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Abstract

We give the first algorithm that (under distributional
assumptions) efficiently learns halfspaces in the notori-
ously difficultagnosticframework of Kearns, Schapire,
& Sellie, where a learner is given access to labeled ex-
amples drawn from a distribution, without restriction on
the labels (e.g. adversarial noise). The algorithm con-
structs a hypothesis whose error rate on future exam-
ples is within an additiveǫ of the optimal halfspace, in
time poly(n) for any constantǫ > 0, under the uni-
form distribution over{−1, 1}n or the unit sphere in
R

n, as well as under any log-concave distribution over
R

n. It also agnostically learns Boolean disjunctions

in time 2Õ(
√

n) with respect toany distribution. The
new algorithm, essentiallyL1 polynomial regression, is
a noise-tolerant arbitrary-distribution generalizationof
the “low-degree” Fourier algorithm of Linial, Mansour,
& Nisan. We also give a new algorithm for PAC learn-
ing halfspaces under the uniform distribution on the unit
sphere with the current best bounds on tolerable rate of
“malicious noise.”

1. Introduction

Halfspaces have been used extensively in Machine
Learning for decades. From the early work on the Per-
ceptron algorithm in the 1950’s, through the learning of
artificial neural networks in the 1980’s, and up to and
including today’s Adaboost [9] and Support Vector Ma-
chines [31], halfspaces have played a central role in the
development of the field’s most important tools.

Formally, ahalfspaceis a Boolean functionf(x) =
sgn(

∑n
i=1 wixi − θ). While efficient algorithms are
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known for learning halfspaces if the data is guaranteed
to be noise-free, learning a halfspace from noisy ex-
amples remains a challenging and important problem.
Halfspace-based learning methods appear repeatedly in
both theory and practice, and they are frequently ap-
plied to labeled data sets which are not linearly sepa-
rable. This motivates the following natural and well-
studied question: what can oneprovablysay about the
performance of halfspace-based learning methods in the
presence of noisy data or distributions that do not obey
constraints induced by an unknown halfspace? Can we
develop learning algorithms which tolerate data gener-
ated from a “noisy” halfspace and output a meaningful
hypothesis?

1.1. Agnostic Learning

The agnostic learningframework, introduced by
Kearns et al. [16], is an elegant model for studying the
phenomenon of learning from noisy data. In this model
the learner receives labeled examples(x, y) drawn from
a fixed distribution over example-label pairs, but (in con-
trast with Valiant’s standard PAC learning model [29])
the learner cannot assume that the labelsy are gener-
ated by applying some target functionf to the examples
x. Of course, without any assumptions on the distribu-
tion it is impossible for the learner to always output a
meaningful hypothesis. Kearnset al. instead require the
learner to output a hypothesis whose accuracy with re-
spect to future examples drawn from the distribution ap-
proximates that of the optimal concept from some fixed
concept class of functionsC, such as the class of all half-
spacesf(x) = sgn(v · x − θ). Given a concept classC
and a distributionD over labeled examples(x, y), we
write opt = minf∈C PrD[f(x) 6= y] to denote the error
rate of the optimal (smallest error) concept fromC with
respect toD.

For intuition, one can view agnostic learning as a
noisy learning problem in the following way: There is a
distributionD over examplesx and the datais assumed
to be labeled according to a functionf ∈ C, but an ad-
versary is allowed to corrupt anη = opt fraction of the



a hypothesish with errorPrD[h(x) 6= y] as close as pos-
sible toη, efficiently in the dimensionn (such problems
in R

n can often be done in timeexp(n)). We note that
such a noise scenario is far more challenging than the
random classification noisemodel, in which anη frac-
tion of labels are flipped independently at random and
for which a range of effective noise-tolerant learning al-
gorithms are known [4, 14].

Unfortunately, only few positive results are known
for agnostically learning expressive concept classes.
Kearnset al. [16] gave an algorithm for agnostically
learning piecewise linear functions, and Goldmanet al.
[10] showed how to agnostically learn certain classes
of geometric patterns. Leeet al. [18] showed how to
agnostically learn some very restricted classes of neu-
ral networks in time exponential in the fan-in. On the
other hand, some strong negative results are known: in
the case ofproper learning(where the output hypoth-
esis must belong toC), agnostic learning is known to
be NP-hard even for the concept classC of disjunctions
[16]. In fact, it is known [19] that agnostically learning
disjunctions, even withno restrictions on the hypotheses
used, is at least as hard as PAC learning DNF formulas,
a longstanding open question in learning theory.

Thus, it is natural to consider — as we do in this
paper — agnostic learning with respect to various re-
stricted distributionsD for which the marginal distribu-
tion DX over the example spaceX satisfies some pre-
scribed property. This corresponds to a learning scenario
in which thelabelsare arbitrary but the distribution over
examplesis restricted.

1.2. Our Main Technique

The following two observations are the starting
point of our work:

• The “low-degree” Fourier learning algorithm of
Linial et al. can be viewed as an algorithm for per-
forming L2 polynomial regressionunder the uni-
form distribution on{−1, 1}n. (See Section 2.2.)

• A simple analysis (Observation 3) shows that the
low-degree algorithm has some attractive agnostic
learning properties under the uniform distribution
on{−1, 1}n. (See Section 2.3.)

The “low-degree” algorithm, however, will only
achieve partial results for agnostic learning (the output
hypothesis will be within a factor of8 of optimal). As
described in Section 3, the above two observations nat-
urally motivate a new algorithm which can be viewed
as anL1 version of the low-degree algorithm; we call
this simply thepolynomial regression algorithm. (At

would be significantly better than theL2 norm; we dis-
cuss this point in Section 3.)

Roughly speaking our main result about the poly-
nomial regression algorithm, Theorem 5, shows the fol-
lowing (see Section 3 for the detailed statement):

Given a concept classC and a distributionD,
if concepts inC can be approximated by low-
degree polynomials in theL2 norm relative
to the marginal distributionDX , then theL1

polynomial regression algorithm is an efficient
agnostic learning algorithm forC with respect
toD.

A long line of research has focused on how well the
truncated Fourier polynomial over the parity basis ap-
proximates concept classes with respect to theL2 norm;
this has led to numerous algorithms for learning con-
cepts with respect to the uniform distribution over the
Boolean hypercube{−1, 1}n [20, 6, 11, 12, 17]. For
learning with respect to the uniform distribution on the
unit sphere, our analysis uses the Hermite polynomials
[28], a family of orthogonal polynomials with a weight-
ing scheme related to the density function of the Gaus-
sian distribution. As such, these polynomials are well
suited for approximating concepts with respect to theL2

norm overSn−1.

1.3. Our Main Results

As described below, our main result about the poly-
nomial regression algorithm can be applied to obtain
many results for agnostic learning of halfspaces with re-
spect to a number of different distributions, both discrete
and continuous, some uniform and some nonuniform.

Theorem 1 LetD be a distribution overRn × {−1, 1}
and letopt be the error rate of the best halfspace. The
L1 polynomial regression algorithm has the following
properties: its runtime is polynomial in the number of
examples it is given, and

1. If the marginalDX is (a) uniform on{−1, 1}n or
(b) uniform on the unit sphere inRn, then with
probability 1 − δ the polynomial regression algo-
rithm outputs a hypothesis with erroropt + ǫ given
poly(n1/ǫ4 , log 1

δ ) examples.

2. If the marginalDX is log-concave, then with prob-
ability 1 − δ the polynomial regression algorithm
outputs a hypothesis with erroropt + ǫ given
poly(nd(ǫ), log 1

δ ) examples, whered : R+ → Z+

is a universal function independent ofDX or n.



nomial regression algorithm combined with the Fourier
bounds on halfspaces given by Klivanset al. [17].
Part 1(b) follows from the same analysis of the algo-
rithm combined with concentration bounds over then-
dimensional sphere. In proving such bounds, we use the
Hermite polynomial basis in analogy with the Fourier
basis used previously. (We note that learning halfspaces
under the uniform distribution onSn−1 is a well-studied
problem, see e.g. [1, 2, 14, 21, 22].) As before, we
show that a related algorithm gives a hypothesis with er-
ror O(opt + ǫ) in timenO(1/ǫ2).

As indicated by part (2) of Theorem 2, for any con-
stantǫ, we can also achieve a polynomial-time algorithm
for learning with respect to any log-concave distribution.
Recall that any Gaussian distribution, exponential distri-
bution, or uniform distribution over a convex set is log-
concave.

We next consider a simpler class of halfspaces: dis-
junctions onn variables. The problem of agnostically
learning an unknown disjunction (or learning noisy dis-
junctions) has long been a difficult problem in compu-
tational learning theory and was recently re-posed as
a challenge by Avrim Blum in his FOCS 2003 tuto-
rial [3]. By combining Theorem 5 with known con-
structions of low-degree polynomials that are goodL∞-
approximators of the OR function, we obtain a subexpo-
nential time algorithm for agnostically learning disjunc-
tions with respect toanydistribution:

Theorem 2 Let D be a distribution onX × Y where
D is an arbitrary distribution over{−1, 1}n andY =
{−1, 1}. For the class of disjunctions, with probability
1− δ the polynomial regression algorithm outputs a hy-
pothesis with error≤ opt + ǫ in time 2Õ(

√
n·log(1/ǫ)) ·

poly(log 1
δ ).

1.4. Extensions and Other Applications

In Section 5.1 we give a detailed analysis of an algo-
rithm which is essentially the same as the degree-1 ver-
sion of the polynomial regression algorithm, for agnostic
learning the concept class of origin-centered halfspaces
sgn(v · x) over the uniform distribution on the sphere
Sn−1. While our analysis from Section 3 only implies
that this algorithm should achieve some fixed constant
errorΘ(1) independent ofopt, we are able to show that
in fact we do much better ifopt is small:

Theorem 3 Let D be a distribution onX × Y , where
Y = {−1, 1} and the marginalDX is uniform on the
sphereSn−1 in R

n. There is a simple algorithm for ag-
nostically learning origin-centered halfspaces with re-
spect toD which usesm = O(n2

ǫ2 log n
δ ) examples,

δ

sis with errorO(opt
√

log 1
opt

+ ǫ).

This result thus trades off accuracy versus runtime com-
pared with Theorem 1. We feel that Theorem 3 is in-
triguing since it suggests that a deeper analysis might
yield improved runtime bounds for Theorem 1 as well.

In Section 5.2 we consider the problem of learn-
ing an unknown origin-centered halfspace under the uni-
form distribution onSn−1 in the presence ofmalicious
noise(we give a precise definition of the malicious noise
model in Section 5.2). Recall from Section 1.1 that we
can view agnostic learning with respect to a particular
marginal distributionDX as the problem of learning un-
derDX in the presence of an adversary who may change
the labels of an η fraction of the examples, without
changing the actual distributionDX over examples. In
contrast, in the model of learning undermalicious noise
with respect toDX , roughly speaking the adversary is
allowed to change anη fraction of the labelsand exam-
plesgiven to the learner. As described in Section 5.2 this
is a very challenging noise model in which only limited
positive results are known. We show that by combining
the algorithm of Theorem 3 with a simple preprocessing
step, we can achieve relatively high tolerance to mali-
cious noise:

Theorem 4 There is a simple algorithm for learn-
ing origin-centered halfspaces under the uniform
distribution on Sn−1 to error ǫ in the presence
of malicious noise when the noise rateη is at
most O( ǫ

n1/4 log1/2(n/ǫ)
). The algorithm runs in

poly(n, 1/ǫ, log 1
δ ) time and usesm = O(n2

ǫ2 log n
δ )

many examples.

This is the highest known rate of malicious noise that
can be tolerated in polynomial time for any nontrivial
halfspace learning problem. The preprocessing step can
be viewed as a somewhat counterintuitive form of out-
lier removal – instead of identifying and discarding ex-
amples that lie “too far” from the rest of the data set,
we discard examples that lie toocloseto any other data
point. The analysis of this approach relies on classical
results from sphere packing.

Finally, in Section 5.3 we show that the polynomial
regression algorithm can be applied in non-noisy set-
tings. We obtain a slightly better running time bound
than the algorithm of Klivanset al. [17] for learning an
intersection of halfspaces under the uniform distribution
on{−1, 1}n.

2. Preliminaries

Let D be an arbitrary distribution onX × {−1, 1},
for some setX . LetC be a class of Boolean functions on



→ {− }
error of C to be

err(f) = Pr(x,y)←D[f(x) 6= y], opt = min
c∈C

err(c),

respectively. Roughly speaking, the goal in agnostic
learning of a concept classC is as follows: given ac-
cess to examples drawn from distributionD, we wish to
efficiently find a hypothesis with error not much larger
thanopt. More precisely, we sayC is agnostically learn-
able if there exists an algorithm which takes as input
δ, ǫ, and has access to an example oracleEX(D) and
outputs with probability greater than1 − δ a hypothe-
sish : X → {−1, 1} such thaterr(h) ≤ opt + ǫ. We
sayC is agnostically learnable in timet if its running
time (including calls to the example oracle) is bounded
by t(ǫ, δ, n). If the above only holds for a distributionD
whose margin is uniform overX , we say the algorithm
agnostically learnsC over the uniform distribution. (See
[16] for a detailed description of the agnostic learning
framework.)

A distribution is log-concave if its support is convex
and it has a probability density function whose logarithm
is a concave function fromRn to R.

We assume that our algorithms are givenm exam-
ples(x1, y1), . . . , (xm, ym) drawn independently from
the distributionD overX × {−1, 1}. Thesgn : R →
{−1, 1} function is defined bysgn(z) = 1 if z ≥ 0,
sgn(z) = −1 if z < 0. Lastly, we define the setPd to be
the set of univariate polynomials of degree at mostd.

2.1. Fourier preliminaries and the low-degree al-
gorithm

For S ⊆ [n] the parity functionχS : {−1, 1}n →
{−1, 1} over the variables inS is simply the multilinear
monomialχS(x) =

∏

i∈S xi. The set of all2n par-
ity functions{χS}S⊆[n] forms an orthonormal basis for
the vector space of real-valued functions on{−1, 1}n,
with respect to the inner product(f, g) = E[fg] (here
and throughout Section 2.1 unless otherwise indicated
all probabilities and expectations are with respect to the
uniform distribution over{−1, 1}n). Hence every real-
valued functionf : {−1, 1}n → R can be uniquely
expressed as a linear combination

f(x) =
∑

S⊆[n]

f̂(S)χS(x). (1)

The coefficientŝf(S) = E[fχS ] of the Fourier polyno-
mial (1) are called theFourier coefficientsof f ; collec-
tively they constitute theFourier spectrumof f . We re-
call Parseval’s identity, which states that for every real-
valued functionf we haveE[f(x)2] =

∑

S f̂(S)2. For
Boolean functions we thus have

∑

S f̂(S)2 = 1.

functions under the uniform distribution via their Fourier
spectra was introduced by Linialet al. [20], and
has proved to be a powerful tool in uniform dis-
tribution learning. The algorithm works by empiri-
cally estimating each coefficient̂f(S) ≈ f̃(S) :=
1
m

∑m
j=1 f(xj)χS(xj) with |S| ≤ d from the data,

and constructing the degree-d polynomial p(x) =
∑

|S|≤d f̃(S)χS(x) as an approximation tof . (Note
that the polynomialp(x) is real-valued rather than
Boolean-valued. If a Boolean-valued classifierh is de-
sired, it can be obtained by takingh(x) = sgn(p(x)),
and using the simple factPrD[sgn(p(x)) 6= f(x)] ≤
ED[(p(x) − f(x))2] which holds for any polynomialp,
any Boolean functionf : {−1, 1}n → {−1, 1}, and any
distributionD.)

Let α(ǫ, n) be a functionα : (0, 1/2) × N → N.
We say that concept classC has aFourier concentra-
tion boundof α(ǫ, n) if, for all n ≥ 1, all 0 < ǫ < 1

2 ,

and allf ∈ Cn we have
∑

|S|≥α(ǫ,n) f̂(S)2 ≤ ǫ. The
low-degree algorithm is useful because it efficiently con-
structs a high-accuracy approximator for functions that
have good Fourier concentration bounds:

Fact 1 ([20]) Let C be a concept-class with concentra-
tion boundα(ǫ, n). Then for anyf ∈ C, given data
labeled according tof and drawn from the uniform
distribution onX = {−1, 1}n, the low-degree algo-
rithm outputs, with probability1 − δ, a polynomialp
such thatE[(p(x) − f(x))2] ≤ ǫ and runs in time
poly(nα(ǫ/2,n), log 1

δ ).

The idea behind Fact 1 is simple: if the coefficients of
p were preciselŷf(S) instead off̃(S), then the Fourier
concentration bound and Parseval’s identity would give
∑

|S|≥α(ǫ/2,n) = E[(p(x) − f(x))2] ≤ ǫ/2. The extra
ǫ/2 is incurred because of approximation error in the
estimates̃f(S).

2.2. The low-degree algorithm andL2 polyno-
mial regression

The main observation of this section is that the low-
degree Fourier algorithm of [20] can be viewed as a
special case of least-squares polynomial regression over
uniform distributions on then-dimensional cube.

Let D be a distribution over(x, y) ∈ X × {−1, 1}.
In least-squares (L2) polynomial regression, one attempt
to minimize the following:

min
p∈Pd

ED
[

(p(x) − y)
2
]

≈ min
p∈Pd

1

m

m
∑

j=1

(

p(xj) − yj
)2

.

(2)
Ideally, one would like to minimize the LHS, i.e. find
the best degreed polynomial L2 approximation toy



D
we minimize the right-hand side. In particular, we write
a polynomial as a sum over all degree≤ d monomi-
als, p(x) =

∑

b pb

∏n
i=1(xi)

bi where the sum is over
{b ∈ Z

n|
∑n

i=1 bi ≤ d, ∀i bi ≥ 0}. In turn, this
can be viewed as a standardlinear regression problem
if we expand examplexj into a vector with a coordi-
nate

∏n
i=1(x

j
i )

bi , for each of the≤ nd+1 differentb’s.
Least-squares linear regression, in turn, can be solved by
a single matrix inversion; and thus in general we can ap-
proximate the RHS of the previous displayed equation
in nO(d) time.

Now let us considerL2 polynomial regression in
the uniform distribution scenario whereX = {−1, 1}n,
y = f(x) for some functionf : X → {−1, 1}, and
we have a uniform distributionUX overx ∈ {−1, 1}n.
Sincex2 = 1 for x ∈ {−1, 1}, we may consider only
degree-d multilinear polynomials, i.e. sums of monomi-
als χS(x) =

∏

i∈S xi with S ⊆ [n], |S| ≤ d. Using
Parseval’s identity, it is not difficult to show that best
degreed polynomial is exactly

arg min
p∈Pd

EUX

[

(p(x) − f(x))
2
]

=
∑

S⊆[n]:|S|≤d

f̂(S)χS(x),

wheref̂(S) = EUX [f(x)χS(x)]. Thus in this uniform
case, one can simply estimate each coefficientf̂(S) ≈
1
m

∑m
j=1 f(xj)χS(xj) rather than solving the general

least-squares regression problem; and this is precisely
what the low-degree algorithm does.

In thenonuniformcase, it is natural to consider run-
ning generalL2 polynomial regression rather than the
low-degree algorithm. We do something similar to this
in Section 3, but first we consider theagnosticlearning
properties of the low-degree algorithm in the next sub-
section.

2.3. Using the low-degree algorithm as an agnos-
tic learner

Kearnset al. [16] prove the following statement
about agnostic learning with the low-degree algorithm:

Fact 2 ([16], Corollary 1) Let C be a concept class
with concentration boundα(ǫ, n). Then the low-degree
algorithm agnostically learnsC under the uniform dis-
tribution to error 1

2−(1
2−opt)2+ǫ = 1

4+opt(1−opt)+ǫ

with probability1−δ and in timepoly(nα(ǫ/2,n), log 1
δ ).

This was termed a “weak agnostic learner” in [16] be-
cause as long asopt is bounded away from 1/2, this re-
sulting hypothesis has error bounded from 1/2. How-
ever, the above bound is1/4 for opt = 0. We now show
that if opt is small it can in fact achieve very low error:

C
tration boundα(ǫ, n). Then the low-degree algorithm
agnostically learnsC under the uniform distribution to
error 8opt + ǫ in timenO(α(ǫ/3,n)).

Proof sketch: Let f ∈ C be an optimal func-
tion, i.e. Pr[y 6= f(x)] = opt. As described
above, the low-degree algorithm (approximately) finds
the best degree-d approximationp(x) to the datay, i.e.
minp∈Pd

E[(p(x) − y)2], and the same term represents
the mean squared error ofp. This can be bounded
using an “almost-triangle” inequality fora, b, c ∈ R,
that 1

2 (a − c)2 ≤ (a − b)2 + (b − c)2. Settinga =
∑

|S|<d f̂(S)χS(x), b = f(x), andc = y, we have that
1
2 minp∈Pd

E[(p(x) − y)2] is at most,

E

[

(f(x) − y)2 +
(

∑

|S|<df̂(S)χS(x) − f(x)
)2

]

.

The above can be rewritten as,

1

2
min
p∈Pd

E[(p(x)− y)2] ≤ 4Pr[y 6= f(x)] +
∑

|S|≥d

f̂(S)2.

The first term is4opt and the second is at mostǫ/3 for
d = α(n, ǫ/3). Outputtingh(x) = sgn(p(x)) would
give error,

Pr[sgn(p(x)) 6= y] ≤ E[(p(x) − y)2] ≤ 8opt +
2

3
ǫ.

This leaves an additionalǫ/3 for sampling error.

Another way to state this is that iff and g are
two functions andf has a Fourier concentration bound
of α(ǫ, n), then g satisfies the concentration bound
∑

|S|≥α(n,ǫ) ĝ(S)2 ≤ 8 Pr[f(x) 6= g(x)] + 2ǫ.

3. L1 polynomial regression

Given the setup in Sections 2.2 and 2.3, it is natu-
ral to expect that we will now show that the generalL2

polynomial regression algorithm has agnostic learning
properties similar to those established for the low-degree
algorithm in Observation 3. However, such an approach
only yields error bounds of the formO(opt+ ǫ), and for
agnostic learning our real goal is a bound of the form
opt + ǫ. To achieve this, we will instead useL1 norm,
rather thanL2 norm.

Analogous toL2 regression, inL1 polynomial re-
gression we attempt to minimize:

min
p∈Pd

ED [|p(x) − y|] ≈ min
p∈Pd

1

m

m
∑

j=1

∣

∣p(xj) − yj
∣

∣ . (3)

To solve the RHS minimization problem, again each ex-
ample is expanded into a vector of length≤ nd+1 and an



regression is a well-studied problem [7], and the mini-
mizing polynomialp for the RHS of (3) can be obtained
in poly(nd) time using linear programming. For our
purposes we will be satisfied with an approximate mini-
mum, and hence one can use a variety of techniques for
approximately solving linear programs efficiently.

How doL1 andL2 polynomial regression compare?
In the noiseless case, both (2) and (3) approach 0 at re-
lated rates asd increases. However, in the noisy/agnostic
case, flipping the sign ofy = ±1 changes(p(x)−y)2 by
4p(x) which can potentially be very large; in contrast,
flipping y’s sign can only change|p(x) − y| by 2. On
the other hand, it is often easier to bound theL1 error in
terms of the mathematically convenientL2 error. Thus
while our polynomial regression algorithm works only
with theL1 norm, the performance bound and analysis
depends on theL2 norm.

3.1. The algorithm and proof of correctness

We now give the polynomial regression algorithm
and establish conditions under which it is an agnostic
learner achieving erroropt + ǫ.

L1 polynomial regression(d, m, r):

1. Take examples(x1, y1), . . . , (xm, ym).

2. Find polynomialp of degree≤ d to min-
imize 1

m

∑m
j=1 |p(xj)−yj|. (This can be

done by expanding examples to include
all monomials of degree≤ d and then
performingL1 linear regression, as de-
scribed earlier.)

3. Leth(x) = sgn(p(x) − t) for threshold
t ∈ [−1, 1] chosen uniformly at random.

4. Repeat the above three stepsr times,
each time withm fresh examples, and
output the hypothesis with lowest error
on its own data set.

Theorem 5 Sayminp∈Pd
EDX [(p(x)−c(x))2 ] ≤ ǫ2 for

some degreed, some distributionD overX × {−1, 1}
with marginalDX , and anyc in the concept classC.
Then, with probability1 − δ, usingr = 4 log(2/δ)/ǫ
repetitions ofm = poly(nd/ǫ, log 1/δ) examples each,
the L1 polynomial regression algorithm outputs a hy-
pothesish(x) such that,PrD[h(x) 6= y] ≤ opt + ǫ.

Remark 4 Note that using Theorem 5, a Fourier con-
centration bound ofα(n, ǫ) immediately implies that the
L1 regression algorithm achieves erroropt + ǫ in time
nO(α(n,ǫ2)) for distributionsD with marginalDX that is
uniform on{−1, 1}n. As we will see in the next section,
Theorem 5 can be applied to other distributions as well.

C. Using the triangle inequality andE[|Z|] ≤
√

E[Z2]
for any random variableZ, we see that the quantity
minp∈Pd

ED[|y − p(x)|] is at most:

ED[|y − c(x)|] + min
p∈Pd

ED[|c(x) − p(x)|] ≤ 2opt + ǫ.

This is also an upper bound on the expected empirical
error on any single iteration of steps 1, 2, and 3, i.e.,

E

[

1

m

m
∑

i=1

∣

∣yi − p(xi)
∣

∣

]

≤ 2opt + ǫ.

Next observe that, for anyy ∈ {−1, 1}, z ∈ R,

Prt∈[−1,1][y 6= sgn(z−t)] =

{

1
2 |y − z| |z| ≤ 1
1
2 |y − sgn(z)| |z| > 1

In either case, the right hand side is at most1
2 |y − z|.

Thus, on any single iteration,

E

[ |{i | yi 6= h(xi)}|
m

]

≤ 2opt + ǫ

2
= opt +

ǫ

2
.

By Markov’s inequality, on any single iteration,

Pr

[ |{i | yi 6= h(xi)}|
m

≥ opt +
2ǫ

3

]

≤ opt + ǫ
2

opt + 2ǫ
3

.

WLOG opt + ǫ ≤ 1/2 (otherwise the lemma is trivial),
in which case the above is at most(1 + ǫ/3)−1. Hence,
after 4 log(2/δ)/ǫ repetitions, with probability at most
(1 + ǫ/3)−4 log(2/δ)/ǫ ≤ δ/2 (using(1 + ǫ/3)4/ǫ ≤ 1/e
for ǫ ∈ [0, 1]), one of the repetitions will have empirical
error at most|{i | yi 6= h(xi)}|/m ≤ opt + (2/3)ǫ.

Now, suppose this is the case. Next, note that our
output hypothesis is a halfspace overnd attributes. By
VC theory, form = poly(nd/ǫ, log(2r/δ)), with prob-
ability 1 − δ/(2r), no such halfspace will have general-
ization error more thanǫ/3 larger than its training error.
Taking the union bound over allr repetitions, with prob-
ability 1 − δ, we have error at mostopt + ǫ.

As noted at the very beginning of this section, an
analogousL2 algorithm could be defined to minimize
1
m

∑m
j=1(p(xj)−yj)2 rather than1

m

∑m
j=1 |p(xj)−yj|.

Error guarantees of the formO(opt + ǫ) can be shown
for this L2 algorithm, following the same argument but
again using the “almost-triangle” inequality.

4. Agnostic learning halfspaces and disjunc-
tions via polynomial regression

In this section we sketch how to apply Theorem 5
to prove Theorems 1 and 2.



concept class with a Fourier concentration bound is in
fact agnostically learnable to erroropt+ǫ under the uni-
form distribution on{−1, 1}n. In particular, Theorem 1
1(a) follows immediately from the Fourier concentration
bound for halfspaces of [17]:

Fact 5 [17] The concept classC of all halfspaces
over {−1, 1}n has a Fourier concentration bound of
α(ǫ, n) = 441/ǫ2.

For the uniform distribution onSn−1 and any log-
concave distribution, we can prove the existence of a
good low-degree polynomial as follows. Suppose we
had a good degree-d univariate approximation to the
sign functionpd(x) ≈ sgn(x), and say we have ann-
dimensional halfspacesgn(v · x − θ). Then, sgn(v ·
x − θ) ≈ pd(v · x − θ). Moreover, this latter quantity
is now a degree-d multivariate polynomial. The sense
in which we measure approximations will be distribu-
tional, theL2 error of our multivariate polynomial over
the distributionD. Hence, we need a polynomialpd that
well-approximates the sign function on the marginal dis-
tribution in the directionv, i.e., the distribution over pro-
jections onto the vectorv.

For the uniform distribution on a sphere, the projec-
tion onto a single coordinate is distributed very close to
Gaussian distribution. For a log-concave distribution,
its projection is distributed log-concavely. In both of
these cases, it so happens that the necessary degree to get
approximation errorǫ boils down to a one-dimensional
problem! For the sphere, we can upper-bound the degree
necessary as a function ofǫ using the following for the
normal distributionN(0, 1√

2
) with densitye−x2

/
√

π:

Theorem 6 For anyd > 0 and anyθ ∈ R, there is a
degree-d univariate polynomialpd,θ such that

∫ ∞

−∞
(pd,θ(x)−sgn(x−θ))2

e−x2

√
π

dx = O

(

1√
d

)

. (4)

The complete proof of this theorem, as well as the
analysis of log-concave distributions, is available in the
full version of the paper [13].
Proof sketch: WLOG θ ∈ [0,

√
d]. Forθ >

√
d, it can

be shown that the constant polynomialp(x) = −1 will
be a sufficiently good approximation ofsgn(x− θ). For
θ < 0, an entirely similar proof holds.

We use the Hermite PolynomialsHd, d = 0, 1, . . . ,
(Hd is a degree-d univariate polynomial) which are
a set of orthogonal polynomials given the weighting
e−x2

π−1/2. In particular,

∫ ∞

−∞
Hd1

(x)Hd2
(x)

e−x2

√
π

dx =

{

0 if d1 6= d2

2d1d1! if d1 = d2

polynomials with respect to the inner product〈p, q〉 =
∫∞
−∞ p(x)q(x)e−x2

π−1/2dx. The functionsH̄d(x) =

Hd(x)/
√

2dd! are an orthonormal basis.
Now, the best degreed approximation to the func-

tion sgn(x − θ), in the sense of (4), for anyd, can be
written as

∑d
i=0 ciH̄i(x). Theci ∈ R that minimize (4)

are,

ci =

∫ ∞

−∞
sgn(x − θ)H̄i(x)

e−x2

√
π

dx

=

∫ ∞

θ

H̄i(x)
e−x2

√
π

dx −
∫ θ

−∞
H̄i(x)

e−x2

√
π

dx

= 2

∫ ∞

θ

H̄i(x)
e−x2

√
π

dx (for i ≥ 1) (5)

The last step follows from the fact that
∫∞
−∞ sgn(x −

θ)H̄i(x) e−x2

√
π

dx = 0 for i ≥ 1 by orthogonality ofH̄i

with H̄0. Next, the LHS of (4) is exactly
∑∞

i=d+1 c2
i .

It is straightforward to calculate each coefficientci

using standard properties of the Hermite Polynomials.
It is well known [28] that the Hermite polynomials can
be defined by:Hi(x)e−x2

= (−1)i dn

dxn e−x2

, which im-

plies d
dxHi(x)e−x2

= −Hi+1(x)e−x2

. In turn, this and
(5) imply that fori ≥ 1,

ci =
2√

π2ii!

∫ ∞

θ

Hi(x)e−x2

dx

=
2√

π2ii!

(

−Hi−1(x)e−x2
)
∣

∣

∣

∞

θ

=
2√

π2ii!
Hi−1(θ)e

−θ2

. (6)

To show that
∑∞

i=d+1 c2
i = O(1/

√
d), it suffices that

c2
i = O(i−3/2). This follows from (6) and Theorem 1.i

of [5], for θ <
√

d.

We note that thenO(1/ǫ2)-time, O(opt + ǫ)-error
analogues of Theorem 1, part 1, mentioned in Sec-
tion 1.3 follows from Fact 5 and Theorem 6 using theL2

analogue of the polynomial regression algorithm men-
tioned at the end of Section 3. The improved time bound
comes from the fact that we no longer need to invoke
E[|Z|] ≤

√

E[Z2] to bound the square loss, since we
are minimizing the square loss directly rather than the
absolute loss.

4.1. Agnostically Learning Disjunctions under
Any Distribution

We can use the polynomial regression algorithm to
learn disjunctions agnostically with respect to any dis-
tribution in subexponential time. We make use of the



proximate the OR function in theL∞ norm:

Theorem 7 [26, 24, 17] Letf(x1, . . . , xn) compute the
OR function on some subset of (possibly negated) input
variables. Then there exists a polynomialp of degree
O(

√
n log(1/ǫ)) such that for allx ∈ {−1, 1}n, we

have|f(x) − p(x)| ≤ ǫ.

For ǫ = Θ(1) this fact appears in [26, 24]; an easy
extension to arbitraryǫ is given in [17]. Theorem 2
follows immediately from Theorems 7 and Theorem 5,
since for any distributionD the L∞ bound given by
Theorem 7 clearly implies the bound on expectation re-
quired by Theorem 5.

We note that some existence results are known
for low-degreeL∞-approximators of richer concept
classes than just disjunctions. For example, results of
O’Donnell and Servedio [25] show that any Boolean
function f : {−1, 1}n → {−1, 1} computed by a
Boolean formula of linear size and constant depth isǫ-
approximated in theL∞ norm by a polynomial of degree
Õ(

√
n) ·poly log 1

ǫ . By combining Theorem 5 with such
existence results, one can immediately obtain arbitrary-
distribution agnostic learning results analogous to The-
orem 2 for those concept classes as well.

5. Extensions and Other Applications

5.1. Learning halfspaces over the sphere with the
degree-1 version of the polynomial regres-
sion algorithm

Let us return to the case, where the marginal dis-
tribution DX is uniform overSn−1, and now consider
the d = 1 version of theL2 polynomial regression al-
gorithm. In this case, we would like to find the vector
w ∈ R

n that minimizesEDX [(w · x − y)2]. By dif-
ferentiating with respect towi and using the fact that
E[xi] = E[xixj ] = 0 for i 6= j andE[x2

i ] = 1
n , we see

that the minimum is achieved atwi = 1
nE[xiyi].

This is essentially the same as the simpleAverage
algorithm which was proposed by Servedio in [27] for
learning origin-centered halfspaces under uniform in
the presence of random misclassification noise. The
Average algorithm draws examples until it has a sam-
ple of m positively labeled examplesx1, . . . , xm, and
then it returns the hypothesish(x) = sgn(v · x) where
v = 1

m

∑m
i=1 xi is the vector average of the positive ex-

amples. The intuition for this algorithm is simple: if
there were no noise then the average of the positive ex-
amples should (in the limit) point exactly in the direction
of the target normal vector.

A straightforward application of the bounds from
Section 3 and Section 4 implies only that the degree-1

fixed constant accuracyΘ(1) independent ofopt for
agnostic learning halfspaces under the uniform distri-
bution on Sn−1. However, a more detailed analysis
shows that the simpleAverage algorithm does surpris-
ingly well, in fact obtaining a hypothesis with error rate
O(opt

√

log(1/opt)) + ǫ; this is Theorem 3. The proof
is available in the full version of the paper [13].

5.2. Learning halfspaces in the presence of mali-
cious noise

We now consider the problem of PAC learning an
unknown origin-centered halfspace, under the uniform
distribution onSn−1, in the demandingmalicious noise
modelintroduced by Valiant [30] and subsequently stud-
ied by Kearns and Li [15] and many others.

We first define the malicious noise model. Given a
target functionf and a distributionD over X , a ma-
licious example oracle with noise rateη is an oracle
EXη(f,D) that behaves as follows. Each time it is
called, with probability1 − η the oracle returns a noise-
less example(x, f(x)) wherex is drawn fromD, and
with probability η it returns a pair(x, y) about which
nothing can be assumed; in particular such a “mali-
cious” example may be chosen by a computationally un-
bounded adversary which has complete knowledge of
f, D, and the state of the learning algorithm when the
oracle is invoked. We say that an algorithmlearns to
error ǫ in the presence of malicious noise at rateη un-
der the uniform distributionif it satisfies the following
condition: given access toEXη(f,U) with probability
1 − δ the algorithm outputs a hypothesish such that
Prx∈U [h(x) 6= f(x)] ≤ ǫ.

Only few positive results are known for learning
in the presence of malicious noise. Improving on
[30, 15] Decatur [8] gave an algorithm to learn disjunc-
tions under any distribution that tolerates a noise rate
of O( ǫ

n ln 1
ǫ ). More recently, Mansour and Parnas stud-

ied the problem of learning disjunctions under product
distributions in an “oblivious” variant of the malicious
noise model [23], giving an algorithm that can tolerate
a noise rate ofO(ǫ5/3/n2/3). We note that the Percep-
tron algorithm can be shown to tolerate malicious noise
at rateO(ǫ/

√
n) when learning an origin-centered half-

space under the uniform distributionU onSn−1.
It is not difficult to show that the simpleAverage

algorithm can also tolerate malicious noise at rate
O(ǫ/

√
n) (see the full version [13] for the proof). We

now show that by combining theAverage algorithm
with a simple preprocessing step to eliminate some
noisy examples, we can handle a higher malicious noise
rate of Ω( ǫ

(n log n)1/4
). This algorithm, which we call

TestClose , is the following:



U
O(n2

ǫ2 log n
δ ) positively labeled examples have been

received; letS = {x1, . . . , xm} denote this set of
examples.

2. Let ρ =
√

C
n log m

δ , whereC is a fixed constant

specified later. If any pair of examplesxi, xj with
i 6= j has‖xi − xj‖ <

√
2 − ρ, removexi and

xj from S. (We say that such a pair of examples
is too close.) Repeat this until no two examples in
S are too close to each other. LetS′ denote this
“reduced” set of examples.

3. Now runAverage onS′ to obtain a vectorv, and
return the hypothesish(x) = sgn(v · x).

The idea behind this algorithm is simple. If there
were no noise, then all examples received by the al-
gorithm would be independent uniform random draws
from Sn−1, and it is not difficult to show that with very
high probability no two examples would be too close to
each other. Roughly speaking, the adversary controlling
the noise would like to causev to point as far away from
the true target vector as possible; in order to do this his
best strategy (if we were simply running theAverage
algorithm on the original data setS without discard-
ing any points) would be to have all noisy examples
be located at some single particular pointx⋆ ∈ Sn−1.
However, our “closeness” test rules out this adversary
strategy, since it would certainly identify all these col-
located points as being noisy and discard them. Thus
intuitively, in order to fool our closeness test, the ad-
versary is constrained to place his noisy examples rela-
tively far apart onSn−1 so that they will not be identified
and discarded. But this means that the noisy examples
cannot have a very large effect on the average vectorv,
since intuitively placing the noisy examples far apart on
Sn−1 causes their vector average to have small magni-
tude and thus to affect the overall averagev by only a
small amount. The actual analysis in the proof of The-
orem 4, in the full version [13], uses bounds from the
theory of sphere packing inRn to make these intuitive
arguments precise.

5.3. Revisiting learning intersections of halfs-
paces

Learning an intersection of halfspaces is a chal-
lenging and well-studied problem even in the noise-free
setting. Klivanset al. [17] showed that the standard
low-degree algorithm can learn the intersection ofk
halfspaces with respect to the uniform distribution on
{−1, 1}n to error ǫ in time nO(k2/ǫ2), provided that
ǫ < 1/k2. Note that because of the requirement onǫ,

the desired final error isǫ = Θ(1) independent ofk.
We can use the polynomial regression algorithm to

obtain a the following runtime bound for learning an
intersection ofk halfspaces under the uniform distribu-
tion on{−1, 1}n. The new bound is better than [17] for
ǫ > 1

k :

Theorem 8 Let f = h1 ∧ . . . ∧ hk be an intersection
of k halfspaces over{−1, 1}n. Thenf is learnable with
respect to the uniform distribution over{−1, 1}n in time
nO(k4/ǫ2) for anyǫ > 0.

We note that a comparable bound can also be ob-
tained via a boosting-based algorithm similar to one
given in recent work due to Jackson et al. [12]. Our
approach via the polynomial regression algorithm shows
that agnostic learning can have applications even in non-
noisy settings.

6. Directions for Future Work

There are many natural ways to extend our work.
One promising direction is to try to develop a broader
range of learning results over the sphereSn−1 using the
Hermite polynomials basis, in analogy with the rich the-
ory of uniform distribution learning that has been devel-
oped for the parity basis over{−1, 1}n. Another natural
goal is to gain a better understanding of the distributions
and concept classes for which we can use the polynomial
regression algorithm as an agnostic learner. Is there a
way to extend the analysis of thed = 1 case of the poly-
nomial regression algorithm (establishing Theorem 3)
to obtain a stronger version of Theorem 1, Part 1(b)?
Another natural idea would be to use the “kernel trick”
with the polynomial kernel to speed up the algorithm.
Finally, we intend to explore whether the polynomial
regression algorithm can be used for other challenging
noisy learning problems beyond agnostic learning, such
as learning with malicious noise.
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