
Learning Intersections and Thresholds of Halfspaces

Adam R. Klivans�

Department of Mathematics
MIT

Cambridge, MA 02139
klivans@math.mit.edu

Ryan O’Donnelly

Department of Mathematics
MIT

Cambridge, MA 02139
odonnell@theory.lcs.mit.edu

Rocco A. Servedioz

Division of Engineering and Applied Sciences
Harvard University

Cambridge, MA 02138
rocco@deas.harvard.edu

Abstract

We give the first polynomial time algorithm to learn
any function of a constant number of halfspaces under
the uniform distribution to within any constant error pa-
rameter. We also give the first quasipolynomial time al-
gorithm for learning any function of a polylog number
of polynomial-weight halfspaces under any distribution.
As special cases of these results we obtain algorithms
for learning intersections and thresholds of halfspaces.
Our uniform distribution learning algorithms involve a
novel non-geometric approach to learning halfspaces;
we use Fourier techniques together with a careful anal-
ysis of the noise sensitivity of functions of halfspaces.
Our algorithms for learning under any distribution use
techniques from real approximation theory to construct
low degree polynomial threshold functions.

�Supported in part by NSF grant CCR-97-01304.
ySupported by NSF grant CCR-99-12342.
zSupported by an NSF Mathematical Sciences Postdoctoral Re-

search Fellowship and by NSF grant CCR-98-77049.

1 Introduction

Let h be a hyperplane in Rn , i.e. h = fx :Pn
i=1 wixi = �g: Such a hyperplane naturally induces a

Boolean function f(x) = sgn(
Pn

i=1 wixi � �) which is
called a linear threshold function or simply a halfspace.
Learning an unknown halfspace from labeled data is one
of the oldest problems in machine learning, dating back
to the 1950s [7, 35]. This problem has been intensively
studied over the years, and as described in Section 2.3
efficient algorithms are now known for several different
learning models.

While the problem of learning a single halfspace is
fairly well understood, learning more complicated func-
tions which depend on several halfspaces seems to be
quite difficult; in particular learning an intersection of
several unknown halfspaces stands as a central open
problem in computational learning theory. Intersections
of halfspaces are attractive for many reasons: any con-
vex body can be expressed as an intersection of halfs-
paces, and several well-studied classes of Boolean func-
tions such as DNF formulas can be naturally viewed
as special cases of intersections of halfspaces over the
Boolean cube. Finally, we hope that learning an inter-
section (AND) of halfspaces will be a first step towards
learning richer and more expressive functions of halfs-
paces.

1.1 Previous Work

Given the apparent difficulty of learning intersec-
tions of halfspaces from random examples, several re-
searchers have considered learning algorithms which are

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

allowed to make membership queries for the value of the
unknown function at points of the algorithm’s choice.
Building on work of Blum et. al. [8] and Baum [2],
Kwek and Pitt [25] have given a membership query al-
gorithm for learning the intersection of k halfspaces in
Rn (with respect to any probability distribution) in time
polynomial in n and k:

Progress has been much more limited for learning
intersections of halfspaces from random examples only;
all such results to date require that the examples be
drawn from some restricted class of probability distri-
butions. Baum [3] gave a polynomial time algorithm
for learning an intersection of two origin-centered half-
spaces under any “symmetric” distribution (which satis-
fiesD(x) = D(�x) for all x 2 Rn). His algorithm is es-
sentially a reduction to the problem of learning a single
halfspace. Building on work of Blum and Kannan [10],
Vempala [41] gave a polynomial time algorithm which
can learn an intersection of logn= log logn halfspaces
under “near-uniform” distributions on the Euclidean ball
in Rn : Vempala’s algorithm uses random sampling to
identify the subspace spanned by the normal vectors of
the unknown halfspaces.

1.2 Our Results

We give new results for learning intersections of
halfspaces, thresholds of halfspaces, and arbitrary func-
tions of halfspaces over the Boolean cube. All of our al-
gorithms learn from random examples only, and we ob-
tain results for learning both from uniformly distributed
examples and from examples drawn from an arbitrary
probability distribution.

1.2.1 Uniform Distribution Learning

Our main learning result for the uniform distribution is
a polynomial time algorithm for learning any function
of any constant number of halfspaces to within any con-
stant error parameter. More precisely, we prove:

Theorem 1 Let g : f+1;�1gk ! f+1;�1g be any
Boolean function on k bits and let h1; : : : ; hk be arbi-
trary halfspaces on f+1;�1gn: The class of all func-
tions fg(h1(x); : : : ; hk(x))g can be learned under the
uniform distribution to accuracy � in time nO(k2=�2), as-
suming � < 1=k2.

For k = O(1) and � =
(1) this time bound is polyno-
mial in n: We note that prior to our work no polynomial
time algorithm was known which could learn even an in-
tersection of two arbitrary halfspaces under the uniform
distribution on f+1;�1gn:

We can substantially improve the dependence on k
for the special case of learning a read-once intersection
or majority of halfspaces:

Theorem 2 Let h1; : : : ; hk be arbitrary halfspaces on
f+1;�1gn which depend on disjoint sets of variables.
The class fh1(x)^h2(x)^� � �^hk(x)g of read-once in-
tersections of k halfspaces can be learned under the uni-
form distribution to accuracy � in time nO((log(k)=�)2),
assuming � < 1= logk.

Theorem 3 Let h1; : : : ; hk be arbitrary halfspaces on
f+1;�1gn which depend on disjoint sets of variables.
The class fsgn(h1(x) + h2(x) + � � � + hk(x))g of
read-once majorities of k halfspaces can be learned
under the uniform distribution to accuracy � in time
n

~O((log(k)=�)4), assuming � < 1= log k.

1.2.2 Learning under Arbitrary Distributions

Our algorithms for learning under arbitrary distributions
use different techniques. In this scenario, our time
bounds for learning depend chiefly on two parameters:
the number of halfspaces k and the weight w of each
halfspace (i.e. the magnitude of its integer coefficients).
Our main learning result for arbitrary distributions is:

Theorem 4 Let g : f+1;�1gk ! f+1;�1g be any
Boolean function on k bits and let h1; : : : ; hk be weight-
w halfspaces on f+1;�1gn: The class of all functions
fg(h1(x); : : : ; hk(x))g can be learned to accuracy � un-
der any distribution in time nO(k2 logw)=�:

Thus we can learn any function of polylog(n) many
halfspaces of poly(n) weight in quasipolynomial time
under any probability distribution.

When we restrict attention to intersections of halfs-
paces, we can get better time bounds.

Theorem 5 Let h1; : : : ; hk be weight-w halfspaces on
f+1;�1gn: The class fh1(x) ^ h2(x) ^ � � � ^ hk(x)g
of intersections of k weight-w halfspaces can be
learned to accuracy � under any distribution in time
nO(k log k logw)=�:

This theorem does well for the intersection of a
fairly small number of halfspaces of reasonable weight.
For the intersection of a large number of halfspaces of
very small weight, we obtain a different bound:

Theorem 6 Let h1; : : : ; hk be weight-w halfspaces on
f+1;�1gn: The class fh1(x) ^ h2(x) ^ � � � ^ hk(x)g
of intersections of k weight-w halfspaces can be
learned to accuracy � under any distribution in time
nO(

p
w log k)=�:

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

Theorems 5 and 6 exhibit a tradeoff between the number
of halfspaces k and the weight w of the halfspaces; as
discussed in Section 4 this tradeoff is essentially optimal
given our techniques.

We can generalize the bound of Theorem 5 to
thresholds of halfspaces:

Theorem 7 Let h1; : : : ; h` be weight-w halfspaces
on f+1;�1gn and let g be a weight-k halfspace
on f+1;�1g`: The class fg(h1(x); : : : ; h`(x))g of
weight-k thresholds of weight-w halfspaces can be
learned to accuracy � under any distribution in time
nO(k log k logw)=�:

Finally, we extend recent results of Klivans and
Servedio [24] on learning DNF formulas (ORs of
ANDs) to thresholds of ANDs:

Theorem 8 Let C1; : : : ; C` be arbitrary Boolean con-
junctions over f+1;�1gn and let g : f+1;�1g` !
f+1;�1g be a weight-w halfspace. The class
fg(C1; : : : ; C`)g of weight-w thresholds of ANDs can
be learned to accuracy � under any distribution in time
nO(n1=3 logw)=�:

We thus achieve the same running time bound from [24]
for learning DNF formulas while learning a strictly more
expressive class of functions.

1.3 Our Approach

The techniques we use for learning under the uni-
form distribution are quite different from those we use
for learning under an arbitrary distribution. In the
uniform distribution case, we show tight concentration
bounds for the Fourier spectra of functions of halfs-
paces; this lets us learn using a Fourier based sampling
algorithm from Linial et al. [26]. In the arbitrary distri-
bution case, we show how to represent functions of half-
spaces as low-degree polynomial threshold functions,
which lets us learn using linear programming.

1.3.1 Uniform Distribution Learning: Fourier
Analysis and Noise Sensitivity

The centerpiece of our uniform-distribution learning al-
gorithms is a new Fourier concentration bound for func-
tions of halfspaces. Recall that a Fourier concentration
bound for a class of functions C is a statement of the
following form: For every function f 2 C on n inputs,
all but an � fraction of the Fourier spectrum of f is con-
centrated on degree up to �(�; n). Given such a bound,
the “low degree algorithm” of Linial et al. [26] provides
a uniform-distribution learning algorithm for C running
in time nO(�(�;n)). The main result in [26] is a Fourier

concentration bound for the class of functions express-
ible by A C0 circuits, with �(�; n) = polylog(n=�). Our
new concentration bound is �(�; n) = O(k

p
�) for the

class of arbitrary functions of k halfspaces. We also give
tighter bounds for more restricted classes of functions of
halfspaces.

Our technique for proving these concentration
bounds is to study the noise sensitivity of halfspaces.
The noise sensitivity of a function f is simply the proba-
bility that f(x) differs from f(y) where x is a randomly
chosen point and y is a slight perturbation of x. The
noise sensitivity of Boolean functions was studied ex-
tensively by Benjamini et al. [6]; they showed that func-
tions with low noise sensitivity have good Fourier con-
centration bounds. By analyzing the noise sensitivity of
halfspaces rather than studying their Fourier properties
directly, we are able to get Fourier concentration bounds
for various classes of functions of halfspaces.

1.3.2 Learning under Arbitrary Distributions:
Polynomial Threshold Functions

Our results for learning under an arbitrary distribution
begin with the fact that a polynomial threshold function
of degree d can be learned in time nO(d). Our contribu-
tion is showing that various classes of functions of half-
spaces can be expressed as polynomial threshold func-
tions of low degree. This technique has previously been
used for learning by Klivans and Servedio [24], who
showed that any polynomial-size DNF formula can be
represented as a polynomial threshold function of de-
gree ~O(n1=3). They thus obtained a learning algorithm
for DNF which works under any distribution and runs in
time 2 ~O(n1=3).

We show that any function of k halfspaces where
the sum of the (integer) coefficients of each halfspace
is bounded by w can be represented as a polynomial
threshold function of degreeO(k2 logw). We prove this
using rational function approximation tools which were
first used in a complexity theory context by Beigel et al.
[4]. Roughly, we use rational functions which approx-
imate the function sgn to closely approximate the �1
output values of our halfspaces. Having done this we
obtain a single polynomial threshold function comput-
ing an arbitrary function g of halfspaces by composing
these approximations with an interpolating polynomial
for g:

In certain circumstances, we can trade off the de-
pendences on k and w by using extremal polynomials in
place of rational functions. By using Chebychev poly-
nomials (previously used by Klivans and Servedio [24]
and Nisan and Szegedy [32] in a somewhat similar con-
text), we obtain a polynomial threshold function of de-
greeO(w1=2 log k) computing the intersection of k half-

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

spaces where the sum of the coefficients of each linear
threshold function is at most w.

2 Preliminaries

2.1 Definitions and learning model

Throughout the paper unless otherwise indicated
we represent TRUE and FALSE by �1 and +1 re-
spectively. A linear threshold function or halfspace on
f+1;�1gn is a function f : f+1;�1gn ! f+1;�1g;
f(x) = sgn(

Pn
i=1 wixi � �) where w1; : : : ; wn; � 2 R

and sgn(z) = +1 iff z > 0: We say that w1; : : : ; wn; �
represent f ; since the domain is the discrete Boolean
cube, every halfspace f has some representation in
which w1; : : : ; wn; � 2 Z. The weight of f is the
smallest integer w for which there exist a representa-
tion w1; : : : ; wn; � 2 Zwith j�j +Pn

i=1 jwij = w: The
majority function on inputs x1; : : : ; xn is MAJ(x) =
sgn(

Pn
i=1 xi):

We use Valiant’s well-studied Probably Approxi-
mately Correct (PAC) model of learning Boolean func-
tions from random examples [40]. In this model a con-
cept class C is a collection [n>1Cn of Boolean func-
tions where each c 2 Cn is a function on n bits. In the
PAC model a learning algorithm has access to an exam-
ple oracle EX(c;D) which, when queried, provides a
labeled example hx; c(x)i where x is drawn from distri-
bution D over f+1;�1gn and c 2 Cn is the unknown
target concept which the algorithm is trying to learn.
Given Boolean functions c; h on f+1;�1gn we say that
h is an �-approximator for c under D if Prx2D[h(x) =
c(x)] > 1� �; the goal of a PAC learning algorithm is to
generate an �-approximator for the unknown target con-
cept c: More precisely, an algorithmA is a PAC learning
algorithm for concept class C if the following condition
holds: for all n > 1; all c 2 Cn; any distribution D on
f+1;�1gn; and any 0 < � < 1

2 ; 0 < Æ < 1, if A is
given � and Æ as input and has access to EX(c;D); then
with probability at least 1� Æ algorithm A outputs an �-
approximator for c under D: We say that A PAC learns
C in time t if A runs for at most t time steps and out-
puts a hypothesis h which can be evaluated on any point
x 2 f+1;�1gn in time t.

If the above condition holds only for the uniform
distribution U on f+1;�1gn; we say that A is a uniform
distribution PAC learning algorithm for C: Uniform dis-
tribution PAC learnability of Boolean functions has been
studied by many authors; see, e.g., [5, 9, 12, 14, 13, 18,
17, 19, 20, 21, 22, 23, 26, 29, 36, 37, 38, 42, 43].

All of our learning algorithms, both for the uniform
distribution and for arbitrary distributions, have running
time bounds with a log(1=Æ) dependence on Æ;and hence
we typically omit mention of this dependence.

2.2 Fourier Analysis and Uniform Distribution
Learning

We briefly review some facts about Fourier analysis
on the Boolean cube and its relation to uniform distribu-
tion learning. For a detailed treatment with proofs see
[28].

Let the space f+1;�1gn be endowed with the uni-
form probability measure, and define an inner product
on functions f; g : f+1;�1gn ! R by hf; gi = E[fg].
For S � [n] the parity function �S : f+1;�1gn !
f+1;�1g is defined by �S(x) =

Q
i2S xi. The set of

all 2n parity functions f�SgS�[n] forms an orthonor-
mal basis for the vector space of real-valued functions
on f+1;�1gn; and hence every real-valued function
f : f+1;�1gn ! R can be uniquely expressed as a lin-
ear combination f(x) =

P
S�[n] f̂(S)�S(x): The coef-

ficients f̂(S) are called the Fourier coefficients of f ; col-
lectively, they are its Fourier spectrum. Orthonormality
implies that f̂(S) = hf; �Si and thus f̂(S) measures the
correlation between f and �S . Orthonormality also im-
plies Parseval’s identity, which states that for every real-
valued function f we have E[f2] =

P
S�[n] f̂(S)

2. For

Boolean functions we thus have
P

S�[n] f̂(S)
2 = 1:

Let �(�; n) be a function � : (0; 12) � N ! N: We
say that a concept class C has a Fourier concentration
bound of �(�; n) if for all n > 1; all 0 < � < 1

2 ; and all
f 2 Cn we have X

jSj>�(�;n)
f̂(S)2 6 �;

i.e. at most an � fraction of the Fourier spectrum weight
resides in coefficients of degree more than �(�; n):

An important connection between Fourier analysis
and learning theory is the following result, implicit in
[26] (see [28] for a nice exposition and proof):

Fact 9 Let C be a concept class with a Fourier concen-
tration bound of �(�; n): Then there is a uniform distri-
bution PAC learning algorithm for C which runs in time
nO(�(�;n)):

2.3 Polynomial Threshold Functions and
Learning under Arbitrary Distributions

A polynomial threshold function is a function
f : f+1;�1gn ! f+1;�1g; f(x) = sgn(p(x))
where p(x1; : : : ; xn) is a real-valued multivariate poly-
nomial. Equivalently, we say that the polynomial p sign-
represents f: The degree of a polynomial threshold func-
tion is the degree of the polynomial p. Note that a linear
threshold function is a polynomial threshold function of
degree one.

The following fact is well known (see [11]):

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

Fact 10 The concept class of linear threshold functions
over f+1;�1gn can be PAC learned under any distri-
bution in time poly(n)=�:

The algorithm of Fact 10 is based on polynomial time
linear programming. We will use the following easy ex-
tension of Fact 10 (see e.g. [24]):

Fact 11 Let C be a concept class over f+1;�1gn such
that each f 2 Cn can be expressed as a polynomial
threshold function of degree at most d(n): ThenC can be
PAC learned under any distribution in time nO(d(n))=�:

Remark 12 By results of Maass and Turan [27] the
class of linear threshold functions is also known to be
learnable in polynomial time in the model of exact learn-
ing from equivalence queries. An analogue of Fact
11 holds in this model as well, and in fact all of our
distribution-independent PAC learning results hold in
this model as well.

3 Learning Functions of Halfspaces under
Uniform Distributions

3.1 From Noise Sensitivity to Fourier Concen-
tration

Let f : f+1;�1gn ! f+1;�1g be a Boolean
function. We define the noise sensitivity of f at � to be:

NS�(f) = Pr
x;noise

[f(x) 6= f(N�(x))]

(cf. [6]). Here x is uniformly chosen from f+1;�1gn,
and N� is the noise operator which flips each bit of its
input independently with probability �. The following
formula from [33] relates the noise sensitivity of f to its
Fourier spectrum; related formulas are given in [13, 6].

Proposition 13 For any f : f+1;�1gn ! f+1;�1g:

NS�(f) =
1

2
� 1

2

X
S�[n]

(1� 2�)jSjf̂(S)2:

It follows that a strong upper bound on the noise
sensitivity of f implies a good Fourier concentration
bound for f (the simple proof is omitted):

Proposition 14 For any f : f+1;�1gn ! f+1;�1g,
0 < < 1=2:

X
jSj>1=

f̂(S)2 < 2:32NS(f):

Corollary 15 Let f : f+1;�1gn ! f+1;�1g be any
Boolean function, and let � : [0; 1=2] ! [0; 1] be an
increasing function such that NS�(f) 6 �(�). Then:

X
jSj>m

f̂(S)2 6 � for m =
1

��1(�=2:32)
:

In Section 3.2 we first give a detailed analysis of
the noise sensitivity of a single linear threshold func-
tion. We then extend this analysis to arbitrary functions
of several halfspaces and thus obtain Fourier concentra-
tion bounds and learning results using Corollary 15 and
Fact 9. In Section 3.3 we give noise sensitivity bounds
(and thus obtain Fourier concentration bounds and learn-
ing results) for read-once intersections and majorities of
halfspaces.

3.2 Noise Sensitivity of Halfspaces and Func-
tions of Halfspaces

3.2.1 Noise Sensitivity of a Halfspace

Benjamini et al. [6] were the first to analyze the noise
sensitivity of linear threshold functions. They proved
that every halfspace h : f+1;�1gn ! f+1;�1g has
NS�(h) 6 C�1=4 where C is an absolute constant (note
that this bound does not depend on n). Y. Peres sub-
sequently improved this bound to O(

p
�) (unpublished,

[34]). Since the majority function has noise sensitivity

(
p
�) [6, 33], this is the best bound possible that de-

pends only on �:
We will use a refinement of Peres’s bound that takes

into account how “balanced” the halfspace is between
outputs +1 and �1: To motivate our bound, let h be a
halfspace with p = Pr[h(x) = +1] < 1

2 : If x is an input
to h and y = N�(x), then both x and y are uniformly dis-
tributed, so by a union bound Pr[h(x) = +1 or h(y) =
+1] 6 2p and hence NS�(h) 6 2p: Thus if 2p � p

� it
should be possible to get a much stronger bound upper
bound on noise sensitivity which depends on p.

Our bound on the noise sensitivity of an arbitrary
linear threshold function is as follows:

Theorem 16 Let h : f+1;�1gn ! f+1;�1g be a
halfspace, i.e. h(x) = sgn(

Pn
i=1 wixi � �) for some

w 2 Rn ; � 2 R. Let p = minfPr[h = +1];Pr [h =
�1]g. Then:

NS�(h) 6 minf2 p; 20:5 p
p
� ln(1=p)g:

Theorem 16 is proved in Appendix A. Since p
p
ln(1=p)

is maximized when p = 1=2, and 20:5 � 12
p
ln 2 < 8:54,

we get:

Corollary 17 For any halfspace h : f+1;�1gn !
f+1;�1g; we have NS�(h) 6 8:54

p
�.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

Since (8:54 � 2:32)2 < 400, Corollary 15 yields:

Theorem 18 Let f : f+1;�1gn ! f+1;�1g be any
linear threshold function. Then for all 0 < � < 1=2,X

jSj>(20=�)2
f̂(S)2 6 �:

This bound is essentially tight as shown by the fol-
lowing theorem, whose proof we omit:

Theorem 19 For any 0 < � < 1=2, the following in-
equality holds for all sufficiently large odd n:X

jSj>�
\MAJn(S)

2 > �;

whenever � < 8
�3�2 � 2.

3.2.2 Bounds on Functions of k Halfspaces

Corollary 17 immediately implies an upper bound on the
noise sensitivity of any function of k halfspaces:

Theorem 20 Let f : f+1;�1gn ! f+1;�1g be any
function of k halfspaces. Then NS�(f) 6 O(k

p
�).

Proof: Let h1; : : : ; hk be arbitrary Boolean halfspaces,
and let g : f+1;�1gk ! f+1;�1g be an arbitrary
Boolean function. Write f = g(h1; : : : ; hk). By Corol-
lary 17, Pr [hi(x) 6= hi(N�(x))] is O(

p
�) for each i =

1 : : : k. By a union bound, the probability that at least
one hi’s value changes under noise is at most O(k

p
�).

But f ’s value changes only if at least one of the hi’s val-
ues changes. Hence Pr[f(x) 6= f(N�(x))] 6 O(k

p
�).

By applying Corollary 15, we get a Fourier concen-
tration bound of O(k2=�2) for the class of functions of k
halfspaces (assuming � < 1=k2). We now get our main
uniform distribution learning result, Theorem 1, using
Fact 9.

3.3 Extensions: Learning Read-Once Func-
tions of Halfspaces

Theorem 20 boundsNS�(f) byO(k
p
�) for f an ar-

bitrary function of k halfspaces. Can stronger bounds be
obtained if f is restricted to be a simple function (such
as intersection) of k halfspaces? While we do not know
the answer to this question, we can give substantially
improved bounds if f is a read-once intersection or ma-
jority of halfspaces, i.e. each variable xi occurs as input
to at most one halfspace.

For read-once intersection of halfspaces we have
the following noise sensitivity bound (whose proof we
omit):

Theorem 21 Let f : f+1;�1gn ! f+1;�1g; f(x) =
h1(x) ^ h2(x) ^ � � � ^ hk(x) where h1; : : : ; hk are half-
spaces on disjoint sets of variables. Then NS�(f) =
O(
p
� log k):

Note that k 6 n for any read-once intersection of halfs-
paces. By using Corollary 15 and Fact 9, we get Theo-
rem 2.

In earlier work Hancock et al. [15] gave a polyno-
mial time algorithm for learning a read-once intersection
of majorities (i.e. each weight wi of each halfspace is 1)
under the uniform distribution. We emphasize that we
are learning a much richer class of functions since our
threshold functions can have arbitrary (even exponen-
tially large) weights.

For the more expressive class of read-once major-
ity of halfspaces we have the following noise sensitivity
bound, whose proof we omit:

Theorem 22 Let f(x) = sgn(h1(x) + � � � + hk(x) �
�) where h1; : : : ; hk are halfspaces on disjoint sets of
variables. Then NS�(f) = ~O((� log k)1=4):

Once again, we get Theorem 3 by applying Corol-
lary 17 and Fact 9.

4 Learning Intersections of Halfspaces un-
der Arbitrary Distributions

For our distribution independent results we use a set
of completely different techniques. For our first set of
results we use rational function approximations to the
sgn function. For our second set of results, we use the
extremal properties of the Chebyshev polynomials.

Throughout this section for convenience we let +1
denote TRUE and �1 denote FALSE.

4.1 Bounding PTF degree via rational function
approximation

We use the rational function approximation to the
sgn function introduced by Beigel et al. [4], building on
work of Newman [31]. The motivation of Beigel et al.
was the study of the complexity class PP. Later, Siu et
al. [39] used the techniques for proving lower bounds
against small-weight threshold circuits. The main tech-
nical theorem we need is:

Theorem 23 [4] For every `; t > 1 there exists a ratio-
nal function P `

t in one variable with the following prop-
erties:

� For any x 2 [1; 2t] the value P `
t (x) 2 [1; 1 + 1=`].

� For any x 2 [�2t;�1] the value P `
t (x) 2 [�1 �

1=`;�1]:

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

� P `
t (x) has degree O(t log `):

Here the degree of a rational function is the sum of the
degrees of its numerator and denominator. Using this
tool, we can get a polynomial threshold function for the
intersection of k halfspaces:

Theorem 24 Let h1; : : : ; hk be linear threshold func-
tions f+1;�1gn ! f+1;�1g each of weight at
most w: The function h1(x) ^ � � � ^ hk(x) can be ex-
pressed as a polynomial threshold function of degree
O(k log k logw):

Proof: For i = 1; : : : ; k let Hi(x) =
Pn

j=1 w
i
jxj � �i

be a minimum weight representation of hi(x); so wi
j ; �j

are integers and hi(x) = sgn(Hi(x)): Without loss of
generality we may suppose that jHi(x)j > 1 for all x 2
f+1;�1gn; since this can be achieved by doubling each
wi
j and replacing �i by 2�i � 1:

Let ` = 2k and t = logw and consider the sum of
rational functions

I = P 2k
logw(H1(x)) + � � �+ P 2k

logw(Hk(x)):

Now on input x, if hi(x) = 1 (TRUE) for every i,
then I > k: On the other hand, if for some i we
have hi(x) = �1 (FALSE), then I 6 k � 1. Thus
sgn(I � k) computes h1(x) ^ � � � ^ hk(x) on all in-
puts. Now I � k is the sum of k rational functions each
of degree O(log k logw). Hence if we bring these to a
common denominator, we can write I�k as a single ra-
tional function Q(x)=R(x) of degree O(k log k logw),
and Q(x)=R(x) sign-represents h1(x) ^ � � � ^ hk(x).
Hence so doesQ(x)R(x); which is a polynomial thresh-
old function of degree O(k log k logw).

Using this theorem and Fact 11, we get Theorem 5.
We note that for k = w2 the O(k log k logw) bound of
Theorem 24 is nearly optimal; Minsky and Papert have
shown that the “one-in-a-box” function requires polyno-
mial threshold function degree at least k; and the one-in-
a-box function can be expressed as an AND of k halfs-
paces of weight k2 (in fact the halfspaces are ORs of
fanin k2).

By a virtually identical proof we can generalize
Theorem 24 as follows:

Theorem 25 Let h1; : : : ; h` be linear threshold func-
tions f+1;�1gn ! f+1;�1g each of weight at most
w. Let f : f+1;�1g` ! f+1;�1g be a weight
k threshold function. Then f(h1; : : : ; h`) can be ex-
pressed as a polynomial threshold function of degree
O(k log k logw):

Again, combining this with Fact 11 yields Theo-
rem 7. We note that the degree bound given by Theorem

25 is nearly optimal for k = w: Hajnal et al. [16] show
how to compute the parity function on k variables as a
weight-O(k) threshold of weight-O(k) halfspaces, but
it is well known that any polynomial threshold function
computing parity on k variables requires degree at least
k (see [1, 30]).

These rational function techniques can also be used
to give learning algorithms for arbitrary functions of
halfspaces; we get Theorem 4 from the following, whose
proof we omit:

Theorem 26 Let h1; : : : ; hk be linear threshold func-
tions f+1;�1gn ! f+1;�1g each of weight at most
w. Let f : f+1;�1gk ! f+1;�1g be any function.
Then f(h1; : : : ; hk) can be expressed as a polynomial
threshold function of degree O(k2 logw):

4.2 Bounding PTF Degree via Chebychev Poly-
nomials

4.2.1 Learning Intersections of Small-Weight Half-
spaces

The degree bounds obtained in the previous section are
most interesting for cases when the number of underly-
ing halfspaces is small (say a constant) and each half-
space is of weight nO(1). We can also give an al-
ternate construction of polynomial threshold functions
based on Chebychev polynomials and obtain improved
degree bounds for cases involving a polynomial num-
ber of small weight (e.g. weight O(1)) halfspaces. The
proof is omitted.

Theorem 27 Let h1; : : : ; hk be linear threshold func-
tions f+1;�1gn ! f+1;�1g each of weight at most
w: The function h1(x)^� � �^hk(x) can be expressed as
a polynomial threshold function of degreeO(

p
w log k):

4.2.2 Learning a Threshold of ANDs

In the last section we used Chebychev polynomials to
obtain polynomial threshold function degree bounds for
ANDs of thresholds. We can also use them to obtain
bounds for thresholds of ANDs. The following theorem
(whose proof we omit) generalizes the bound of Klivans
and Servedio (their Theorem 1) for OR of ANDs [24]:

Theorem 28 Let C1; : : : ; C` be Boolean conjunctions,
each over at most k literals, and let g be a weight-w
threshold over f+1;�1g`: The function g(C1; : : : ; C`)
can be expressed as a polynomial threshold function of
degree O(

p
k logw):

Using Theorem 28 in place of Klivans and Serve-
dio’s Theorem 1, the arguments of [24] can be used to
prove the following strengthened version of Klivans and
Servedio’s main structural result for DNF formulas:

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

Theorem 29 Let f : f+1;�1gn ! f+1;�1g be a
weight-w threshold of ANDs. Then f can be a ex-
pressed as a polynomial threshold function of degree
O(n1=3 logw):

Appling Fact 11 we obtain Theorem 8 which is a
strict generalization of the main learning result of [24].

References

[1] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The ex-
pressive power of voting polynomials. Combinatorica,
14(2):1–14, 1994.

[2] E. Baum. Neural net algorithms that learn in polynomial
time from examples and queries. IEEE Trans. on Neural
Networks, 2:5–19, 1991.

[3] E. Baum. A polynomial time algorithm that learns two
hidden unit nets. Neural Computation, 2:510–522, 1991.

[4] R. Beigel, N. Reingold, and D. Spielman. Pp is closed
under intersection. Journal of Computer and System Sci-
ences, 50(2):191–202, 1995.

[5] M. Bellare. A technique for upper bounding the spectral
norm with applications to learning. In Proceedings of
the Fifth Annual Workshop on Computational Learning
Theory, pages 62–70, 1992.

[6] I. Benjamini, G. Kalai, and O. Schramm. Noise sensitiv-
ity of boolean functions and applications to percolation.
Inst. Hautes Études Sci. Publ. Math., 90:5–43, 1999.

[7] H. Block. The perceptron: a model for brain functioning.
Reviews of Modern Physics, 34:123–135, 1962.

[8] A. Blum, P. Chalasani, S. A. Goldman, and D. K.
Slonim. Learning with unreliable boundary queries.
Journal of Computer and System Sciences, 56(2):209–
222, 1998.

[9] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour,
and S. Rudich. Weakly learning dnf and characterizing
statistical query learning using fourier analysis. In Pro-
ceedings of the Twenty-Sixth Annual Symposium on The-
ory of Computing, pages 253–262, 1994.

[10] A. Blum and R. Kannan. Learning an intersection of
a constant number of halfspaces under a uniform dis-
tribution. Journal of Computer and System Sciences,
54(2):371–380, 1997.

[11] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. War-
muth. Learnability and the vapnik-chervonenkis dimen-
sion. Journal of the ACM, 36(4):929–965, 1989.

[12] D. Boneh and R. Lipton. Amplification of weak learning
over the uniform distribution. In Proceedings of the Sixth
Annual Workshop on Computational Learning Theory,
pages 347–351, 1993.

[13] N. Bshouty, J. Jackson, and C. Tamon. More efficient
pac learning of dnf with membership queries under the
uniform distribution. In Proceedings of the Twelfth An-
nual Conference on Computational Learning Theory,
pages 286–295, 1999.

[14] N. Bshouty and C. Tamon. On the fourier spectrum of
monotone functions. Journal of the ACM, 43(4):747–
770, 1996.

[15] M. Golea, M. Marchand, and T. Hancock. On learning
�-perceptron networks on the uniform distribution. Neu-
ral Networks, 9:67–82, 1994.

[16] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Tu-
ran. Threshold circuits of bounded depth. Journal of
Computer and System Sciences, 46:129–154, 1993.

[17] T. Hancock. The complexity of learning formulas and
decision trees that have restricted reads. PhD thesis,
Harvard University, 1992.

[18] T. Hancock and Y. Mansour. Learning monotone k-� dnf
formulas on product distributions. In Proceedings of the
Fourth Annual Conference on Computational Learning
Theory, pages 179–193, 1991.

[19] J. Jackson. An efficient membership-query algorithm
for learning dnf with respect to the uniform distribution.
Journal of Computer and System Sciences, 55:414–440,
1997.

[20] J. Jackson, A. Klivans, and R. Servedio. Learnability
beyond ac0. In Proceedings of the 34th ACM Symposium
on Theory of Computing, 2002.

[21] R. Khardon. On using the fourier transform to learn dis-
joint dnf. Information Processing Letters, 49:219–222,
1994.

[22] M. Kharitonov. Cryptographic hardness of distribution-
specific learning. In Proceedings of the Twenty-Fifth An-
nual Symposium on Theory of Computing, pages 372–
381, 1993.

[23] A. Klivans and R. Servedio. Boosting and hard-core
sets. In Proceedings of the Fortieth Annual Symposium
on Foundations of Computer Science, pages 624–633,
1999.

[24] A. Klivans and R. Servedio. Learning dnf in time

2~o(n
1=3). In Proceedings of the Thirty-Third Annual

Symposium on Theory of Computing, pages 258–265,
2001.

[25] S. Kwek and L. Pitt. Pac learning intersections of
halfspaces with membership queries. Algorithmica,
22(1/2):53–75, 1998.

[26] N. Linial, Y. Mansour, and N. Nisan. Constant depth
circuits, fourier transform and learnability. Journal of
the ACM, 40(3):607–620, 1993.

[27] W. Maass and G. Turan. How fast can a threshold gate
learn?, pages 381–414. MIT Press, 1994.

[28] Y. Mansour. Learning Boolean functions via the Fourier
transform, pages 391–424. 1994.

[29] Y. Mansour. An o(nlog log n) learning algorithm for dnf
under the uniform distribution. Journal of Computer and
System Sciences, 50:543–550, 1995.

[30] M. Minsky and S. Papert. Perceptrons: an introduc-
tion to computational geometry. MIT Press, Cambridge,
MA, 1968.

[31] D. J. Newman. Rational approximation to jxj. Michigan
Mathematical Journal, 11:11–14, 1964.

[32] N. Nisan and M. Szegedy. On the degree of boolean
functions as real polynomials. In Proceedings of the
Twenty-Fourth Annual Symposium on Theory of Com-
puting, pages 462–467, 1992.

[33] R. O’Donnell. Hardness amplification within np. In
Proceedings of the 34th ACM Symposium on Theory of
Computing, 2002.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

[34] Y. Peres. personal communication, 2001.
[35] F. Rosenblatt. The perceptron: a probabilistic model for

information storage and organization in the brain. Psy-
chological Review, 65:386–407, 1958.

[36] Y. Sakai and A. Maruoka. Learning monotone log-term
dnf formulas under the uniform distribution. Theory of
Computing Systems, 33:17–33, 2000.

[37] R. Servedio. On pac learning using winnow, perceptron,
and a perceptron-like algorithm. In Proceedings of the
Twelfth Annual Conference on Computational Learning
Theory, pages 296–307, 1999.

[38] R. Servedio. On learning monotone dnf under product
distributions. In Proceedings of the Fourteenth Annual
Conference on Computational Learning Theory, pages
473–489, 2001.

[39] K.-Y. Siu, V. Roychowdhury, and T. Kailath. Ra-
tional approximation techniques for analysis of neural
networks. IEEE Transactions on Information Theory,
40(2):445–474, 1994.

[40] L. Valiant. A theory of the learnable. Communications
of the ACM, 27(11):1134–1142, 1984.

[41] S. Vempala. A random sampling based algorithm for
learning the intersection of halfspaces. In Proceedings
of the 38th Annual Symposium on Foundations of Com-
puter Science, pages 508–513, 1997.

[42] K. Verbeurgt. Learning dnf under the uniform distri-
bution in quasi-polynomial time. In Proceedings of
the Third Annual Workshop on Computational Learning
Theory, pages 314–326, 1990.

[43] K. Verbeurgt. Learning sub-classes of monotone dnf on
the uniform distribution. In Proceedings of the Ninth
Conference on Algorithmic Learning Theory, pages
385–399, 1998.

A Proof of Theorem 16

As we argued before, NS�(h) 6 2 p always. Hence
it suffices to show NS�(h) 6 20:5 p

p
� ln(1=p). With-

out loss of generality we assume that
Pn

i=1 wixi 6= �
for all x 2 f+1;�1gn (if not we can slightly perturb
the weights without changing the boolean function h.)

When the noise operater N� changes the sign of an
input bit, we call this a flip. When all the flips taken
together cause the value of h to change, we call this a
flop. Let P (k) be the probability of a flop, conditioned
on exactly k flips occurring. We will upper bound P (k)
and then take an appropriate binomial average over k in
the end.

So let us suppose that there are exactly k > 0 flips.
Write m = bn=kc. Let x 2 f+1;�1gn be chosen uni-
formly at random, and let � be a uniformly random per-
mutation on [n]. Define X1 =

Pk
i=1 xiw�(i), X2 =P2k

i=k+1 xiw�(i), : : : , Xm =
Pmk

i=(m�1)k+1 xiw�(i),
and finally Z =

Pn
i=mk+1 xiw�(i). Write S =Pm

j=1Xj + Z. Because of the random permutation �,
we can “assume that the weights of X1 were flipped.”

In other words, (S; S � 2X1) has exactly the same joint
distribution as (w � y; w � y0), where y 2 f+1;�1gn is
uniform and y0 is y with exactly k randomly selected bits
flipped.

Put S0 = S � X1 =
Pm

j=2Xj + Z, so the “sum
before flipping” is S0 +X1 and the “sum after flipping”
is S0 � X1. Hence a flop occurs iff jS0 � �j < jX1j.
(Note that jS0 � �j = jX1j is impossible, by our first
assumption.)

Suppose that we condition on there being no flop;
i.e., we condition on the event jS0 � �j > jX1j. Then
since sgn(X1) is independent from both jX1j and S0, we
have that Pr [sgn(X1) = sgn(S0 � �)] = Pr[sgn(X1) 6=
sgn(S0 � �)] = 1=2. But, since we are conditioning on
the event jS0 � �j > jX1j; we have that sgn(S0 � �)
and sgn(S � �) are always the same. Therefore we may
conclude that under this conditioning, Pr [sgn(S � �) 6=
sgn(X1)] = 1=2; i.e.,

Pr [sgn(S � �) 6= sgn(X1) & no flop] =
1

2
Pr [no flop]:

Yet the event [sgn(S � �) 6= sgn(X1) & no flop] is ex-
actly the same event as [sgn(S � �) 6= sgn(X1)], since
if there is a flop, then sgn(S � �) must be the same as
sgn(X1). Hence we have 1

2 Pr[no flop] = Pr[sgn(S �
�) 6= sgn(X1)]; i.e.,

1

2
(1� P (k)) = Pr[sgn(S � �) 6= sgn(X1)]:

Now note that we could have derived this statement
with X2 in place of X1, or indeed any of X2; : : : Xm in
place of X1, simply because once we apply the random
permutation �, we could have picked any of these blocks
to “be the flips.” So in fact,

8i = 1 : : :m;
1

2
(1� P (k)) = Pr[sgn(S � �) 6= sgn(Xi)]:

Write � for the random variable sgn(S � �), and �i for
the random variable sgn(Xi). Converting probabilities
to expectations of indicator variables, we have:

8i = 1 : : :m;
1

2
(1� P (k)) = E[1� 6=�i]:

Summing these equations over all i yields:

m

2
(1� P (k)) = E[

mX
i=1

1� 6=�i] (1)

Recall that this expectation is over the choices of x and
�, which force the values of � and �i.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

The above arguments are due to Peres, and indeed
from this point it is fairly easy to obtain an O(

p
�) up-

per bound. Some more work is required to obtain our
desired bound which depends on p:

Suppose without loss of generality that p = Pr[h =
�1], so p = Pr[� = �1]. For t = 1 : : :m, define:

pt = Pr[� = �1 j exactly t of the �i’s are +1]

Since the event S < � is negatively correlated with the
events Xi > 0, we conclude that:

1 > p0 > p1 > p2 > � � � > pm > 0 (2)

But also note that �1; : : : ; �m are all independent and
uniformly distributed in f+1;�1g. Therefore:

p =

mX
t=0

�
m
t

�
2m

pt (3)

Continuing from (1), we have:

(m=2)(1� P (k))

= E[# of �i’s differing from �]

=

mX
t=0

�
m
t

�
2m

E

"
mX
i=1

1� 6=�i j exactly t �i’s are +1

#

=
mX
t=0

�
m
t

�
2m

E[t1�=�1 + (m� t)1�=+1

j exactly t �i’s are +1]

=

mX
t=0

�
m
t

�
2m

(tPr [� = �1jexactly t �i’s are +1]

+(m� t) Pr[� = �1jexactly t �i’s are +1])

=

mX
t=0

�
m
t

�
2m

(tpt + (m� t)(1� pt)):

So m
2 (1� P (k)) = ET [TpT + (m� T)(1� pT)],

where T � Binomial(m; 1=2). Some arithmetic gives:

P (k) =
2

m
ET [T]� 1 + 2ET [pT]� 4

m
ET [TpT]

= 2

p� 2

m

mX
t=0

�
m
t

�
2m

tpt

!
(4)

We will obtain an upper bound for P (k) by maxi-
mizing (4) subject to (2) and (3). This is a linear pro-
gramming problem. Hence the maximum occurs at a
vertex, which in this case means the maximum occurs
when, for an appropriate 1 6 b 6 m=2, we have p0 =
p1 = � � � = pb�1 = 1, pb+1 = pb+2 = � � � = pm = 0,
and pb is such that (3) is tight. (We have b 6 m=2 since
p 6 1=2.)

It can be shown (proof omitted) that when the
pt’s take on these values, we have the following upper
bound:

(4) 6
(14:48) p

p
ln(1=p)p

m
: (5)

Given this upper bound, it remains only to take the
appropriate binomial average over k to obtain our final
bound on NS�(h): Since m = bn=kc; we have

Pr [flop] = Ek[P (k)]

6 (14:48) p
p
ln(1=p)E[

p
1=bn=kc]

6 (14:48) p
p
ln(1=p)

p
E[1=bn=kc]

6 (14:48) p
p
ln(1=p)

p
(2=n)E[k]

= (14:48)
p
2p
p
� ln(1=p)

< 20:5 p
p
� ln(1=p)

and Theorem 16 is proved.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

