bounds on the monotone network complexity of the logical

permanent.Mat. Zametki, 37:887–900, 1985.
[Ser04] R. Servedio. On learning monotone DNF under productdistributions. Information

and Computation, 193(1):57–74, 2004.
[Val84] L. Valiant. A theory of the learnable.CACM, 27(11):1134–1142, 1984.
[Ver90] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial

time. In3rd COLT, pages 314–326, 1990.

A Preliminaries

Circuit complexity. We shall consider various classes of circuits computing Boolean
functions. We assume familiarity with standard circuit classes such asNC

1 (polynomial-
size, logarithmic-depth,bounded fan-in circuits ofAND/OR/NOTgates),AC

0 (polynomial-
size, constant-depth, unbounded fan-in circuits ofAND/OR/NOTgates) andTC

0 (polynomial-
size, constant-depth unbounded fan-in circuits ofMAJ/NOT gates).

A circuit is said to be monotone if it is composed entirely ofAND/OR gates with
no negations. Every monotone circuit computes a monotone Boolean function, but of
course non-monotone circuits may compute monotone functions as well. The famous
result of [Raz85] shows that there are natural monotone Boolean functions (such as
the perfect matching function) which can be computed by polynomial-size circuits but
cannot be computed by polynomial-size monotone circuits. Thus, in general, it is a
stronger result to show that a function can be computed by a small monotone circuit
than to show that it is monotone and can be computed by a small circuit.

Learning. As described earlier, all of our hardness results apply evento learning algo-
rithms which may makemembership queries, i.e.,black-box queries to an oracle which
gives the labelf(x) of any examplex ∈ {0, 1}n on which it is queried. It is clear that
for learning with respect to the uniform distribution, having membership query access
to the target functionf is at least as powerful as being given uniform random examples
labeled according tox since the learner can simply generate uniform random strings for
herself and query the oracle to simulate a random example oracle.

The goal of the learning algorithm is to construct a hypothesish so thatPrx[h(x) 6=
f(x)] is small, where the probability is taken over the uniform distribution. We shall
only consider learning algorithms which are allowed to run in poly(n) time, so the
learning algorithmL may be viewed as an oracle p.p.t. machine which is given black-
box access to the functionf and attempts to output a hypothesish with small error
relative tof .

14

Pseudorandom functions.Pseudorandom functions [GGM86] are the main crypto-
graphic primitive that underlie our constructions. Fixk(n) ≤ n, and letG be a family
of functions{g : {0, 1}k(n)→{0, 1}} each of which is computable by a circuit of size
poly(k(n)). We say thatG is at(n)-secure pseudorandom function familyif the follow-
ing condition holds: for any probabilistict(n)-time oracle algorithmA, we have

∣

∣

∣

∣

Pr
g∈G

[Ag(1n) outputs1] − Pr
g′∈G′

[Ag′

(1n) outputs1]

∣

∣

∣

∣

≤ 1/t(n)

whereG′ is the class of all22k(n)

functions from{0, 1}k(n) to {0, 1} (so the second
probability above is taken over the choice of a truly random functiong′). Note that the
purported distinguisherA has oracle access to a function onk(n) bits but is allowed to
run in timet(n).

It is well known that a pseudorandom function family that ist(n)-secure for all
polynomialst(n) can be constructed from any one-way function [GGM86,HILL99].
We shall use the following folklore quantitative variant which relates the hardness of
the one-way function to the security of the resulting pseudorandom function:

Proposition 2. Fix t(n) ≥ poly(n) and suppose there exist one-way functions that
are hard to invert on average fort(n) time adversaries. Then there exists a constant,
0 < c < 1, such that for anyk(n) ≤ n, there is a pseudorandom familyG of functions
{g : {0, 1}k(n)→{0, 1}} that is(t(k(n)))c-secure.

B Hardness of learning simple circuits

In this section we obtain hardness results for learning verysimple classes of circuits
computing monotone functions under a concrete hardness assumption for a specific
computational problem, namely factoring Blum integers. Naor and Reingold [NR04]
showed that if factoring Blum integers is computationally hard then there is a pseudo-
random function family which we denoteG⋆ that is computable inTC

0. From this it
easily follows that the functions{slice(g) | g ∈ G⋆} are also computable inTC

0.

We now observe that the result of Berkowitz mentioned earlier [Ber82] for convert-
ing slice circuits into monotone circuits applies not only to AND/OR/NOT circuits, but
also toTC

0 circuits (composed of MAJ and NOT gates).
This means that the functions in{slice(g) | g ∈ G⋆} are in fact computable in

monotoneTC
0, i.e.,by polynomial-size, constant-depth circuits composed only of MAJ

gates. Since the majority function can be computed by polynomial-size,O(log n)-depth
AND/OR circuits, (see e.g. [AKS83]), we easily obtain the following:

Lemma 5. LetC be the monotone combining function from Proposition 1 andG⋆ be
a family of pseudorandom functions computable inTC

0. Then every function in{C ◦
slice(g)⊗m | g ∈ G⋆} is computable in monotoneNC

1.

This directly yields a hardness result for learning monotoneNC
1 circuits (the fourth

line of Figure 1):

15

Theorem 4. If factoring Blum integers is hard on average for any poly(n)-time algo-
rithm, then for any constantǫ > 0 there is a classC of poly(n)-size monotoneNC

1

circuits that is hard to learn to accuracy12 + 1
n1/2−ǫ .

Now we show that under a stronger but still plausible assumption on the hardness
of factoring Blum integers, we get a hardness result for learning a class ofconstant-
depthmonotone circuits which is very close to a class known to be learnable to any
constant accuracy in poly(n) time. Suppose thatn-bit Blum integers are2nα

-hard to
factor on average for some fixedα > 0 (this hardness assumption was earlier used by
Kharitonov [Kha93]). This means there exists2nα/2

-secure pseudorandom functions
that are computable inTC

0. Using such a family of functions in place ofG⋆ in the
construction for the preceding theorem and fixingǫ = 1/3, we obtain the following

Lemma 6. Assume that Blum integers are2nα

-hard to factor on average. Then there
is a classC of poly(n)-size monotoneNC

1 circuits that is hard for any2nα/20

-time
algorithm to learn to accuracy12 + 1

n1/6 .

Now we “scale down” this classC as follows. Letn′ be such thatn′ = (logn)κ for
a suitable constantκ > 20/α, and let us use “n′” as the “n” in the construction of the
previous lemma; we call the resulting class of functionsC′. In terms ofn, the functions
in C′ (which are functions over{0, 1}n which only depend on the firstn′ variables)
are computed by(logn)O(κ)-size,O(log logn)-depth monotone circuits whose inputs
are the first(log n)κ variables inx1, . . . , xn. We moreover have thatC′ is hard for

any2(n′)α/20

= 2(log n)κα/20

= ω(poly(n))-time algorithm to learn to some accuracy
1
2 + 1

(n′)1/6 = 1
2 + o(1).

We now recall the following variant of Nepomnjaščiı̆’s theorem that is implicit in
[AHM +06].

Lemma 7. For every languageL ∈ NL, for all sufficiently large constantd there are
AC

0

d circuits of size2nO(1)/(d+1)

that recognizeL.

Since every function inC′ can be computed inNC
1 which is contained inNL, com-

bining Lemma 7 with the paragraph that proceeds it, we obtainthe following theorem
(final line of Figure 1):

Theorem 5. Suppose that Blum integers are subexponentially hard to factor on aver-
age. Then there is a classC of monotone functions which is hard for any poly(n)-time
algorithm to learn to accuracy12 + o(1) and which, for all sufficiently large constantd,

are computed byAC
0

d circuits of size2(log n)O(1)/(d+1)

.

This final hardness result is of interest because it is known that constant-depth cir-
cuits of only slightly smaller sizecanbe learned to any constant accuracy in poly(n)
time under the uniform distribution (without needing membership queries):

Theorem 6 ([Ser04] Corollary 2). For all d ≥ 2, the class ofAC
0

d circuits of size

2O((log n)1/(d+1)) that compute monotone functions can be learned to any constant ac-
curacy1 − ǫ in poly(n)-time.

Theorem 5 is thus nearly optimal in terms of the size of the constant-depth circuits
for which it establishes hardness of learning.

16

C A Computational Analogue of [BBL98]’s Lower Bound

In this section we first present a simple variant of the [BBL98] lower bound construc-
tion, obtaining an information-theoretic lower bound on the learnability of the general
class of all monotone Boolean functions. The quantitative bound our variant achieves is
weaker than that of [BBL98], but has the advantage that it canbe easily “pseudorandom-
ized”. Indeed, as mentioned in Section 3 (and further discussed below), our construction
uses a certain probability distribution over monotone DNFs, such that a typical random
input x satisfies onlypoly(n) many “candidate terms” (terms which may be present
in a random DNF drawn from our distribution). By selecting terms for inclusion in the
DNF in a pseudorandom rather than truly random way, we obtaina class of poly(n)-size
monotone circuits which is hard to learn to accuracy1

2 + 1
polylog(n) (assuming one-way

functions exist).
Below we start with an overview of why it is difficult to obtaina computational ana-

logue of the exact construction of [BBL98] using the “pseudorandomization” approach
sketched above, and the idea behind our variant, which overcomes this difficulty. We
then provide our information theoretic construction and analysis, followed by its com-
putational analogue.

C.1 Idea

Recall the [BBL98] information-theoretic lower bound. It works by defining a dis-
tribution Ps over monotone functions{0, 1}n→{0, 1} which is the following: Take
t′ = log(3sn). A draw fromPs is obtained by randomly including each length-tmono-
tone term in the DNF independently with probabilityp′, wherep′ is chosen so that the
function is expected to be balanced on “typical inputs” (more precisely, on inputs with
exactlyn/2 1’s). The naive idea for pseudorandomizing this construction is to simply
use a pseudorandom function with biasp′ to determine whether each possible term of
size t should be included or excluded in the DNF. However, there is aproblem with
this approach: we do not know an efficient way to determine whether a typical example
x (with, say,n/2 ones) has any of its

(

n/2
t′

)

candidate terms (each of which is pseu-
dorandomly present/not present inf) actually present inf , so we do not know how to
evaluatef on an typical inputx in less than

(

n/2
t′

)

time.
We get around this difficulty by instead considering a new distribution of random

monotone DNFs. In our construction we will again use a randomfunction with biasp
to determine whether each possible term of lengtht is present in the DNF. However, in
our construction, a typical examplex will have only a polynomial number of candidate
terms that could be satisfied, and thus it is possible to checkall of them and evaluate
the function in poly(n) time.

The main difficulty of this approach is to ensure that although a typical example
has only a polynomial number of candidate terms, the function is still hard to learn in
polynomial time. We achieve this by partitioning the variables into blocks of sizek and
viewing each block as a “supervariable” (corresponding to the AND of allk variables in
the block). We then construct the DNF by randomly choosing length-t terms over these
supervariables. It is not difficult to see that with this approach, we can equivalently
view our problem as learning at-DNF f with terms chosen as above, where each of the

17

n/k variables is drawn from a product distribution with bias1/2k. By fine-tuning the
parameters that determinet (the size of each term of the DNF) andk (the size of the
partitions), we are able to achieve an information-theoretic lower bound showing that
this distribution over monotone functions is hard to learn to accuracy1/2 + o(1).

C.2 Construction

Let us partition the variablesx1, . . . , xn into m = n/k blocksB1, . . . , Bm of k vari-
ables each. LetXi denote the conjunction of allk variables inBi (X1, . . . , Xm are
the supervariables). The following is a description of our distributionP over monotone
functions. A functionf is drawn fromP as follows (we fix the values ofk, t later):

– Construct a monotone DNFf1 as follows: each possible conjunction oft supervari-
ables chosen from{X1, . . . , Xm} is placed in the target functionf1 independently
with probabilityp, wherep is defined as the solution to:

(1 − p)(
m/2k

t) = 1/2. (10)

Note that for a uniformx ∈ {0, 1}n, we expect the corresponding “superassign-
ment”X = (X1, . . . , Xm) to havem/2k 1’s in it. Sot is chosen such that a “typ-
ical” exampleX , with m/2k ones, has probability1/2 of being labeled positive
underf1.

– Let

f(x) =







f1(x) if the number of supervariables satisfied inx is at mostm/2k + (m/2k)2/3

1 otherwise.

Note that because of the final step of the construction, the functionf is not actually a
DNF (though it is a monotone function). Intuitively, the final step is there because if too
many supervariables were satisfied inx, there could be too many (more thanpoly(n))
candidate terms to check, and we would not be able to evaluatef1 efficiently. We will
show later that the probability that the number of supervariables satisfied inx is greater
thanm/2k + (m/2k)2/3 is at most2e−(m/2k)1/3/3 = 1/nω(1), and thus the functionf
is 1/nω(1)-close tof1; so hardness of learning results established for the randomDNFs
f1 carry over to the actual functionsf. For most of our discussion we shall refer toP
as a distribution over DNFs, meaning the functionsf1.

C.3 Information-Theoretic Lower Bound

As discussed previously, we view the distributionP defined above as a distribution
over DNFs of terms of sizet over the supervariables. Each possible combination oft
supervariables appears inf1 independently with probabilityp and the supervariables
are drawn from a product distribution that is1 with probability1/2k and0 with prob-
ability 1 − 1/2k. We first observe that learningf over the supervariables drawn from
the product distribution is equivalent to learning the original function over the original

18

variables. This is because if we are given the original membership query oracle forn-
bit examples we can simulate answers to membership queries onm-bit “supervariable”
examples and vice versa. Thus we henceforth analyze the product distribution.

We follow the proof technique of [BBL98]. To simplify our analysis, we consider an
“augmented” oracle, as in [BBL98]. Given a queryX , with 1’s in positions indexed by
the setSX , the oracle will return the first conjunct in lexicographic order that appears
in the target function. Additionally, the oracle returns1 if X is positive and0 if X
is negative. (So instead of just giving a single bit as its response, if the example is
a positive one the oracle tells the learner the lexicographically first term in the target
DNF that is satisfied.) Clearly, lower bounds for this augmented oracle imply the same
bounds for the standard oracle.

We are interested in analyzingPs, the conditional distribution over functions drawn
from the initial distributionP that are consistent with the information learned byA in
the firsts queries. We can think ofPs as a vectorVs of

(

m
t

)

elements, one for each pos-
sible conjunct of sizet. Initially, each element of the vector containsp, the probability
that the conjunct is in the target function. When a query is made, the oracle examines
one by one the entries relevant toX . For each entry having valuep, we can think of
the oracle as flipping a coin and replacing the entry by0 with probability1 − p and by
1 with probabilityp. After s queries,Vs will contain some entries set to0, some set to
1 and the rest set top. BecauseVs describes the conditional distributionPs given the
queries made so far, the Bayes-optimal prediction for an exampleX is simply to answer
1 if Vs(X) ≥ 1/2 and0 otherwise.

We now analyzeVs(X), the conditional probability over functions drawn fromP
that are consistent with the firsts queries that a random example,X , drawn from the
distribution, evaluates to1, given the answers to the firsts queries. We will show that for
s = poly(n), for X drawn from the product distribution on{0, 1}m, with probability
at least1−1/nω(1) the valueVs(X) lies in 1

2 ± 1
log n . This is easily seen to give a lower

bound of the type we require.
Following [BBL98], we first observe that afters queries there can be at mosts

entries set to one in the vectorVs.We shall also use the following lemma from [BBL98]:

Lemma 8 ([BBL98]). After s queries, with probability1 − ǫ−s/4, there are at most
2s/p zeros inVs.

We now establish the following, which is an analogue tailored to our setting of
Claim 3 of [BBL98]:

Lemma 9. For any vectorVs of size
(

m
t

)

with at mosts entries set to1, at most2s/p
entries set to0, and the remaining entries set top, for a random exampleX (drawn
from {0, 1}m according to the1/2k-biased product distribution), we have that with
probability at least1 − ǫ1, the quantityVs(X) lies in the range

1 − (1 − p)
[(m/2k−(m/2k)1/3

t)− 2s
√

n

p2kt] ≤ Vs(X) ≤ 1 − (1 − p)(
m/2k+(m/2k)1/3

t). (11)

Here

ǫ1 = s · (2
√
n

p
+ 1)2−kt + 2e−(m/2k)1/3/3. (12)

19

Proof. Let X be a random example drawn from the1/2k-biased product distribution
over{0, 1}m.

Consider the following3 events:

– None of the1-entries in Vs are relevant toX .
There are at mosts 1-entries inVs and the probability that any one is relevant to
X is 2−kt. Therefore the probability that any1-entry is relevant toX is at most
s2−kt and the probability that none of the1-entries inVs are relevant toX is at
least1 − s2−kt.

– At most (2s
√
n/p)2−kt of the 0-entries in Vs are relevant toX .

Using Lemma 8, the expected number of0-entries inVs relevant toX is at most
(2s/p)2−kt. By Markov’s inequality, the probability that the actual number exceeds
this by a

√
n factor is at most1/

√
n.

– The number of1’s in X lies in the rangem/2k ± (m/2k)2/3.
Using a multiplicative Chernoff bound, we have that this occurs with probability
at least1 − 2e−(m/2k)1/3/3. Note that forX ’s in this range,f(X) = f1(X). So
conditioning on this event occuring, we can assume thatf(X) = f1(X).

Therefore, the probability that all3 of the above events occurs is at least1 − ǫ1
whereǫ1 = s · (2

√
n

p + 1)2−kt + 2e−(m/2k)1/3/3.

Given that these events all occur, we show thatVs(X) lies in the desired range. We
follow the approach of [BBL98].

For the lower bound,Vs(X) is minimized whenX has as few 1’s as possible and
when as many of the 0-entries inVs are relevant toX as possible. SoVs(X) is at least

Vs(X) ≥ 1 − (1 − p)
[(m/2k−(m/2k)2/3

t)− 2s
√

n

p2kt]
.

For the upper bound,Vs(X) is maximized whenX has as many 1’s as possible and as
few 0’s as possible. SoVs(X) is at most

Vs(X) ≤ 1 − (1 − p)(
m/2k+(m/2k)2/3

t).

⊓⊔

Now let us choose values fork andt.What are our goals in setting these parameters?

First off, we want
(

m/2k

t

)

to be at most poly(n) (so that there are at mostpoly(n)
candidate terms to be checked for a “typical” input). Moreover, for anys = poly(n)
we want (11)’s two sides to both be close to1/2 (so the accuracy of anys-query learning
algorithm is indeed close to1/2 on typical inputs), and we wantǫ1 to be small (so almost
all inputs are “typical”). With this motivation, we setk = Θ(log n) to be such that

m/2k (recall,m = n/k) equalslog6 n, and we sett =
√

logn. This means
(

m/2k

t

)

=
(log6 n√

log n

)

≤ 26 log(log n)
√

log n ≪ n. Now (10) givesp ≫ 1/n; together withk =

Θ(log n), for anys = poly(n) we haveǫ1 = 1/nω(1).

20

Now we analyze (11). First the lower bound:

Vs(X) ≥ 1 − (1 − p)
[(m/2k−(m/2k)2/3

t)− 2s
√

n

p2kt]

≥ 1 − (1 − p)(
m/2k−(m/2k)2/3

t)
(

e
3s

√
n

p2kt

)

= 1 − (1 − p)(
m/2k−(m/2k)2/3

t)
(

1 + 1/nω(1)
)

= 1 −
[

2−(m/2k−(m/2k)2/3

t)/(m/2k

t)
]

·
(

1 + 1/nω(1)
)

(In the last step here we are using the definition ofp from (10).) Let us bound the
exponent:

(

m/2k−(m/2k)2/3

t

)

(

m/2k

t

)
≥

(

m/2k − (m/2k)2/3 − t

m/2k

)t

=

(

log6 n− log4 n−
√

logn

log6 n

)

√
log n

≥
(

log6 n− 2 log4 n

log6 n

)

√
log n

=

(

1 − 2

log2 n

)

√
log n

≥ 1 − 2

log1.5 n
.

So

Vs(X) ≥ 1 −
[

2−(1−2/ log1.5 n)
]

· (1 + 1/nω(1)) ≥ 1

2
− 1

logn
.

Now for the upper bound:

Vs(x) ≤ 1 − (1 − p)(
m/2k+(m/2k)2/3

t)

= 1 − 2−(m/2k+(m/2k)2/3

t)/(m/2k

t)

21

Again bounding the exponent:

(

m/2k+(m/2k)2/3

t

)

(

m/2k

t

)
=

(log6 n+log4 n√
log n

)

(log6 n√
log n

)

≤
(

log6 n+ log4 n

log6 n−
√

logn

)

√
log n

≤
(

1 +
2 log4 n

log6 n−
√

logn

)

√
log n

≤ 1 +
4

log1.5 n
.

So

Vs(X) ≤ 1 − 2
−

“

1+ 4
log1.5 n

”

≤ 1

2
+

1

logn
.

The above analysis has thus established the following.

Lemma 10. Let L be any poly(n)-time learning algorithm. IfL is run with a target
function that is a random drawf from the distributionP described above, then for all
but a1/nω(1) fraction of inputsx ∈ {0, 1}n, the probability thath(x) = f(x) (where
h is the hypothesis output byL) is at most12 + 1

log n .

It is easy to see that by slightly modifying the values oft andk in the above con-
struction, it is actually possible to replace1log n with any 1

polylog n in the above.

C.4 Computational Lower Bound

To obtain a computational analogue of Lemma 10, we “pseudorandomize” the choice
of terms in a draw off1 fromP.

Recall that the constuctionP placed each possible term (conjunction oft supervari-
ables) in the target function with probabilityp, as defined in (10). We first consider a
distribution that uses uniform bits to approximate the probability p. This can be done
by approximatinglog(p−1) with poly(n) bits, associating each term with independent
uniform poly(n) bits chosen this way, and including that term in the target function if
all bits are set to0. It is easy to see that the resulting construction yields a probability
distribution which is statistically close toP , and we denote it byP stat.

Now, using a pseudorandom function rather than a truly random (uniform) one for
the source of uniform bits will yield a distribution which wedenote byPPSR. Similar
arguments to those we give elsewhere in the paper show that a poly(n) time adversary
cannot distinguish the resulting construction from the original one (or else a distin-
guisher could be constructed for the pseudorandom function).

To complete the argument, we observe that every functionf in the support ofPPSR

can be evaluated with a poly(n)-size circuit. It is obviously easy to count the number of

22

supervariables that are satisfied in an inputx, so we need only argue that the function
f1 can be computed efficiently on a “typical” inputx that has “few” supervariables
satisfied. But by construction, such an input will satisfy only poly(n) candidate terms of
the monotone DNFf1 and thus a poly(n)-size circuit can check each of these candidate
terms separately (by making a call to the pseudorandom function for each candidate
term to determine whether it is present or absent). Thus, as acorollary of Lemma 10,
we can establish the main result of this section:

Theorem 7. Suppose that standard one-way functions exist. Then there is a classC of
poly(n)-size monotone circuits that is hard to learn to accracy1

2 + 1
polylog(n) .

