Optimal Cryptographic Hardness of Learning
Monotone Functions

Dana Dachman-Soled, Homin K. Lee, Tal Malkin,
Rocco A. Servedio, Andrew Wan, and Hoeteck Wee

{dgl asner, honmi n, tal,rocco, at wl2, hoet eck}@s. col unbi a. edu

Abstract. A wide range of positive and negative results have been lesiad
for learning different classes of Boolean functions fronifanmly distributed
random examples. However, polynomial-time algorithmsehidwus far been ob-
tained almost exclusively for various classesnudnotonefunctions, while the
computational hardness results obtained to date haveell floe various classes
of general (honmonotone) functions. Motivated by this difty between known
positive results (for monotone functions) and negativeltegfor nonmonotone
functions), we establish strong computational limitasi@n the efficient learn-
ability of various classes of monotone functions.

We give several such hardness results which are provablgsaloptimal since
they nearly match known positive results. Some of our restibw cryptographic
hardness of learning polynomial-size monotone circuiscimuracy only slightly
greater thanl/2 + 1/4/n; this accuracy bound is close to optimal by known
positive results (Blunet al., FOCS '98). Other results show that under a plausible
cryptographic hardness assumption, a class of constatit;dgeub-polynomial-
size circuits computing monotone functions is hard to Igtmis result is close to
optimal in terms of the circuit size parameter by known pesitesults as well
(Servedio, Information and Computation '04). Our main tmoh complexity-
theoretic approach to hardness amplification via noiseitbétysof monotone
functions that was pioneered by O’Donnell (JCSS '04).

1 Introduction

More than two decades ago Valiant introduced the Probablyrépmately Correct
(PAC) model of learning Boolean functions from random exBspVal84]. Since that
time a great deal of research effort has been expended oy tiyiunderstand the in-
herent abilities and limitations of computationally effiot learning algorithms. This
paper addresses a discrepancy between known positive gativeeresults for uniform
distribution learning by establishing strong computagidrardness results for learning
various classes ahonotondunctions.

1.1 Background and Motivation

In the uniform distribution PAC learning model, a learnidgaithm is given access
to a source of independent random exampglesf(x)) where eachr is drawn uni-

formly from the n-dimensional Boolean cube anfdis the unknown Boolean func-
tion to be learned. The goal of the learner is to constructgh-diccuracy hypothe-
sis functionh, i.e., one which satisfie®r[f(z) # h(z)] < e where the probability

is with respect to the uniform distribution ardis an error parameter given to the
learning algorithm. Algorithms and hardness results is framework have interest-
ing connections with topics such as discrete Fourier aig[f4an94], circuit com-
plexity [LMN93], noise sensitivity and influence of variaisl in Boolean functions
[KKL88,BKS99,KOS04,0507], coding theory [FGKPO06], praya BLR0O8,KLNT08],
and cryptography [BFKL93,Kha95]. For these reasons, acduse the model is natu-
ral and elegant in its own right, the uniform distributioatring model has been inten-
sively studied for almost two decades.

Monotonicity makes learning easier.For many classes of functions, uniform distri-
bution learning algorithms have been devised which subatgnimprove on a naive
exponential-time approach to learning via brute-forcadeaHowever, despite inten-
sive efforts, researchers have not yet obtained(@olyime learning algorithms in this
model for various simple classes of functions. Interesyirig many of these cases re-
stricting the class of functions to the corresponding atdssonotondunctions has led
to more efficient — sometimes pagly)-time — algorithms. We list some examples:

1. Asimple algorithm learns monotof¥log n)-juntas to perfect accuracy in pgly)
time, and a more complex algorithm [BT96] learns monot@r@ng(n))—juntas to
any constant accuracy in pdly) time. In contrast, the fastest known algorithm for
learning arbitrarye-juntas runs in timey 7°4* [MOS04].

2. The fastest known uniform distribution learning algamit for the general class of
s-term DNF, due to Verbeurgt [Ver90], runs in tim&(°£ %) to learn to any constant
accuracy. In contrast, forterm monotone DNF [Ser04] gives an algorithm which
runs in s©U°gs) time. Thus the class af°(v1°s").term monotone DNF can be
learned to any constant accuracy in gelytime, but no such result is known for
20(Vlogn)_term general DNF.

3. The fastest known algorithm for learning pely-size general decision trees to
constant accuracy takeg’(°s™) time (this follows from [Ver90]), but polfn)-
size decision trees that compute monotone functions cagdnedd to any constant
accuracy in polyn) time [OSO07].

4. No poly(n)-time algorithm can learn the general class of all Boolearttions on
{0,1}™ to accuracy better thah + %n("), but a simple polynomial-time algo-
rithm can learn the class of all monotone Boolean functiorm:t:uracy% + &711)
[BBL98]. We note also that the result of [BT96] mentioned @ddollows from
a2°(v")_time algorithm for learning arbitrary monotone functiasn variables
to constant accuracy (it is easy to see that no comparalibeithigy can exist for
learning arbitrary Boolean functions to constant accuracy

Cryptography and hardness of learning. Essentially all known representation-independent
hardness of learning resultse(, results which apply to learning algorithms that do

not have any restrictions on the syntactic form of the hypsés they output) rely on

some cryptographic assumption, or an assumption thatyeagilies a cryptographic
primitive. For example, under the assumption that certalvsst sum problems are

hard on average, Kharitonov [Kha95] showed that the cd@sof logarithmic-depth,
polynomial-sizeAND/OR/NOT circuits is hard to learn under the uniform distribution.

Subsequently Kharitonov showed [Kha93] that if factoririgrB integers i2"" -hard
for some fixede > 0, then even the clasaC® of constant-depth, polynomial-size
AND/OR/NOT circuits similarly cannot be learned in polynomial time enthe uniform
distribution. In later work, Naor and Reingold [NR04] gawenstructions of pseudo-
random functions with very low circuit complexity; theiradts imply that if factoring
Blum integers is super-polynomially hard, then even depifc® circuits (composed
of MAJ and NOT gates) cannot be learned in polynomial timeeunuhiform. We note
that all of these hardness results apply even to algorithmshamay make black-box
“membership queries” to obtain the valyiér) for inputsz of their choosing.

Monotonicity versus cryptography?Given that cryptography precludes efficient learn-
ing while monotonicity seems to make efficient learning st is natural to investi-
gate how these phenomena interact. One could argue thattprtbe current work
there was something of a mismatch between known positivenagdtive results for
uniform-distribution learning: as described above a yainoad range of polynomial-
time learning results had been obtained for various classe®notone functions, but
there were no corresponding computational hardness sefsulinonotone functions.
Can all monotone Boolean functions computed by polynomizd-circuits be learned
to 99% accuracy in polynomial time from uniform random exé&sp As far as we
are aware, prior to our work answers were not known even th seemingly basic
questions about learning monotone functions as this onis. @dp in understanding
motivated the research presented in this paper (which, adeseribe below, lets us
answer “no” to the above question in a strong sense).

1.2 Our results and techniques: cryptography trumps monotaicity

We present several different constructions of “simple”lypomial-time computable)
monotone Boolean functions and prove that these functimnhard to learn under the
uniform distribution, even if membership queries are a#ldwWe now describe our
main results, followed by a high-level description of how el#ain them.

In [BBL98] Blum et al.showed that arbitrary monotone functions cannot be learned
to accuracy better tha§l+ % by any algorithm which makes pdly) many mem-
bership queries. This is an information-theoretic bounattvis proved using randomly
generated monotone DNF formulas of size (rough®¥ ™. A natural goal is to obtain
computationalower bounds for learning polynomial-time-computable mimme func-
tions which match, or nearly match, this level of hardnedsi¢ivis close to optimal
by the(% + M)-accuracy algorithm of Blumet al. described above). We prove near-

n

optimal hardness for learning polynomial-size monotoneuis:

Theorem 1 (informal). If one-way functions exist, then there is a claspd (n)-size
monotone circuits that cannot be learned to accurécy nl/% for any fixede > 0.

Our approach yields even stronger lower bounds if we makagér assumptions:

— Assuming the existence of subexponential one-way funstiae improve the bound
on the accuracy to/2 + polylog(n)/n'/2.

— Assuming the hardness of factoring Blum integers, our hasigarn functions may
be computed in monotoriéC’.

4

Hardness assumptior‘ Complexity of f Accuracy bound‘ Ref. ‘

none randomn'°#"-term mono. DNF| 1 + ”3?5;2") [BBL98]

OWF (poly) poly-size monotone circuits % + nl/% Thm. 1

OWF (2") poly-size monotone circuits 14 % Thm. 3

factoring Bl (poly) | monotoneNC!-circuits 3+ Thm. 4

factoring BI ") depthd, size 20egm)?™/ Y 2 +o(1) Thm.5
AND/OR/NOT circuits

Fig. 1. Summary of known hardness results for learning monotondeBodfunctions.
The meaning of each row is as follows: under the stated hasdmesumption, there is
a class of monotone functions computed by circuits of theedtaomplexity which no
poly(n)-time membership query algorithm can learn to the statedracy. In the first
column, OWF and BI denote one-way functions and Blum Integespectively, and
“poly” and “2™"” means that the problems are intractable for goly and2™" -time
algorithms respectively (for some fixed> 0). Recall that the polfn)-time algorithm
of [BBL98] for learning monotone functions implies that thest possible accuracy

bound for monotone functions %4— fl(}z) .

— Assuming that Blum integers a2&"-hard to factor on average (the same hardness
assumption used in Kharitonov’s work [Kha93]), we obtainwér bound for learn-
ing constant-depth circuits of sub-polynomial size that@dt matches the positive
result in [Ser04]. More precisely, we show that for any (sudfitly large) constant
d, the class of monotone functions computed by depaND/OR/NOT circuits of
size2(losm) V" cannot be learned to accuracy 51% under the uniform distribu
tion in poly(n) time. In contrast, the positive result of [Ser04] shows thahotone
functions computed by dep#hAND/OR/NOT circuits of size20((os)" “*1) can
be learned to any constant accuracy in polytime.

These results are summarized in Figure 1.

Proof techniques.A natural first approach is to try to “pseudorandomize” [BBI'S
construction of random!°&”-term monotone DNFs. We were not able to do this di-
rectly; indeed, as we discuss in Section 3, pseudorandogtize [BBL98] construction
seems closely related to an open problem of Goldreiet.from [GGNO3]. However, it
turns out that a closely related approach does yield somiéisedong the desired lines;
in Appendix C we present and analyze a simple variant of tiel @8] information-
theoretic construction and then show how to “pseudorangdehthe variant. Since
our variant gives a weaker quantitative bound on the inféionatheoretic hardness of
learning than [BBL98], this gives a construction of polyrniastime-computable mono-
tone functions which, assuming the existence of one-wagtfons, cannot be learned

to accuracy% + m under the uniform distribution. While this answers the ques

tion posed above (even with “51%” in place of “99%"), the——— factor is rather

po ylig(n)
far from theo(l"—i") factor that one might hope for as described above.

In Section 2 we use a different construction to obtain muobnster quantitative
results; another advantage of this second constructiohaisit enables us to show
hardness of learninghonotone circuitgather than just circuits computing monotone
functions. We start with the simple observation that usitagndard tools it is easy to
construct polynomial-size monotone circuits computinkicés functions which are
pseudorandom on the middle layer of the Boolean c{fhd }"™. Such functions are
easily seen to be mildly hard to learie., hard to learn to accuracy — &i} We
then use the elegant machinery of hardness amplificatioroobitone functions which
was pioneered by O’Donnell [O’'D04] to amplify the hardne$shis construction to
near-optimal levels (rows 2—4 of Figure 1). We obtain ouulte®r constant depth,
sub-polynomial-size circuits (row 5 of Figure 1) by augniegthis approach with an
argument which at a high level is similar to one used in [AHDB], by “scaling down”
and modifying our hard-to-learn functions using a varianilepomnjascii’s theorem
[Nep70Q].

1.3 Preliminaries

We consider Boolean functiorfs: {0,1}"—{0,1}. We view{0, 1}" as endowed with
the natural partial order < y iff x; <y, foralli = 1,...,n. A Boolean functionf is
monotonef x < yimplies f(z) < f(y).

We establish that a clag=f functions is hard to learn by showing that for a uniform
randomy € C, the expected error of any pdly)-time learning algorithni. is close to
1/2 when run withf as the target function. Thus we bound the quantity

fn . _

ree B L)= () = f (@) M
where the probability is also taken over any internal ranidation of the learning al-
gorithm L. We say thaftclassC is hard to learn to accurac;?z; + e(n) if for every
poly(n)-time membership query learning algorithir{i.e., p.p.t. oracle algorithm), we
have(1) < 3 + e(n) for all sufficiently largen. As noted in [BBL98], it is straight-
forward to transform a lower bound of this sort into a loweubd for the usuat, 0
formulation of PAC learning.

Our work uses various standard definitions from the fieldsit@u@ complexity,
learning, and cryptographic psesudorandomness; for aiamnmss we recall this mate-
rial in Appendix A.

2 Lower Bounds via Hardness Amplification of Monotone
Functions

In this section we prove our main hardness results, sumethitizFigure 1, for learning
various classes of monotone functions under the uniforiniloigion with membership
queries.

Let us start with a high-level explanation of the overalladmspired by the work
on hardness amplification withiMP initiated by O’Donnell [O’'D04,HVV06], we study
constructions of the form

fx1,. o zm) =C(f (x1),. .., [(zm))

whereC' is a Boolean “combining function” with low noise stabilitwé give pre-
cise definitions later) which is botéfficiently computabland monotone Recall that
O’Donnell showed that iff” is weakly hard to compute and the combining function
has low noise stability, thefiis very hard to compute. This result holds for general (not
necessarily monotone) functiofs and thus generalizes Yao’s XOR lemma, which ad-
dresses the case wherds the XOR ofm bits (and hence has the lowest noise stability
of all Boolean functions, see [O’D04]).

Roughly speaking, we establish an analogue of O’'Donnessiit for learning. Our
analogue, given in Section 2.2, essentially states thatefain well-structureldfunc-
tions f/ that are hard to learn to high accuracy(ifhas low noise stability therf is
hard to learn to accuracy even slightly better th@n. Since our ultimate goal is to es-
tablish that “simple” classes of monotone functions areltiaidearn, we shall use this
result with combining function€’ that are computed by “simple” monotone Boolean
circuits. In order for the overall functiofi to be monotone and efficiently computable,
we need the initia)’ to be well-structured, monotone, efficiently computabie] hard
to learn to high accuracy. Such functions are easily obthlyea slight extension of an
observation of Kearnet al. [KLV94]. They noted that the middle slicg of a random
Boolean function on{0, 1}* is hard to learn to accuracy greater than O(1//k)
[BBL98,KLV94]; by taking the middle slice of @seudorandonfunction instead, we
obtain anf’ with the desired properties. In fact, by a result of Berkavfiger82] this
slice function is computable by a polynomial-size monotoineuit, so the overall hard-
to-learn functions we construct are computed by polynossié monotone circuits.

Organization. In Section 2.2 we adapt the analysis in [O’D04,HVV06] to reelu
the problem of constructing hard-to-learn monotone Baolemctions to construct-
ing monotone combining functiors with low noise stability. In Section 2.3 we show
how constructions and analyses from [O’D04,MO03] can bel te@btain a “simple”
monotone combining function with low noise stability. IncHen 2.4 we establish The-
orems 2 and 3 (lines 2 and 3 of Figure 1) by making differentiiaggions about the
hardness of the initial pseudorandom functions. Finally,use more specific assump-
tions about the hardness of factoring Blum integers to éstalbheorems 4 and 5 (lines
4 and 5 of Figure 1), which extend our hardness results to siemple circuit classes;
because of space constraints these results are deferrggbemdix B.

2.1 Preliminaries

Functions. Let C : {0,1}"—{0,1} and f’ : {0,1}*—{0, 1} be Boolean functions.
We write C' o f®™ to denote the Boolean function ovgi0, 1}*)™ given by

Co o™ (@) = C(f'(ar),- o (o)), Wherer = (a1,...,m).

1 As will be clear from the proof, we require th#t be balanced and have a “hard-core set.”

Forg : {0,1}*—{0, 1}, we writeslice(g) to denote the “middle slice” function:

1 if | > |k/2]
slice(g)(¢) = { g(a) if |2| = |k/2]
0 if |z < [k/2].

It is immediate thaslice(g) is @ monotone Boolean function for apy

Bias and noise stability.Following the analysis in [O'D04,HVV06], we shall study
the bias and noise stability of various Boolean functiorsecHfically, we adopt the
following notations and definitions from [HVV06]. Thaas of a0-1 random variable
X is defined to be

Bias[X] &' | Pr[X = 0] — Pr[X = 1]|.
Recall that a probabilistic Boolean functidnon {0, 1}* is a probability distribution

over Boolean functions of0, 1}* (so for each input, the output:(z) is a0-1 random
variable). Theexpected biasf a probabilistic Boolean functioh is

ExpBias[h] £ E, [Bias[h(z)]].

Let C' : {0,1}™—{0,1} be a Boolean function aMii< § < i. Thenoise stability of
C at noise ratey, denotedNoiseStabs[C], is defined to be

NoiseStabs[C] &y Pr[C(z) =C(z®n)] -1
"E)”]
wherez € {0,1}™ is uniform randomy € {0,1}™ is a vector whose bits are each
independently 1 with probability, and® denotes bitwise XOR.

2.2 Hardness amplification for learning

Throughout this subsection we write for m(n) andk for k(n). We shall establish
the following:

Lemmal. LetC : {0,1}™—{0,1} be a polynomial-time computable function. Let
G’ be the family of alR2" functions from{0, 1}* to {0, 1}, wheren = mk andk =
w(logn). Thenthe clas§€ = {f = Coslice(9)®™ | g € G’} of Boolean functions over
{0,1}™is hard to learn to accuracy

1 1 .
3 + 5\/N01seStab@(1/\/g) [C] +o(1/n).

This easily yields Corollary 1, which is an analogue of Leminaith pseudoran-
dom rather than truly random functions, and which we use tainlour main hardness
of learning results.

Proof of Lemma 1: Let k, m be such thatnk = n, and letC : {0,1}™—{0,1} be a
Boolean combining function. We prove the lemma by upper g

Pro (L") = b5 h(z) = f(2)] @

g€eg’,x€{0,1}"

where L is an arbitrary p.p.t. oracle machine (running in tipdy(n) on input1™)

that is given oracle access ;t”odzef C o slice(g)®™ and outputs some hypothedis:
{0,1}"—{0,1}.

We first observe that sing€ is computed by a uniform family of circuits of size
poly(m) < poly(n), it is easy for a polyn)-time machine to simulate oracle access to
fifitis given oracle access t@. So (2) is at most

N [Lg(m — s h(z) = (Co slice(g)®m)(x)} : 3)
To analyze the above probability, suppose that in the confréis executionL never
queriesg on any of the inputs:, ..., z,, € {0,1}*, wherez = (z1,...,2,,). Then
the a posterioridistribution ofg(z1), ..., g(x,,) (for uniform randomy € G’) given
the responses tad’s queries that it received from is identical to the distribution of
9 (x1),...,9 (), whereg’ is an independent uniform draw froi: both distribu-
tions are uniform random ove0, 1}™. (Intuitively, this just means that if. never
queries the random functiapon any ofzy, ..., z,,, then givingL oracle access tg
does not help it predict the value ¢fonz = (x1,...,x,,).) SinceL runs in polyn)
time, for any fixedr, . . ., z,, the probability that’, queriedg on any ofzy, ..., z,, is
at most%}:‘/("). Hence(3) is bounded by

9I(1™) — h: = i \®@m M
g,g’eg’,mre{o,l}n LI(1™) — h; h(z) = (C oslice(¢")®™)(x)| + o .4
The first summand in (4) is the probability thatcorrectly predicts the valué' o
slice(¢")®™(x), given oracle access @ whereg and g’ are independently random
functions and: is uniform over{0, 1}". Itis clear that the best possible strategyfads
to use a maximum likelihood algorithme., predict according to the functionwhich,
for any fixed inpute, outputsl if and only if the random variablgC o slice(g’)®™)(z)
(we emphasize that the randomness here is over the choiggisfbiased towards.
The expected accuracy of thids precisely

% + % ExpBias|C o slice(g")®™]. (5)
Now fix & %' (Lk’j%)/?C = 6(1/Vk) to be the fraction of inputs in the “middle

slice” of {0, 1}*. We observe that the probabilistic functislite(g’) (whereg’ is truly
random) is 9-random” in the sense of ([HVV06], Definition 3.1)e., it is balanced,
truly random on inputs in the middle slice, and determinist all other inputs. This
means that we may apply a technical lemma [HVV06, Lemma 3073)ice(¢’) (see
also [O’D04]) to obtain

ExpBias[C o slice(g")®™] < v/NoiseStabs[C]. (6)
Combining (4), (5) and (6) and recalling that= w(logn), we obtain Lemmal. O

Corollary 1. LetC : {0,1}™—{0,1} be a polynomial-time computable function. Let
G be a pseudorandom family of functions frditx 1}* to {0,1} which are secure

againstpoly(n)-time adversaries, where = mk andk = w(logn). Then the class
C={f =Coslice(q)®™ | g € G} of Boolean functions ovel0, 1}" is hard to learn
to accuracy

1 1 :
3 + 5\/N01seStab@(l/\/E) [C] 4 o(1/n).

Proof. The corollary follows from the fact that (3) must differ fraits pseudorandom
counterpart,

. fg{o,l}n [Lg(l") — hy h(z) = (C oslice(9)®™)(z)], @)

by less thanl /n? (in fact by less than any fixetl/ poly(n)). Otherwise, we would
easily obtain a polfn)-time distinguisher that, given oracle accesg,taunsL to obtain
a hypothesig: and checks whethét(x) = (C o slice(g)®™)(z) for a randomz to
determine whethey is drawn fromg or G'. a

By instantiating Corollary 1 with a “simple” monotone furat C' having low noise
stability, we obtain strong hardness results for learningple monotone functions. We
exhibit such a functiod' in the next section.

2.3 A simple monotone combining function with low noise staitity
In this section we combine known results of [O’'D04,MO03] tutain:
Proposition 1. Given a valuek, letm = 3°d2? for ¢, d satisfying3* < k¢ < 31 and

d < O(k-3®). Then there exists a monotone funct@n {0,1}"™ — {0,1} computed
by a uniform family oboly(m)-size,log(m)-depth monotone circuits such that

k61ogm).

NoiseStabg,; /) [C] < O((8)

m
Note that in this proposition we may hawe as large a29*™) put not larger.

O’Donnell[O’'D04] gave a lower bound d@(%) onNoiseStabg, /) [C] for ev-
ery monotonen-variable functionC', so the above upper bound is fairly close to the
best possible (within @olylog(m) factor if m = 2#").

Following [0'D04,HVV06], we use the “recursive majority 8f function and the
“tribes” function in our construction. We require the fallmg results on noise stability:

Lemma 2 ([O’'D04]). Let Rec-Maj-3, : {0, 1}3e—>{0, 1} be defined as follows: for
x = (2,22, 23) where each’’ € {0,1}3" ",

Rec-Maj-3,(x) &ef Maj(Rec-Maj-3,_, (z'), Rec-Maj-3,_, (z?), Rec-Maj-3,_, (z%)).

Then for¢ > log, ,(1/5), we haveNoiseStabs[Rec-Maj-3,] < §—11(3¢)~15.

10

Lemma 3 ([MOO03]). Let Tribes, : {0,1}42°—{0, 1} denote the “tribes” function on
d2% variables, i.e., the read-on@¢-term monotond-DNF

. def
Tribesq(z1, - .., Tyod) < (k1 A Axg)V (Tag1 A ANxgg) V-

Then ify) < O(1/d), we haveNoiseStab 1_ [Tribes,] < o(%) < o(zid).

Lemma 4 ([O’DO04)). If k is a balanced Boolean function and: {0,1}" — {0,1}is
arbitrary, then for anys we haveNoiseStabs[i) o h®"| = NoiseStab, woisestabsn [1].
2 2

Proof of Proposition 1: We takeC' to beTribes, o Rec-Maj—?,;@dgd. SinceRec-Maj-3,
is balanced, by Lemma 4 we have

NoiseStabs[C] = NoiseStab, oisestabsRec-Maj-3,] [Tribesq].
2 2

Settingd = 6(1/vk) and recalling thas’ < k°, we havel > log; ,(1/) so we may
apply Lemma 2 to obtain

NoiseStabg,; /) [Rec-Maj-3,] < O((VE)"Y) (K5 ™1 = O(k—3).

SinceO(k~3%) < O(1/d), we may apply Lemma 3 with the previous inequalities to
obtain

. 1
NoiseStabg; , /) [C] < O(ﬁ)'

The bound (8) follows from some easy rearrangement of thad®ank, m, d and/. It
is easy to see that can be computed by monotone circuits of de@iif) = O(logm)
and sizepoly(m), and the proposition is proved. 0

2.4 Nearly optimal hardness of learning polynomial-size maotone circuits

Given a value of, letm = 3‘d2¢ for ¢, d as in Proposition 1. Lef be a pseudoran-
dom family of functionsg : {0, 1}*—{0, 1}} secure against poly)-time adversaries,
wheren = mk. Since we havé = w(logn), we may apply Corollary 1 with the com-
bining function from Proposition 1 and conclude that thessta= {C o slice(g)®™ |

g € G} is hard to learn to accuracy

%—FO(W#)—FO(UH)S%—FO(L\/\/?)- 9)

We claim that in fact the functions i can be computed byoly(n)-size monotone
circuits. This follows from a result of Berkowitz [Ber82] udh states that if &-variable
slice function is computed by AND/OR/NOT circuit of sizes and depthd, then it is
also computed by a monotoA®D/OR/MAJ circuit of sizeO(s + k) and depthl + 1.
Combining these monotone circuits fdice(g) with the monotone circuit fot”, we
obtain a polyn)-size monotone circuit for each function@n

By making various different assumptions on the hardnessnefway functions,
Proposition 2 lets us obtain different quantitative relaships betwee#k (the input

11

length for the pseudorandom functions) amdthe running time of the adversaries
against which they are secure), and thus different quéingtadardness results from
(9) above:

Theorem 2. Suppose that standard one-way functions exist. Then focamstant >
0 there is a clas€ of poly(n)-size monotone circuits that is hard to learn to accuracy

1 1
2 + nl/2—e-*

Proof. If poly(n)-hard one-way functions exist then we may téke- n¢ in Proposi-
tion 2 for arbitrarily small constant; this corresponds to taking = C'log k for C' a
large constant in Proposition 1. The claimed bound on (9)yefadlows. (We note that
while not everyn is of the required formnk = 3°d2?k, it is not difficult to see that this
and our subsequent theorems hold for all (sufficiently lairgeut lengths: by padding
the hard-to-learn functions.) a

Theorem 3. Suppose that subexponentially ha#tt { for some fixedv > 0) one-way
functions exist. Then there is a cla®sf poly(n)-size monotone circuits that is hard to

polylog(n
learn to accuracy, + 22V 08

Proof. As above, but now we take = log® n for some sufficiently large consta6t
(i.e.,d = clog k for a small constant). ad

3 Discussion and Future Work

An obvious goal for future work is to establish even sharpeargitative bounds on
the cryptographic hardness of learning monotone functi@BL 98] obtain their% +

“’51‘1’%2") information-theoretic lower bound by considering randoonmtone DNF which
are constructed by independently including each of(;gfén) possible terms of length
log n in the target function. Can we match this hardness with aaépolynomial-size
circuits?

As mentioned in Section 1, it is natural to consider a pseanttom variant of the
[BBL98] construction in which a pseudorandom rather thaytrandom function is
used to decide whether or not to include each of(qgfgén) candidate terms. However,
we have not been able to show that a funcifaonstructed in this way can be computed
by a poly(n)-size circuit. Intuitively, the problem is that for an inpuwith (typically)
n/2 bits set to 1, to evaluatg we must check the pseudorandom function’s value on
all of the (lzg/i) potential “candidate terms” of lengthg » which z satisfies. Indeed,
the question of obtaining an efficient implementation ofsthéhuge pseudorandom
monotone DNF” has a similar flavor to Open Problem 5.4 of [GGNM that ques-
tion the goal is to construct pseudorandom functions thppert “subcube queries”
which give the parity of the function’s values over all inpurt a specified subcube of
{0,1}™. In our scenario we are interested in functighwhich are pseudorandom only
over the(logn) inputs with preciseljog n ones (these inputs correspond to the “candi-
date terms” of the monotone DNF) and are zero everywhereatgkewe only need to
support “monotone subcube queriesé(, given an inputz, we want to know whether

fy) = 1foranyy < z).

12

In Appendix C we present a variant of the [BBL98] construetio which a typical
input satisfies onlyoly(n) many candidate terms; this is the key feature enabling us to
“pseudorandomize” the construction.

References

[AHM T06] E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and9aks. Minimizing DNF
Formulas anddC? Circuits Given a Truth Table. I6CC, pages 237-251, 2006.

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. An(nlogn) sorting network.Combina-
torica, 3(1):1-19, 1983.

[BBL98] A. Blum, C. Burch, and J. Langford. On learning moma¢ boolean functions. In
39th FOCSpages 408—415, 1998.

[Ber82] S.J.Berkowitz. On some relationships between rmmand non-monotone circuit
complexity. Technical report, Technical Report, Univrsif Toronto, 1982.

[BFKL93] A. Blum, M. Furst, M. Kearns, and R. Lipton. Crypt@phic Primitives Based on
Hard Learning Problems. IBRYPTO '93pages 278-291, 1993.

[BKS99] I. Benjamini, G. Kalai, and O. Schramm. Noise sawitjt of Boolean functions and
applications to percolatiorinst. HautesEtudes Sci. Publ. Math90:5-43, 1999.

[BLRO8] Avrim Blum, Katrina Ligett, and Aaron Roth. A leamj theory perspective on data
privacy: New hope for releasing useful databases privatdgnuscript, 2008.

[BT96] N. Bshouty and C. Tamon. On the Fourier spectrum of atane functionsJournal
of the ACM 43(4):747-770, 1996.

[FGKPO06] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswateiv results for learning noisy
parities and halfspaces. #7th FOCSpages 563-576, 2006.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micallow to construct random
functions.JACM, 33(4):210-217, 1986.

[GGNO3] O. Goldreich, S. Goldwasser, and A. Nussboim. Onlihglementation of Huge
Random Objects. Technical report, ECCC Technical Repdit 2d03.

[HILL99] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. pseudorandom generator from
any one-way functionSIAM Journal on Computing@8(4):1364—1396, 1999.

[HVV06] A. Healy, S. Vadhan, and E. Viola. Using Nondeteriain to Amplify Hardness.
SIAM Journal on Computing5(4):903-931, 2006.

[Kha93] M. Kharitonov. Cryptographic hardness of disttibn-specific learning. Ir25th
STOC pages 372-381, 1993.

[Kha95] M. Kharitonov. Cryptographic lower bounds for Ieability of Boolean functions on
the uniform distributionJCS$50:600-610, 1995.

[KKL88] J.Kahn, G. Kalai, and N. Linial. The influence of vakles on boolean functions. In
29th FOCSpages 68—80, 1988.

[KLN *T08] Shiva Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofgaskhodnikova, and
Adam Smith. What can we learn privately? Manuscript, 2008.

[KLV94] Michael J. Kearns, Ming Li, and Leslie G. Valiant. heing boolean formulasJ.
ACM, 41(6):1298-1328, 1994.

[KOS04] A.Klivans, R. O’Donnell, and R. Servedio. Learniimgersections and thresholds of
halfspacesJCSS 68(4):808-840, 2004.

[LMNO93] N. Linial, Y. Mansour, and N. Nisan. Constant depilcaits, Fourier transform and
learnability. Journal of the ACM40(3):607-620, 1993.

[Man94] Y. Mansour.Learning Boolean functions via the Fourier transfqrpages 391-424.
Kluwer Academic Publishers, 1994.

13

[MOO03] Elchanan Mossel and Ryan O’Donnell. On the noise isigitg of monotone func-
tions. Random Struct. Algorithm&3(3):333-350, 2003.

[MOS04] E.Mossel, R. O’'Donnell, and R. Servedio. Learningdtions ofk relevant variables.
J. Comput. & Syst. S¢i69(3):421-434, 2004.

[Nep70] V.A. Nepomnjascii. Rudimentary predicates andifigicalculations. Math Dok,
11:1462-1465, 1970.

[NRO4] M. Naor and O. Reingold. Number-theoretic constiarg of efficient pseudo-
random functionsJournal of the ACM51(2):231-262, 2004.

[O'D04] R. O’Donnell. Hardness amplification within NBCS$69(1):68-94, 2004.

[0S07] R. O’'Donnell and R. Servedio. Learning monotone slenitrees in polynomial time.
SIAM Journal on Computing7(3):827-844, 2007.

[Raz85] A. Razborov. Lower bounds on the monotone networkmexity of the logical
permanentMat. Zametki37:887-900, 1985.

[Ser04] R. Servedio. On learning monotone DNF under prodisitibutions. Information
and Computation193(1):57-74, 2004.

[Val84] L. Valiant. A theory of the learnableCACM 27(11):1134-1142, 1984.

[Ver90] K. Verbeurgt. Learning DNF under the uniform dibtrtion in quasi-polynomial
time. In3rd COLT, pages 314-326, 1990.

A Preliminaries

Circuit complexity. We shall consider various classes of circuits computingl&uoo
functions. We assume familiarity with standard circuitsles such d$C’ (polynomial-
size, logarithmic-depth, bounded fan-in circuits\dfD/OR/NOT gates) AC° (polynomial-
size, constant-depth, unbounded fan-in circuitadib/OR/NOT gates) and C° (polynomial-
size, constant-depth unbounded fan-in circuitiaf/NOT gates).

A circuit is said to be monotone if it is composed entirelyAD/OR gates with
no negations. Every monotone circuit computes a monotormdeBa function, but of
course non-monotone circuits may compute monotone fumetis well. The famous
result of [Raz85] shows that there are natural monotone dzwofunctions (such as
the perfect matching function) which can be computed by patyial-size circuits but
cannot be computed by polynomial-size monotone circuitbusT in general, it is a
stronger result to show that a function can be computed byadl snonotone circuit
than to show that it is monotone and can be computed by a siralltc

Learning. As described earlier, all of our hardness results apply evégarning algo-
rithms which may makenembership queriese., black-box queries to an oracle which
gives the labeff (z) of any exampler € {0,1}" on which it is queried. It is clear that
for learning with respect to the uniform distribution, hayimembership query access
to the target functiorf is at least as powerful as being given uniform random exasnple
labeled according to since the learner can simply generate uniform random stfimg
herself and query the oracle to simulate a random examptdeora

The goal of the learning algorithm is to construct a hypatheso thatPr,. [h(x) #
f(z)] is small, where the probability is taken over the uniforntriisition. We shall
only consider learning algorithms which are allowed to rarpbly(n) time, so the
learning algorithmZ, may be viewed as an oracle p.p.t. machine which is given black
box access to the functiofi and attempts to output a hypothesisvith small error
relative tof.

14

Pseudorandom functions.Pseudorandom functions [GGM86] are the main crypto-
graphic primitive that underlie our constructions. Ei¢) < n, and letG be a family

of functions{g : {0,1}*(")—{0,1}} each of which is computable by a circuit of size
poly(k(n)). We say thag is at(n)-secure pseudorandom function faniflshe follow-

ing condition holds: for any probabilisti¢n)-time oracle algorithmi, we have

Pr [A9(1™) outputsl] [A9"(1™) outputsl]| < 1/t(n)

— Pr
g€g geq
where¢’ is the class of alk?*"’ functions from{0, 1}*(") to {0,1} (so the second
probability above is taken over the choice of a truly randamctiong’). Note that the
purported distinguished has oracle access to a function/am) bits but is allowed to
run in timet(n).

It is well known that a pseudorandom function family that(s)-secure for all
polynomialst(n) can be constructed from any one-way function [GGM86,HILL.99
We shall use the following folklore quantitative variantiatn relates the hardness of
the one-way function to the security of the resulting pseaddom function:

Proposition 2. Fix t(n) > poly(n) and suppose there exist one-way functions that
are hard to invert on average fdi(n) time adversaries. Then there exists a constant,
0 < ¢ < 1, such that for any:(n) < n, there is a pseudorandom famiyof functions
{g:{0,1}*™) —{0,1}} thatis (t(k(n)))°-secure.

B Hardness of learning simple circuits

In this section we obtain hardness results for learning ganple classes of circuits
computing monotone functions under a concrete hardnessnasion for a specific
computational problem, namely factoring Blum integersoNand Reingold [NR04]
showed that if factoring Blum integers is computationallydthen there is a pseudo-
random function family which we denotg* that is computable iTC°. From this it
easily follows that the functionlice(g) | g € G*} are also computable ifiC°.

We now observe that the result of Berkowitz mentioned edier82] for convert-
ing slice circuits into monotone circuits applies not ordyAND/OR/NOT circuits, but
also toTC? circuits (composed of MAJ and NOT gates).

This means that the functions fslice(g) | ¢ € G*} are in fact computable in
monotoner C°, i.e.,by polynomial-size, constant-depth circuits composegt ohMAJ
gates. Since the majority function can be computed by pahjiabsize O(log n)-depth
AND/OR circuits, (see e.g. [AKS83]), we easily obtain the follogin

Lemma 5. Let C be the monotone combining function from Proposition 1 ghde
a family of pseudorandom functions computabld@f. Then every function inC o
slice(9)®™ | g € G*} is computable in monotoréC.

This directly yields a hardness result for learning monefe@® circuits (the fourth
line of Figure 1):

15

Theorem 4. If factoring Blum integers is hard on average for any galy-time algo-
rithm, then for any constant > 0 there is a clas€ of poly(n)-size monoton&lC*
circuits that is hard to learn to accuracy + ——.

Now we show that under a stronger but still plausible assiommn the hardness
of factoring Blum integers, we get a hardness result fomiear a class otonstant-
depthmonotone circuits which is very close to a class known to benlgble to any
constant accuracy in paly) time. Suppose that-bit Blum integers ar@™” -hard to
factor on average for some fixed> 0 (this hardness assumption was earlier used by
Kharitonov [Kha93]). This means there exigs™*-secure pseudorandom functions
that are computable ifC°. Using such a family of functions in place ¢ in the
construction for the preceding theorem and fixing 1/3, we obtain the following

Lemma 6. Assume that Blum integers a2&" -hard to factor on average. Then there

is a classC of poly(n)-size monoton& C* circuits that is hard for anyzna/m—time
algorithm to learn to accuracy + —r.

Now we “scale down” this class as follows. Let’ be such that’ = (logn)" for
a suitable constant > 20/«, and let us user’” as the " in the construction of the
previous lemma; we call the resulting class of functi6hdn terms ofn, the functions
in C' (which are functions ovef0, 1} which only depend on the first’ variables)
are computed bylog n)°*)-size,O(log log n)-depth monotone circuits whose inputs
are the first(log n)* variables inzy, ..., z,. We moreover have thal’ is hard for
any2(n)?*" = 9(logm)™*/%" _ 101y (n))-time algorithm to learn to some accuracy
3+ Gys = 3 +o(1).

We now recall the following variant of Nepomnjascit'ssthrem that is implicit in
[AHM +06].

Lemma 7. For every language&l € NL, for all sufficiently large constant there are
ACY circuits of size2n " that recognize’.

Since every function i€’ can be computed iNC* which is contained itNL, com-
bining Lemma 7 with the paragraph that proceeds it, we olitarfollowing theorem
(final line of Figure 1):

Theorem 5. Suppose that Blum integers are subexponentially hard tmifamn aver-
age. Then there is a clagsof monotone functions which is hard for any pefy-time
algorithm to learn to accuracg + o(1) and which, for all sufficiently large constast
are computed bCY circuits of size2(los ™) 7/

This final hardness result is of interest because it is kndvah¢onstant-depth cir-
cuits of only slightly smaller sizean be learned to any constant accuracy in goly
time under the uniform distribution (without needing memsgbép queries):

Theorem 6 ([Ser04] Corollary 2).For all d > 2, the class ofACZ circuits of size
20((logm) /") that compute monotone functions can be learned to any consta
curacyl — e in poly(n)-time.

Theorem 5 is thus nearly optimal in terms of the size of thestaomt-depth circuits
for which it establishes hardness of learning.

16

C A Computational Analogue of [BBL98]'s Lower Bound

In this section we first present a simple variant of the [BB]U®8/er bound construc-
tion, obtaining an information-theoretic lower bound oe tharnability of the general
class of all monotone Boolean functions. The quantitatmertal our variant achieves is
weaker than that of [BBL98], but has the advantage that ibeegasily “pseudorandom-
ized”. Indeed, as mentioned in Section 3 (and further dsedi®elow), our construction
uses a certain probability distribution over monotone DNfegh that a typical random
input = satisfies onlypoly(n) many “candidate terms” (terms which may be present
in a random DNF drawn from our distribution). By selectingits for inclusion in the
DNF in a pseudorandom rather than truly random way, we oltalass of polyn)-size
monotone circuits which is hard to learn to accuré&y (assuming one-way
functions exist).

Below we start with an overview of why it is difficult to obtaincomputational ana-
logue of the exact construction of [BBL98] using the “psetatmlomization” approach
sketched above, and the idea behind our variant, which owees this difficulty. We
then provide our information theoretic construction andlgsis, followed by its com-
putational analogue.

polylog(n)

C.1 Idea

Recall the [BBL98] information-theoretic lower bound. lovks by defining a dis-
tribution P; over monotone function$0, 1}"—{0, 1} which is the following: Take

t' = log(3sn). A draw from P is obtained by randomly including each lengtmono-
tone term in the DNF independently with probability wherep’ is chosen so that the
function is expected to be balanced on “typical inputs” (enprecisely, on inputs with
exactlyn/2 1's). The naive idea for pseudorandomizing this construcisoto simply
use a pseudorandom function with bjdso determine whether each possible term of
sizet should be included or excluded in the DNF. However, there psadlem with
this approach: we do not know an efficient way to determinethdrea typical example
x (with, say,n/2 ones) has any of itﬁ"t/?) candidate terms (each of which is pseu-
dorandomly present/not presentfipactually present irf, so we do not know how to
evaluatef on an typical input in less thal "/,2) time.

We get around this difficulty by instead considering a newritiistion of random
monotone DNFs. In our construction we will again use a ranélamtion with biasp
to determine whether each possible term of lerigthpresent in the DNF. However, in
our construction, a typical examplewill have only a polynomial number of candidate
terms that could be satisfied, and thus it is possible to ch#ak them and evaluate
the function in polyn) time.

The main difficulty of this approach is to ensure that althoagtypical example
has only a polynomial number of candidate terms, the funasicstill hard to learn in
polynomial time. We achieve this by partitioning the valéshinto blocks of sizé& and
viewing each block as a “supervariable” (corresponding&AND of all k variables in
the block). We then construct the DNF by randomly choosingtle+ terms over these
supervariables. It is not difficult to see that with this agmarh, we can equivalently
view our problem as learningtaDNF f with terms chosen as above, where each of the

17

n/k variables is drawn from a product distribution with big&*. By fine-tuning the

parameters that determingthe size of each term of the DNF) aikdthe size of the

partitions), we are able to achieve an information-théofetver bound showing that
this distribution over monotone functions is hard to learat¢curacyl /2 + o(1).

C.2 Construction

Let us partition the variables, ..., z,, intom = n/k blocks By, ..., B,, of k vari-
ables each. LeKX; denote the conjunction of alf variables inB; (X4,...,X,, are
the supervariables). The following is a description of agtrébution P over monotone
functions. A functionf is drawn fromP as follows (we fix the values df, ¢ later):

— Construct a monotone DNF as follows: each possible conjunctiontefupervari-
ables chosen froffiX;, ..., X, } is placed in the target functiofi independently
with probabilityp, wherep is defined as the solution to:

k
(1-p)"F) =1/2. (10)
Note that for a uniform: € {0, 1}", we expect the corresponding “superassign-
ment’ X = (X1,...,X,,) to havem/2* 1'sin it. Sot is chosen such that a “typ-
ical” exampleX, with m /2% ones, has probability /2 of being labeled positive
underf.
— Let

f1(z) if the number of supervariables satisfiedriis at mostm /2% + (m/2%)?/3

fz) =

1 otherwise.

Note that because of the final step of the construction, thetion f is not actually a
DNF (though it is a monotone function). Intuitively, the filséep is there because if too
many supervariables were satisfiedrirthere could be too many (more thaaly(n))
candidate terms to check, and we would not be able to evafyaticiently. We will
show later that the probability that the number of supealdeis satisfied in is greater
thanm/2% + (m/2%)%/3 is at mosge~(m/2"*/3 = 1 /p=() and thus the functiof
is 1/n~(M-close tof;; so hardness of learning results established for the rariidFs
f1 carry over to the actual functiornys For most of our discussion we shall referfto
as a distribution over DNFs, meaning the functigins

C.3 Information-Theoretic Lower Bound

As discussed previously, we view the distributiéhdefined above as a distribution
over DNFs of terms of sizé over the supervariables. Each possible combinatian of
supervariables appears fa independently with probability and the supervariables
are drawn from a product distribution thatlisvith probability 1/2* and0 with prob-
ability 1 — 1/2*. We first observe that learningyover the supervariables drawn from
the product distribution is equivalent to learning the orég function over the original

18

variables. This is because if we are given the original mesitig query oracle for-
bit examples we can simulate answers to membership querieslkit “supervariable”
examples and vice versa. Thus we henceforth analyze thegrditribution.

We follow the proof technique of [BBL98]. To simplify our alyais, we consider an
“augmented” oracle, as in [BBL98]. Given a quexy, with 1's in positions indexed by
the setSx, the oracle will return the first conjunct in lexicographider that appears
in the target function. Additionally, the oracle returhsf X is positive and0 if X
is negative. (So instead of just giving a single bit as itpoese, if the example is
a positive one the oracle tells the learner the lexicogiaglyi first term in the target
DNF that is satisfied.) Clearly, lower bounds for this augtedroracle imply the same
bounds for the standard oracle.

We are interested in analyzirig, the conditional distribution over functions drawn
from the initial distributionP that are consistent with the information learnedAyn
the firsts queries. We can think aP, as a vectol/, of (T) elements, one for each pos-
sible conjunct of size. Initially, each element of the vector containsthe probability
that the conjunct is in the target function. When a query isiepghe oracle examines
one by one the entries relevant 3. For each entry having valyg we can think of
the oracle as flipping a coin and replacing the entry lwith probabilityl — p and by
1 with probabilityp. After s queries,V; will contain some entries set th some set to
1 and the rest set tp. Becauséd/; describes the conditional distributidn, given the
queries made so far, the Bayes-optimal prediction for amg@i@X is simply to answer
1if V5(X) > 1/2 and0 otherwise.

We now analyzé/;(X), the conditional probability over functions drawn frafh
that are consistent with the firstqueries that a random exampl€, drawn from the
distribution, evaluates tb, given the answers to the firstjueries. We will show that for
s = poly(n), for X drawn from the product distribution of0, 1}™, with probability
atleastl — 1/n*() the valueV, (X) lies in E: @ This is easily seen to give a lower
bound of the type we require.

Following [BBL98], we first observe that after queries there can be at most
entries set to one in the vectigy. We shall also use the following lemma from [BBL98]:

Lemma 8 ([BBL98]). After s queries, with probabilityl — ¢—*/4, there are at most
2s/p zeros inVs.

We now establish the following, which is an analogue tailote our setting of
Claim 3 of [BBL98]:

Lemma 9. For any vectorV, of size(’?) with at mosts entries set td, at most2s/p
entries set td), and the remaining entries set tg for a random exampl& (drawn
from {0,1}™ according to thel /2*-biased product distribution), we have that with
probability at leastl — ¢;, the quantityV; (X) lies in the range

[(nz/2k7(7n/2k)1/3)725\/ﬁ]
1-(1-p) t A <V(X) <1 (1-p)l

m/2k+(7n/2k)1/3)
t .

(11)

Here
2 :
(=5 (ﬂ + 1)27Kt 4 2e=(m/25)'°/3, (12)
p

19

Proof. Let X be a random example drawn from th¢2*-biased product distribution
over{0, 1}.
Consider the following events:

— None of thel-entries in V; are relevant to X .
There are at most 1-entries inV; and the probability that any one is relevant to
X is 27, Therefore the probability that anlyentry is relevant taX is at most
52~k and the probability that none of tHeentries inV, are relevant toX is at
leastl — 527",

— At most (2sy/n/p)2~** of the 0-entries in V; are relevant to X
Using Lemma 8, the expected numberleéntries inV, relevant toX is at most
(2s/p)2~*t. By Markov’s inequality, the probability that the actuaimber exceeds
this by a,/n factor is at most //n.

— The number of 1's in X lies in the rangem /2% + (m/2F)?/3.
Using a multiplicative Chernoff bound, we have that thiswsowith probability
at leastl — 2¢~(m/2")"/3 Note that forXs in this rangef(X) = f1(X). So
conditioning on this event occuring, we can assume fat) = f1(X).

Therefore, the probability that all of the above events occurs is at least ¢,
wheree; = s - (# + 1)27kt 4 9e=(m/2/?/3,

Given that these events all occur, we show HdtX) lies in the desired range. We
follow the approach of [BBL98].

For the lower boundV; (X)) is minimized whenX has as few 1's as possible and
when as many of the O-entries¥ are relevant toY as possible. Sv;(X) is at least

[(M/2kf(m/2k)2/3)_23\/ﬁ]
Vs(X) > 1~ (1-p) '

For the upper bound/; (X)) is maximized whernX has as many 1's as possible and as
few O’s as possible. SB,(X) is at most

7n/2k+(7n/2k)2/3)
t

V(X)) <1—(1-p)
O

Now let us choose values férandt. What are our goals in setting these parameters?

First off, we want(m{fk) to be at most polfn) (so that there are at mogbly(n)
candidate terms to be checked for a “typical” input). Mom@mvor anys = poly(n)
we want (11)’s two sides to both be close {2 (so the accuracy of amyquery learning
algorithm s indeed close tby2 on typical inputs), and we want to be small (so almost
all inputs are “typical”). With this motivation, we sét = ©(logn) to be such that
m/2" (recall,m = n/k) equalslog® n, and we set = \/Togn. This means(m/fk) =
(};’%) < 26logllogn)viogn 4 Now (10) givesp > 1/n; together withk =
O(logn), for anys = poly(n) we haver; = 1/n<(1).

20

Now we analyze (11). First the lower bound:

[(m/2k—<m/2’“)2/3)_ 2s/7)
Vi(X)>1=(1-p) '

72k — (maky2/3 351
1o (356

m —(m /
—1_ (1 _p)(/2k (t/zk)Z 3) (1+ 1/nw(1))

- 2(7n/2k(7’tn/2k)2/3)/(7n/t2k):| . (1 + l/nw(l))

(In the last step here we are using the definitiorpdfom (10).) Let us bound the
exponent:

m /2% — (m /2k)2/3
(/2 (t/2)) t

(")

m/2F — (m/2F)?/3 —t
m/2k >

log®n — log*n — \/logn> ogn
log® n

(10g6 n — 2log! n) ogn
1

log®n
9 Viogn
=(1-
logzn)
> 2
N log!®n
So
: 1 1
Vi(X) 21— [27 02] (D) >
o L+ 1/ 2 2 logn

Now for the upper bound:

m/2’“+<m/2k>2/3)
t

Vi(z) <1 (1-p)

1 27(7n/2k+(7?/2k)2/3)/(m42k)

21

Again bounding the exponent:

(m/2"+(7tn/2k)2/3) (logG n+log* n)

— Viogn
m/2k logbn
("))
- (10g6n+10g4n)@
~ \log®n — /logn
(2log n > log
<1+ =
log” n — +/logn
4
log"°n
So
Vi(X) <1 —2_<1+10gf4'5n) < l_i_ 1)
N ~ 2 logn

The above analysis has thus established the following.

Lemma 10. Let L be any polyn)-time learning algorithm. IfZ is run with a target
function that is a random dravf from the distribution” described above, then for all
but a1/n<() fraction of inputsz € {0,1}", the probability thath(z) = f(x) (where
h is the hypothesis output b) is at most +

1
logn*

It is easy to see that by slightly modifying the values @indk in the above con-

struction, it is actually possible to repla%%? with anym in the above.

C.4 Computational Lower Bound

To obtain a computational analogue of Lemma 10, we “pseundionaize” the choice
of terms in a draw off; from P.

Recall that the constuctioR placed each possible term (conjunctiort stipervari-
ables) in the target function with probability as defined in (10). We first consider a
distribution that uses uniform bits to approximate the piulity p. This can be done
by approximatindog(p~!) with poly(n) bits, associating each term with independent
uniform poly(n) bits chosen this way, and including that term in the targetfion if
all bits are set td. It is easy to see that the resulting construction yieldscdglility
distribution which is statistically close t8, and we denote it by?sta*,

Now, using a pseudorandom function rather than a truly reanflmiform) one for
the source of uniform bits will yield a distribution which vaenote byP"S®. Similar
arguments to those we give elsewhere in the paper show tray@:p time adversary
cannot distinguish the resulting construction from theiodl one (or else a distin-
guisher could be constructed for the pseudorandom furjction

To complete the argument, we observe that every fundtiorthe support of?"SE
can be evaluated with a pdly)-size circuit. It is obviously easy to count the number of

22

supervariables that are satisfied in an inpuso we need only argue that the function
f1 can be computed efficiently on a “typical” inputthat has “few” supervariables
satisfied. But by construction, such an input will satisfyyqoly(n) candidate terms of
the monotone DNF; and thus a polfr)-size circuit can check each of these candidate
terms separately (by making a call to the pseudorandomifumér each candidate
term to determine whether it is present or absent). Thus,casdalary of Lemma 10,
we can establish the main result of this section:

Theorem 7. Suppose that standard one-way functions exist. Then therelassC of

poly(n)-size monotone circuits that is hard to learn to accr%cy m.

