
Learning DNF from Random Walks

Nader Bshouty
Department of Computer Science

Technion
bshouty@cs.technion.ac.il

Elchanan Mossel∗

Department of Statistics
University of California, Berkeley

mossel@microsoft.com

Ryan O’Donnell†

Department of Mathematics
MIT

odonnell@theory.lcs.mit.edu

Rocco A. Servedio‡

Department of Computer Science
Columbia University

rocco@cs.columbia.edu

Abstract

We consider a model of learning Boolean functions from examples generated by a uniform
random walk on {0, 1}n. We give a polynomial time algorithm for learning decision trees and
DNF formulas in this model. This is the first efficient algorithm for learning these classes in a
natural passive learning model where the learner has no influence over the choice of examples
used for learning.

∗Supported by a Miller Postdoctoral Fellowship.
†Supported by NSF grant 99-12342.
‡Supported by an NSF Mathematical Sciences Postdoctoral Fellowship and by NSF grant CCR-98-77049. Most

of this research was performed while at Harvard University.

1 Introduction

1.1 Motivation

One of the most notorious open questions in computational learning theory is whether it is possible
to efficiently learn Boolean formulas in disjunctive normal form, or DNF, from random examples.
This question was first posed by Valiant [33] in his seminal paper which formalized the Prob-
ably Approximately Correct (PAC) model of learning from independent random examples, and
has remained stubbornly open ever since. DNF formulas achieve an attractive balance between
expressiveness and clarity: any Boolean function can be represented by a sufficiently large DNF,
yet DNF formulas are easily understood by humans and seem to be a natural form of knowledge
representation.

Provably correct and efficient algorithms for learning DNF from random examples would be a
powerful tool for the design of learning systems, and over the past two decades many researchers
have sought such algorithms. Despite this intensive effort, the fastest algorithms to date for learning
polynomial size DNF formulas in Valiant’s original PAC model of learning (where the learner
receives independent examples drawn from an arbitrary probability distribution over {0, 1}n) run

in time 2Õ(n1/3) [24]. Even if we only consider learning under the uniform distribution, the fastest
known algorithms for learning polynomial size DNF from independent uniform examples run in
time nO(log n) [34].

Since learning DNF formulas from random examples seems to be hard, researchers have con-
sidered alternate models which give more power to the learning algorithm. The most popular of
these is the model of learning from membership queries; in this model the learner has access to a
black-box oracle for the function to be learned and thus can determine the value of the function
on any inputs of its choice. Several polynomial time algorithms have been given for learning in
this enhanced model. Kushilevitz and Mansour [26] gave a polynomial time membership query
algorithm which can learn any polynomial size decision tree under the uniform distribution (i.e.,
the error of the final hypothesis is measured with respect to the uniform distribution on {0, 1}n).
Building on the work of [26], Jackson [19] gave a polynomial time algorithm for learning polynomial
size DNF formulas under uniform using membership queries.

While learning from membership queries is interesting in its own right, it represents a significant
departure from traditional “passive” models of learning (such as the PAC model) in which the
learning algorithm has no control over the data which it receives; the assumption that a learning
algorithm can actively make queries is a strong one which may limit the usefulness of membership
query learning algorithms. Thus an important goal is to design efficient algorithms for learning
DNF formulas in natural “passive” learning models. Towards this end, researchers have considered
several alternatives to the standard uniform distribution PAC model of learning from independent
uniform random examples. Bshouty and Jackson [9] defined a model where the learner can access
a uniform quantum superposition of all labelled examples, and showed that DNF formulas can be
efficiently learned in this framework. More recently Bshouty and Feldman [2] showed that DNF can
be efficiently learned in a model called SQ-Dρ, which is intermediate in power between standard
uniform distribution learning and uniform distribution learning with membership queries; in this
model the learner is allowed to make statistical queries about the target function under product
distributions of the learner’s choosing. While Bshouty and Feldman showed that this model is
strictly weaker than the membership query model, it is still an “active” learning model since the
learner selects the various distributions which will be used.

1

1.2 Our results: learning from random walks

We consider a natural variant of the standard uniform distribution PAC learning model, called the
(Uniform) Random Walk model. In this model the learner’s examples are not generated indepen-
dently, but are produced sequentially according to a random walk on the Boolean hypercube (we
give a precise definition of the model in Section 2.1). Such learning models have been previously
studied [1, 14, 3] but no strong learning results were known. In contrast, we prove that DNF
formulas are efficiently learnable in this model. Our main theorem is the following:

Theorem 1 The class of s-term DNF formulas on n variables can be learned in the Random Walk
model to accuracy ε and confidence 1 − δ in time poly(n, s, 1/ε, log(1/δ)).

(We note that another class of functions which has been widely studied in learning theory is the
class of Boolean decision trees [8, 12, 26]. Since any decision tree of size s can be expressed as an
s-term DNF, all of our results for learning DNF formulas immediately imply corresponding results
for learning decision trees.) Our results give the first efficient algorithm for learning expressive
classes of Boolean functions in a natural passive model of learning from random examples only.

We also introduce another learning model which we call the Noise Sensitivity model. We prove
that DNF formulas can be efficiently learned in the Noise Sensitivity model as well. Since the
Random Walk model can simulate the Noise Sensitivity model but the converse does not seem to
be true, the Noise Sensitivity model is the weakest model in which we can learn DNF efficiently.

1.3 Previous Work

Variants of PAC learning in which the examples are not i.i.d., but rather are generated according
to a stochastic process, were first studied by Aldous and Vazirani [1]. Despite being quite natural,
these models have not been studied as intensively as other variants of PAC learning. Gamarnik [14]
studied learning under stochastic processes but focused mainly on sample complexity and gener-
alization error and did not give algorithms for learning specific concept classes. Bartlett, Fischer,
and Höffgen [3] introduced the Random Walk model which we consider, which is arguably the sim-
plest and most natural model of learning under a stochastic process. Bartlett et al. gave learning
algorithms in the Random Walk model for some simple concept classes, namely Boolean threshold
functions in which each weight is 0 or 1, parities of two monotone conjunctions, and DNF formulas
with two terms.

2 Preliminaries

Throughout this paper TRUE and FALSE will be denoted by −1 and +1 respectively, so the n-
dimensional Boolean hypercube is {+1,−1}n. Since we will be dealing with random walks, we will
refer to two different ways of altering a bit in a bit string. Flipping a bit xi ∈ {+1,−1} shall mean
replacing xi with −xi; updating the bit xi shall mean replacing xi with a uniformly random bit
(equivalently, flipping it with probability 1

2).

2.1 Learning models

Our learning models are based on the widely-studied uniform-distribution version of Valiant’s
“Probably Approximately Correct” (PAC) model [33] (see e.g. [4, 6, 7, 11, 10, 17, 16, 19, 20,
21, 22, 23, 27, 28, 30, 31, 32, 34, 35] and the references therein).

2

In uniform-distribution PAC learning, a learning problem is identified with a concept class
C = ∪n≥1Cn, which is simply a collection of Boolean functions, each f ∈ Cn being a function
{+1,−1}n → {+1,−1}. The goal of a learning algorithm A for C is to identify an unknown target
function f ∈ C by using random examples from this function only. Algorithm A takes as input an
accuracy parameter ε and a confidence parameter δ; it also has access to an example oracle EX(f)
for the target function. Each time it is queried, EX(f) generates a point x ∈ {+1,−1}n and provides
the learning algorithm with a labeled example 〈x, f(x)〉. The output of A is a hypothesis h, which
is a Boolean function h : {+1,−1}n → {+1,−1} (in the form of, say, a circuit). The hypothesis h
is said to be ε-close to f if Pr[h(x) = f(x)] ≥ 1 − ε for x drawn from the uniform distribution. We
say that A is a learning algorithm for C if for all f ∈ C, when A is run with example oracle EX(f),
with probability at least 1− δ it outputs a hypothesis which is ε-close to f . Here the probability is
over the random examples A receives from the oracle, and also over any internal randomness of A.

The measure of A’s efficiency is its running time; this includes both the time which A takes
to construct its hypothesis h and the time required to evaluate h on an input x ∈ {+1,−1}n. In
general we consider A’s running time as a function of n, ε−1, log(1/δ), and a size parameter s for
the concept class. For the class of DNF formulas, s is the number of terms in the DNF; for the
class of decision trees, s is the number of nodes in the tree.

Since uniform-distribution PAC learning seems to be difficult, relaxed models have also been
considered. One common relaxation is to allow the learner to make membership queries. In the
membership query model the learner has access to a membership oracle MEM(f) which, on input
x ∈ {+1,−1}n, returns the value f(x). This clearly gives the learner quite a bit of power, and
departs from the traditional passive nature of learning from random examples.

We consider a different natural relaxation of the uniform-distribution PAC learning model,
which we call the (Uniform) Random Walk model. The Random Walk model uses an oracle RW(f)
which does not produce i.i.d. examples. Instead, the first point which RW(f) provides to the
learning algorithm is uniformly random; succeeding points are given by a uniform random walk
on the hypercube {+1,−1}n. That is, if the tth example given to the learner is 〈x, f(x)〉, then
the (t + 1)st example will be 〈x′, f(x′)〉, where x′ is chosen by flipping a uniformly chosen random
bit of x. Note that the Random Walk model is a passive model of learning; the learner sees only
randomly generated examples and has no control over the data used for learning.

For completeness we remind the reader that an s-term DNF formula is an s-way OR of ANDs
of Boolean literals. A decision tree is a rooted binary tree which is full (each internal node has 0 or
2 children) and which has each internal node labelled with a variable from x1, . . . , xn and each leaf
labelled with a bit from {+1,−1}. Such a tree represents a Boolean function in the obvious way.

2.2 Fourier analysis

Fourier analysis of Boolean functions is a useful tool in uniform distribution learning. From this
perspective Boolean functions are viewed as real-valued functions f : {+1,−1}n → R which happen
to have range {+1,−1}. (For our analysis we will also consider non-Boolean functions on {+1,−1}n

which do not map to {+1,−1}.)
For a set S ⊆ [n], let χS : {+1,−1}n → {+1,−1} be the parity function χS(x) =

∏

i∈S xi. We
sometimes write χS = xS . Since E[χ∅] = 1, E[χS] = 0 for S 6= ∅, and χSχT = χS∆T (where ∆
denotes symmetric difference), the set of functions {χS}S⊆[n] is an orthonormal basis for the vector

space of functions {+1,−1}n → R. We call f̂(S) = E[f(x)χS(x)] the S Fourier coefficient of f
and f =

∑

S⊆[n] f̂(S)χS the Fourier expansion of f . By a small abuse of language, we call f̂(S) a
Fourier coefficient of degree |S|.

We will consider various norms of f . We write ||f ||p to denote E[|f(x)|p]1/p for p ≥ 1, and

3

we write ||f ||∞ to denote maxx∈{+1,−1}n |f(x)|. Parseval’s well known identity says that ||f ||2 =
∑

S⊆[n] f̂(S)2. Note that Boolean functions f : {+1,−1}n → {+1,−1} have ||f ||p = 1 for all p.
Finally, we will often need to estimate the value of a bounded random variable to within some

additive accuracy. Standard tail bounds imply that if X is a random variable such that |X| < c
and λ > 0, then with O(c2 log(1/δ)/λ2) draws from X we can estimate E[X] to within ±λ with
probability at least 1 − δ.

3 The Random Walk model

In this section we make some straightforward but useful observations about how the Random Walk
model compares with other learning models.

We first observe that having access to membership queries is at least as powerful as having
examples generated from a random walk. In fact, one can show that uniform-distribution learning
with membership queries is strictly easier than learning in the Random Walk model, under a
standard cryptographic assumption (see Appendix A for the proof):

Proposition 2 If one-way functions exist then there is a concept class C which is learnable in
polynomial time under the uniform distribution with membership queries, but is not learnable in
polynomial time in the Random Walk model.

We next describe a slight variation on the Random Walk oracle RW(f) which is of equivalent
power. We call this variant the updating Random Walk oracle. In the updating Random Walk
oracle, the first example given to the learner is again uniformly random, but each succeeding
example is given by updating the previous one, and announcing the bit updated. That is, if the tth
example given to the learner is 〈x, f(x)〉, then for the (t + 1)’st example, the updating oracle picks
i ∈ [n] uniformly at random, forms x′ by updating the ith bit of x, and tells the learner 〈i, x′, f(x′)〉.
Note that with probability 1

2 we have x = x′ and the learner gains no new information.
It is easy to see that the usual Random Walk oracle and the updating oracle are of equivalent

power. The updating oracle can trivially simulate the usual oracle with only constant factor slow-
down. The reverse simulation is also easy. Given access to the original Random Walk oracle, to
simulate the updating oracle the learner first tosses a fair coin. On heads, it draws a new example
from the standard Random Walk oracle, noting which input bit was flipped. On tails, it chooses
a random bit position i and pretends that the updating oracle announced that the ith bit was
updated but did not change. We will pass freely between these two versions of the Random Walk
oracle; RW(f) will denote the original Random Walk oracle unless otherwise specified.

Finally, we note that learning under Random Walks is at least as easy as PAC learning under
the uniform distribution. To see this we need only note that a learner with access to the Random
Walk oracle RW(f) can simulate access to i.i.d. uniform examples. This is because the updating
random walk on the hypercube mixes rapidly; if a learner discards O(n log n) successive examples
from the updating oracle, then the next example will be uniformly random and independent of all
previous examples.1

1Strictly speaking, the example will only be very nearly independent and uniformly random; more precisely we
have that with probability 1−δ the example is independently and uniformly random, where δ goes to 0 exponentially
fast (i.e. we allocate some portion of the confidence parameter δ for this). Throughout this paper all considerations
involving δ are standard and we will frequently gloss over them for clarity.

4

4 The Bounded Sieve

In this section we describe tools previously used to learn decision trees and DNF, and identify those
which we will use for learning under Random Walks.

Kushilevitz and Mansour [26] first gave a polynomial time membership query algorithm for
learning decision trees under the uniform distribution. Their algorithm uses a subroutine (often
called KM), based on the list-decoding algorithm of Goldreich and Levin [15], which finds and esti-
mates all “large” Fourier coefficient of the target function using membership queries. Subsequently
Jackson [19] extended the KM algorithm and combined it with the hypothesis boosting algorithm
of Freund [13] to give the Harmonic Sieve algorithm, which uses membership queries to learn DNF
under the uniform distribution in polynomial time. Bshouty and Feldman [2] later observed that a
certain algorithmic variant of KM, which they called the Bounded Sieve, is all that is necessary for
Jackson’s algorithm to work.

We now define the Bounded Sieve. Performing the Bounded Sieve essentially entails finding all
large, low-degree Fourier coefficients:

Definition 3 Let f : {+1,−1}n → R be a real-valued Boolean function. An algorithm with some
form of oracle access to f is said to perform the Bounded Sieve if, given input parameters θ > 0,
` ∈ [n], and δ > 0, with probability at least 1 − δ it outputs a list of subsets of [n] such that every
set S ⊆ [n] satisfying |S| ≤ ` and f̂(S)2 ≥ θ appears in the list.

Bshouty and Feldman implicitly observe that the following results follow from Kushilevitz-
Mansour [26] and Jackson [19]:

Theorem 4 Let A be an algorithm performing the Bounded Sieve which runs in time t(n, ||f ||∞, θ, `, δ).
Then:

• [26] there is a poly(n, 1/ε, log(1/δ)) · t(n, 1, ε/8s, log(8s/ε), δ) time algorithm which (ε, δ)-
learns n-variable, size-s decision trees using A as a black box and access to independent
uniform random examples for f ; and

• [19] for T = poly(n, s, 1/ε, log(1/δ)), there is a T ·t(n,poly(1/ε), 1/(2s+1), log(s/poly(ε)), δ/T)
time algorithm which (ε, δ)-learns n-variable, s-term DNF formulas using A as a black box
and independent uniform random examples.

We will show that the Bounded Sieve can be performed under the Random Walk model in time
poly(n, ||f ||∞, 1/θ, 2`, log(1/δ)). From this we get Theorem 1: s-term DNF can be learned in the
Random Walk model in time poly(n, s, 1/ε, log(1/δ)).

5 The Bounded Sieve via Noise Sensitivity estimates

The KM algorithm works by estimating certain sums of squares of the Fourier coefficients of the
target function. We show that the Bounded Sieve can be performed in the required time bound
given access to certain weighted sums of squares of Fourier coefficients.

Definition 5 Given f : {+1,−1}n → R, I ⊆ [n], and ρ ∈ (0, 1) a constant, define:

T (I)
ρ (f) =

∑

S⊇I

ρ|S|f̂(S)2. (1)

When f and ρ are clear from context, we write simply T (I).

5

Note that T (I) is monotone in I in the sense that I ⊆ J implies T (I) ≥ T (J). Weighted sums of
squares as in (1) frequently arise in the study of the noise sensitivity of Boolean functions, see e.g.

[5, 29]. In particular, the noise sensitivity of f at 1
2 − 1

2ρ, denoted NS 1
2
− 1

2
ρ(f), equals 1 − 2T

(∅)
ρ (f)

[10, 5, 29].

We show that if T
(I)
ρ (f) can be estimated efficiently then the Bounded Sieve can be performed

efficiently. To prove this we first need a lemma which bounds the sum of T
(I)

ρ (f) over all sets I of
some fixed size:

Lemma 6 For any f : {+1,−1}n → R, 0 ≤ j ≤ n, and ρ ∈ (0, 1), we have
∑

|I|=j T
(I)
ρ (f) ≤

||f ||2∞ρj(1 − ρ)−j−1.

Proof: Writing T (I) = T
(I)
ρ (f), we have:

∑

|I|=j

T (I) =
∑

|I|=j

∑

S⊇I

ρ|S|f̂(S)2

=
∑

|S|≥j

(

|S|

j

)

ρ|S|f̂(S)2

≤
∑

|S|≥j

f̂(S)2
∞
∑

t=j

(

t

j

)

ρt

= ||f ||22ρ
−1

(

ρ

1 − ρ

)j+1

≤ ||f ||2∞ρj(1 − ρ)−j−1,

where the third equality follows from standard generating function identities and the fact that
ρ ∈ (0, 1). 2

We now show how to perform the Bounded Sieve given the ability to estimate T
(I)
ρ (f) for any

fixed ρ ∈ (0, 1):

Theorem 7 Fix ρ ∈ (0, 1). Let B be an algorithm with some form of oracle access to f which

runs in time u(n, ρ, |I|, γ, δ) and, with probability 1− δ, outputs an estimate of T
(I)
ρ (f) accurate to

within ±γ. Then there is an algorithm using black-box access to B and independent uniform random
examples from f which performs the Bounded Sieve in time U · log(1/δ)u(n, ρ, `, ρ`θ/2, δ/U), where
U = poly(n, ||f ||∞, 1/θ, (1 − ρ)−`).

Proof: For simplicity in this proof we assume that all estimates from are correct to within the
desired tolerance; the full analysis for δ is standard and is omitted.

Consider the directed graph on all subsets of [n] in which there is an edge from I to J if I ⊂ J
and |J \ I| = 1. The nodes I are divided into n layers according to the value of |I|. Our Bounded
Sieve algorithm for f performs a breadth-first search on this graph, starting at the node I = ∅.
For each active node in the search, the algorithm estimates T (I) to within ±ρ`θ/2 and f̂(I)2 to
within ±θ/2. The first estimate uses B and takes time u(n, ρ, |I|, ρ`θ/2). The second estimate is
performed via empirical sampling using independent uniform random examples from f and takes
time poly(n, ||f ||∞, 1/θ). If the estimate of f̂(I)2 has magnitude at least θ/2 then the algorithm
adds I to the list of f ’s large Fourier coefficients. Thus if f̂(I)2 ≥ θ then I will certainly be added
to the list.

6

The breadth-first search proceeds to the neighbors of I only if |I| < ` and the estimate of T (I)
is at least ρ`θ/2. The proof is complete given two claims: first, we claim the algorithm finds all
Fourier coefficients f̂(S) with f̂(S)2 ≥ θ and |S| ≤ `; and second, we claim the algorithm ends its
search after visiting at most poly(||f ||∞, 1/θ, (1 − ρ)−`) sets I.

For the first claim, note that if |S| ≤ ` and f̂(S)2 ≥ θ, then this Fourier coefficient contributes
at least ρ`θ to the value of T (I) for all I ⊆ S. Thus by the monotonicity of T , the search will
proceed all the way to S.

For the second claim, note that by Lemma 6, the number of “active nodes” at layer j in the
breadth-first search can be at most:

||f ||2∞ρj(1 − ρ)−j−1

ρjθ/2
= 2||f ||2∞θ−1(1 − ρ)−j−1.

Since j is never more than `, the total number of nodes the breadth-first search ever encounters is
at most 2||f ||2∞θ−1(1 − ρ)−(`+1) = poly(||f ||∞, 1/θ, (1 − ρ)−`), as claimed. 2

By combining Theorems 4 and 7, we get:

Corollary 8 If there is an algorithm B with some form of oracle access to f : {+1,−1}n → R

which, for some ρ ∈ (0, 1), can with probability 1 − δ estimate T
(I)
ρ (f) to within ±γ in time

poly(n, ||f ||∞, 1/γ, [ρ(1− ρ)]−|I|, δ), then s-term DNF on n-variables can (ε, δ)-learned using black-
box access to B and independent uniform random examples from f in time poly(n, sc0 , ε−c0 , log(1/δ)),
where c0 = − log(ρ(1 − ρ)).

6 Estimating T
(I)

ρ (f) via Random Walks

To complete the proof of Theorem 1, we need to show how to estimate T
(I)
ρ (f) as in Corollary 8 for

some constant ρ ∈ (0, 1) under the Random Walk model. This is done in the following theorem:

Theorem 9 Let f : {+1,−1}n → R, let I ⊆ [n], and let ρ ∈ (0, 1). Then there is an algorithm

using access to the Random Walk oracle RW(f) which with probability 1 − δ estimates T
(I)
ρ (f) to

within ±γ in time poly(n, ||f ||∞, 1/γ, log(1/δ), log(1/ρ),max{1, (1/ρ − 1)−|I|}).

Proof: Let α = ln(1/ρ), let λ = αn/2, and let M be a Poisson distributed random value with

mean λ; i.e., M is chosen to be m ∈ Z≥0 with probability pm = e−λλm

m! . Note that M = O(λ) =
O(log(1/ρ)n) with very high probability. Let x be a uniform random string in {+1,−1}n, and let y
be obtained by taking a random walk from x of length exactly M . Let T be a random subset of I
chosen by selecting each index in I to be in T independently with probability 1

1+ρ . We claim that:

E
T

E
M,x,y

[(−1)|I\T |xT yT f(x)f(y)] = (1/ρ − 1)|I|
∑

S⊇I

ρ|S|f̂(S)2 = (1/ρ − 1)|I|T (I)
ρ (f). (2)

Note that we can generate the pairs (x, y) and their labels f(x), f(y) using the Random Walk oracle
for f . Since |(−1)|I\T |xT yTf(x)f(y)| ≤ ||f ||2∞, by standard empirical averaging we can estimate

T
(I)

ρ to within ±γ(1/ρ − 1)−|I| in the claimed time bound.
We now prove Equation (2). We begin by analyzing the quantity EM,x,y[xUyV] where U, V ⊆ [n].
Suppose first that U 6= V ; in particular, suppose that i ∈ V \U . Then for each way of choosing

M,x, y, there is a corresponding way to choose M,x, y which differs only in that x and y each
have the ith bit flipped. Since x is chosen uniformly, these two outcomes clearly have the same

7

probability. But since i ∈ V \U , the values of xUyV are opposite in these two outcomes. Pairing up
all outcomes in this way, we have that EM,x,y[xUyV] = 0. A similar argument holds when U \V 6= ∅.

It remains to consider EM,x,y[xUyU] =
∑

m≥0 pmEx,y[(xy)U | M = m]. If we let 1i denote the
random variable which is 1 if the ith step of the random walk is in U , and 0 otherwise, we have
Ex,y[(xy)U | M = m] = E[

∏m
i=1(−1)1i] =

∏m
i=1 E[(−1)1i] = (1 − 2|U |/n)m. Thus EM,x,y[xUyU] =

∑

m≥0 pm(1 − 2|U |/n)m = exp(−λ) · exp(λ(1 − 2|U |/n)) = exp(λ(−2|U |/n)) = ρ|U |.

Now we can analyze Equation (2):

ETEM,x,y[(−1)|I\T |xT yT f(x)f(y)] = ET

(−1)|I\T |
∑

U,V⊆[n]

f̂(U)f̂(V)EM,x,y[xT∆UyT∆V]

=
∑

U⊆[n]

f̂(U)2ET [(−1)|I\T |EM,x,y[xT∆UyT∆U]]

=
∑

U⊆[n]

f̂(U)2ET [(−1)|I\T |ρ|T∆U |]

=
∑

U⊆[n]

f̂(U)2ρ|U |ET

∏

j∈I∩U

−(−ρ)−1j

∏

j∈I\U

−(−ρ)1j

 ,

where for j ∈ I, 1j is the indicator variable for j ∈ T . Note that E[−(−ρ)−1j] = ρ−1

1+ρ + −ρ
1+ρ =

(1/ρ − 1) whereas E[−(−ρ)1j] = ρ
1+ρ + −ρ

1+ρ = 0. Thus ETEM,x,y[(−1)|I\T |xT yTf(x)f(y)] = (1/ρ −

1)|I|
∑

U⊇I ρ|U |f̂(U)2 as claimed. 2

7 Learning DNF in the Noise Sensitivity model

Since we can learn DNF in polynomial time in the Random Walk model, it is natural to ask:
What is the weakest model in which we can learn DNF efficiently (with respect to the uniform
distribution)? Toward this end, we now introduce a new passive model of learning from random
examples, the Noise Sensitivity model.

For each value of ρ ∈ [0, 1] the ρ-Noise Sensitivity example oracle NS-EXρ(f) is defined as
follows. At each invocation, NS-EXρ(f) independently selects a uniform input x ∈ {+1,−1}n,
forms y by flipping each bit of x independently with probability 1

2 − 1
2ρ, and outputs the tuple

〈x, f(x), y, f(y)〉. We note that this oracle is equivalent to an “updating” ρ-Noise Sensitivity oracle
which outputs 〈x, f(x), y, f(y), S〉 where x is independent and uniform over {+1,−1}n, y is formed
by updating each bit of x independently with probability 1− ρ, and S ⊆ [n] is the set of indices of
x which were updated to yield y. This is because the extra information S can be simulated from
access to the usual NS-EXρ(f) oracle: upon receiving 〈x, f(x), y, f(y)〉 from NS-EXρ(f), the learner
constructs S by including each bit position in which x and y differ with probability 1, and including
each other bit position independently with probability 1−ρ

1+ρ . A straightforward calculation shows
that this gives the right distribution.

7.1 Comparison to other models

Let us consider the different learning models obtained by varying ρ. The cases ρ = 0 and ρ = 1
are trivially equivalent to the usual PAC model of learning under the uniform distribution. For
values ρ ∈ (0, 1), learning with NS-EXρ(f) is clearly at least as easy as learning under the uniform

8

distribution. For different constants ρ 6= ρ′ ∈ (0, 1) it seems that the ρ- and ρ′-Noise Sensitivity
models may be of incomparable strength. We will show that DNF can be efficiently learned in the
ρ-Noise Sensitivity model for any constant ρ ∈ (0, 1), and thus learning in each of these models
seems to be strictly easier than learning under the usual uniform distribution PAC model.

We now show that each ρ-Noise Sensitivity model is a weakening of the Random Walk model:

Proposition 10 For any ρ ∈ [0, 1], any ρ-Noise Sensitivity learning algorithm can be simulated in
the Random Walk model with only a multiplicative O(n log n) slowdown in running time.

Proof: Fix ρ ∈ [0, 1]. We show how to simulate the oracle NS-EXρ using the Random Walk model’s
updating oracle. To get an example 〈x, f(x), y, f(y)〉, we first draw O(n log n) examples from the
updating oracle to get to a uniformly random point x; this point and its label f(x) will be the
first part of our NS-EXρ example. We now need to generate a point y which is formed from x by
updating each bit with probability 1−ρ. This is equivalent to drawing a value u ∼ Bin(n, 1−ρ) and
updating a random subset of precisely u of x’s bits. Accordingly, in our simulation we randomly
choose an integer 0 ≤ u ≤ n according to Bin(n, 1 − ρ). We then repeatedly draw examples from
the Random Walk updating oracle until u distinct bit positions have been updated. The resulting
point is distributed as if a random subset of u bit positions had been updated (note that updating
an input position more than once has no extra effect). Therefore, if we call this point y and output
〈x, f(x), y, f(y)〉, then the simulation of NS-EXρ is correct. (Note that even if u is as large as n,
it only takes O(n log n) samples to get a string in which all u = n distinct bit positions of x have
been updated.) 2

7.2 Learning DNF under NS-EXρ

Having shown that the Noise Sensitivity models are no stronger than the Random Walk model, we
now show that for any constant ρ ∈ (0, 1), DNF can be learned efficiently under NS-EXρ.

Theorem 11 Let ρ ∈ (0, 1), let f : {+1,−1}n → R, and let I ⊆ [n]. There is an algorithm

using access to NS-EXρ(f) which with probability 1 − δ estimates T
(I)
ρ (f) to within ±γ in time

poly(n, ||f ||∞, 1/γ, (1 − ρ)−|I|, 2|I|, log(1/δ)).

Proof: Given ρ and I, consider the joint probability distribution D
(I)
ρ defined over pairs of strings

(x, y) ∈ ({+1,−1}n)2 as follows: First x is picked uniformly at random; then y is formed by
updating each bit of x in I with probability 1 and updating each bit of x not in I with probability
1−ρ. We claim that access to pairs from this distribution and their values under f can be simulated
by access to NS-EXρ(f), with slowdown poly((1−ρ)−|I|). This simulation is done simply by calling
the updating version of the NS-EXρ(f) oracle repeatedly until it returns a tuple 〈x, f(x), y, f(y), S〉

which has I ⊆ S. The pair (x, y) thus generated is indeed drawn precisely from D
(I)
γ , and the

overhead of the simulation is poly((1 − ρ)−|I|) with high probability.
Define T ′(I) to be E

(x,y)←D
(I)
γ

[f(x)f(y)]. Since access to NS-EXρ(f) lets us obtain pairs from

D
(I)
ρ and their values under f , we can estimate T ′(I) to within ±ν with probability 1 − δ ′ by

empirical averaging in time poly(n, ||f ||∞, 1/ν, (1 − ρ)−|I|, log(1/δ′)). We now observe that the
quantity T ′(I) is very closely related to T (I); in particular, an argument very similar to the one
used in the proof of Theorem 9 gives the following claim:

Claim 12 T ′(I) =
∑

S∩I=∅ ρ
|S|f̂(S)2.

9

Let us now define T ′′(I) = T ′(∅) − T ′(I); this is also a quantity we can estimate to within
±ν in time poly(n, ||f ||∞, 1/ν, (1 − ρ)−|I|, log(1/δ′)). We have T ′′(I) =

∑

S∩I 6=∅ ρ
|S|f̂(S)2. Thus

if we estimate T ′′(J) for all J ⊆ I, it is straightforward to estimate T (I) =
∑

S⊇I ρ|S|f̂(S)2

using inclusion-exclusion. Since there are only 2|I| subsets J of I, we can take ν = γ/2|I| and
δ′ = δ/2|I| and thus estimate T (I) to within ±γ with probability 1−δ in time poly(n, ||f ||∞, 1/γ, (1−
ρ)−|I|, 2|I|, log(1/δ)), as claimed. 2

Note: We close by observing that for any constant ρ ∈ (0, 1) the ρ-Noise Sensitivity model is
similar to a “partially observable Random Walk” model in which examples are generated as in the
usual Random Walk scenario but the learner is only allowed to observe the location of the random
walk once every C · n steps for some constant C > 0 (depending on ρ). Using techniques similar
to the above, it can be shown that DNF are efficiently learnable in such a partially observable
Random Walk model; we omit the details.

8 Discussion

8.1 Noise tolerance

We observe that our algorithms can tolerate any rate η < 1
2 of random classification noise in

the labelling of examples. More precisely, suppose that in each labelled example received by the
learner the correct label f(x) is corrupted (flipped) with probability η and this possibly noisy label
is instead presented to the learner. A standard analysis shows that our algorithms will still succeed,
at the cost of a poly(1

1−2η) factor slowdown in running time (the number of samples we must use
in order to estimate T (I) to within the desired accuracy will increase by this factor).

8.2 Lower bounds on sample size

Our algorithm uses a random walk sample of size poly(n, s) to learn decision trees or DNF of size
s. We observe here that any Random Walk algorithm for these classes must have a polynomial
sample size dependence on both n and s (the proof is in Appendix B):

Claim 13 Learning the class of DNF expressions of size s (or decision trees of size s) in the
Random Walk model requires sample size Ω(sn

log s).

This is in contrast with the membership query model in which poly(s, log n) queries are sufficient
for a polynomial time algorithm to learn s-term DNF or size-s decision trees under the uniform
distribution [10].

8.3 Questions for further work

An interesting question for further work is whether a broader class of Boolean functions than
polynomial size DNF can be shown to be efficiently learnable in the Random Walks model. Jack-
son’s uniform distribution membership query algorithm for learning DNF can in fact learn any
polynomial-weight threshold-of-parity circuit (sometimes called a TOP) in polynomial time. Since
any s-term DNF on n variables can be expressed as a TOP of weight O(ns2) [19, 25], this class
properly includes the class of polynomial size DNF (the inclusion is proper since DNF formulas
require exponential size to compute the parity function). A direct application of our approach to
majority of parity does not seem to work since the parity functions can be as large as Θ(n). It would
be interesting to devise a stronger algorithm which can efficiently learn an arbitrary polynomial
weight majority of parities using random walks.

10

References

[1] D. Aldous and U. Vazirani. A Markovian extension of Valiant’s learning model. In Proceedings
of the Thirty-First Symposium on Foundations of Computer Science, pages 392–396, 1990.

[2] N. Bshouty andV. Feldman. On using extended statistical queries to avoid membership queries.
Journal of Machine Learning Research, 2:359–395, 2002.

[3] P. Bartlett, P. Fischer, and K.U. Höffgen. Exploiting random walks for learning. In Proceedings
of the Seventh Annual Conference on Computational Learning Theory, pages 318–327, 1994.

[4] M. Bellare. A technique for upper bounding the spectral norm with applications to learning.
In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 62–70,
1992.

[5] I. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of boolean functions and applica-
tions to percolation. Inst. Hautes Études Sci. Publ. Math., 90:5–43, 1999.

[6] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning
DNF and characterizing statistical query learning using Fourier analysis. In Proceedings of the
Twenty-Sixth Annual Symposium on Theory of Computing, pages 253–262, 1994.

[7] D. Boneh and R. Lipton. Amplification of weak learning over the uniform distribution. In
Proceedings of the Sixth Annual Workshop on Computational Learning Theory, pages 347–351,
1993.

[8] N. Bshouty. Exact learning via the monotone theory. Information and Computation,
123(1):146–153, 1995.

[9] N. Bshouty and J. Jackson. Learning DNF over the uniform distribution using a quantum
example oracle. SIAM J. on Computing, 28(3):1136–1153, 1999.

[10] N. Bshouty, J. Jackson, and C. Tamon. More efficient PAC learning of DNF with membership
queries under the uniform distribution. In Proceedings of the Twelfth Annual Conference on
Computational Learning Theory, pages 286–295, 1999.

[11] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions. Journal of the
ACM, 43(4):747–770, 1996.

[12] A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples. Information
and Computation, 82(3):231–246, 1989.

[13] Y. Freund. Boosting a weak learning algorithm by majority. In Proceedings of the Third
Annual Workshop on Computational Learning Theory, pages 202–216, 1990.

[14] D. Gamarnik. Extension of the PAC framework to finite and countable Markov chains. In
Proceedings of the 12th Annual Conference on Computational Learning Theory, pages 308–317,
1999.

[15] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In Proceedings of
the Twenty-First Annual Symposium on Theory of Computing, pages 25–32, 1989.

[16] T. Hancock. The complexity of learning formulas and decision trees that have restricted reads.
PhD thesis, Harvard University, 1992.

11

[17] T. Hancock and Y. Mansour. Learning monotone k-µ DNF formulas on product distributions.
In Proceedings of the Fourth Annual Conference on Computational Learning Theory, pages
179–193, 1991.

[18] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[19] J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the
uniform distribution. Journal of Computer and System Sciences, 55:414–440, 1997.

[20] J. Jackson, A. Klivans, and R. Servedio. Learnability beyond AC0. In Proceedings of the 34th
ACM Symposium on Theory of Computing, 2002.

[21] R. Khardon. On using the Fourier transform to learn disjoint DNF. Information Processing
Letters, 49:219–222, 1994.

[22] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In Proceedings of the
Twenty-Fifth Annual Symposium on Theory of Computing, pages 372–381, 1993.

[23] A. Klivans and R. Servedio. Boosting and hard-core sets. In Proceedings of the Fortieth Annual
Symposium on Foundations of Computer Science, pages 624–633, 1999.

[24] A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). In Proceedings of the Thirty-Third
Annual Symposium on Theory of Computing, pages 258–265, 2001.

[25] M. Krause and P. Pudlak. On the computational power of depth 2 circuits with threshold and
modulo gates. In Proceedings of the Twenty-Sixth Annual Symposium on Theory of Computing,
pages 48–57, 1994.

[26] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. SIAM J.
on Computing, 22(6):1331–1348, 1993.

[27] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and learn-
ability. Journal of the ACM, 40(3):607–620, 1993.

[28] Y. Mansour. An O(nlog log n) learning algorithm for DNF under the uniform distribution.
Journal of Computer and System Sciences, 50:543–550, 1995.

[29] R. O’Donnell. Hardness amplification within NP. In Proceedings of the 34th ACM Symposium
on Theory of Computing, 2002.

[30] Y. Sakai and A. Maruoka. Learning monotone log-term DNF formulas under the uniform
distribution. Theory of Computing Systems, 33:17–33, 2000.

[31] R. Servedio. On PAC learning using Winnow, Perceptron, and a Perceptron-like algorithm.
In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, pages
296–307, 1999.

[32] R. Servedio. On learning monotone DNF under product distributions. In Proceedings of the
Fourteenth Annual Conference on Computational Learning Theory, pages 473–489, 2001.

[33] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

12

[34] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time. In
Proceedings of the Third Annual Workshop on Computational Learning Theory, pages 314–
326, 1990.

[35] K. Verbeurgt. Learning sub-classes of monotone DNF on the uniform distribution. In Pro-
ceedings of the Ninth Conference on Algorithmic Learning Theory, pages 385–399, 1998.

A Proof of Proposition 2

Proof: It is well known that the existence of one-way functions implies the existence of pseudo-
random function families [18]. Let {fs : {+1,−1}n → {+1,−1}}s∈{+1,−1}n be any pseudorandom
function family. For s ∈ {+1,−1}n let gs : {+1,−1}n → {+1,−1} be defined by:

cs(x) =

{

si if x = ei for some i ∈ [n],

fs(x) otherwise.

(Here ei denotes the string (−1, . . . ,−1,+1,−1, . . . ,−1), with the +1 in the ith position.) We will
show that the concept class C = {gs}s∈{+1,−1}n has the desired properties.

It is easy to see that any gs ∈ C can be learned exactly in polynomial time if membership
queries are allowed. The algorithm simply queries e1, . . . , en to learn all bits s1, . . . , sn of s and
outputs a representation of gs. On the other hand, a random walk which proceeds for only poly(n)
steps will with probability 1 − 2−Ω(n) miss all the points ei. A straightforward argument shows
that conditioned on missing all these points, it is impossible to learn gs in polynomial time. (To
see this, note that an algorithm which has oracle access to a pseudorandom function fs can easily
simulate a random walk which misses all ei. Thus if it were possible to learn gs in polynomial time
from a random walk conditioned on missing all ei, it would be possible to learn the class {fs} given
oracle access to fs. But this is easily seen to contradict the definition of a pseudorandom function
family.) 2

B Proof of Claim 13

We suppose that the target function is selected uniformly at random from the set of all 2s Boolean
functions which depend only on bits x1, . . . , xlog s. (Note that each such function has a DNF of size
s and a decision tree of size s). We will show that with very high probability a random walk of
fewer than sn

24 log s steps will realize at most s/4 of the s possible settings for the first log s variables.
Since the target function is randomly selected as described, any hypothesis has expected error (over
the choice of the random target) exactly 1/2 on all unseen settings. Thus conditioned on at most
s/4 of the settings having been seen, with very high probability the hypothesis has error at least
1/3 on the unseen settings (which have probability weight at least 3/4), so the overall error rate is
at least 1/4.

Thus it suffices to prove the following fact: a random walk of sn
24 log s steps on {0, 1}n will with

probability at least .99 realize at most s/4 settings of the first log s bits. But this is easily seen:
the expected number of times that such a walk flips one of the first log s bits is is s/24, so a
standard Chernoff bound implies that such a walk flips at most s/4 bits with probability at most
2−s/4 < 0.01.

13

