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Abstract

We give the first polynomial time algorithm to learn any function of a constant number of

halfspaces under the uniform distribution on the Boolean hypercube to within any constant er-

ror parameter. We also give the first quasipolynomial time algorithm for learning any Boolean

function of a polylog number of polynomial-weight halfspaces under any distribution on the

Boolean hypercube. As special cases of these results we obtain algorithms for learning inter-

sections and thresholds of halfspaces. Our uniform distribution learning algorithms involve a

novel non-geometric approach to learning halfspaces; we use Fourier techniques together with a

careful analysis of the noise sensitivity of functions of halfspaces. Our algorithms for learning

under any distribution use techniques from real approximation theory to construct low-degree

polynomial threshold functions. Finally, we also observe that any function of a constant number

of polynomial-weight halfspaces can be learned in polynomial time in the model of exact learning

from membership and equivalence queries.
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1 Introduction

Let h be a hyperplane in Rn, i.e. h = {x :
∑n

i=1 wixi = θ}. Such a hyperplane naturally induces a
Boolean function f(x) = sgn(

∑n
i=1 wixi − θ) which is called a linear threshold function or simply

a halfspace. Learning an unknown halfspace from labeled data is one of the oldest problems in
machine learning, dating back to the 1950s [14, 45]. This problem has been intensively studied over
the years, and as described in Section 2.3 efficient algorithms are now known for several different
learning models.

While the problem of learning a single halfspace is fairly well understood, learning more compli-
cated functions which depend on several halfspaces seems to be quite difficult; in particular learning
an intersection of several unknown halfspaces stands as a central open problem in computational
learning theory. Intersections of halfspaces are attractive for many reasons: any convex body can
be expressed as an intersection of halfspaces, and several well-studied classes of Boolean functions
such as DNF formulas can be naturally viewed as special cases of intersections of halfspaces over
the Boolean cube. Finally, we hope that learning an intersection (AND) of halfspaces will be a first
step towards learning richer and more expressive functions of halfspaces.

1.1 Previous Work

Given the apparent difficulty of learning intersections of halfspaces from random examples, several
researchers have considered learning algorithms which are allowed to make membership queries for
the value of the unknown function at points of the algorithm’s choice. Building on work of Blum et.
al. [17] and Baum [7], Kwek and Pitt [34] have given a membership query algorithm for learning the
intersection of k halfspaces in Rn (with respect to any probability distribution) in time polynomial
in n and k.

Progress has been much more limited for learning intersections of halfspaces from random
examples only; all such results to date require that the examples be drawn from some restricted
class of probability distributions. Baum [8] gave a polynomial time algorithm for learning an
intersection of two origin-centered halfspaces under any “symmetric” distribution (which satisfies
D(x) = D(−x) for all x ∈ Rn). His algorithm is essentially a reduction to the problem of learning a
single halfspace. Building on work of Blum and Kannan [16], Vempala [51] gave a polynomial time
algorithm which can learn an intersection of log n/ log log n halfspaces under “non-concentrated”
distributions on the Euclidean ball in Rn. Vempala’s algorithm uses random sampling to identify
the subspace spanned by the normal vectors of the unknown halfspaces.

Finally, Auer et al. [6] gave an online algorithm to learn depth-two neural networks with
constant fan-in at the hidden nodes, i.e. halfspaces in which each input variable is replaced by
a halfspace which depends on a constant number d of variables. Their algorithm runs in time
poly(nd) but requires some restrictive assumptions on the top-level halfspace. We discuss the
relation between our results and those of Auer et al. at the end of Section 4.1.

1.2 Our Results

We give new results for learning intersections of halfspaces, thresholds of halfspaces, and arbitrary
functions of halfspaces over the Boolean cube. All of our algorithms learn from random exam-
ples only, and we obtain results for learning both from uniformly distributed examples and from
examples drawn from an arbitrary probability distribution over the Boolean hypercube.
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1.2.1 Uniform Distribution Learning

Our main learning result for the uniform distribution is a polynomial time algorithm for learning
any function of any constant number of halfspaces to within any constant error parameter. More
precisely, we prove:

Theorem 1 Let Fk be the class of all Boolean functions g : {+1,−1}k → {+1,−1}, and let Hn

be the class of all linear threshold functions (halfspaces) on {+1,−1}n. The class of all functions
{g(h1(x), . . . , hk(x)) : g ∈ Fk, hi ∈ Hn} can be learned under the uniform distribution to accuracy
ε in time nO(k2/ε2), assuming ε < 1/k2.

For k = O(1) and ε = Ω(1) this time bound is polynomial in n. We note that prior to our work
no polynomial time algorithm was known which could learn even an intersection of two arbitrary
halfspaces under the uniform distribution on {+1,−1}n.

We can substantially improve the dependence on k for the special case of learning a read-once
intersection or majority of halfspaces:

Theorem 2 Let h1, . . . , hk be arbitrary halfspaces on {+1,−1}n which depend on disjoint sets of
variables. The class {h1(x) ∧ h2(x) ∧ · · · ∧ hk(x)} of read-once intersections of k halfspaces can be
learned under the uniform distribution to accuracy ε in time nO(log(k)/ε2), assuming ε < 1/ log k.

Theorem 3 Let h1, . . . , hk be arbitrary halfspaces on {+1,−1}n which depend on disjoint sets of
variables. The class {sgn(h1(x)+h2(x)+ · · ·+hk(x))} of read-once majorities of k halfspaces can be

learned under the uniform distribution to accuracy ε in time nÕ(log(k/ε)/ε4), assuming ε < 1/ log k.1

1.2.2 Learning under Arbitrary Distributions

Our algorithms for learning under arbitrary distributions use different techniques. In this scenario,
our time bounds for learning depend chiefly on two parameters: the number of halfspaces k and
the weight w of each halfspace (i.e. the magnitude of its integer coefficients). Our main learning
result for arbitrary distributions is:

Theorem 4 Let Fk be the class of all Boolean functions g : {+1,−1}k → {+1,−1} and let Hw
n be

the class of all weight-w halfspaces on {+1,−1}n. The class of all functions {g(h1(x), . . . , hk(x)) :
g ∈ Fk, hi ∈ Hw

n } can be learned to accuracy ε under any distribution in time nO(k2 log w)/ε.

Although this time bound can be exponentially large in general, we can learn any function of
polylog(n) many halfspaces of poly(n) weight in quasipolynomial time under any probability dis-
tribution on the Boolean cube.

When we restrict attention to intersections of halfspaces, we can get better time bounds.

Theorem 5 Let h1, . . . , hk be weight-w halfspaces on {+1,−1}n. The class {h1(x) ∧ h2(x) ∧ · · · ∧
hk(x)} of intersections of k weight-w halfspaces can be learned to accuracy ε under any distribution
in time nO(k log k log w)/ε.

This theorem does well for the intersection of a fairly small number of halfspaces of polynomial
weight. For the intersection of a large number of halfspaces of very small weight, we obtain a
different bound:

1Throughout the paper we write Õ(·) to hide factors which are polylogarithmic in the Õ(·)’s argument.
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Theorem 6 Let h1, . . . , hk be weight-w halfspaces on {+1,−1}n. The class {h1(x) ∧ h2(x) ∧ · · · ∧
hk(x)} of intersections of k weight-w halfspaces can be learned to accuracy ε under any distribution
in time nO(

√
w log k)/ε.

Theorems 5 and 6 exhibit a tradeoff between the number of halfspaces k and the weight w of the
halfspaces; as discussed in Section 4 this tradeoff is essentially optimal given our techniques.

We can generalize the bound of Theorem 5 to thresholds of halfspaces:

Theorem 7 Let h1, . . . , h` be weight-w halfspaces on {+1,−1}n and let g be a weight-k halfspace
on {+1,−1}`. The class {g(h1(x), . . . , h`(x))} of weight-k thresholds of weight-w halfspaces can be
learned to accuracy ε under any distribution in time nO(k log k log w)/ε.

Finally, we extend recent results of Klivans and Servedio [32] on learning DNF formulas (ORs
of ANDs) to thresholds of ANDs:

Theorem 8 Let C1, . . . , C` be arbitrary Boolean conjunctions over {+1,−1}n and let g : {+1,−1}` →
{+1,−1} be a weight-w halfspace. The class {g(C1, . . . , C`)} of weight-w thresholds of ANDs can

be learned to accuracy ε under any distribution in time nO(n1/3 log w)/ε.

We thus achieve the same running time bound from [32] for learning DNF formulas while learning
a strictly more expressive class of functions.

1.3 Learning in the Exact Model

We also give results for learning an intersection of k weight-w halfspaces in the model of exact
learning from membership and equivalence queries [4]. Polynomial time algorithms for learning
in this model are known to imply polynomial time algorithms in the PAC model augmented with
membership queries [4].

We show that an intersection of a constant number of polynomial weight halfspaces can be
learned in polynomial time:

Theorem 9 Let h1, . . . , hk be weight-w halfspaces on {0, 1}n. The class {h1(x)∧h2(x)∧· · ·∧hk(x)}
of intersections of k weight-w halfspaces can be learned exactly from membership and equivalence
queries in time poly(n,wk).

More generally, we give a polynomial time algorithm for learning any function of a constant
number of halfspaces:

Theorem 10 Let Fk be the class of all Boolean functions g : {0, 1}k → {+1,−1} and let Hw
n be

the class of all weight-w halfspaces on {0, 1}n. The class of all functions {g(h1(x), . . . , hk(x)) : g ∈
Fk, hi ∈ Hw

n } can be learned exactly from membership and equivalence queries in time poly(n2k
, wk·2k

).

1.4 Our Approach

The techniques we use for learning under the uniform distribution are quite different from those
we use for learning under an arbitrary distribution. In the uniform distribution case, we show tight
concentration bounds for the Fourier spectra of functions of halfspaces; this lets us learn using a
Fourier based sampling algorithm from Linial et al. [35]. In the arbitrary distribution case, we show
how to represent functions of halfspaces as low-degree polynomial threshold functions, which lets
us learn using linear programming.
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1.4.1 Uniform Distribution Learning: Fourier Analysis and Noise Sensitivity

The centerpiece of our uniform-distribution learning algorithms is a new Fourier concentration
bound for functions of halfspaces. Recall that a Fourier concentration bound for a class of functions
C is a statement of the following form: For every function f ∈ C on n inputs, all but an ε fraction
of the Fourier spectrum of f is concentrated on degree up to α(ε, n). Given such a bound, the
“low-degree algorithm” of Linial et al. [35] provides a uniform-distribution learning algorithm for C
running in time nO(α(ε,n)). The main result in [35] is a Fourier concentration bound for the class of
functions expressible by AC

0 circuits, with α(ε, n) = polylog(n/ε). Our new concentration bound
is α(ε, n) = O(k

√
ε) for the class of arbitrary functions of k halfspaces. We also give tighter bounds

for more restricted classes of functions of halfspaces.
Our technique for proving these concentration bounds is to study the noise sensitivity of half-

spaces. The noise sensitivity of a function f is simply the probability that f(x) differs from f(y)
where x is a randomly chosen point and y is a slight perturbation of x. The noise sensitivity of
Boolean functions was studied extensively by Benjamini et al. [12]; they showed that functions with
low noise sensitivity have good Fourier concentration bounds. We prove tight bounds on the noise
sensitivity of halfspaces, and are thus able to get Fourier concentration bounds for various classes
of functions of halfspaces.

1.4.2 Learning under Arbitrary Distributions: Polynomial Threshold Functions

Our results for learning under an arbitrary distribution begin with the fact that a polynomial
threshold function of degree d can be learned in time nO(d). Our contribution is showing that
various classes of functions of halfspaces can be expressed as polynomial threshold functions of
low degree. This technique has previously been used for learning by Klivans and Servedio [32],
who showed that any polynomial-size DNF formula can be represented as a polynomial threshold
function of degree Õ(n1/3). They thus obtained a learning algorithm for DNF which works under

any distribution and runs in time 2Õ(n1/3).
We show that any function of k halfspaces where the sum of the (integer) coefficients of each half-

space is bounded by w can be represented as a polynomial threshold function of degree O(k2 log w).
We prove this using rational function approximation tools which were first used in a complexity
theory context by Beigel et al. [9]. Roughly, we use rational functions which approximate the
function sgn to closely approximate the ±1 output values of our halfspaces. Having done this we
obtain a single polynomial threshold function computing an arbitrary function g of halfspaces by
composing these approximations with an interpolating polynomial for g.

In certain circumstances, we can trade off the dependences on k and w by using extremal
polynomials in place of rational functions. By using Chebychev polynomials (previously used by
Klivans and Servedio [32] and Nisan and Szegedy [41] in a somewhat similar context), we obtain
a polynomial threshold function of degree O(w1/2 log k) computing the intersection of k halfspaces
where the sum of the coefficients of each linear threshold function is at most w.

1.5 Learning in the Exact Model

For learning in the exact model, we observe that the functions to be learned are computed by
polynomial size finite automata. We then simply use known algorithms for learning finite automata
in polynomial time using membership and equivalence queries (see for example [4, 10]).
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2 Preliminaries

2.1 Definitions and learning model

Throughout the paper unless otherwise indicated we represent TRUE and FALSE by −1 and +1
respectively. A linear threshold function or halfspace on {+1,−1}n is a function f : {+1,−1}n →
{+1,−1}, f(x) = sgn(

∑n
i=1 wixi − θ) where w1, . . . , wn, θ ∈ R and sgn(z) = +1 iff z > 0. We say

that w1, . . . , wn, θ represent f ; since the domain is the discrete Boolean cube, every halfspace f has
some representation in which w1, . . . , wn, θ ∈ Z. The weight of f is the smallest integer w for which
there exist a representation w1, . . . , wn, θ ∈ Z with |θ| +∑n

i=1 |wi| = w. The majority function on
inputs x1, . . . , xn is MAJ(x) = sgn(

∑n
i=1 xi).

We use Valiant’s well-studied Probably Approximately Correct (PAC) model of learning Boolean
functions from random examples [50]. In this model a concept class C is a collection ∪n>1Cn of
Boolean functions where each c ∈ Cn is a function on n bits. In the PAC model a learning algorithm
has access to an example oracle EX(c,D) which, when queried, provides a labeled example 〈x, c(x)〉
where x is drawn from distribution D over {+1,−1}n and c ∈ Cn is the unknown target concept
which the algorithm is trying to learn. Given Boolean functions c, h on {+1,−1}n we say that
h is an ε-approximator for c under D if Prx∈D[h(x) = c(x)] > 1 − ε; the goal of a PAC learning
algorithm is to generate an ε-approximator for the unknown target concept c. More precisely, an
algorithm A is a PAC learning algorithm for concept class C if the following condition holds: for
all n > 1, all c ∈ Cn, any distribution D on {+1,−1}n, and any 0 < ε < 1

2 , 0 < δ < 1, if A is
given ε and δ as input and has access to EX(c,D), then with probability at least 1 − δ algorithm
A outputs an ε-approximator for c under D. We say that A PAC learns C in time t if A runs for at
most t time steps and outputs a hypothesis h which can be evaluated on any point x ∈ {+1,−1}n

in time t.
If the above condition holds only for the uniform distribution U on {+1,−1}n, we say that A

is a uniform distribution PAC learning algorithm for C. Uniform distribution PAC learnability of
Boolean functions has been studied by many authors; see, e.g., [11, 15, 19, 20, 21, 25, 26, 27, 28,
29, 30, 31, 35, 38, 46, 47, 48, 52, 53].

All of our learning algorithms, both for the uniform distribution and for arbitrary distributions,
have running time bounds with a log(1/δ) dependence on δ, and hence we typically omit mention
of this dependence.

2.2 Fourier Analysis and Uniform Distribution Learning

We briefly review some facts about Fourier analysis on the Boolean cube and its relation to uniform
distribution learning. For a detailed treatment with proofs see [37].

Let the space {+1,−1}n be endowed with the uniform probability measure, and define an inner
product on functions f, g : {+1,−1}n → R by 〈f, g〉 = E[fg]. For S ⊆ [n] the parity function
χS : {+1,−1}n → {+1,−1} is defined by χS(x) =

∏
i∈S xi. The set of all 2n parity functions

{χS}S⊆[n] forms an orthonormal basis for the vector space of real-valued functions on {+1,−1}n,
and hence every real-valued function f : {+1,−1}n → R can be uniquely expressed as a linear
combination f(x) =

∑
S⊆[n] f̂(S)χS(x). The coefficients f̂(S) are called the Fourier coefficients of

f ; collectively, they are its Fourier spectrum. Orthonormality implies that f̂(S) = 〈f, χS〉 and thus
f̂(S) measures the correlation between f and χS. Orthonormality also implies Parseval’s identity,
which states that for every real-valued function f we have E[f2] =

∑
S⊆[n] f̂(S)2. For Boolean

functions we thus have
∑

S⊆[n] f̂(S)2 = 1.

Let α(ε, n) be a function α : (0, 1
2) × N → N. We say that a concept class C has a Fourier
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concentration bound of α(ε, n) if for all n > 1, all 0 < ε < 1
2 , and all f ∈ Cn we have

∑

S⊆[n],|S|>α(ε,n)

f̂(S)2 6 ε,

i.e. at most an ε fraction of the Fourier spectrum weight resides in coefficients of degree more than
α(ε, n).

An important connection between Fourier analysis and learning theory is the following result,
implicit in [35] (see [37] for a nice exposition and proof):

Fact 11 Let C be a concept class with a Fourier concentration bound of α(ε, n). Then there is a
uniform distribution PAC learning algorithm for C which runs in time nO(α(ε,n)).

2.3 Polynomial Threshold Functions and Learning under Arbitrary Distribu-

tions

A polynomial threshold function is a function f : {+1,−1}n → {+1,−1}, f(x) = sgn(p(x)) where
p(x1, . . . , xn) is a real-valued multivariate polynomial. Equivalently, we say that the polynomial p
sign-represents f. The degree of a polynomial threshold function is the degree of the polynomial p.
Note that a linear threshold function is a polynomial threshold function of degree one.

The following fact is well known (see [18]):

Fact 12 The concept class of linear threshold functions over {+1,−1}n can be PAC learned under
any distribution in time poly(n)/ε.

The algorithm of Fact 12 is based on polynomial time linear programming. We will use the following
easy extension of Fact 12 (proved in e.g. [32]):

Fact 13 Let C be a concept class over {+1,−1}n such that each f ∈ Cn can be expressed as
a polynomial threshold function of degree at most d(n). Then C can be PAC learned under any
distribution in time nO(d(n))/ε.

Remark 14 By results of Maass and Turan [36] the class of linear threshold functions is also
known to be learnable in polynomial time in the model of exact learning from equivalence queries.
An analogue of Fact 13 holds in this model as well, and in fact all of our distribution-independent
PAC learning results hold in this model as well.

3 Learning Functions of Halfspaces under Uniform Distributions

3.1 From Noise Sensitivity to Fourier Concentration

Let f : {+1,−1}n → {+1,−1} be a Boolean function. We define the noise sensitivity of f at ε to
be:

nsε(f) = Pr
x,noise

[f(x) 6= f(Nε(x))]

(cf. [12]). Here x is uniformly chosen from {+1,−1}n, and Nε is the noise operator which flips each
bit of its input independently with probability ε. The following formula from [42] relates the noise
sensitivity of f to its Fourier spectrum; related formulas are given in [20, 12].
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Proposition 15 For any f : {+1,−1}n → {+1,−1}:

nsε(f) =
1

2
− 1

2

∑

S⊆[n]

(1 − 2ε)|S|f̂(S)2.

It follows that a strong upper bound on the noise sensitivity of f implies a good Fourier
concentration bound for f :

Proposition 16 For any f : {+1,−1}n → {+1,−1}, 0 < γ < 1/2:

∑

|S|>1/γ

f̂(S)2 < 2.32 nsγ(f).

Proof: Starting from Proposition 15, we have:

2nsγ(f) = 1 −
∑

S⊆[n]

(1 − 2γ)|S|f̂(S)2

=
∑

S⊆[n]

f̂(S)2 −
∑

S⊆[n]

(1 − 2γ)|S|f̂(S)2

=
∑

S⊆[n]

[1 − (1 − 2γ)|S|]f̂(S)2

>
∑

|S|>1/γ

[1 − (1 − 2γ)|S|]f̂(S)2

>
∑

|S|>1/γ

[1 − (1 − 2γ)1/γ ]f̂(S)2

>
∑

|S|>1/γ

(1 − e−2)f̂(S)2,

and the result follows since 2/(1 − e−2) < 2.32.

Corollary 17 Let f : {+1,−1}n → {+1,−1} be any Boolean function, and let α : [0, 1/2] → [0, 1]
be an increasing function such that nsε(f) 6 α(ε). Then:

∑

|S|>m

f̂(S)2 6 ε for m =
1

α−1(ε/2.32)
.

In Section 3.2 we first give a detailed analysis of the noise sensitivity of a single linear threshold
function. We then extend this analysis to arbitrary functions of several halfspaces and thus obtain
Fourier concentration bounds and learning results using Corollary 17 and Fact 11. In Section 3.5 we
give noise sensitivity bounds (and thus obtain Fourier concentration bounds and learning results)
for read-once intersections and majorities of halfspaces.

3.2 Noise Sensitivity of Halfspaces and Functions of Halfspaces

3.2.1 Noise Sensitivity of a Halfspace

Benjamini et al. [12] were the first to analyze the noise sensitivity of linear threshold functions.
They proved that every halfspace h : {+1,−1}n → {+1,−1} has nsε(h) 6 Cε1/4 where C is an

7



absolute constant (note that this bound does not depend on n). Y. Peres subsequently improved
this bound to O(

√
ε) (unpublished, [43]). Since the majority function has noise sensitivity Ω(

√
ε)

[12, 42], this is the best bound possible that depends only on ε.
We will use a refinement of Peres’s bound that takes into account how “balanced” the halfspace

is between outputs +1 and −1. To motivate our bound, let h be a halfspace with p = Pr[h(x) =
+1] < 1

2 . If x is an input to h and y = Nε(x), then both x and y are uniformly distributed, so by a
union bound Pr[h(x) = +1 or h(y) = +1] 6 2p and hence nsε(h) 6 2p. Thus if 2p � √

ε it should
be possible to get a much stronger bound upper bound on noise sensitivity which depends on p.

Our bound on the noise sensitivity of an arbitrary linear threshold function is as follows:

Theorem 18 Let h : {+1,−1}n → {+1,−1} be a halfspace, i.e. h(x) = sgn(
∑n

i=1 wixi − θ) for
some w ∈ Rn, θ ∈ R. Let p = min{Pr[h = +1],Pr[h = −1]}. Then:

nsε(h) 6 min{2 p, 20.5 p
√

ε ln(1/p)}.

Before proving Theorem 18 we discuss some of its implications. We devote Section 3.3 to a
detailed proof and discussion of Theorem 18.

Since p
√

ln(1/p) is maximized when p = e−1/2, and 20.5 · e−1/2
√

ln e1/2 < 8.8, we get:

Corollary 19 For any halfspace h : {+1,−1}n → {+1,−1}, we have nsε(h) 6 8.8
√

ε.

Since (8.8 · 2.32)2 < 441, Corollary 17 yields:

Theorem 20 Let f : {+1,−1}n → {+1,−1} be any linear threshold function. Then for all 0 <
ε < 1/2, ∑

|S|>(21/ε)2

f̂(S)2 6 ε.

3.2.2 Bounds on Functions of k Halfspaces

Corollary 19 immediately implies an upper bound on the noise sensitivity of any function of k
halfspaces:

Theorem 21 Let f : {+1,−1}n → {+1,−1} be any function of k halfspaces. Then nsε(f) 6

O(k
√

ε).

Proof: Let h1, . . . , hk be arbitrary Boolean halfspaces, and let g : {+1,−1}k → {+1,−1} be an
arbitrary Boolean function. Write f = g(h1, . . . , hk). By Corollary 19, Pr[hi(x) 6= hi(Nε(x))] is
O(

√
ε) for each i = 1 . . . k. By a union bound, the probability that at least one hi’s value changes

under noise is at most O(k
√

ε). But f ’s value changes only if at least one of the hi’s values changes.
Hence Pr[f(x) 6= f(Nε(x))] 6 O(k

√
ε).

By applying Corollary 17, we get a Fourier concentration bound of O(k2/ε2) for the class of
functions of k halfspaces (assuming ε < 1/k2). We now get our main uniform distribution learning
result, Theorem 1, using Fact 11.
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3.3 A Proof of Theorem 18

Recall the statement of Theorem 18:
Theorem 18: Let h : {+1,−1}n → {+1,−1} be a halfspace, i.e. h(x) = sgn(

∑n
i=1 wixi − θ) for

some w ∈ Rn, θ ∈ R. Let p = min{Pr[h = +1],Pr[h = −1]}. Then:

nsε(h) 6 min{2 p, 20.5 p
√

ε ln(1/p)}.

As we argued before, nsε(h) 6 2 p always. Hence it suffices to show nsε(h) 6 20.5 p
√

ε ln(1/p).
Without loss of generality we assume that

∑n
i=1 wixi 6= θ for all x ∈ {+1,−1}n (if not we can

slightly perturb the weights without changing the Boolean function h.)
When the noise operator Nε changes the sign of an input bit, we call this a flip. When all the

flips taken together cause the value of h to change, we call this a flop. Let P (k) be the probability
of a flop, conditioned on exactly k flips occurring. We will upper bound P (k) and then take an
appropriate binomial average over k in the end.

So let us suppose that there are exactly k > 0 flips. Write m = bn/kc. Let x ∈ {+1,−1}n

be chosen uniformly at random, and let π be a uniformly random permutation on [n]. Define
X1 =

∑k
i=1 xiwπ(i), X2 =

∑2k
i=k+1 xiwπ(i), . . . , Xm =

∑mk
i=(m−1)k+1 xiwπ(i), and finally Z =∑n

i=mk+1 xiwπ(i). Write S =
∑m

j=1 Xj +Z. Because of the random permutation π, we can “assume
that the weights of X1 were flipped.” In other words, (S, S − 2X1) has exactly the same joint
distribution as (w · y,w · y′), where y ∈ {+1,−1}n is uniform and y′ is y with exactly k randomly
selected bits flipped.

Put S′ = S − X1 =
∑m

j=2 Xj + Z, so the “sum before flipping” is S′ + X1 and the “sum after
flipping” is S′−X1. Hence a flop occurs iff |S′− θ| < |X1|. (Note that |S′− θ| = |X1| is impossible,
by our first assumption.)

Suppose that we condition on there being no flop; i.e., we condition on the event |S′−θ| > |X1|.
Then since sgn(X1) is independent from both |X1| and S′, we have that Pr[sgn(X1) = sgn(S′−θ)] =
Pr[sgn(X1) 6= sgn(S′ − θ)] = 1/2. But, since we are conditioning on the event |S′ − θ| > |X1|, we
have that sgn(S′ − θ) and sgn(S − θ) are always the same. Therefore we may conclude that under
this conditioning, Pr[sgn(S − θ) 6= sgn(X1)] = 1/2; i.e.,

Pr[sgn(S − θ) 6= sgn(X1) & no flop] =
1

2
Pr[no flop].

Yet the event [sgn(S−θ) 6= sgn(X1) & no flop] is exactly the same event as [sgn(S−θ) 6= sgn(X1)],
since if there is a flop, then sgn(S−θ) must be the same as sgn(X1). Hence we have 1

2 Pr[no flop] =
Pr[sgn(S − θ) 6= sgn(X1)]; i.e.,

1

2
(1 − P (k)) = Pr[sgn(S − θ) 6= sgn(X1)].

Now note that we could have derived this statement with X2 in place of X1, or indeed any of
X2, . . . Xm in place of X1, simply because once we apply the random permutation π, we could have
picked any of these blocks to “be the flips.” So in fact,

∀i = 1 . . . m,
1

2
(1 − P (k)) = Pr[sgn(S − θ) 6= sgn(Xi)].

Write τ for the random variable sgn(S − θ), and σi for the random variable sgn(Xi). Converting
probabilities to expectations of indicator variables, we have:

∀i = 1 . . . m,
1

2
(1 − P (k)) = E[1τ 6=σi

].
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Summing these equations over all i yields:

m

2
(1 − P (k)) = E[

m∑

i=1

1τ 6=σi
] (1)

Recall that this expectation is over the choices of x and π, which force the values of τ and σi.

The above arguments are due to Peres, and indeed from this point it is fairly easy to obtain an
O(

√
ε) upper bound. Some more work is required to obtain our desired bound which depends on

p.
Suppose without loss of generality that p = Pr[h = −1], so p = Pr[τ = −1]. For t = 1 . . . m,

define:
pt = Pr[τ = −1 | exactly t of the σi’s are +1]

Since the event S < θ is negatively correlated with the events Xi > 0, we conclude that:

1 > p0 > p1 > p2 > · · · > pm > 0 (2)

But also note that σ1, . . . , σm are all independent and uniformly distributed in {+1,−1}. Therefore:

p =
m∑

t=0

(
m
t

)

2m
pt (3)

Continuing from (1), we have:

m

2
(1 − P (k)) = E[# of σi’s differing from τ ]

=

m∑

t=0

(m
t

)

2m
E[

m∑

i=1

1τ 6=σi
| exactly t σi’s are +1]

=

m∑

t=0

(m
t

)

2m
E[t1τ=−1 + (m − t)1τ=+1 | exactly t σi’s are +1]

=
m∑

t=0

(
m
t

)

2m
(t Pr[τ = −1|exactly t σi’s are +1] + (m − t) Pr[τ = +1|exactly t σi’s are +1])

=

m∑

t=0

(m
t

)

2m
(tpt + (m − t)(1 − pt)).

So m
2 (1 − P (k)) = ET [TpT + (m − T )(1 − pT )], where T ∼ Binomial(m, 1/2). Some arithmetic

gives:

P (k) =
2

m
ET [T ] − 1 + 2ET [pT ] − 4

m
ET [TpT ]

= 2

(
p − 2

m

m∑

t=0

(m
t

)

2m
tpt

)
(4)

We will obtain an upper bound for P (k) by maximizing (4) subject to (2) and (3). This is a
linear programming problem. Hence the maximum occurs at a vertex, which in this case means
the maximum occurs when, for an appropriate 1 6 b 6 m/2, we have p0 = p1 = · · · = pb−1 = 1,
pb+1 = pb+2 = · · · = pm = 0, and pb is such that (3) is tight. (We have b 6 m/2 since p 6 1/2.)

10



Henceforth we let the pt’s take on these values which maximize (4) and we will reason about the
value of (4).

Our goal is now to show that

(4) 6
(14.48) p

√
ln(1/p)√

m
. (5)

An easy case occurs if p 6 2−m. In this case pt = 0 for all t > 0 and hence (4) = 2 p. But

p 6 2−m implies that
(14.48) p

√
ln(1/p)√

m
6 (14.48) p, so (5) is proved.

Now assume p > 2−m. We claim that it suffices to show (5) in the case that pb = 1; i.e.,
the case that p =

∑b
t=0

(m
t

)
2−m for some b > 0. For suppose that (5) holds in this case; then

given any p∗ > 2−m and associated b and p∗t ’s, we may write p∗ = (1 − pb)p
− + pbp

+, where
p− =

∑b−1
t=0

(
m
t

)
2−m and p+ =

∑b
t=0

(
m
t

)
2−m. One can easily check that the value of (4) associated

to p∗ is (1 − pb)(4)
− + pb(4)

+, where (4)− denotes the value of (4) for p−, and similarly for (4)+.
But by assumption (5) holds for p− and p+; since p

√
ln(1/p) is a concave function of p, we have

that (5) holds for p0 as well.
So we may assume that p =

∑b
t=0

(m
t

)
2−m, i.e., p = Pr[T 6 b], where as before T ∼

Binomial(m, 1/2). Now we can rewrite (4) as:

2

(
p − 2

m
pE[T | T 6 b]

)
=

4p

m
E
[m

2
− T | T 6 b

]
.

Thus showing (5) amounts to showing that

E
[m

2
− T | T 6 b

]
6 ((14.48)/4)

√
ln(1/p)

√
m, (6)

where p = Pr[T 6 b]. Equation (6) follows from the following lemma (whose proof we defer until
later):

Lemma 22 Let n > 1, let X ∼ Binomial(n, 1/2), let 0 6 b 6 n/2, and let p = Pr[X 6 b]. Then:

E
[n
2
− X | X 6 b

]
< 3.62

√
ln(1/p)

√
n.

We have therefore shown that P (k) 6 (14.48) p
√

ln(1/p)
√

m for any k > 0.
It remains only to take the appropriate binomial average over k to obtain our final bound on

nsε(h). Since m = bn/kc, we have

Pr[flop] = Ek[P (k)]

6 (14.48) p
√

ln(1/p)E[
√

1/bn/kc]
6 (14.48) p

√
ln(1/p)

√
E[1/bn/kc]

6 (14.48) p
√

ln(1/p)
√

(2/n)E[k]

= (14.48)
√

2p
√

ε ln(1/p)

< 20.5 p
√

ε ln(1/p)

and Theorem 18 is proved.
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Proof of Lemma 22: We will make use of the Chernoff bound Pr
[
X 6

n
2 − δn

2

]
< exp(−nδ2/4)

which holds for 0 6 δ 6 1. This immediately yields

b >
n

2
−
√

ln(1/p)
√

n. (7)

The Chernoff bound also tells us that Pr
[
X < n

2 − 2
√

ln(1/p)
√

n
]

< p4. Hence:

Pr
[
X <

n

2
− 2

√
ln(1/p)

√
n | X 6

n

2

]
< 2 p4.

We write d for 2
√

ln(1/p)
√

n and α for 2 p4, so we have Pr
[
X < n

2 − d | X 6
n
2

]
< α. It follows

from the log-concavity of the binomial distribution2 that

Pr [X < u − d | X 6 u] < α

holds for every u 6 n/2. In particular this holds for u = b, u = b − d, u = b − 2 d, u = b − 3 d, . . . ,
whence:

E [b − X | X 6 b] 6 d + α(2 d) + α2(3 d) + α3(4 d) + · · ·

<
d

(1 − α)2

=
2
√

ln(1/p)
√

n

(1 − 2 p4)2

6
2
√

ln(1/p)
√

n

(1 − 2 (1/2)4)2
(8)

< 2.62
√

ln(1/p)
√

n. (9)

So:

E
[n
2
− X | X 6 b

]
=

n

2
− b + E [b − X | X 6 b]

< 3.62
√

ln(1/p)
√

n,

by (7) and (9). (Lemma 22)

3.4 Tightness of the Fourier Concentration Bound for Halfspaces

In this section we prove the following theorem which shows that our Fourier concentration bound
for halfspaces (Theorem 20) is tight up to a constant factor:

Theorem 23 For any 0 < ε < 1/2, the following inequality holds for all sufficiently large odd n:

∑

S⊆[n]
|S|>α

M̂AJn(S)2 > ε,

whenever α < 8
π3ε2

− 2. For sufficiently small ε, 1
4ε2

< 8
π3ε2

− 2, and so we may use this simpler
bound.

2In particular, log-concavity implies the “new-is-better-than-used” property of mathematical reliability, which is
exactly what we use here. See, e.g., [2].
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The following proposition will be useful:

Proposition 24 Let d be an odd positive integer. Then:

lim
n→∞
n odd

∑

S⊆[n]
|S|=d

M̂AJn(S)2 =
2

πd

(
d−1

(d−1)/2

)

2d−1
.

Proof: We will use Bernasconi’s formula for the Fourier coefficients of MAJn, which appears in
[13]. Write M = MAJn, where n is odd; then for all S ⊆ [n] with |S| = d,

M̂ (S) =






(−1)
d−1
2

2
2n

( d−1
d−1
2

)(n−d
n−d

2
)

(
n−1

2
d−1
2

)
if d is odd,

0 if d is even.

It follows that for odd d:

∑

S⊆[n]
|S|=d

M̂ (S)2 =
4

22n

(
n

d

)(d−1
d−1
2

)2(n−d
n−d

2

)2

(n−1
2

d−1
2

)2 . (10)

We write f(n) ∼ g(n) when f(n)/g(n) → 1 as n → ∞.

The factor
(n−d

n−d
2

)2
is easy to handle; by Stirling’s formula,

(
n − d
n−d

2

)
∼
√

2/π (n − d)−1/2 2n−d. (11)

Now we consider the two other binomial factors in (10) involving n; i.e., the ratio
(n

d

)
/
(n−1

2
d−1
2

)2
. Using

the fact that
(
m
k

)
= mk

k! (1 − 1/m)(1 − 2/m) · · · (1 − (k + 1)/m), we get:
(n
d

)

(n−1
2

d−1
2

)2 =
nd
(

d−1
2

)
!2

d!
(

n−1
2

)d−1
· (1 − 1/n)(1 − 2/n) · · · (1 − (d − 1)/n)

(1 − 2/(n − 1))2(1 − 4/(n − 1))2 · · · (1 − (d − 3)/(n − 1))2

∼ nd
(

d−1
2

)
!2

d!
(

n−1
2

)d−1
(12)

= n2d−1

(
d−1
2

)
!2

d!

(
1 +

1

n − 1

)d−1

∼ n2d−1

(
d−1
2

)
!2

d!
, (13)

where (12) and (13) hold because d is fixed.
Plugging (11) and (13) into (10), we get:

∑

S⊆[n]
|S|=d

M̂(S)2 ∼ 4

22n
n2d−1

(
d−1
2

)
!2

d!

(
d − 1
d−1
2

)2 2

π

1

n − d
22(n−d)

=
4

π

n

n − d
2−d

(
d−1
2

)
!2

d!

(d − 1)!2(
d−1
2

)
!4

∼ 2

πd

(
d−1

(d−1)/2

)

2d−1
.
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We now note that 2
πd

( d−1
(d−1)/2)
2d−1 is exactly 2

π times the coefficient on xd in the Taylor expansion
of arcsin x [1]. Indeed, since the Taylor expansion of arcsin x has zero coefficients on even powers,
we in fact have:

Corollary 25 Let d be any positive integer. Then:

lim
n→∞
n odd

∑

S⊆[n]
|S|=d

M̂AJn(S)2 = [xd]

(
2

π
arcsin x

)
,

where the right hand side denotes the coefficient on xd in the Taylor expansion of 2
π arcsin x.

It is interesting to compare this with the way in which arcsin arises in [42].
Now we can prove Theorem 23.

Proof of Theorem 23: Given ε, let α = α(ε) be a fixed odd integer to be specified later, depending
only on ε. By Proposition 25 we know that for each 0 < d 6 α,

lim
n→∞
n odd

∑

S⊆[n]
|S|=d

M̂AJn(S)2 = [xd]

(
2

π
arcsin x

)
.

Since we are only concerned about this fact for a finite number of d’s, independent of n, for any
δ > 0 we have that for sufficiently large n,

∑

S⊆[n]
|S|=d

M̂AJn(S)2 6 (1 + δ)

(
[xd]

(
2

π
arcsin x

))

for each 0 < d 6 α. So let n be any odd number which is sufficiently large, and write M = MAJn.
Then:

∑

|S|6α

M̂(S)2 6 (1 + δ)

α∑

d=1

(
[xd]

(
2

π
arcsin x

))
.

(Since M is balanced, M̂(∅) = 0.)
Using 2

π arcsin 1 = 1, we conclude that
∑∞

d=1

(
[xd]

(
2
π arcsin x

))
= 1. Now for all odd d,

2

πd

(
d−1

(d−1)/2

)

2d−1
>

(
2

πd

)3/2

,
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by Stirling’s formula. Hence:

α∑

d=1

(
[xd]

(
2

π
arcsin x

))
= 1 −

∑

d>α

(
[xd]

(
2

π
arcsin x

))

= 1 −
∑

d>α
d odd

2

πd

( d−1
(d−1)/2

)

2d−1

< 1 −
∑

d>α
d odd

(
2

πd

)3/2

6 1 − 1

2

∫ ∞

α+2

(
2

πd

)3/2

dd

= 1 − 1

2

[(
2

π

)3/2 2

d1/2

]

d=α+2

= 1 −
(

2

π

)3/2 1√
α + 2

,

so,
∑

|S|6α

M̂ (S)2 6 (1 + δ)

(
1 −

(
2

π

)3/2 1√
α + 2

)
.

To make this quantity smaller than 1− ε, it suffices to take α < 8
π3ε2

− 2 and δ sufficiently small.

3.5 Extensions: Learning Read-Once Functions of Halfspaces

Theorem 21 bounds nsε(f) by O(k
√

ε) for f an arbitrary function of k halfspaces. Can stronger
bounds be obtained if f is restricted to be a simple function (such as intersection) of k halfspaces?

While we do not know the answer to this question, we can give substantially improved bounds
if f is a read-once intersection or majority of halfspaces, i.e. each variable xi occurs as input to at
most one halfspace.

For read-once intersections of halfspaces we have the following noise sensitivity bound:

Theorem 26 Let f : {+1,−1}n → {+1,−1}, f(x) = h1(x)∧h2(x)∧· · ·∧hk(x) where h1, . . . , hk are
halfspaces on disjoint sets of variables. Then nsε(f) 6 2c

√
ε log k, where c = 20.5 is the universal

constant from Theorem 18.

Proof: By Corollary 19, nsε(f) 6 8.54k
√

ε. For k 6 6 this is smaller than 2c
√

ε ln k, so we assume
k > 7.

Since we will be dealing with logical AND we write T and F for the outputs of the linear
threshold functions h1, . . . , hk. Write pi = Pr[hi = T ] and ηi = nsε(hi). Note that for every Boolean
function g, nsε(g) = 2Pr[g(x) = T ] Pr[g(Nε(x)) = F | g(x) = T ] = 2Pr[g(x) = F ] Pr[g(Nε(x)) =
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T | g(x) = F ], since x and Nε(x) are both uniformly distributed. Hence in our case, we have:

1

2
nsε(h) = Pr[f(x) = T ] Pr[f(Nε(x)) = F | f(x) = T ]

=

(
k∏

i=1

Pr[hi(x) = T ]

)(
1 −

k∏

i=1

Pr[hi(Nε(x)) = T | hi(x) = T ]

)

=

(
k∏

i=1

pi

)(
1 −

k∏

i=1

(1 − ηi/2pi)

)

6

(
k∏

i=1

pi

)(
k∑

i=1

ηi

2pi

)
, (14)

where we have used the fact that
∏k

i=1(1 − xi) > 1 −∑k
i=1 xi for any x1, . . . , xk ∈ [0, 1] (note that

ηi
2pi

6 1 since ηi 6 2pi as we’ve seen before).
We would now like to break up (14) into parts depending on the various values of the pi’s. For

1 6 s 6 t 6 k, let us write:

Us...t =

(
t∏

i=s

pi

)(
t∑

i=s

ηi

2pi

)
.

Our goal is to show U1...k 6 c
√

ε ln k. We begin by claiming that it suffices to assume all of the pi’s
are at least 2

3 . For suppose that, say, p1 < 2
3 . Then:

U1...k = p1U2...k +

(
k∏

i=1

pi

)(
η1

2p1

)
6

2

3
U2...k +

1

2
η1 6

2

3
U2...k +

9

2

√
ε,

where the last step uses Corollary 19. Hence if we can show U2...k 6 c
√

ε ln k, then U1...k 6
2
3c
√

ε ln k + 9
2

√
ε 6 c

√
ε ln k, since 1

3c
√

ln k >
1
3c
√

ln 7 >
9
2 . We can repeat this argument for any

pi < 2
3 ; thus in showing U1...k 6 C (ε ln k)

1
2 it suffices to assume pi >

2
3 for all i.

Without loss of generality, we may reorder indices so that p1, . . . , p` < 1− 1
10k and p`+1, . . . , pk >

1 − 1
10k for some 0 6 ` 6 k. Using the fact that pi 6 1 for all i, it is easy to see that U1...k 6

U1...` + U`+1...k. We now upper-bound each of these terms individually.

U1...` =

(
∏̀

i=1

pi

)(
∑̀

i=1

ηi

2pi

)

6

(
∏̀

i=1

pi

)(
∑̀

i=1

c
√

ε
1 − pi

pi

√
ln

1

1 − pi

)
(Theorem 18)

6 3
2c
√

ε ln 10k
(∏`

i=1 pi

)(∑`
i=1(1 − pi)

)
(using 2

3 6 pi 6 1 − 1
10k )

6 3
2c
√

ε ln 10k µ``(1 − µ) (where µ =
√̀

p1 · · · p`, by the AM-GM inequality)

6
3
2c
√

ε ln 10k e−1 (by elementary calculus, maximizing over µ ∈ [0, 1]).

U`+1...k 6

(
k∏

i=`+1

pi

)(
k∑

i=`+1

c
√

ε
1 − pi

pi

√
ln

1

1 − pi

)
(as before)

6 (k − `)c
√

ε
1

10k

1 − 1
10k

√
ln 10k (since 1−p

p

√
ln 1

1−p is decreasing on [1 − 1
10k , 1])

6 (10 − 1
7)−1c

√
ε ln 10k (using k − ` 6 k, k > 7)
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Thus U1...k 6 ( 3
2e + (10 − 1

7)−1)c
√

ε ln 10k and this is less than c
√

ε ln k for k > 7, as desired.

Note that k 6 n for any read-once intersection of halfspaces. By using Corollary 17 and Fact 11,
we get Theorem 2.

In earlier work Hancock et al. [23] gave a polynomial time algorithm for learning a read-once
intersection of majorities (i.e. each weight wi of each halfspace is 1) under the uniform distribution.
We emphasize that we are learning a much richer class of functions since our threshold functions
can have arbitrary (even exponentially large) weights.

For the more expressive class of read-once majority of halfspaces we have the following noise
sensitivity bound:

Theorem 27 Let f(x) = sgn(h1(x) + · · · + hk(x) − θ) where h1, . . . , hk are halfspaces on disjoint
sets of variables. Then nsε(f) = Õ((ε log k

ε )
1/4).

The proof of Theorem 27 is somewhat technical, so for the sake of exposition we leave it in
Appendix A. We get Theorem 3 by applying Corollary 19 and Fact 11.

4 Learning Intersections of Halfspaces under Arbitrary Distribu-

tions

For our distribution independent results we use a set of completely different techniques. For our
first set of results we use rational function approximations to the sgn function. For our second set
of results, we use the extremal properties of the Chebyshev polynomials.

Throughout this section for convenience we let +1 denote TRUE and −1 denote FALSE.

4.1 Bounding PTF degree via rational function approximation

We use the rational function approximation to the sgn function introduced by Beigel et al. [9],
building on work of Newman [40]. The motivation of Beigel et al. was the study of the complexity
class PP. Later, Siu et al. [49] used the techniques for proving lower bounds against small-weight
threshold circuits. The main technical theorem we need is:

Theorem 28 [9] For every `, t > 1 there exists a rational function P `
t in one variable with the

following properties:

• For any x ∈ [1, 2t] the value P `
t (x) ∈ [1, 1 + 1/`].

• For any x ∈ [−2t,−1] the value P `
t (x) ∈ [−1 − 1/`,−1].

• P `
t (x) has degree O(t log `).

Here the degree of a rational function is the sum of the degrees of its numerator and denominator.
Using this tool, we can get a polynomial threshold function for the intersection of k halfspaces:

Theorem 29 Let h1, . . . , hk be linear threshold functions {+1,−1}n → {+1,−1} each of weight
at most w. The function h1(x) ∧ · · · ∧ hk(x) can be expressed as a polynomial threshold function of
degree O(k log k log w).
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Proof: For i = 1, . . . , k let Hi(x) =
∑n

j=1 wi
jxj − θi be a minimum weight representation of hi(x),

so wi
j, θj are integers and hi(x) = sgn(Hi(x)). Without loss of generality we may suppose that

|Hi(x)| > 1 for all x ∈ {+1,−1}n, since this can be achieved by doubling each wi
j and replacing θi

by 2θi − 1.
Let ` = 2k and t = log w and consider the sum of rational functions

I = P 2k
log w(H1(x)) + · · · + P 2k

log w(Hk(x)).

Now on input x, if hi(x) = 1 (TRUE) for every i, then I > k. On the other hand, if for some i we
have hi(x) = −1 (FALSE), then I 6 k − 1. Thus sgn(I − k) computes h1(x) ∧ · · · ∧ hk(x) on all
inputs. Now I−k is the sum of k rational functions each of degree O(log k log w). Hence if we bring
these to a common denominator, we can write I − k as a single rational function Q(x)/R(x) of
degree O(k log k log w), and Q(x)/R(x) sign-represents h1(x)∧· · ·∧hk(x). Hence so does Q(x)R(x),
which is a polynomial threshold function of degree O(k log k log w).

Using this theorem and Fact 13, we get Theorem 5. We note that for k = w2 the O(k log k log w)
bound of Theorem 29 is nearly optimal; Minsky and Papert have shown that the “one-in-a-box”
function requires polynomial threshold function degree at least k, and the one-in-a-box function
can be expressed as an AND of k halfspaces of weight k2 (in fact the halfspaces are ORs of fan-in
k2).

By a virtually identical proof we can generalize Theorem 29 as follows:

Theorem 30 Let h1, . . . , h` be linear threshold functions {+1,−1}n → {+1,−1} each of weight at
most w. Let f : {+1,−1}` → {+1,−1} be a weight k threshold function. Then f(h1, . . . , h`) can
be expressed as a polynomial threshold function of degree O(k log k log w).

Again, combining this with Fact 13 yields Theorem 7. We note that the degree bound given
by Theorem 30 is nearly optimal for k = w. Hajnal et al. [24] show how to compute the parity
function on k variables as a weight-O(k) threshold of weight-O(k) halfspaces, but it is well known
that any polynomial threshold function computing parity on k variables requires degree at least k
(see [5, 39]).

These rational function techniques can also be used to give learning algorithms for arbitrary
functions of halfspaces; we get Theorem 4 from:

Theorem 31 Let h1, . . . , hk be linear threshold functions {+1,−1}n → {+1,−1} each of weight at
most w. Let f : {+1,−1}k → {+1,−1} be any function. Then f(h1, . . . , hk) can be expressed as a
polynomial threshold function of degree O(k2 log w).

Proof: Let Hi(x) be as in the proof of Theorem 29 and let gi = P `
log w(Hi(x)), where ` = 23k.

Note that gi is a rational function of degree O(k log w), and for any input x we have gi(x) ∈
[sgn(hi(x)) − 2−3k, sgn(hi(x)) + 2−3k]. Since f is a Boolean function on k inputs, it is expressible
as a multilinear polynomial f̃ of degree k, with coefficients of the form i/2k where i is an integer
in [−2k, 2k]. (The polynomial f̃ is just the Fourier representation of f .) Multiply f̃ by 2k, so now
f̃ : {+1,−1}k → {+2k,−2k}, and f̃ has integer coefficients which are at most 2k in absolute value.

Now we would like to argue that f̃(g1, . . . , gk) sign-represents f(h1, . . . , hk). To do this, we
simply show that the fact that gi = +1 ± 2−3k or −1 ± 2−3k rather than +1 or −1 does not incur
too much error. As a polynomial, f̃ has at most 2k terms. Each term is the product of an integer
coefficient of magnitude at most 2k and up to k gi’s. We get at most O(k2−3k) error on the product
of the gi’s, and hence at most O(k2−2k) error on any given term. Since we are adding up at most
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2k terms, we get at most O(k2−k) error overall, which is much less than the error we could tolerate
(namely 2k). Hence f̃(g1, . . . , gk) sign-represents f(h1, . . . , hk).

Now f̃ is a multilinear polynomial of degree k, and each gi is a rational function of degree
O(k log w). Consider now f̃(g1, . . . , gk); we can bring it to a common denominator (namely, the
product of the denominators of the gi’s) with degree only O(k2 log w). Hence we have a single
rational function of degree O(k2 log w) which sign-represents our function, and we can convert it
to a polynomial threshold function as in the proof of Theorem 29.

Remark. As mentioned earlier, Auer et al. [6] gave an nd time learning algorithm to learn depth-
two neural networks with fan-in d at the bottom level, i.e. functions of the form f(h1, . . . , hN )
where f is a halfspace and each hi is a halfspaces which depends on d variables. Since every
function of d variables has an interpolating polynomial of degree at most d, from our polynomial
threshold function vantage point it is immediately clear that every function f(g1, . . . , gN ) (where
gi is an arbitrary function of d variables not necessarily a halfspace) has a polynomial threshold
function of degree d, and thus can be learned in time nd.

4.2 Bounding PTF Degree via Chebychev Polynomials

4.2.1 Learning Intersections of Small-Weight Halfspaces

The degree bounds obtained in the previous section are most interesting for cases when the number
of underlying halfspaces is small (say a constant) and each halfspace is of weight nO(1). In this
section we give an alternate construction of polynomial threshold functions based on Chebychev
polynomials and obtain improved degree bounds for cases involving a polynomial number of small
weight (e.g. weight O(1)) halfspaces:

Theorem 32 Let h1, . . . , hk be linear threshold functions {+1,−1}n → {+1,−1} each of weight
at most w. The function h1(x) ∧ · · · ∧ hk(x) can be expressed as a polynomial threshold function of
degree O(

√
w log k).

The main tools we use to prove Theorem 32 are the Chebyshev polynomials of the first kind.
The d-th Chebyshev polynomial of the first kind, Td(x), is a univariate degree-d polynomial with
the following properties [22]:

Lemma 33 The polynomial Td(x) satisfies

• |Td(x)| 6 1 for |x| 6 1 with Td(1) = 1;

• T ′d(x) > d2 for x > 1 with T ′d(1) = d2.

Proof of Theorem 32: The proof is a generalization of the proof of Theorem 1 in [32]. Let
f = h1∧h2∧· · ·∧hk be an intersection of k halfspaces, each of weight at most w. Since 1 represents
TRUE we have f(x) = 1 iff each hi(x) = 1. Let

p(y) = Td

(
y

(
1 +

1

w

))

where d = d√we. Lemma 33 implies that for y > 1 we have p(y) > 2 but |p(y)| 6 1 for y ∈
[−1 + 1

w , 1 − 1
w ].
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Let wi 6 w denote the weight of the i-th halfspace hi, so hi(x) = sgn(wi · x − θi) where
|θi| +

∑n
j=1 |wi

j | = wi and wi
j , θi are all integers. (Without loss of generality we may assume that

each wi and w are at least 2.) Let

Qi(x) = p

(
1 − wi · x − θi + 1

wi

)
.

Consider the polynomial threshold function sgn(P (x) + k + 1
2) where

P (x) = −
k∑

i=1

Qi(x)dlog 2ke.

Since p is a polynomial of degree d = d√we and wi · x is a polynomial of degree 1, this polynomial
threshold function has degree d√wedlog 2ke. We now show that this polynomial threshold function
computes f exactly on {+1,−1}n.

Fix any element x ∈ {+1,−1}n.

• If f(x) = 1 then for each i we have 0 6 wi · x − θi 6 wi and hence −1 + 1
w 6 −1

wi
6 1 −

wi·x−θi+1
wi

6 1− 1
w . Consequently for each i we have |Qi(x)| 6 1 and hence −Qi(x)dlog 2ke > −1

so P (x) > −k.

• If f(x) = 0 then for some i we have wi ·x−θi 6 −1 and hence 1− wi·x−θi+1
wi

> 1. Consequently

Qi(x) > 2 and hence −Qi(x)dlog 2ke 6 −2k. Since −Qi(x)dlog 2ke 6 1 for all i, we have
P (x) 6 −2k + (k − 1) = −k − 1. 2

4.2.2 Learning a Threshold of ANDs

In the last section we used Chebychev polynomials to obtain polynomial threshold function degree
bounds for ANDs of thresholds; we now use them to obtain bounds for thresholds of ANDs. The
following theorem generalizes the bound of Klivans and Servedio (Their Theorem 1) for OR of
ANDs [32]:

Theorem 34 Let C1, . . . , C` be Boolean conjunctions, each over at most k literals, and let g be
a weight-w threshold over {+1,−1}`. The function g(C1, . . . , C`) can be expressed as a polynomial
threshold function of degree O(

√
k log w).

Proof: The proof is a slight modification of Theorem 32. Since literals take value ±1, it is easily
seen that each conjunction Ci(x) over ki 6 k literals can be expressed as a threshold sgn(wi ·x−θi)
with the following properties: if Ci(x) = 1 (TRUE) then wi · x− θi = 1, while if Ci = −1 (FALSE)
then −(2ki − 1) 6 wi · x − θi 6 −1. Let p(y) = Td(y(1 + 1

k )) where d = d
√

ke and let

Qi(x) = p

(
1 − 1 − (wix − θ)

2ki

)
.

If Ci(x) = 1 then Qi(x) = p(1) = Td(1+ 1
k ) > 2 while if Ci(x) = −1 then |Qi(x)| 6 1. Consequently,

if we take

Q̃i(x) = 2

(
Qi(x)

p(1)

)log 4w

− 1,

we have Q̃i(x) = 1 if Ci(x) = 1 and Q̃i(x) ∈ [−1 − 1
2w ,−1 + 1

2w ] if Ci(x) = −1. Thus the

error of each Q̃i is at most 1
2w , so we may substitute the polynomials Q̃i(x) for the inputs of the
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weight-w threshold function g to obtain a polynomial threshold function which correctly computes
g(C1, . . . , C`).

Using Theorem 34 in place of Klivans and Servedio’s Theorem 1, the arguments of [32] can be
used to prove the following strengthened version of Klivans and Servedio’s main structural result
for DNF formulas (the proofs are unchanged so we do not repeat them):

Theorem 35 Let f : {+1,−1}n → {+1,−1} be a weight-w threshold of ANDs. Then f can be a
expressed as a polynomial threshold function of degree O(n1/3 log w).

Applying Fact 13 we obtain Theorem 8 which is a strict generalization of the main learning
result of [32].

5 Learning in the Exact Model

The model of exact learning from membership and equivalence queries was introduced by Angluin
[4]. In a membership query, the learning algorithm submits an input x ∈ {0, 1}n to the membership
oracle and receives the value f(x) in response. In an equivalence query, the learning algorithm
submits a representation of a hypothesis h : {0, 1}n → {0, 1} to the equivalence oracle. If this
hypothesis is not logically equivalent to f then the oracle returns a point x ∈ {0, 1}n such that
h(x) 6= f(x). The learner is required to output a hypothesis which is logically equivalent to f. For
more details on this model, see [4]. Known reductions [4] imply that if a concept class is exactly
learnable in time t, then there is a PAC plus membership query algorithm for the concept class
which learns to accuracy ε in time poly(t, 1/ε).

We show that the intersection (or indeed any Boolean function) of a constant number of
polynomial-weight halfspaces can be learned exactly in polynomial time. These results contrast
with Theorems 4 and 5 which state that the intersection (or any Boolean function) of a constant
number of polynomial-weight halfspaces can be learned without membership queries in quasipoly-
nomial time.

5.1 Reduction to Automata

Our approach is to show that an intersection of low weight halfspaces can be computed by a
relatively small automaton. A similar approach is used by Kushilevitz [33] to give a simple proof
that O(log n) term DNF are exactly learnable in polynomial time.

Lemma 36 Let h1, . . . , hk be weight-w halfspaces on {0, 1}n and let f(x) = h1(x) ∧ h2(x) ∧ · · · ∧
hk(x). There is a finite automaton of size poly(n,wk) which accepts only those strings of length n
such that f(x) = 1.

Proof: Consider first a single halfspace h(x) = sgn(v1x1 + · · ·+ vnxn − θ) of weight w. We describe
an automaton Ah that accepts only those strings of length n such that h(x) = 1. The states of
Ah are denoted by pairs [u, i] where u ∈ {−w,−w + 1, . . . , w − 1, w} and i ∈ {0, 1, . . . , n}. The
initial state is [0, 0]. The automata is constructed in such a way that string x1 . . . xi ∈ {0, 1}i will
reach the state [u, i] where u = v1x1 + · · · + vixi. (This is easily achieved: the state [u, i − 1] has
a 0-transition to [u, i] and a 1-transition to [u + vi, i].) The set of accepting states are the states
[u, n] where u > θ.

The automaton for an intersection of k weight-w halfspaces is constructed similarly. It has
states [u1, . . . , uk, i] where each uj ∈ {−w,w} and i ∈ {0, . . . , n}. The state [u1, . . . , uk, i− 1] has a
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0-transition to [u1, . . . , uk, i] and a 1-transition to [u1 + v1
i , . . . , uk + vk

i , i] where vj
i is the coefficient

of xi in halfspace hj . The set of accepting states are the states [u1, . . . , uk, n] where each uj is at
least as large as the corresponding threshold θj.

We can prove a similar lemma for the case of an arbitrary function of halfspaces:

Lemma 37 Let h1, . . . , hk be weight-w halfspaces on {0, 1}n, let g be any Boolean function mapping

{0, 1}k to {0, 1}, and let f(x) = g(h1(x), . . . , hk(x)). There is an automaton of size poly(n2k
, wk·2k

)
which accepts only those strings of length n such that f(x) = 1.

Recall that any Boolean function on k variables can be computed by a DNF, i.e. by a 2k-way
OR of k-way ANDs. Lemma 37 follows from Lemma 36 and the fact that the size of an automaton
computing the union of automata A1 and A2 is at most the product of the sizes of A1 and A2.

Now we can apply the following result originally due to Angluin [3] (see [10] for extensions and
improvements):

Theorem 38 [3] Let A be an automaton of size t. Then A can be learned in the exact model
from membership and equivalence queries in time polynomial in t and in the length of the longest
counterexample.

It is easily seen that the longest counterexample for our automata will be of length n. Theorems
9 and 10 now follow directly from Lemma 36, Lemma 37 and Theorem 38.
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A Noise Sensitivity for Read-once Majority of Thresholds

In this section we prove Theorem 27:

Theorem 27 Let f(x) = sgn(h1(x)+ · · ·+hk(x)−θ) where h1, . . . , hk are linear threshold functions
on disjoint sets of variables. Then nsε(f) = Õ((ε log k

ε )
1/4).

Proof: Let pi = Pr[hi(x) = −1] and qi = min{pi, 1 − pi}. Let εi denote nsε(hi). Let c = 20.5
denote the universal constant from Theorem 18.

We begin by reducing to the case in which each qi is not too small, and each εi 6 qi. Let
si ∈ {+1,−1} be the less likely value for hi(x), so si is such that Pr[hi(x) = si] = qi. Let:

α =
√

c (ε ln k)
1
4 ,

and let Sα = {i ∈ [k] : qi 6 α/k}. Recalling that both x and Nε(x) are both uniformly distributed, a
union bound tells us that the probability there exists an i ∈ Sα such that h(x) = si or h(Nε(x)) = si

is at most
∑

i∈Sα
2qi 6

∑
i∈Sα

2α/k 6 2α. Since an additive α = O(1)(ε log k)
1
4 does not affect the

bound we are trying to prove, we may assume without loss of generality that hi(x) = hi(Nε(x)) =
−si for all i ∈ Sα. In this case these halfspaces are irrelevant to the noise sensitivity calculation,
and we can therefore assume without loss of generality that Sα = ∅; i.e., that qi > α/k for all i.
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Next, note that each εi 6 c qi

√
ε ln 1

qi
by Theorem 18. We claim that we may assume

c qi

√
ε ln 1

qi
6 qi and hence εi 6 qi. The claimed inequality holds if and only if qi > exp

(
− 1

c2ε

)
;

since each qi > α/k =
√

c ε
1
4

(
ln

1
4 k
k

)
, it suffices to establish

√
c ε

1
4

ln
1
4 k
k > exp

(
− 1

c2ε

)
. It is easy

to check that this holds so long as k < exp( 1
c2ε) because ln

1
4 k
k decreases for k > 2. But this holds

without loss of generality, for otherwise ε ln k >
1
c2 = Ω(1) and the theorem is trivially true.

To summarize, we may assume without loss of generality:

qi > α/k, qi > εi. (15)

Let Fi denote the random variable hi(Nε(x)) − hi(x). Since Pr[hi(x) = +1, hi(Nε(x)) = −1] =
Pr[hi(x) = −1, hi(Nε(x)) = +1] = εi/2, we have that Fi = ±2 with probability εi/2 each, and
Fi = 0 with probability 1− εi. Let H denote

∑k
i=1 hi(x) and let F denote

∑k
i=1 Fi; thus F denotes

the amount by which h1(x) + · · · + hk(x) and h1(Nε(x)) + · · · + hk(Nε(x)) differ. The proof of
the present theorem centers around the observation that if f(x) 6= f(Nε(x)) then we must have
|F | > |H − θ|. Hence:

nsε(f) 6 Pr[|F | > |H − θ|],
and we shall proceed by upper-bounding the probability that |F | > |H − θ|.

While the random variables H and F are clearly not independent, each is a sum of independent
Bernoulli random variables, and this allows us to bring to bear a number of standard estimates.
Let us write σ2

H and σ2
F for the variances of H and F respectively. To upper bound the probability

that H is close to the threshold θ we shall use the following result, whose proof we defer to the end
of this section:

Lemma 39 Let H1, . . . ,Hk be independent ±1-valued random variables, let H =
∑k

i=1 Hi, and let
σ2

H denote Var[H]. Then for every θ ∈ R and every λ > 1 we have:

Pr[|H − θ| 6 λ] 6 O(1)
λ

σH
.

To bound the size of |F | in terms of H’s deviation from θ, we will use an estimate for σF /σH . We
claim:

σF /σH 6 O(1)

(
ε log

k

α

) 1
4

. (16)

To see this, let us compute:

σ2
F =

k∑

i=1

Var[Fi] = 4

k∑

i=1

εi 6 8C

k∑

i=1

qi

(
ε ln

1

qi

) 1
2

6 O(1)

(
ε log

k

α

) 1
2

k∑

i=1

qi,

where the first inequality follows from Theorem 18, and the second because qi > α/k using (15).
As for the variance of H:

σ2
H =

k∑

i=1

Var[Hi(x)] =

k∑

i=1

(1 − (1 − 2pi)
2) =

k∑

i=1

4pi(1 − pi) = 4

k∑

i=1

4qi(1 − qi) > 2

k∑

i=1

qi,

where the inequality uses qi 6 1
2 . The inequality claimed in (16) now follows.
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The proof now splits into two cases, depending on whether σF > 1 or σF < 1.
Case 1: σ2

F
> 1. In this case, we shall use a simple tail bound to show that F is unlikely to

exceed a moderate quantity times σF in magnitude. Recall that F is the sum of the independent
random variables Fi, and each one has mean zero and satisfies |Fi| 6 2. We now apply Bernstein’s
inequality (see, e.g., Section 2.2 of [44]):

Bernstein’s Inequality: Let F1, . . . , Fk be independent random variables with mean 0 and
bounded range |Fi| 6 M, and let F be their sum. Then for all η > 0 we have Pr[|F | > η] 6

2 exp
[
−η2/2(σ2

F + Mη)
]
.

In our case, we have that for any τ > 0:

Pr[|F | > τσF ] 6 2 exp

[
− (τσF )2

2(σ2
F + 2τσF )

]
6 2 exp

[
− τ2

2 + 4τ/σF

]
6 2 exp

[
− τ2

2 + 4τ

]
,

where the last inequality uses σF > 1.
As for H, we shall take τ > 1, so τσF > 1 and we can apply Lemma 39 to conclude:

P[|H − θ| 6 τσF ] 6 O(1)
τσF

σH
6 O(1)τ

(
ε log

k

α

) 1
4

,

where the second inequality is from (16). Hence:

Pr[|F | > |H − θ|] 6 P[|F | > τσF ] + P[|H − θ| 6 τσF ]

6 2 exp

[
− τ2

2 + 4τ

]
+ O(1)τ

(
ε log

k

α

) 1
4

Taking τ = A log(1/(ε log k
α )) with A a suitably large constant we get:

nsε(f) 6 O(1)

(
ε log

k

α

) 1
4

log(1/(ε log k
α)).

Case 2: σ2

F
< 1. In this case, let S denote the random set {i : hi(x) 6= hi(Nε(x))}; we refer to

S as the flip set. We now consider the random variable H conditioned on S being the flip set. As
conditional random variables, we have (H|S) =

∑k
i=1(hi(x)|S), and the random variables (hi(x)|S)

are still independent. It is easily verified that for i ∈ S, (hi(x)|S) takes the values ±1 with equal

probability; whereas, for i 6∈ S, (hi(x)|S) = −1 with probability pi−εi/2
1−εi

and (hi(x)|S) = +1 with

probability 1−pi−εi/2
1−εi

. Thus for i ∈ S, Var[hi(x)|S] = 1, and for i 6∈ S:

Var[hi(x)|S] = 1 −
(

1 − 2pi

1 − εi

)2

= 1 − (1 − 2qi)
2

(1 − εi)2
>

(1 − 2qi)
2

(1 − qi)2
> 2qi(1 − qi),

where the first inequality uses εi 6 qi from (15) and the second is elementary for qi ∈ [0, 1
2 ].

Recalling that Var[hi(x)] = 4qi(1−qi) we see that regardless of whether i ∈ S or not, Var[hi(x)|S] >
1
2Var[hi(x)]. Hence Var[H|S] > 1

2σ2
H . It thus follows from Lemma 39 that for every θ ∈ R and

λ > 1, P[|H − θ| 6 λ | S] 6 O(1)
√

2 λ
σH

, independently of S. Since |F | 6 2|S| is immediate, we
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conclude:

nsε(f) 6 Pr[|H − θ| 6 2|S|]
=

∑

S⊆[k]

Pr[flip set is S] · Pr[|H − θ| 6 2|S| | flip set is S]

6
∑

S⊆[k]

Pr[flip set is S] · O(1)
|S|
σH

= O(1)E[|S|]/σH

= O(1)

(
k∑

i=1

εi

)
/σH

= O(1)(σ2
F /σH)

6 O(1)(σF /σH),

where the last inequality is since σF 6 1 in Case 2. Hence we have nsε(f) 6 O(1)(σF /σH) 6

O(1)
(
ε log k

α

) 1
4 by (16).

In conclusion, in both Cases 1 and 2 we have:

nsε(f) 6 O(1)

(
ε log

k

α

) 1
4

log(1/(ε log k
α)).

Since α = O(1)(ε ln k)
1
4 , the proof is complete.

A.1 Proof of Lemma 39

We prove the following:

Proposition 40 Let X1, . . . ,Xn be independent ±1-valued random variables where Pr[Xk = −1] =
pk and let x =

∑n
k=1 Xk. Then for every θ ∈ R,

Pr[|x − θ| 6 1] 6
O(1)√∑n

k=1 pk(1 − pk)
.

Lemma 39 as stated earlier follows easily from this via a union bound over a suitably chosen
sequence of values for θ. The proof given below is based on similar arguments in Petrov’s work [44].
Proof: Define:

p(x) =
2(1 − cos x)

x2
> 0 and h(t) =

{
1 − |t|, |t| 6 1

0, else
.

Elementary integration by parts shows that p(x) is the inverse Fourier transform of h(t); i.e.,

p(x) =

∫ ∞

−∞
e−itxh(t) dt.
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By considering the Taylor expansion of cos x, we get that p(x) >
11
12 on the interval [−1, 1]. Hence:

Pr[|x − θ| 6 1] = E
x
[1x∈[θ−1,θ+1]]

6
12
11E[p(x − θ)]

= 12
11E

[∫ ∞

−∞
e−it(x−θ)h(t) dt

]

=
12

11

∫ ∞

−∞
E[e−itxeitθh(t)] dt

=
12

11

∣∣∣
∫ ∞

−∞
eitθh(t)E[e−itx] dt

∣∣∣ (17)

6
12

11

∫ 1

−1

∣∣E[e−itx]
∣∣ dt, (18)

with (17) following because the quantity is already real and nonnegative, and (18) following because
|eitθ| 6 1, h(t) = 0 outside [−1, 1], and |h(t)| 6 1 otherwise.

Now,

E
x
[e−itx] = E

xk←Xk

[exp(−it

n∑

k=1

xk

)
]

= E
xk←Xk

[ n∏

k=1

exp(−itxk)
]

=

n∏

k=1

E
xk←Xk

[exp(−itxk)] (by independence)

=

n∏

k=1

(pk exp(it) + (1 − pk) exp(−it))

=
n∏

k=1

(cos t + i(2pk − 1) sin t).

By comparing Taylor expansions one can establish that

| cos t + i(2p − 1) sin t| 6 exp(−11

24
p(1 − p)t2).
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for p ∈ [0, 1], t ∈ [−1, 1]. We may conclude that:

Pr[|x − θ| 6 1] 6
12

11

∫ 1

−1

n∏

k=1

exp(−11
24pk(1 − pk)t

2) dt

=
12

11

∫ 1

−1
exp

(
−11

24

[
n∑

k=1

pk(1 − pk)

]
t2

)
dt

=
12

11

∫ 1

−1
exp


− t2

2
(√

12
11 (
∑

pk(1 − pk))
−1/2

)2


 dt

6
12

11

∫ ∞

−∞
exp


− t2

2
(√

12
11 (
∑

pk(1 − pk))
−1/2

)2


 dt

=
√

2π(12
11 )3/2

(∑
pk(1 − pk)

)−1/2
,

since (
√

2πσ)−1 exp(−t2/2σ2) is a probability density function for every positive σ.
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