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Abstract

We give an overview of the fastest known algorithms for learning various expressive classes
of Boolean functions in the Probably Approximately Correct (PAC) learning model. In addi-
tion to surveying previously known results, we use existing techniques to give the first known
subexponential-time algorithms for PAC learning two natural and expressive classes of Boolean
functions: sparse polynomial threshold functions over the Boolean cube {0, 1}n and sparse GF2

polynomials over {0, 1}n.
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1 Introduction

Computational learning theory is the study of the inherent abilities and limitations of algorithms
that learn from data. A broad goal of the field is to design computationally efficient algorithms
that can learn Boolean functions f : {0, 1}n → {−1, 1}. A general framework within which this
question is often addressed is roughly the following:

1. There is a fixed class C of possible target functions over {0, 1}n which is a priori known to
the learning algorithm. (Such function classes are often referred to as concept classes, and
the functions in such classes are referred to as concepts.)

2. The learning algorithm is given some form of access to information about the unknown target
concept c ∈ C.

3. At the end of its execution, the learning algorithm outputs a hypothesis h : {0, 1}n → {−1, 1},
which ideally should be equivalent or close to c.

Different ways of instantiating (2) and (3) above – what form of access to c is the learner given?
what is required of the hypothesis function h? etc. – give rise to different learning models. Within
a given learning model, different choices of the Boolean function class C (i.e. different ways of
instantiating (1) above) give rise to different learning problems such as the problem of learning an
unknown conjunction, an unknown linear threshold function, or an unknown decision tree.

In this paper we will focus exclusively on the widely studied Probably Approximately Correct
(PAC) learning model introduced by Valiant [41]. In this learning model, which we define precisely
in Section 2.1, the learning algorithm is only given access to independent random examples labelled
according to c, i.e. access to input-output pairs (x, c(x)) where each x is independently drawn
from the same unknown probability distribution. Thus the learning algorithm has no control over
the choice of examples used for learning. Such a model may be viewed as a good first-order
approximation of commonly encountered scenarios in machine learning where one must learn from
a given training set of examples generated according to some unknown random process.

(We note that a wide range of models exist in which the learning algorithm has other forms of
access to the target function; in particular several standard models allow the learner to make black-
box queries to the target function, which are often known as membership queries. Many powerful
and elegant learning algorithms are known in various models that permit membership queries, see
e.g. [1, 3, 9, 19, 28], but we will not discuss this work here. A rich body of results have also been
obtained for the uniform-distribution variant of the PAC learning model, in which the learner need
only succeed when given uniform random examples from {0, 1}n; see e.g. [42, 29, 11, 20, 36] for
some representative work in this setting. Finally, we note that there also exist well-motivated and
well-studied learning models in which the learning algorithm only has some more limited form of
access to c than random labeled examples, see e.g. [4, 21].)

There are well-known polynomial-time PAC learning algorithms for concept classes consisting
of simple functions such as conjunctions and disjunctions [41], decision lists [37], parity functions
[14, 18], and halfspaces [8]. We give a concise overview of the current state of the art for learning
richer concept classes consisting of more expressive Boolean functions such as decision trees, Dis-
junctive Normal Form (DNF) formulas, intersections of halfspaces, and various restricted classes
of Boolean formulas. For each of these “rich” concept classes true polynomial-time algorithms are
not (yet) known, but as we describe below, it is possible to give provable guarantees which improve
substantially over naive exponential runtime bounds.
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Class of functions over {0, 1}n Runtime Technique

Recursive algorithm [13],

size-s decision trees nO(log s) DLs [5],
PTFs [folklore]

s-term DNF formulas nO(n1/3 log s) PTFs [26]

size-s, depth-d Boolean formulas ns1/2(log s)O(d)
PTFs [35]

intersections of k min{nO(W 1/2 log k),
PTFs [25]

halfspaces of weight W nO(k log k log W )}
arbitrary functions of k

nO(k2 log W ) PTFs [25]
halfspaces of weight W

degree-d PTFs nO(d) PTFs [folklore]

weight-W PTFs nO(n1/3 log W ) PTFs [25]

length-s PTFs nO((n log s)1/2) PTFs, generalized DLs
[this paper]

s-sparse GF2 polynomials nO((n log s)1/2) generalized DLs [this paper]

Table 1: Fastest known runtimes of PAC learning algorithms for various classes of Boolean functions.
In the “Techniques” column, “DL” refers to a decision list learning algorithm and “PTF” refers to
a polynomial threshold function learning algorithm.

One perhaps surprising point which emerges from our survey is that a single linear programming
based algorithm for learning low-degree polynomial threshold functions gives the current state-of-
the-art results for learning a wide range of rich concept classes, including all those we will discuss
in Sections 3.1 through 3.4. In Section 3.5 we extend the known scope of applicability of this
algorithm by showing that it can be used to learn the class of sparse polynomial threshold functions
over {0, 1}n (regardless of their degree or the size of their coefficients) in subexponential time:

Theorem 1. The class of s-sparse polynomial threshold functions over {0, 1}n can be PAC learned

in time 2O((n log s)1/2 log n).

In Section 4 we describe a different approach to obtaining PAC learning algorithms for rich
function classes; this is essentially an augmented version of an algorithm for learning decision lists
due to Rivest [37]. Bshouty et al. [12] have used this approach to learn a restricted class of
branching programs in polynomial time. We show that the approach can also be used to obtain
the first known subexponential-time algorithm for PAC learning sparse GF2 polynomials:

Theorem 2. The class of s-sparse GF2 polynomials over {0, 1}n can be PAC learned in time

2O((n log s)1/2 log n).

We feel that exploring further applications of this approach is an interesting and potentially
fruitful direction for future work.

Throughout the paper we highlight various open questions, with an emphasis on problems where
progress both would be of interest and (in the view of the authors) would seem most likely to be
feasible.
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2 Distribution-Independent Learning

2.1 The learning model

In an influential 1984 paper Valiant introduced the Probably Approximately Correct (PAC) model
of learning Boolean functions from random examples [41]. (See the book [22] for an excellent
and detailed introduction to the model.) In the PAC model a learning algorithm has access to
an example oracle EX(c,D) which, when queried, provides a labeled example (x, c(x)) where x
is drawn from a fixed but unknown distribution D over {0, 1}n and c ∈ C is the unknown target
concept which the algorithm is trying to learn. Given Boolean functions h, c on {0, 1}n, we say that
h is an ε-approximator for c under D if Prx∈D[h(x) = c(x)] ≥ 1 − ε. The goal of a PAC learning
algorithm is to output a hypothesis h which is an ε-approximator for the unknown target concept
c with high probability.

More precisely, an algorithm A is a PAC learning algorithm for concept class C if the following
condition holds: for any c ∈ C, any distribution D on {0, 1}n, and any 0 < ε < 1

2 , 0 < δ < 1, if
A is given ε, δ as input and has access to EX(c,D), then A outputs (a representation of) some
h : {0, 1}n → {−1, 1} which satisfies Prx∈D[h(x) 6= c(x)] ≤ ε with probability at least 1 − δ. We
say that A PAC learns C in time t = t(n, ε, δ, s) if A runs for at most t time steps and outputs
a hypothesis h which can be evaluated on any point x ∈ {0, 1}n in time t; here s = size(c) is a
measure of the “size” of the target concept c ∈ C. Note that no restriction is put on the form of
the hypothesis h other than that it be efficiently evaluatable. In particular, h need not belong to
the concept class C (i.e. we do not restrict ourselves to “proper” learning algorithms).

PAC learning algorithms are closely related to consistency algorithms. Given two concept
classes C and H, where C ⊆ H, a consistency algorithm for C using H takes as input a sample
S = {(a1, b1), (a2, b2), . . . , (am, bm)}, where each ai ∈ {0, 1}n and each bi ∈ {−1, 1}. The goal of the
algorithm is to output the representation of a concept h ∈ H that is consistent with S, meaning
that h(ai) = bi for all (ai, bi) ∈ S. If no such c exists, the algorithm outputs “FAILURE”. If H = C,
the algorithm is called a consistency algorithm for C.

There are well-known relationships between the existence of a consistency algorithm for C and
the PAC learnability of C. One such relationship is as follows:

Fact 3. [7, 8] Let C and H be concept classes defined on {0, 1}n, such that C ⊆ H. Suppose that
A is a consistency algorithm for C using H. Then the following is a PAC learning algorithm for
C: Draw 1

ε ln |H|
δ examples from EX(c,D) and run A on the set of examples obtained.

In this result, the number of examples drawn depends linearly on ln |H|. In a similar (and
deeper) result that is often cited, the number of examples drawn depends linearly on the VC-
dimension of H [8]. We refer the reader to relevant references (e.g. [8], [22]) for the definition
of VC-dimension and discussion of its relation to learning. For simplicity, we use Fact 3 in what
follows, since it suffices to prove the results stated below.

It is well known (see e.g. [22]) that the runtime dependence of a PAC learning algorithm
on δ can always be made logarithmic in 1

δ . Moreover, for all the results we discuss, the runtime
dependence on ε is polynomial in 1

ε . Thus throughout this paper we discuss the running time of PAC
learning algorithms as functions only of n and (when appropriate) the size parameter s. Finally, we
often refer to algorithms that PAC learn a class of representations (e.g. decision trees of a certain
size), when technically we should say that the algorithms learn the concepts expressed by those
representations. In general, where it is unlikely to cause confusion, we will not distinguish between
representations and their associated concepts.
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2.2 The main technique: polynomial threshold functions

A polynomial threshold function is defined by a polynomial p(x1, . . . , xn) with real coefficients.
The output of the polynomial threshold function on input x ∈ {0, 1}n is 1 if p(x1, . . . , xn) ≥ 0 and
is −1 otherwise. Because the domain of the function is {0, 1}n, different polynomials can specify
the same polynomial threshold function. The degree of a polynomial threshold function is simply
the degree of the polynomial p. A linear threshold function or halfspace is a polynomial threshold
function of degree 1. Since we will only be concerned with the input space {0, 1}n, we may without
loss of generality consider only polynomial threshold functions which correspond to multilinear
polynomials.

It is well known that there are poly(n)-time PAC learning algorithms for the concept class
of linear threshold functions over {0, 1}n. This follows from the fact that the problem of finding
a linear threshold function consistent with a sample can be expressed as a linear programming
problem, thus polynomial-time algorithms for linear programming [23] can be used as consistency
algorithms for the class of linear threshold functions. Since the number of linear threshold functions
on {0, 1}n is 2Θ(n2) [32], Fact 3 implies a poly(n)-time PAC learning algorithm for the class.1

As various authors have noted [6, 26], such PAC learning algorithms for learning linear threshold
functions can be run over an expanded feature space of N =

∑d
i=1

(n
d

)

monomials of degree at most
d to learn degree-d polynomial threshold functions in time poly(N). (This approach is closely
related to using a Support Vector Machine with a degree-d polynomial kernel, see e.g. [39].)

For example, consider the problem of learning degree-2 polynomial threshold functions defined
on n variables. Associate with each degree-2 polynomial

p(x1, . . . , xn) = a0 +

n
∑

i=1

aixi +

n
∑

j=1

n
∑

k=j+1

aj,kxjxk

a linear polynomial

p̂(x1, . . . , xn, y1,2, y1,3, . . . , yn−1,n) = a0 +

n
∑

i=1

aixi +

n
∑

j=1

n
∑

k=j+1

aj,kyj,k

where the yj,k are new variables. Further, for d = (d1, . . . , dn) in {0, 1}n let

d̂ = (d1, . . . , dn, d̂1,2, d̂1,3, . . . , d̂n−1,n)

where each d̂j,k = djdk. Clearly, p(d) = p̂(d̂) for all d ∈ {0, 1}n.
Using this association, it is easy to convert a consistency algorithm for linear threshold functions

into a consistency algorithm for degree-2 polynomial threshold functions as follows: Given a sample
S ⊆ {0, 1}n ×{−1, 1} of a degree-2 polynomial threshold function p in n variables, form the sample
S′ = {(â, b)|(a, b) ∈ S}. Run the consistency algorithm for linear threshold functions on S ′. Since p̂
is consistent with S ′, the consistency algorithm will output a linear polynomial h′ over the variables
xi and yj,k. Clearly h′ is a function of N =

(

n
1

)

+
(

n
2

)

variables. Convert h′ into a degree-2 polynomial

1We note that for the class of linear threshold functions, using the VC-dimension version of Fact 3, as is done
in [8], does reduce both the number of examples drawn by the PAC algorithm and the runtime of the algorithm

by a polynomial factor. This is because the number of linear threshold functions on {0, 1}n is 2Θ(n2) [32] while the
VC-dimension of the class is n + 1. A similar phenomenon occurs with the class of degree-d polynomial threshold
functions. In future sections, where we present applications of the polynomial-threshold function learning algorithm,
the polynomial factor improvement that results from using the VC version of Fact 3 is always obscured by the big-Oh
notation in our bounds.
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threshold function h over the variables x1, . . . , xn, by replacing each yj,k occurence in the linear
polynomial h′ with xjxk. The function h is consistent with S.

Generalizing this approach, it follows that any poly(n)-time consistency algorithm for linear
threshold functions can be converted into a poly(N)-time consistency algorithm for degree-d poly-
nomial threshold functions, where N =

∑d
i=1

(n
i

)

≤ ( en
d )d. Further, since the number of linear

threshold functions over n variables is 2Θ(n2), the number of degree-d polynomial threshold func-
tions is 2O(N2). Fact 3 now implies the following:

Fact 4. Let C be a class of functions each of which can be expressed as an degree-d polynomial
threshold function over {0, 1}n. Then there is a poly(N)-time PAC learning algorithm for C, where
N =

∑d
i=1

(n
i

)

≤ ( en
d )d.

Thus, in order to get an upper bound on the runtime required to learn a concept class C, it is
enough to bound the degree of polynomial threshold functions which represent the concepts in C.
This approach has proved quite powerful as we now describe.

3 Learning rich Boolean function classes via polynomial threshold

representations

3.1 Decision Trees

A Boolean decision tree T is a rooted binary tree in which each internal node has two ordered
children and is labeled with a variable, and each leaf is labeled with a bit b ∈ {−1,+1}. A decision
tree T computes a Boolean function f : {0, 1}n → {−1, 1} in the obvious way: on input x, if
variable xi is at the root of T we go to either the left or right subtree depending on whether xi is
0 or 1. We continue in this way until reaching a bit leaf; the value of this bit is f(x). A decision
tree is reduced, if each variable appears at most once in any path from the root down to a leaf.
Every decision tree can be easily converted into an equivalent reduced decision tree since testing a
variable a second time along a root-leaf path does not yield any new information.

The size of a decision tree is the number of leaves in the tree. Another measure of the complexity
of a tree is its rank. The rank of a decision tree is defined recursively as follows. If T has exactly
one node, then rank(T ) = 0. If T has more than one node, then its rank depends on the ranks of
its two subtrees, T0 and T1. If rank(T0) 6= rank(T1), then rank(T ) = max(rank(T0), rank(T1)). If
rank(T0) = rank(T1), then rank(T ) = rank(T0) + 1 (= rank(T1) + 1). Rank and size are related
by the following: Given a reduced decision tree T of rank q and size s over n variables, we have
2q ≤ s ≤ (en/q)q [13].

Algorithms for learning decision trees have received much attention both from applied and
theoretical perspectives. Ehrenfeucht and Haussler [13] gave a recursive algorithm which learns
any size-s decision tree in nO(log s) time; while no faster algorithms are known, various alternative
algorithms with the same quasipolynomial runtime have since been given. Blum [5] showed that
every size-s decision tree is equivalent to some log(s)-decision list. An r-decision list is defined by
a list (T1, b1), . . . , (Tm, bm), bm+1 where each Ti is a conjunction of at most r literals and each bi is
an output bit. The value of the decision list on input x is bi where i is the first index such that
Ti is satisfied by x; if x satisfies no Ti then the output is bm+1. (See Section 4 for a definition of
a generalized notion of decision lists.) Since r-decision lists are PAC learnable in nO(r) time [37],
this gives an equally efficient alternative algorithm to [13].

An easy argument shows that any r-decision list can be expressed as a degree-r polynomial
threshold function; thus Blum’s result implies that any size-s decision tree is computed by a log(s)-
degree polynomial threshold function. Thus for decision trees we may use Fact 4 to obtain the
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fastest known algorithm, but as described above other equally fast algorithms are also known.
However, for each of the concept classes discussed below in Sections 3.2 through 3.5, the Fact 4
approach is the only known way to achieve the current fastest runtimes.

3.2 DNF formulas

A disjunctive normal form formula, or DNF, is a disjunction T1∨· · ·∨Ts of conjunctions of Boolean
literals. An s-term DNF is one which has at most s conjunctions (also known as terms). Learning
s-term DNF formulas in time poly(n, s) is a longstanding open question which goes back to Valiant’s
inception of the PAC learning model.

The first subexponential time algorithm for learning DNF was due to Bshouty [10] and learns

any s-term DNF over n variables in time 2O((n log s)1/2 log3/2 n). At the heart of Bshouty’s algo-
rithm is a structural result which shows that that any s-term DNF can be expressed as an
O((n log n log s)1/2)-decision list; together with the aforementioned algorithm of [37] this gives the
result. Subsequently Tarui and Tsukiji [40] gave a different algorithm for learning DNF with a sim-
ilar runtime bound. Their algorithm adapted the machinery of “approximate inclusion/exclusion”
developed by Linial and Nisan [30] in combination with hypothesis boosting [15] and learns s-term

DNF in time 2O(n1/2 log n log s).
In [26], Klivans and Servedio showed that any DNF formula with s terms can be expressed

as a polynomial threshold function of degree O(n1/3 log s). By Fact 4 this yields an algorithm

for learning s-term DNF in time 2O(n1/3 log n log s), which is the fastest known time bound for most
interesting values of s.

Several lower bounds on polynomial threshold function degree for DNFs are known which
complement the O(n1/3 log s) upper bound of [26]. A well-known theorem of Minsky and Papert [31]
shows that the “one-in-a-box” function (which is equivalent to an n1/3-term DNF on n variables)
requires polynomial threshold function degree Ω(n1/3). Minsky and Papert also proved that the
parity function on k variables require polynomial threshold function degree at least k; since s-term
DNF formulas can compute the parity function on log s variables, this gives an Ω(log s) lower bound
for s-term DNF as well. These known results motivate:

Question 5. Can we close the remaining gap between the O(n1/3 log s) upper bound and the
max{n1/3, log s} lower bound on polynomial threshold function degree for s-term DNF?

Note that for decision trees no gap at all exists; Blum’s approach gives a blog sc degree upper
bound for size-s decision trees, and the parity function shows that this is tight.

3.3 Boolean Formulas

Known results on learning Boolean formulas of depth greater than two are quite limited. O’Donnell
and Servedio [35] have shown that any unbounded fan-in Boolean AND/OR/NOT formula of
depth d and size (number of leaves) s is computed by a polynomial threshold function of degree√

s(log s)O(d). By Fact 4 this gives a 2Õ(n1/2+ε) time PAC learning algorithm for linear-size Boolean
formulas of depth o( log n

log log n). (Here we write Õ(nc) to indicate a function that is nc · (log n)O(1).)
It would be very interesting to weaken the dependence on either size or depth in the results of

[35]:

Question 6. Does every AND/OR/NOT formula of size s have a polynomial threshold function
of degree O(

√
s), independent of its depth?
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An O(
√

s) degree bound would be the best possible since size-s formulas can express the parity
function on

√
s variables.

Question 7. Does every depth-3 AND/OR/NOT formula of size poly(n) have a polynomial thresh-
old function of degree o(n)?

The strongest degree lower bound known for poly(n)-size formulas of small depth is Ω(n1/3(log n)2(d−2)/3)
for formulas of depth d ≥ 3 [35]. A lower bound of Ω(n2/5) for an explicit linear-size, depth-3 for-
mula is conjectured in [35]. Some related results were proved by Krause and Pudlak [27], who gave

an explicit depth-3 formula that requires any polynomial threshold function to have 2nΩ(1)
many

monomials.
We note that there is some reason to believe that the class of arbitrary constant-depth, polynomial-

size AND/OR/NOT Boolean formulas (e.g. the class of AC 0 circuits) is not PAC learnable in

poly(n) time. Kharitonov [24] has shown that an n(log n)o(d)
-time algorithm for learning poly(n)-size,

depth-d Boolean formulas for sufficiently large constant d would contradict a strong but plausible
cryptographic assumption about the hardness of integer factorization (essentially the assumption
is that factoring n-bit integers is 2nε

-hard in the average case for some absolute constant ε > 0; see
[24] for details).

3.4 Intersections of Halfspaces

In addition to the concept classes of Boolean formulas discussed in the previous sections, there is
considerable interest in studying the learnability of various geometrically defined concept classes.
As noted in Section 2.2, efficient algorithms are known which can learn a single halfspace over
{0, 1}n. Algorithms for learning a single halfspace are at the heart of some of the most widely used
and successful techniques in machine learning such as support vector machines [39] and boosting
algorithms [15, 16]. Thus it is of great interest to obtain such algorithms for learning richer functions
defined in terms of several halfspaces, such as intersections of two or more halfspaces.

A halfspace f has weight W if it can be expressed as f(x) = sgn(w1x1 + · · · + wnxn − θ) where
each wi is an integer and

∑n
i=1 |wi| ≤ W. Well known results of Muroga et al. [33] show that

any halfspace over {0, 1}n is equivalent to some halfspace of weight 2O(n log n), and H̊astad [17] has
exhibited a halfspace which has weight 2Ω(n log n). All of the current fastest algorithms for learning
intersections of halfspaces have a significant runtime dependence on the weight W .

Using techniques of Beigel et al. [2], Klivans et al. [25] showed that any intersection of k
halfspaces of weight W is computed by a polynomial threshold function of degree O(k log k log W ).
By Fact 4, this gives a quasipolynomial-time (npolylog(n)) algorithm for learning an intersection of
polylog(n) many polynomial-weight halfspaces. Since the “one-in-a-box” function on k3 variables
can be expressed as an intersection of k halfspaces each of weight W = k2, we have that for W = k2

there is an Ω(k) degree lower bound which nearly matches the O(k log k log w) upper bound. It is
also shown in [25] that any intersection of k halfspaces of weight W can be expressed as a polynomial
threshold function of degree O(

√
W log k); this gives a stronger bound in cases where W is small

and k is large.
More generally, [25] showed that any Boolean function of k halfspaces of weight W is computed

by a polynomial threshold function of degree O(k2 log W ). It follows that not just intersections,
but in fact any Boolean function of polylog(n) many polynomial-weight halfspaces can be learned
in quasipolynomial time.

While the above results are useful for intersections of halfspaces whose weights are not too large,
in the general case they do not give a nontrivial bound even for an intersection of two halfspaces.
A major open question is:
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Question 8. Is there a 2o(n) time algorithm which can PAC learn the intersection of two arbitrary
halfspaces over {0, 1}n?

An affirmative answer to the above question would immediately follow from an affirmative
answer to the following:

Question 9. Can every intersection of two halfspaces over {0, 1}n be computed by a polynomial
threshold function of degree o(n)?

The strongest known lower bound on polynomial threshold function degree for intersections of
two halfspaces is quite weak; in [35] it is shown that an intersection of two majority functions (which
are weight-n halfspaces) requires polynomial threshold function degree Ω( log n

log log n). Thus there is an
exponential gap in our current knowledge of the answer to Question 9.

3.5 Polynomial Threshold Functions

Fact 4 states that degree-d polynomial threshold functions can be PAC learned in time nO(d). It is
natural to consider the learnability of polynomial threshold functions in terms of other measures
of their complexity relating to the coefficients of the polynomial rather than the degree.

One natural measure of the complexity of a polynomial threshold function is its weight. A
polynomial threshold function defined by a polynomial p(x1, . . . , xn) has weight W if p is a sum of
monomials with integer coefficients whose magnitudes sum to W . (This is the natural extension of
the notion of the weight of a halfspace, which is simply a degree-1 polynomial threshold function,
defined in Section 3.4.) A weight-W polynomial threshold function may be viewed as a depth-two
circuit composed of a fanin-W MAJORITY gate on the top level with inputs that are (possibly
negated) AND gates of arbitrary fanin. Klivans et al. [25] have shown that regardless of its degree,
any weight-W polynomial threshold function can be expressed as a polynomial threshold function
of degree n1/3 log(W ). This is a generalization of the degree bound for DNF formulas stated in
Section 3.2.

Another natural measure of the complexity of a polynomial threshold function is its sparsity or
length. A polynomial threshold function given by p(x1, . . . , xn) has length s if p has s monomials
with nonzero coefficients. These coefficients may be arbitrary; thus, while it is clear that the weight
of a polynomial threshold function is an upper bound on its length, it is possible for a polynomial
threshold function to have small length but large weight.

The result we now present follows in a straightforward way from the approach of [26], but it
does not seem to have appeared previously in the literature:

Theorem 10. Any length-s polynomial threshold function over {0, 1}n can be expressed as a poly-
nomial threshold function of degree O(

√
n log s).

By Fact 4 this immediately gives Theorem 1.

Proof of Theorem 10. Let f be a length-s polynomial threshold function. Lemma 10 in [26] gives
us the following:

Lemma 11. Let f : {0, 1}n → {−1, 1} be computed by a length-s polynomial threshold function.
For any value 1 ≤ t ≤ n, f can be expressed as a decision tree T in which

• each internal node is labelled with a variable;

• each leaf of T contains a polynomial threshold function of degree at most t;
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• T has rank at most (2n/t) ln s + 1.

(The actual lemma in [26] is stated for s-term DNF formulas rather than length-s polynomial
threshold functions, but the proof in [26] can be trivially modified to establish the variant stated
above as well.) Now just as in [26], the result of Blum [5] (mentioned in Section 3.1) shows that
there is a generalized r-decision list (T1(x), f1(x)), . . . , (Tm(x), fm(x)), fm+1(x) that computes f ,
where each Ti is a conjunction of at most r = (2n/t) ln s + 1 literals and each fi is a polynomial
threshold function of degree at most t (see Section 4 for a precise definition of generalized decision
lists). An identical approach to the proof of Theorem 2 of [26] (see also the end of the proof of
Theorem 23 in [34]) then directly gives us that f is computed by a polynomial threshold function
of degree r + t = (2n/t) ln s + 1 + t. Optimizing the choice of t by taking t = (n ln s)1/2, we obtain
the theorem. �

It is important to note that all the results on weight and length of polynomial threshold func-
tions that we have presented here in Section 3.5 rely crucially on the fact that the domain of our
polynomial threshold functions is {0, 1}n. Another natural choice of domain for polynomial thresh-
old functions is {−1, 1}n (see e.g. [38, 34]); since monomials over {−1, 1}-valued inputs are simply
parity functions, polynomial threshold functions over {−1, 1}n correspond to threshold-of-parity
circuits. While the choice of domain does not affect the degree of polynomial threshold functions,
it can have a very substantial impact on both the optimal length and weight of polynomial threshold
representations for Boolean functions. Indeed, the degree bounds O(n1/3 log W ) and O(

√
n log s)

as functions of the weight and length respectively are not true for polynomial threshold functions
over {−1, 1}n. This can be easily seen from the fact that the parity function on n variables has a
weight-1, length-1 polynomial threshold function over {−1, 1}n which is simply x1x2 . . . xn.

This motivates the following open question:

Question 12. Is there a 2o(n) time algorithm which can PAC learn polynomial threshold functions
of weight poly(n) over the domain {−1, 1}n?

4 Another approach: generalized decision lists

4.1 Learning via generalized decision lists

The approach to PAC learning that we describe in this section exploits what we will call generalized
decision lists. Let C1 and C2 be classes of Boolean functions over {0, 1}n. A generalized (C1, C2)-
decision list is defined by a list (f1(x), g1(x)), . . . , (fm(x), gm(x)), gm+1(x) where each fi belongs to
C1 and each gj belongs to C2. The value of the decision list on input x is gi(x) where i is the first
index such that fi is satisfied by x; if x satisfies none of f1, . . . , fm then the output is gm+1(x). We
write DL(C1, C2) to denote the class of all generalized (C1, C2)-decision lists. Note that standard
r-decision lists (mentioned in Section 3.1) are the class DL(C1, C2) in which C1 is the class of
Boolean conjunctions of size at most r and C2 is the class consisting of the two constant functions
0 and 1.

A strict width-2 branching program is a width-2 branching program that contains exactly one
sink labeled 0 and exactly one sink labeled 1. Bshouty et al. solved the problem of learning SW 2,
the class of strict width-2 branching programs, by using an algorithm for learning DL(C1, C2) for
a particular C1 and C2 which we describe below[12]. However, as we now explain, the algorithm
they used can also be applied to a much wider range of classes C1 and C2; this is the approach
which enables us to prove Theorem 2.

We need the following definition. A representation c of a Boolean function f is polynomial-time
evaluatable if given an input x, c(x) can be computed in time polynomial in |x| and |c|.
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We can now present the following Lemma, which is a straightforward generalization of Lemma
4.2 of Bshouty et al. [12].

Lemma 13. Let C1 and C2 be Boolean concept classes defined on {0, 1}n. Suppose there exists a
consistency algorithm for C2 that runs in time poly(m) · t(n) when run on a sample of m labeled
examples. Suppose moreover that there exists an algorithm that runs in time polynomial in |C1| and
outputs a list of polynomially-evaluatable representations of all functions in C1. Then DL(C1,C2)
can be PAC learned in time poly(|C1|, log |C2|, t(n)).

(We note that other generalizations of this lemma are possible in which the consistency al-
gorithm for C2 is replaced by a PAC learning algorithm; we have chosen to present the most
straightforward generalization here which suffices for our purposes.)

Proof of Lemma 13. Like Rivest’s original algorithm for learning decision lists, the algorithm for
learning generalized decision lists works by drawing a sample S (of size poly(|C1|, log C2)) and
greedily constructing a generalized decision list consistent with S. In the i-th greedy stage, an
appropriate pair (fi, gi) with fi ∈ C1, gi ∈ C2 is added to the list. As in Rivest’s algorithm, finding
a candidate fi requires essentially brute force search among all c ∈ C1 (hence the need to be able
to enumerate C1). For each candidate fi, the question is whether there is a valid gi to go with it;
this question is answered by applying the consistency algorithm for C2 to the subsample of S that
would reach this point in the list if fi were added to it, and then checking whether a consistent
gi ∈ C2 is found. Determining which examples belong in the subsample requires evaluation of the
f1, . . . , fi−1 already in the list, and of the candidate fi. �

4.2 The role of generalized decision lists in previous learning results

Bshouty et al. showed that SW2 is learnable by showing that the class of strict width-2 branching
programs over n Boolean variables represents precisely the same functions as the class DL(⊕2,⊕n).
Here ⊕k denotes the class of all (possibly negated) parity functions over at most k variables, i.e. all
functions of the form (−1)xi1

+···+xik
+b where j ≤ k, b ∈ {0, 1}, and addition is performed modulo 2.

It is clear that the number of elements in ⊕2 is O(n2), and it is well known that finding a (possibly
negated) parity function consistent with a labeled sample (or determining that none exists) can be
done in polynomial time using Gaussian elimination modulo 2, see e.g. [18, 14]. Lemma 13 thus
directly implies a polynomial-time PAC algorithm for learning SW 2.

While the algorithm of Lemma 13 is not required for any of the learning results presented in
Section 3, we note that generalized decision lists appear within the proofs of a number of those
results. The proofs of the DNF learning results begin by converting DNF formulas into generalized
decision lists in DL(C1, C2), where C1 is a class of all conjunctions of some bounded length and C2

is a class of DNF formulas with a bounded number of terms all of which are of bounded length.
These functions in DL(C1, C2) are subsequently converted into standard r-decision lists (in [10]) or
polynomial threshold functions (in [26]). Similarly, the proof of Theorem 10 shows that polynomial
threshold functions over the domain {0, 1}n can also be represented by elements of DL(C1, C2),
where C1 is as above and C2 is a class of polynomial threshold functions of bounded degree. It
is thus possible to learn DNFs and {0, 1}n polynomial threshold functions using the generalized
decision list algorithm; however, the results cited in Section 3 show that these classes can also be
learned simply by using the low-degree polynomial threshold algorithm (and for DNF, learning
via the low-degree polynomial threshold procedure yields a better bound than the approach of
Lemma 13).

In contrast to DNFs and {0, 1}n polynomial threshold functions, functions in SW 2 cannot in
general be converted to equivalent low-degree polynomial threshold functions. This is because the
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parity function on n variables is computed by a branching program in SW 2, and as mentioned
earlier, this function requires a polynomial threshold function of degree n. In the next section we
present another concept class – s-sparse GF2 polynomials – for which the approach of Lemma 13
yields the only known subexponential time learning algorithm.

4.3 Learning sparse GF2 polynomials

In this section it is convenient for us to view Boolean functions as having range {0, 1} rather
than {−1, 1}. It is well known that every Boolean function f : {0, 1}n → {0, 1} has a unique
representation as a multilinear GF2 polynomial ; this is simply a sum modulo 2 of monomials over
variables x1, . . . , xn. A GF2 polynomial is s-sparse if it is a sum of at most s monomials; equivalently
such a polynomial may be viewed as a parity of at most s monotone conjunctions.

Theorem 2, presented in the introduction, states that s-sparse GF2 polynomials can be PAC
learned in subexponential time. We now present the proof, which uses the generalized decision list
algorithm.

Proof of Theorem 2. The proof is nearly identical to the proof of Theorem 1, except that we
do not convert the generalized decision list into a polynomial threshold function. The proof of
Lemma 11 can be directly applied to s-sparse GF2 polynomials rather than to length-s polynomial
threshold functions, yielding a restatement of Lemma 11 for s-sparse GF2 polynomials. Again, the
decision tree specified by the lemma can be converted into a generalized decision list of the form
(T1(x), f1(x)), ..., (Tm(x), fm(x)), fm+1, where each Ti is a conjunction of bounded size and now
each fi is a GF2 polynomial of bounded degree. More precisely, we have the structural result that
every s-sparse GF2 polynomial is equivalent to some member of DL(C1, C2), where C1 is the class
of conjunctions of degree at most r = (2n/t) ln s + 1, and C2 is the class of GF2 polynomials of
degree at most t.

As noted in the previous subsection, Gaussian elimination over GF2 can be used to either find
a possibly negated parity function (i.e. a GF2 polynomial of degree 1) that is consistent with a
labeled sample or show that none exists. Applying this procedure over an expanded feature space
of all (at most O(nd) many) monomials of degree at most d yields a consistency algorithm for the
class of degree-d GF2 polynomials that runs in time poly(m,nd). There are nO(r) many monomials
of degree at most r, and they can be easily enumerated. Taking t = (n ln s)1/2 and applying the
generalized decision list algorithm yields the theorem. �

Since the n-variable parity function can be represented by an n-sparse GF2 polynomial, s-sparse
GF2 polynomials, like SW2 functions, do not all have equivalent low-degree {0, 1}n polynomial
threshold functions.

Finally, we note that functions in SW2 and s-sparse GF2 polynomials cannot in general be
expressed by low-degree GF2 polynomials. Both SW2 and 1-sparse GF2 polynomials include the
n-variable AND function x1 ∧ · · · ∧ xn, and the unique GF2 polynomial representing this function,
which consists of the single monomial x1 · · · xn, has degree n. The generalized decision list approach
is currently the only approach we know that yields a polynomial-time algorithm for SW 2 or a
subexponential algorithm for s-sparse GF2 polynomials.
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