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Abstract known for learning halfspaces if the data is guaranteed
to be noise-free, learning a halfspace from noisy ex-
We give the first algorithm that (under distributional amples remains a challenging and important problem.
assumptions) efficiently learns halfspaces in the notori- Halfspace-based learning methods appear repeatedly in
ously difficultagnosticframework of Kearns, Schapire, both theory and practice, and they are frequently ap-
& Sellie, where a learner is given access to labeled ex- plied to labeled data sets which are not linearly sepa-
amples drawn from a distribution, without restriction on rable. This motivates the following natural and well-
the labels (e.g. adversarial noise). The algorithm con- studied question: what can opeovablysay about the
structs a hypothesis whose error rate on future exam- performance of halfspace-based learning methods in the
ples is within an additive of the optimal halfspace, in  presence of noisy data or distributions that do not obey
time polyn) for any constant > 0, under the uni-  constraints induced by an unknown halfspace? Can we
form distribution over{—1,1}"™ or the unit sphere in  develop learning algorithms which tolerate data gener-
R™, as well as under any log-concave distribution over ated from a “noisy” halfspace and output a meaningful
R™. It also agnostically learns Boolean disjunctions hypothesis?

in time 20(v7) with respect toany distribution. The
new algorithm, essentiallfz; polynomial regressiaris 1.1. Agnostic Learning
a noise-tolerant arbitrary-distribution generalizatiaf

the “low-degree” Fourier algorithm of Linial, Mansour, The agnostic learningframework, introduced by
& Nisan. We also give a new algorithm for PAC learn- Kearns et al. [16], is an elegant model for studying the
ing halfspaces under the uniform distribution on the unit phenomenon of learning from noisy data. In this model
sphere with the current best bounds on tolerable rate of the |earner receives labeled examples;) drawn from
“malicious noise.” afixed distribution over example-label pairs, but (in con-
trast with Valiant’s standard PAC learning model [29])
the learner cannot assume that the lahekre gener-
1. Introduction ated by applying some target functigrio the examples
x. Of course, without any assumptions on the distribu-
Halfspaces have been used extensively in Machinetion it is impossible for the learner to always output a
Learning for decades. From the early work on the Per- meaningful hypothesis. Keares al.instead require the
ceptron algorithm in the 1950’s, through the learning of learner to output a hypothesis whose accuracy with re-
artificial neural networks in the 1980’s, and up to and spect to future examples drawn from the distribution ap-
including today’s Adaboost [9] and Support Vector Ma- proximates that of the optimal concept from some fixed
chines [31], halfspaces have played a central role in theconcept class of functiorts such as the class of all half-
development of the field’s most important tools. spacesf(z) = sgn(v - « — #). Given a concept clags
Formally, ahalfspaces a Boolean functiorf (z) = and a distributiorD over labeled exampleg:, y), we
sgnd>." , wiz; — ). While efficient algorithms are  write opt = minsec Prp[f(x) # y] to denote the error
*Some of this research done while visiting TTI-Chicago. rate of the optimal (smallest error) concept frGrwith
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a hypothesig with errorPrp [h(x) # y| as close as pos-
sible ton, efficiently in the dimensiom (such problems

in R™ can often be done in timexp(n)). We note that
such a noise scenario is far more challenging than the
random classification noiseodel, in which am frac-

tion of labels are flipped independently at random and
for which a range of effective noise-tolerant learning al-
gorithms are known [4, 14].

Unfortunately, only few positive results are known
for agnostically learning expressive concept classes.
Kearnset al. [16] gave an algorithm for agnostically
learning piecewise linear functions, and Goldneral.

[10] showed how to agnostically learn certain classes
of geometric patterns. Leet al. [18] showed how to
agnostically learn some very restricted classes of neu-
ral networks in time exponential in the fan-in. On the
other hand, some strong negative results are known: in
the case oproper learning(where the output hypoth-
esis must belong t@), agnostic learning is known to
be NP-hard even for the concept cl&@sef disjunctions
[16]. In fact, it is known [19] that agnostically learning
disjunctions, even withorestrictions on the hypotheses
used, is at least as hard as PAC learning DNF formulas,
a longstanding open question in learning theory.

Thus, it is natural to consider — as we do in this
paper — agnostic learning with respect to various re-
stricted distribution® for which the marginal distribu-
tion Dx over the example spack satisfies some pre-

would be significantly better than the, norm; we dis-
cuss this point in Section 3.)

Roughly speaking our main result about the poly-
nomial regression algorithm, Theorem 5, shows the fol-
lowing (see Section 3 for the detailed statement):

Given a concept clags and a distributiorD,

if concepts inC can be approximated by low-
degree polynomials in thé&s norm relative
to the marginal distributiorDx, then theL,
polynomial regression algorithm s an efficient
agnostic learning algorithm far with respect
toD.

Along line of research has focused on how well the
truncated Fourier polynomial over the parity basis ap-
proximates concept classes with respect talth@orm;
this has led to numerous algorithms for learning con-
cepts with respect to the uniform distribution over the
Boolean hypercubé—1,1}" [20, 6, 11, 12, 17]. For
learning with respect to the uniform distribution on the
unit sphere, our analysis uses the Hermite polynomials
[28], a family of orthogonal polynomials with a weight-
ing scheme related to the density function of the Gaus-
sian distribution. As such, these polynomials are well
suited for approximating concepts with respect tofthe
norm overS™ 1.

scribed property. This corresponds to a learning scenario] 3. Qur Main Results

in which thelabelsare arbitrary but the distribution over
exampless restricted.

1.2. Our Main Technique

The following two observations are the starting
point of our work:

e The “low-degree” Fourier learning algorithm of
Linial et al. can be viewed as an algorithm for per-
forming Lo polynomial regressiomunder the uni-
form distribution on{—1,1}". (See Section 2.2.)

e A simple analysis (Observation 3) shows that the
low-degree algorithm has some attractive agnostic
learning properties under the uniform distribution
on{—1,1}". (See Section 2.3.)

The “low-degree” algorithm, however, will only
achieve partial results for agnostic learning (the output
hypothesis will be within a factor o of optimal). As
described in Section 3, the above two observations nat-
urally motivate a new algorithm which can be viewed
as anL, version of the low-degree algorithm; we call
this simply thepolynomial regression algorithm (At

As described below, our main result about the poly-
nomial regression algorithm can be applied to obtain
many results for agnostic learning of halfspaces with re-
spect to a number of different distributions, both discrete
and continuous, some uniform and some nonuniform.

Theorem 1 LetD be a distribution oveR™ x {—1,1}
and letopt be the error rate of the best halfspace. The
L, polynomial regression algorithm has the following
properties: its runtime is polynomial in the number of
examplesiitis given, and

1. If the marginalDy is (a) uniform on{—1,1}" or
(b) uniform on the unit sphere ifR"™, then with
probability 1 — ¢ the polynomial regression algo-
rithm outputs a hypothesis with erropt + ¢ given
poly(n'/<",log 1) examples.

2. If the marginalDx is log-concavethen with prob-

ability 1 — ¢ the polynomial regression algorithm

outputs a hypothesis with errospt + ¢ given

poly(n?(®), log +) examples, wheréd : R, — Z.

is a universal function independent®fx or n.



nomial regression algorithm combined with the Fourier ;¢ \ith errorO(opt /1og L 4.
bounds on halfspaces given by Klivaes al. [17]. opt

Part 1(b) follows from the same analysis of the algo- This result thus trades off accuracy versus runtime com-
rithm combined with concentration bounds over the  pared with Theorem 1. We feel that Theorem 3 is in-
dimensional sphere. In proving such bounds, we use thetriguing since it suggests that a deeper analysis might
Hermite polynomial basis in analogy with the Fourier yield improved runtime bounds for Theorem 1 as well.
basis used previously. (We note that learning halfspaces  In Section 5.2 we consider the problem of learn-
under the uniform distribution 0" ~! is a well-studied  ing an unknown origin-centered halfspace under the uni-
problem, see e.g. [1, 2, 14, 21, 22].) As before, we form distribution onS™~! in the presence ahalicious
show that a related algorithm gives a hypothesis with er- noise(we give a precise definition of the malicious noise
ror O(opt + €) in time n@ (/<) model in Section 5.2). Recall from Section 1.1 that we

As indicated by part (2) of Theorem 2, for any con- can view agnostic learning with respect to a particular
stante, we can also achieve a polynomial-time algorithm marginal distributiorDx as the problem of learning un-
for learning with respect to any log-concave distribution. derDx in the presence of an adversary who may change
Recall that any Gaussian distribution, exponential distri the labels of an # fraction of the examples, without
bution, or uniform distribution over a convex set is log- changing the actual distributicRx over examples. In
concave. contrast, in the model of learning undealicious noise

We next consider a simpler class of halfspaces: dis- with respect taDy, roughly speaking the adversary is
junctions onn variables. The problem of agnostically allowed to change an fraction of the labelsind exam-
learning an unknown disjunction (or learning noisy dis- plesgiven to the learner. As described in Section 5.2 this
junctions) has long been a difficult problem in compu- is a very challenging noise model in which only limited
tational learning theory and was recently re-posed aspositive results are known. We show that by combining
a challenge by Avrim Blum in his FOCS 2003 tuto- the algorithm of Theorem 3 with a simple preprocessing
rial [3]. By combining Theorem 5 with known con- step, we can achieve relatively high tolerance to mali-
structions of low-degree polynomials that are gdog- cious noise:

approximators of the OR function, we obtain a subexpo- Theorem 4 There is a simple algorithm for learn-

nential time algorithm for agnostically learning disjunc- jng origin-centered halfspaces under the uniform

tions with respect tanydistribution: distribution on S™~! to error ¢ in the presence
of malicious noise when the noise rate is at

Theorem 2 Let D be a distribution onX x Y where most O( The algorithm runs in

D is an arbitrary distribution ovef{—1,1}" andY = i/ 10%11/2(7/6))' )
{—1,1}. For the class of disjunctions, with probability Poly(n,1/€,log5) time and usesn = O(% log %)
1 — & the polynomial regression algorithm outputs a hy- many examples.

pothesis with error< opt + ¢ in time 20(v7log(1/€)) . This is the highest known rate of malicious noise that

poly(log %). can be tolerated in polynomial time for any nontrivial
halfspace learning problem. The preprocessing step can

1.4. Extensions and Other Applications be viewed as a somewhat counterintuitive form of out-

lier removal — instead of identifying and discarding ex-

In Section 5.1 we give a detailed analysis of an algo- @amples that lie “too far” from the rest of the data set,
rithm which is essentially the same as the degree-1 ver-We discard examples that lie totoseto any other data
sion of the polynomial regression algorithm, for agnostic Point. The analysis of this approach relies on classical
learning the concept class of origin-centered halfspaces'esults from sphere packing.
sgn(v - ) over the uniform distribution on the sphere Finally, in Section 5.3 we show that the polynomial
Sm=1.While our analysis from Section 3 only implies regression algorithm can be applied in non-noisy set-
that this algorithm should achieve some fixed constanttings. We obtain a slightly better running time bound

errorO(1) independent obpt, we are able to show that  than the algorithm of Klivanst al. [17] for learning an
in fact we do much better #pt is small: intersection of halfspaces under the uniform distribution

on{-1,1}".
Theorem 3 Let D be a distribution onX x Y, where
Y = {—1,1} and the marginaDx is uniform on the 2. Preliminaries
sphereS™~! in R™. There is a simple algorithm for ag-
nostically learning origin-centered halfspaces with re- Let D be an arbitrary distribution o x {—1,1},
spect toD which usesm = O(’Z—22 log %) examples, forsome seiX. LetC be a class of Boolean functions on



error of C to be

err(f) = Pr(z,y)hD[f(‘T) #£yl, opt= rcnelél err(c),

respectively. Roughly speaking, the goal in agnostic

learning of a concept class is as follows: given ac-
cess to examples drawn from distributibn we wish to
efficiently find a hypothesis with error not much larger
thanopt. More precisely, we say is agnostically learn-
able if there exists an algorithm which takes as input
J, €, and has access to an example ordclgéD) and
outputs with probability greater than— § a hypothe-
sish : X — {—1,1} such thakrr(h) < opt +e. We
sayC is agnostically learnable in timeif its running
time (including calls to the example oracle) is bounded
by t(e, §,n). If the above only holds for a distributidh
whose margin is uniform oveX, we say the algorithm
agnostically learn€ over the uniform distribution(See
[16] for a detailed description of the agnostic learning
framework.)

A distribution is log-concave if its support is convex
and it has a probability density function whose logarithm
is a concave function froR™ to R.

We assume that our algorithms are giverexam-
ples(xt,y!), ..., (z™,y™) drawn independently from
the distributionD over X x {—1,1}. Thesgn : R —
{—1,1} function is defined bygn(z) = 1if z > 0,
sgn(z) = —1if z < 0. Lastly, we define the sé&;, to be
the set of univariate polynomials of degree at mbst

2.1. Fourier preliminaries and the low-degree al-
gorithm

For S C [n] the parity functionys : {—1,1}" —
{—1,1} over the variables it is simply the multilinear
monomialxs(z) = [[,csz:. The set of all2” par-
ity functions{x s } sc[») forms an orthonormal basis for
the vector space of real-valued functions{onl, 1},
with respect to the inner product, g) = E[fg] (here

and throughout Section 2.1 unless otherwise indicated
all probabilities and expectations are with respect to the

uniform distribution ove{ —1, 1}"). Hence every real-
valued functionf : {—1,1}" — R can be uniquely
expressed as a linear combination

flx) = [ ]f(S)Xs(CC)~ 1)

SC[n

The coefficientsf(S) = E[fys] of the Fourier polyno-
mial (1) are called th&ourier coefficient®f f; collec-
tively they constitute th&ourier spectrunof f. We re-
call Parseval’s identitywhich states that for every real-
valued functionf we haveE|[f(z)?] = 3¢ f(S)?. For

Boolean functions we thus haye ; f(5)* = 1.

functions under the uniform distribution via their Fourier
spectra was introduced by Liniadt al. [20], and
has proved to be a powerful tool in uniform dis-
tribution learning. The algorithm works by empiri-
cally estimating each coefficient(S) ~ f(S)
iy f(@7)xs(x7) with |S| < d from the data,
and constructing the degrelepolynomial p(x)
>is1<a f(S)xs(x) as an approximation tg. (Note
that the polynomialp(z) is real-valued rather than
Boolean-valued. If a Boolean-valued classifieis de-
sired, it can be obtained by takiigz) = sgn(p(x)),
and using the simple fa@®rp[sgn(p(x)) # f(z)] <
Ep|(p(x) — f(x))?] which holds for any polynomial,
any Boolean functiorf : {—1,1}" — {—1,1}, and any
distributionD.)

Let a(e,n) be a functionw : (0,1/2) x N — N.
We say that concept clagshas aFourier concentra-
tion boundof (e, n) if, forall n > 1, all 0 < € < 3,
and all f € C, we havey_, g - .y F(5)? < € The
low-degree algorithm is useful because it efficiently con-
structs a high-accuracy approximator for functions that
have good Fourier concentration bounds:

Fact 1 ([20]) LetC be a concept-class with concentra-
tion bounda(e,n). Then for anyf € C, given data
labeled according tof and drawn from the uniform
distribution onX = {-1,1}", the low-degree algo-
rithm outputs, with probabilityl — 6, a polynomialp
such thatE[(p(x) — f(2))?] < e and runs in time
poly(n®(€/2m) log %)

The idea behind Fact 1 is simple: if the coefficients of
p were preciselyf(S) instead off(S), then the Fourier
concentration bound and Parseval’s identity would give
Yisi>a(e/2n = Ellp() — f(2))?] < /2. The extra
€/2 is incurred because of approximation error in the
estimatesf(5).

2.2. The low-degree algorithm andZ, polyno-
mial regression

The main observation of this section is that the low-
degree Fourier algorithm of [20] can be viewed as a
special case of least-squares polynomial regression over
uniform distributions on the-dimensional cube.

Let D be a distribution ovefz,y) € X x {—1,1}.

In least-squared(;) polynomial regression, one attempt
to minimize the following:
1 m

~ Zr)rel%]g P J;l (p(x.f) _ yj)2 .
(2)

Ideally, one would like to minimize the LHS, i.e. find
the best degred polynomial L, approximation toy

min Ep
pEP4

((0(@) )]



we minimize the right-hand side. In particular, we write
a polynomial as a sum over all degree d monomi-
als, p(z) = Y., po [, (z:)" where the sum is over
{b e zZ"Y " b < dVib, > 0} Inturn, this
can be viewed as a standdidear regression problem
if we expand exampl@f into a vector with a coordi-
nate[;_, (=] )%, for each of the< nd*! differentd’s.
Least-squares Ilnear regression, in turn, can be solved b
a single matrix inversion; and thus in general we can ap-
proximate the RHS of the previous displayed equation
in n°@ time.

Now let us considel., polynomial regression in
the uniform distribution scenario whefé = {—1,1}",
y = f(z) for some functionf : X — {-1,1}, and
we have a uniform distributiotx overxz € {—1,1}".
Sincex? = 1 forz € {—1,1}, we may consider only
degreed multilinear polynomials, i.e. sums of monomi-
als xs(z) = [[;egx: with S C [n],|S| < d. Using
Parseval’s identity, it is not difficult to show that best
degreel polynomial is exactly

argmin By | (p(e) - f(2)*] = F(S)xs(w),
PEPq SCln]:|S|<d
where f(S) = By, [f(x)xs(z)]. Thus in this uniform

case, one can simply estimate each coefficfgist) ~
L > ity f(a?)xs(2?) rather than solving the general

least-squares regression problem; and this is precisely

what the low-degree algorithm does.

In thenonuniformcase, it is natural to consider run-
ning generalL, polynomial regression rather than the
low-degree algorithm. We do something similar to this
in Section 3, but first we consider tlagnosticlearning
properties of the low-degree algorithm in the next sub-
section.

2.3. Using the low-degree algorithm as an agnos-
tic learner

Kearnset al. [16] prove the following statement
about agnostic learning with the low-degree algorithm:

Fact 2 ([16], Corollary 1) Let C be a concept class
with concentration bound.(e, n). Then the low-degree
algorithm agnostically learn§ under the uniform dis-
tribution to error £ — (1 —opt)?+e = 1 +opt(1—opt)+e
with probability1 — & and in timepoly (n®(¢/2™) log 1).

This was termed a “weak agnostic learner” in [16] be-
cause as long amt is bounded away from 1/2, this re-
sulting hypothesis has error bounded from 1/2. How-
ever, the above bound 194 for opt = 0. We now show
that if opt is small it can in fact achieve very low error:

tration bounda(e,n). Then the low-degree algorithm
agnostically learng” under the uniform distribution to
error 8opt + € in timen@((¢/3.7),

Proof sketch: Let f € C be an optimal func-
tion, i.e. Prly # f(2)] opt. As described
above, the low-degree algorithm (approximately) finds
>}he best degreéapproxmatiorp( ) to the datay, i.e.
minyep, E[(p(x) — y)?], and the same term represents
the mean squared error @f This can be bounded
using an “almost-triangle” inequality fai,b,c € R,
that 3(a — ¢)? < (a — b)* + (b — ¢)%. Settinga
>Is|<d f(S)xs(x), b= f(x), ande = y, we have that
min,ep, E[(p(x) — y)?] is at most,

2

B (/@) =9 + (Siscal Srs(o) - £@)) .
The above can be rewritten as,

[(p(z) —

~“min E y)?] < 4Pty # f(z

2 pePy

Z £(9)
S|>d
The first term istopt and the second is at mast3 for

d = «a(n,e/3). Outputtingh(z) = sgn(p(z)) would
give error,

Prlsgn(p(z)) # y| < E[(p(x)

This leaves an additionaf 3 for sampling error.

2
— y)z] < 8opt + §6'

Another way to state this is that if and g are
two functions andf has a Fourier concentration bound
of a(e,n), then g satisfies the concentration bound

Z\S\Za(n,g) 9(8)? < 8Pr[f(x) # g(x)] + 2e.
3. L; polynomial regression

Given the setup in Sections 2.2 and 2.3, it is natu-
ral to expect that we will now show that the genetal
polynomial regression algorithm has agnostic learning
properties similar to those established for the low-degree
algorithm in Observation 3. However, such an approach
only yields error bounds of the forM(opt + ¢), and for
agnostic learning our real goal is a bound of the form
opt + €. To achieve this, we will instead udg norm,
rather than’, norm.

Analogous toL, regression, inL; polynomial re-
gression we attempt to minimize:

1 — _ J J

min Bp [lp(z) — yl] = Hég;m E p(z7) —’|. (3)
To solve the RHS minimization problem, again each ex-
ample is expanded into a vector of lengtm?*! and an



regression is a well-studied problem [7], and the mini- C. Using the triangle inequality anll||Z|] < /E[Z?]
mizing polynomialp for the RHS of (3) can be obtained for any random variabléZ, we see that the quantity
in poly(n?) time using linear programming. For our minyep, Ep[ly — p(z)]] is at most:
purposes we will be satisfied with an approximate mini-
mum, and hence one can use a variety of techniques for Eplly — ¢()[] + min Ep[le(z) — p(z)[] < 20pt + €.
approximately solving linear programs efficiently.

How do L, andL- polynomial regression compare? This is also an upper bound on the expected empirical
In the noiseless case, both (2) and (3) approach 0 at re€rror on any single iteration of steps 1, 2, and 3, i.e.,
lated rates agincreases. However, in the noisy/agnostic | m
case, flipping the sign of = +1 changesp(x) —y)? by E [_ 3 |y1 — p(xi)|] < 2opt + €.
4p(z) which can potentially be very large; in contrast, m =1
flipping y’s sign can only changg(z) — y| by 2. On
the other hand, it is often easier to bound theerror in
terms of the mathematically conveniein error. Thus Ly -2 |z| <1
while our polynomial regression algorithm works only Prici1aly # sgn(z—t)] = { Ily—sen(z)| |z|>1
with the L; norm, the performance bound and analysis

Next observe that, foranye {—1,1},z € R,

depends on thés norm. In either case, the right hand side is at mégt — z|.
Thus, on any single iteration,
3.1. The algorithm and proof of correctness o _
gy # h(xl)}l} Soptte iy C
We now give the polynomial regression algorithm L m B 2 2

and establish conditions under which it is an agnostic

D By Markov’s inequality, on any single iteration,
learner achieving errarpt + e. y g 4 y sing

(i |y # h(z)}| 21 o optt3

L, polynomial regression(d, m,r): Pr|———1—" >opt+ | < —2.
opt + %

m 3

1. Take examplegr!, ), ..., (a™,y™).

2. Find polynomiap of degree< d to min-
imize - >~ | |p(a7)—y’|. (This can be
done by expanding examples to include
all monomials of degreel d and then
performingL; linear regression, as de-
scribed earlier.)

WLOG opt + € < 1/2 (otherwise the lemma is trivial),
in which case the above is at m@st+ ¢/3) 1. Hence,
after4log(2/0)/e repetitions, with probability at most
(14 ¢/3)~41oe(2/0)/e < 5/2 (using(1 + €/3)*/ < 1/e
for e € [0, 1]), one of the repetitions will have empirical
error at most{i | y* # h(z%)}|/m < opt + (2/3)e.

Now, suppose this is the case. Next, note that our

3. Leth(z) = sgu(p(x) — t) for threshold output hypothesis is a halfspace ovérattributes. By
t € [-1, 1] chosen uniformly at random. VC theory, form = poly(n?/e, log(2r/8)), with prob-

4. Repeat the above three stepgimes, ability 1 — 6/(2r), no such halfspace will have general-
each time withm fresh examples, and ization error more than/3 larger than its training error.
output the hypothesis with lowest error Taking the union bound over allrepetitions, with prob-
on its own data set. ability 1 — 4, we have error at mosbpt + e. [ |

Theorem 5 Saymin,cp, Ep, [(p(z)—c(x))?] < € for
some degred, some distributiorD over X x {—1,1} As noted at the very beginning of this section, an
with marginal Dx, and anyc in the concept clas§. analogousl, algorithm could be defined to minimize

Then, with probabilityl — §, usingr = 4log(2/6)/e = >0 (p(27) —y?)? rather thant > | [p(27) — 7.
repetitions ofm = poly(n?/e,log 1/5§) examples each,  Error guarantees of the for@(opt + ¢) can be shown
the L, polynomial regression algorithm outputs a hy- for this L, algorithm, following the same argument but

pothesish(z) such thatPrp[h(z) # y] < opt+e. again using the “almost-triangle” inequality.

Remark 4 Note that using Theorem 5, a Fourier con- . . ..
centration bound ofi(n, ) immediately implies that the 4~ Agnostic learning halfspaces and disjunc-

L, regression algorithm achieves erropt + ¢ in time tions via polynomial regression
nO(n.e) for distributionsD with marginalDx that is
uniform on{—1, 1}"™. As we will see in the next section, In this section we sketch how to apply Theorem 5

Theorem 5 can be applied to other distributions as well. to prove Theorems 1 and 2.



concept class with a Fourier concentration bound is in
fact agnostically learnable to erropt + ¢ under the uni-
form distribution on{—1, 1}™. In particular, Theorem 1
1(a) follows immediately from the Fourier concentration
bound for halfspaces of [17]:

Fact5 [17] The concept clas< of all halfspaces
over {—1,1}™ has a Fourier concentration bound of
a(e,n) = 441/€2.

For the uniform distribution or$™~! and any log-
concave distribution, we can prove the existence of a
good low-degree polynomial as follows. Suppose we
had a good degreg-univariate approximation to the
sign functionp,(z) ~ sgn(z), and say we have an-
dimensional halfspacggn(v - © — 6). Then,sgn(v -

x —0) ~ pqs(v -z — 6). Moreover, this latter quantity
is now a degree- multivariate polynomial. The sense
in which we measure approximations will be distribu-
tional, theL, error of our multivariate polynomial over
the distributionD. Hence, we need a polynomija/ that
well-approximates the sign function on the marginal dis-
tribution in the direction, i.e., the distribution over pro-
jections onto the vectar.

For the uniform distribution on a sphere, the projec-
tion onto a single coordinate is distributed very close to
Gaussian distribution. For a log-concave distribution,
its projection is distributed log-concavely. In both of

~
~

these cases, it so happens that the necessary degree to get

approximation erroe boils down to a one-dimensional

problem! For the sphere, we can upper-bound the degree

necessary as a function efusing the following for the
normal distributionV (0, %) with densitye*f/\/?:

Theorem 6 For anyd > 0 and anyf € R, there is a
degreed univariate polynomiap, ¢ such that
7‘/1;2
2 _gz—0 i). )
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The complete proof of this theorem, as well as the

analysis of log-concave distributions, is available in the
full version of the paper [13].
Proof sketch: WLOG @ € [0,+/d]. Ford > /d, it can
be shown that the constant polynomigk) = —1 will
be a sufficiently good approximation gfn(z — ). For
0 < 0, an entirely similar proof holds.

We use the Hermite Polynomial$;, d = 0,1, ...,
(Hq is a degreet univariate polynomial) which are
a set of orthogonal polynomials given the weighting
e~ 7=1/2_ In particular,

(Pd,o(w)—sgn(z—0))

o0

> e 0 if dy £ d
/ Hdl(ﬁ)HdZ(ﬁ)Fdw:{ 2hdy! if difdi

polynomials with respect to the inner prodygt ¢)
1= p(z)q(z)e=="7=1/2dz. The functionsH,(z)
Hgy(x)/v/22d! are an orthonormal basis.

Now, the best degreé approximation to the func-
tion sgn(x — 0), in the sense of (4), for any, can be
written asy ", ¢;H;(x). Thee; € R that minimize (4)
are,

_1-2

(&

¢ = /OO sgn(x—())ﬁi(x)ﬁda:
S —z? [% —z?
= ) Hi(a:)eﬁ dx—[wﬁi(x)eﬁ dx
_ z/eooﬂi(a;)e\/; dr  (fori>1) (5)

The last step follows from the fact thg(tfooo sgn(z —
H)Hi(x)%dx = 0 for i > 1 by orthogonality ofH;
with Hy. Next, the LHS of (4) is exactly ;7 ., 7.

It is straightforward to calculate each coefficiept
using standard properties of the Hermite Polynomials.
It is well known [28] that the Hermite polynomials can
be defined by, (x)e™*" = (—1)*-4¢~*", which im-
plies %Hi(x)e*%2 = — Hl(x)e*f. In turn, this and
(5) imply that for: > 1,

_ 2
e " dx

2 o
G = T Hi(x
\/7r212'!/0 @)

H; 1(0)e ",

o0

0
2

V2t
To show thaty"° ., ¢ = O(1/Vd), it suffices that

2 — O(i~3/?). This follows from (6) and Theorem 1.i

Ci -
of [5], for 6§ < V/d. [ |

We note that the:?(1/<*)-time, O(opt + ¢)-error
analogues of Theorem 1, part 1, mentioned in Sec-
tion 1.3 follows from Fact 5 and Theorem 6 using fhe
analogue of the polynomial regression algorithm men-
tioned at the end of Section 3. The improved time bound
comes from the fact that we no longer need to invoke
E[|Z]] < /E[Z?] to bound the square loss, since we
are minimizing the square loss directly rather than the
absolute loss.

(6)

4.1. Agnostically Learning Disjunctions under
Any Distribution

We can use the polynomial regression algorithm to
learn disjunctions agnostically with respect to any dis-
tribution in subexponential time. We make use of the



proximate the OR function in the,, norm:

Theorem 7 [26, 24, 17] Letf (x4, ..., x,) compute the

OR function on some subset of (possibly negated) input

variables. Then there exists a polynomjabf degree
O(y/nlog(1/e)) such that for allx € {-1,1}", we
have| f(x) — p(z)| < e.

Fore = ©(1) this fact appears in [26, 24]; an easy
extension to arbitrary is given in [17]. Theorem 2
follows immediately from Theorems 7 and Theorem 5,
since for any distributiorD the L., bound given by

Theorem 7 clearly implies the bound on expectation re-

quired by Theorem 5.

fixed constant accurac®(1) independent obpt for
agnostic learning halfspaces under the uniform distri-
bution on S*~!. However, a more detailed analysis
shows that the simpl&verage algorithm does surpris-
ingly well, in fact obtaining a hypothesis with error rate
O(opt+/log(1/opt)) + €; this is Theorem 3. The proof
is available in the full version of the paper [13].

5.2. Learning halfspaces in the presence of mali-
cious noise

We now consider the problem of PAC learning an
unknown origin-centered halfspace, under the uniform

We note that some existence results are known distribution onS™~1, in the demandingnalicious noise

for low-degree L.-approximators of richer concept

modelintroduced by Valiant [30] and subsequently stud-

classes than just disjunctions. For example, results ofied by Kearns and Li [15] and many others.

O’Donnell and Servedio [25] show that any Boolean
function f : {-1,1}" — {-1,1} computed by a
Boolean formula of linear size and constant depth-is
approximated in thé ., norm by a polynomial of degree
O(\/ﬁ) -poly log % By combining Theorem 5 with such

existence results, one can immediately obtain arbitrary-
distribution agnostic learning results analogous to The-

orem 2 for those concept classes as well.

5. Extensions and Other Applications

5.1. Learning halfspaces over the sphere with the
degree-1 version of the polynomial regres-
sion algorithm

Let us return to the case, where the marginal dis-
tribution Dx is uniform overS™—!, and now consider
thed = 1 version of theL, polynomial regression al-
gorithm. In this case, we would like to find the vector
w € R" that minimizesEp, [(w -  — y)?]. By dif-
ferentiating with respect ta; and using the fact that
E[z;] = E[z;2;] = 0fori # j andE[2?] = 1, we see
that the minimum is achieved at; = 1 E[z;y;].

This is essentially the same as the similerage
algorithm which was proposed by Servedio in [27] for
learning origin-centered halfspaces under uniform in

We first define the malicious noise model. Given a
target functionf and a distributiorlD over X, a ma-
licious example oracle with noise ratgis an oracle
EX,(f, D) that behaves as follows. Each time it is
called, with probabilityl — n the oracle returns a noise-
less examplézx, f(x)) wherex is drawn fromD, and
with probability ) it returns a pair(x, y) about which
nothing can be assumed; in particular such a “mali-
cious” example may be chosen by a computationally un-
bounded adversary which has complete knowledge of
f, D, and the state of the learning algorithm when the
oracle is invoked. We say that an algoritiearns to
error ¢ in the presence of malicious noise at rat@in-
der the uniform distributionf it satisfies the following
condition: given access tBX,(f,U) with probability
1 — ¢ the algorithm outputs a hypothedissuch that
Proculh(z) # ()] < e

Only few positive results are known for learning
in the presence of malicious noise. Improving on
[30, 15] Decatur [8] gave an algorithm to learn disjunc-
tions under any distribution that tolerates a noise rate
of O(£In1). More recently, Mansour and Parnas stud-
ied the problem of learning disjunctions under product
distributions in an “oblivious” variant of the malicious
noise model [23], giving an algorithm that can tolerate
a noise rate 00 (/% /n?/3). We note that the Percep-

the presence of random misclassification noise. Thetron algorithm can be shown to tolerate malicious noise

Average algorithm draws examples until it has a sam-
ple of m positively labeled examples!,...,z™, and
then it returns the hypothesigz) = sgn(v - =) where
v =L 3" a'is the vector average of the positive ex-

amples. The intuition for this algorithm is simple: if

at rateO(e/+/n) when learning an origin-centered half-
space under the uniform distributidhon S~ 1.

It is not difficult to show that the simplaverage
algorithm can also tolerate malicious noise at rate
O(e/+/n) (see the full version [13] for the proof). We

there were no noise then the average of the positive ex-now show that by combining thaverage algorithm

amples should (in the limit) point exactly in the direction
of the target normal vector.
A straightforward application of the bounds from

Section 3 and Section 4 implies only that the degree-1 TestClose

with a simple preprocessing step to eliminate some
noisy examples, we can handle a higher malicious noise
rate ofﬂ(m). This algorithm, which we call

, is the following:



O(’Z—;z log %) positively labeled examples have been
received; letS = {z!,... 2™} denote this set of
examples.

. Letp = /€ log 2, whereC is a fixed constant
specified later. If any pair of example$, 27 with

i # j has|l2! — 27| < /2= p, removez’ and
27 from S. (We say that such a pair of examples
is too close) Repeat this until no two examples in
S are too close to each other. L&t denote this
“reduced” set of examples.

3. Now runAverage on S’ to obtain a vector, and
return the hypothesis(z) = sgn(v - ).

The idea behind this algorithm is simple. If there

were no noise, then all examples received by the al-

gorithm would be independent uniform random draws
from S~1, and it is not difficult to show that with very
high probability no two examples would be too close to

each other. Roughly speaking, the adversary controlling

the noise would like to caugeto point as far away from

the true target vector as possible; in order to do this his

best strategy (if we were simply running tAeerage
algorithm on the original data set without discard-
ing any points) would be to have all noisy examples
be located at some single particular pairit € S™~ 1.

However, our “closeness” test rules out this adversary

strategy, since it would certainly identify all these col-

located points as being noisy and discard them. Thus

intuitively, in order to fool our closeness test, the ad-

versary is constrained to place his noisy examples rela-

tively far apart on5™ ! so that they will not be identified
and discarded. But this means that the noisy example
cannot have a very large effect on the average vagtor
since intuitively placing the noisy examples far apart on

Sm—1 causes their vector average to have small magni-

tude and thus to affect the overall averagby only a
small amount. The actual analysis in the proof of The-
orem 4, in the full version [13], uses bounds from the
theory of sphere packing iR" to make these intuitive
arguments precise.

5.3. Reuvisiting learning intersections of halfs-
paces

Learning an intersection of halfspaces is a chal-
lenging and well-studied problem even in the noise-free
setting. Klivanset al. [17] showed that the standard
low-degree algorithm can learn the intersectionkof
halfspaces with respect to the uniform distribution on
{=1,1}" to errore in time n®**/<) provided that
e < 1/k2. Note that because of the requirementen

the desired final error is= O(1) independent of.

We can use the polynomial regression algorithm to
obtain a the following runtime bound for learning an
intersection oft halfspaces under the uniform distribu-
tion on{—1,1}". The new bound is better than [17] for
€> %:

Theorem 8 Let f = hi A ... A hi be an intersection
of k halfspaces ovef—1, 1}". Thenf is learnable with
respect to the uniform distribution ovér-1, 1}" in time

nO**/<) for anye > 0.

We note that a comparable bound can also be ob-
tained via a boosting-based algorithm similar to one
given in recent work due to Jackson et al. [12]. Our
approach via the polynomial regression algorithm shows
that agnostic learning can have applications even in non-
noisy settings.

6. Directions for Future Work

There are many natural ways to extend our work.
One promising direction is to try to develop a broader
range of learning results over the sphére ! using the
Hermite polynomials basis, in analogy with the rich the-
ory of uniform distribution learning that has been devel-
oped for the parity basis ovér-1, 1}". Another natural
goal is to gain a better understanding of the distributions
and concept classes for which we can use the polynomial
regression algorithm as an agnostic learner. Is there a
way to extend the analysis of tide= 1 case of the poly-
nomial regression algorithm (establishing Theorem 3)
to obtain a stronger version of Theorem 1, Part 1(b)?
Another natural idea would be to use the “kernel trick”

Swith the polynomial kernel to speed up the algorithm.

Finally, we intend to explore whether the polynomial
regression algorithm can be used for other challenging
noisy learning problems beyond agnostic learning, such
as learning with malicious noise.
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