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Abstract

A consistent loss function for multiclass clas-
sification is one such that for any source of
labeled examples, any tuple of scoring func-
tions that minimizes the expected loss will
have classification accuracy close to that of
the Bayes optimal classifier. While consis-
tency has been proposed as a desirable prop-
erty for multiclass loss functions, we give
experimental and theoretical results exhibit-
ing a sequence of linearly separable data
sources with the following property: a multi-
class classification algorithm which optimizes
a loss function due to Crammer and Singer
(which is known not to be consistent) pro-
duces classifiers whose expected error goes to
0, while the expected error of an algorithm
which optimizes a generalization of the loss
function used by LogitBoost (a loss function
which is known to be consistent) is bounded
below by a positive constant.

We identify a property of a loss function, real-
izable consistency with respect to a restricted
class of scoring functions, that accounts for
this difference. As our main technical results
we show that the Crammer–Singer loss func-
tion is realizable consistent for the class of
linear scoring functions, while the general-
ization of LogitBoost is not. Our result for
LogitBoost is a special case of a more gen-
eral theorem that applies to several other loss
functions that have been proposed for multi-
class classification.
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1. Introduction

Classification into k > 2 classes is often addressed
by learning a real-valued scoring function hz for each
class z ∈ {1, . . . , k}, and then classifying an item x as
argmaxzhz(x). To learn the scoring functions, a pop-
ular approach is to minimize the average, over train-
ing examples (x, y), of L(y, h1(x), ..., hk(x)) where L is
some loss function.

One very natural loss function (Zhang, 2004), which
generalizes the loss function used by LogitBoost
(Friedman et al., 2000), is

Llogit(y, h1(x), ..., hk(x))

=

k
∑

z=1

log

(

1 + exp(hz(x))

1z 6=y + 1z=y × exp(hz(x))

)

= −hy(x) +
k
∑

z=1

log (1 + exp(hz(x))) .

Minimizing this loss function has been shown to be
consistent (Zhang, 2004); informally, this means that
minimizing this loss function results in a classifier
whose accuracy is close to that of the Bayes optimal
classifier.1 (We give a precise definition of consistency
in Section 2.2.) Such consistency has been cited as a
hallmark of a principled algorithm (Harchaoui et al.,
2012).

Another loss function, due to Crammer & Singer
(2001), is

LCS(y, h1(x), ..., hk(x))

= max

{

0, 1− hy(x) + max
z 6=y

hz(x)

}

.

1Other papers on consistency for multiclass classifica-
tion include (Lee et al., 2004; Tewari & Bartlett, 2007; Liu,
2007).
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If all other scores hz(x) are at least 1 less than hy(x)
then this loss is 0; otherwise this loss is the maximum,
over all other scores, of the amount by which that score
fails to satisfy this constraint. LCS is not consistent
(Tewari & Bartlett, 2007).

A puzzling empirical finding. Consider the fol-
lowing, apparently easy, synthetic learning problem.
Training and test examples are generated i.i.d. The
source used to generate examples is linearly separable:
there is a “target weight vector” wz ∈ R100 for each
class z ∈ {1, . . . , 10}, and a random example (x, y)
is obtained by generating x ∈ R100 according to the
uniform distribution on the unit ball, and assigning
a label y that maximizes wy · x. The target weight
vectors are the rows of a 10 × 100 matrix W that is
generated as follows: a 10× 2 matrix A and a 2× 100
matrix B are generated by i.i.d. sampling their compo-
nents from the standard normal distribution, and W
is set to equal AB.

We generated 10000 training and 10000 test exam-
ples from such a source, and used them to evaluate
two algorithms. One algorithm learned the weights
v1, ...,vk to minimize Llogit(y,v1 · x, ...,vk · x) using
100 epochs of ASGD (Polyak & Juditsky, 1992; Xu,
2011; Bottou, 2010) and the other was the same, ex-
cept with LCS . (Both algorithms also used a mild
Frobenius norm regularizer. Please see Section 5 for
the details.) We repeated this process five times. The
algorithm that minimized (the consistent) Llogit had
average test accuracy 87.5%, while the algorithm that
minimized (the inconsistent) LCS had average test ac-
curacy 94.4%. For one source, the accuracy obtained
from Llogit was 82.6%, while the accuracy from LCS

was 94.2%. Thus, in these experiments on a seemingly
easy synthetic learning problem, the consistent algo-
rithm (minimizing Llogit) performs significantly less
well than the algorithm (minimizing LCS) which is
known not to be consistent. Given how easy this learn-
ing problem seems to be, the outputs of the algorithm
minimizing Llogit are surprisingly inaccurate.

Discussion of the experimental results. What
happened? Because W has low rank, a given weight
vector wy tends to be similar to weight vectors for
some other classes, and consequently a good classi-
fier for a given example (x, y) will tend to also assign
high scores to some classes other than y. Minimiz-
ing LCS is compatible with this desideratum. During
training with a stochastic gradient descent algorithm,
once the weight vectors have sufficiently large magni-
tude, informally, LCS does not mind classes other than
y also having a high score, and a stochastic gradient
update according to this loss function eventually will

not change any weights. On the other hand, if Llogit

is trained by stochastic gradient descent, it will keep
“knocking down” the scores for classes other than y.
Put another way, LCS is only trying to classify the
data correctly by a certain margin, while Llogit is try-
ing to fit a model for the conditional probability that
the class is y. The consistency of Llogit implies that
minimizing this loss will lead to near-optimal accuracy
if this minimization is done over the space of all scor-
ing functions. However, in the above experiment, we
performed the minimization only over the class of lin-
ear functions. (We note that this is a standard practice
for large-scale multiclass image classification, see e.g.
(Weston et al., 2010; Lin et al., 2011; Perronnin et al.,
2012)). This provides a possible explanation of Llogit’s
relatively poor performance.

Our results. As described above, in our experiments,
using LCS led to significantly better accuracy than
Llogit even though Llogit is consistent and LCS is not.
To explain this phenomenon we introduce a new no-
tion, which we term realizable H-consistency, where H
is a restricted class of scoring functions. Informally, a
loss function is realizableH-consistent if for any source
that admits a zero-error classifier using scoring func-
tions from H, any scoring functions from H which
minimize the expected loss will have classification er-
ror close to zero. For learning algorithms that use a
restricted class H of scoring functions, H-consistency
may be more relevant than the original notion of con-
sistency, which deals with all possible scoring func-
tions, and realizable H-consistency is a more basic re-
quirement.

We show that the loss function LCS is realizable H-
consistent for any class H of scoring functions that
is closed under scaling (i.e. if h ∈ H then αh ∈ H
for all real α). This implies that LCS is realizably
consistent with respect to linear scoring functions (as
well as with respect to deep nets, see the discussion
after Theorem 9). We also show that Llogit is not
realizably consistent with respect to the set of linear
functions. These results together imply that the ratio
between the error probabilities of an algorithm min-
imizing Llogit and an algorithm minimizing LCS can
be arbitrarily large, even if we restrict to linearly sep-
arable sources. Our lower bound for Llogit holds for
any loss function satisfying some general conditions,
and applies for several other loss functions previously
proposed for multiclass classification.

Our results suggest that the refined notion of H-
consistency may sometimes be a more useful and rele-
vant one than the original notion of consistency. In set-
tings where learning algorithms use a restricted class
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H of scoring functions, H-consistency may be more
closely linked to classification accuracy than general
consistency.

2. Preliminaries

2.1. Basics

Throughout this paper Y denotes the set [k] =
{1, . . . , k}. A source is a joint distribution P over
X × Y . We write PX to denote the marginal distribu-
tion of P over X.

Recall that the Bayes optimal classifier for source P
is the mapping f : X → Y such that for each x′ in the
support of PX , we have Pr(x,y)∼P [y = f(x′)|x = x′] ≥
Pr(x,y)∼P [y = t|x = x′] for every t 6= f(x′).

2.2. Different notions of consistency

We begin by recalling the standard notion of consis-
tency.

For δ > 0 and a source P , we say that a func-
tion h = (h1, . . . , hk) from X to Rk δ-minimizes
E(x,y)∼P [L(y, h1(x), . . . , hk(x))] if

|E(x,y)∼P [L(y, h1(x), . . . , hk(x))]−
inf

a1,...,ak:X→R

E(x,y)∼P [L(y, a1(x), . . . , ak(x))]| ≤ δ.

Note that the scoring functions a1, . . . , ak above may
range over all measurable mappings from X to R.

Definition 1. A loss function L is consistent if for
any source P and any ǫ > 0 there exists some
δ > 0 such that if h = (h1, ..., hk) δ-minimizes
E(x,y)∼P [L(y, h1(x), ..., hk(x))], and g : X → Y sat-
isfies g(x) ∈ argmaxŷ∈Y hŷ(x) for all x ∈ X, then

Pr(x,y)∼P [g(x) 6= y] ≤ Pr(x,y)∼P [f(x) 6= y] + ǫ,

where f is the Bayes optimal classifier.

The notion of a consistent loss function defined
in Definition 1 was studied by (Zhang, 2004). A
closely related notion was studied by Tewari and
Bartlett (Tewari & Bartlett, 2007). Following those
authors (and, others, including (Breiman, 2004;
Long & Servedio, 2010)), we abstract away estimation
error, and study the consequences of minimizing loss
with respect to the underlying distribution.

Definition 2. A source P is realizable if for each
x′ in the support of PX , there is a y′ such that
Pr(x,y)∼P [y = y′|x = x′] = 1.

Definition 3. A loss function L is realizable con-
sistent if for any realizable source P , for any ǫ > 0

there is a δ > 0 such that if h = (h1, ..., hk) δ-
minimizes E(x,y)∼P [L(y, h1(x), ..., hk(x))], and g sat-
isfies g(x) ∈ argmaxŷ∈Y hŷ(x) for all x ∈ X, then
Pr(x,y)∼P (g(x) 6= y) ≤ ǫ.

We now define a notion of consistency with respect to a
set H of scoring functions. This formalizes the notion
that choosing scoring functions from H so as to mini-
mize the loss does nearly as well, in terms of classifica-
tion error, as the best combination of scoring functions
from H. (Very similar notions have long been stud-
ied; see (Vapnik, 1989; Haussler, 1992; Kearns et al.,
1992).)

Let H be a set of functions mapping X to R. For
δ > 0, we say that a function h = (h1, . . . , hk) from
X to Rk δ-minimizes E(x,y)∼P [L(y, h1(x), . . . , hk(x))]
with respect to H if

|E(x,y)∼P [L(y, h1(x), . . . , hk(x))]

− inf
a1,...,ak∈H

E(x,y)∼P [L(y, a1(x), . . . , ak(x))]| ≤ δ.

Definition 4. Let H be a set of measurable func-
tions from X to R. A loss function L is H-consistent
if for any source P and any ǫ > 0, there is a
δ > 0 such that if h1, . . . , hk ∈ H δ-minimize
E(x,y)∼P [L(y, h1(x), ..., hk(x))] with respect to H and
g : X → Y satisfies g(x) ∈ argmaxŷ∈Y hŷ(x) for
all x ∈ X, then for all, a1, . . . , ak ∈ H, and any
f : X → Y such that f(x) ∈ argmaxŷ∈Y aŷ(x) for
all x ∈ X, we have

Pr(x,y)∼P [g(x) 6= y] ≤ Pr(x,y)∼P [f(x) 6= y] + ǫ.

Note that the original notion of consistency from Def-
inition 1 corresponds to H-consistency when H is the
class of all measurable functions.

Definition 5. A source P is realizable w.r.t. H if
there exist h1, . . . , hk ∈ H such that, for any g : X →
[k] such that g(x) ∈ argmaxŷ∈Y hŷ(x) for all x ∈ X,
we have that Pr(x,y)∼P [y = g(x′)|x = x′] = 1 for any
x′ in the support of PX .

Realizable sources correspond to learning scenarios in
which there is a “target function” that always provides
the correct label for each example.

Definition 6. A loss function L is realizable H-
consistent if the following holds: for any source P
that is realizable w.r.t. H and any ǫ > 0, there
is a δ > 0 such that if h1, . . . , hk ∈ H δ-minimize
E(x,y)∼P [L(y, h1(x), . . . , hk(x))] with respect to H, and
g satisfies g(x) ∈ argmaxŷhŷ(x) for all x ∈ X, then
Pr(x,y)∼P [g(x) 6= y] ≤ ǫ.
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3. The Crammer-Singer loss

The Crammer-Singer loss is defined as follows:

LCS(y, s1, ..., sk) = max

{

0, 1− sy +max
j 6=y

sj

}

.

One may easily use a construction due to Tewari and
Bartlett (Tewari & Bartlett, 2007) to prove that LCS

is not consistent (see also (Zhang, 2004)). Because of
differences in the details of our definitions and theirs,
we have included a proof of Theorem 7 in Appendix A.

Theorem 7. LCS is not consistent.

While LCS is not consistent, we now show that it is
realizable H-consistent for any class H of scoring func-
tions that satisfies the following natural scaling condi-
tion:

Definition 8. A class H of scoring functions is closed
under scaling if for any h ∈ H and any real α, the
function αh belongs to H.

The set of linear functions is closed under scaling, and
any set of scoring functions can be easily closed under
scaling by adding all scalings of all of its members.

Theorem 9. For any H that is closed under scaling,
the Crammer-Singer loss LCS is realizable consistent
w.r.t. H.

Proof: Let P be a realizable source w.r.t. H. Let
h1, ..., hk ∈ H be such that, if gap(x) = hy(x) −
maxj 6=y hj(x), where y = argmaxŷ∈Y hŷ(x), we have

Pr(x,y)∼P [gap(x) > 0] = 1. (1)

Choose ǫ > 0, and let κ > 0 be such that
Prx∼PX

[gap(x) ≤ κ] ≤ ǫ/2. Then, rescaling h1, ..., hk
by 1/κ, we claim that

E(x,y)∼P [LCS(y, (1/κ)h1(x), ..., (1/κ)hk(x))] ≤ ǫ/2.

To see this, note that since hy(x) > hj(x) for all x and
all j 6= y, we have that LCS is always at most 1, and
hence

E[LCS(y, (1/κ)h1(x), ..., (1/κ)hk(x))]

≤ E[LCS(y, (1/κ)h1(x), ..., (1/κ)hk(x))|gap(x) > κ]

+Pr[gap(x) ≤ κ] ≤ 0 + ǫ/2. (2)

Now suppose that g1, ..., gk ∈ H approximately min-
imize E(x,y)∼P [LCS(y, g1(x), ..., gk(x))] to within ǫ/2.
Then (2) implies that

E(x,y)∼P [LCS(y, g1(x), ..., gk(x))] ≤ ǫ.

But E(x,y)∼P [LCS(y, g1(x), ..., gk(x))] is an upper
bound on the probability (over (x, y) ∼ P ) that y 6=
argmaxŷgŷ(x). This completes the proof.

Note that the proof of Theorem 9 goes through almost
without modification if LCS is replaced with

L(y, s1, ..., sk) = ℓ(−sy +max
j 6=y

sj),

for any continuous monotone function ℓ : R → R+

such that limx→−∞ ℓ(x) = 0, including the function
ℓ defined by ℓ(x) = ln(1 + ex). The key is that these
loss functions concern a competition among the scores,
instead of evaluating the scores independently.

We also note that beyond the class H of linear func-
tions, Theorem 9 also implies that LCS is realizable
H-consistent in the case that H is the set of functions
computed by a deep network with a given architecture,
or a convolutional network, if the squashing functions
are left off of the output nodes. (The loss function
can be viewed as taking on the role of the squashing
function for the output nodes, so this is reasonable.)

4. A sufficient condition for a loss

function to not be realizable

consistent w.r.t. linear functions

Throughout this section we fix X to be the domain Rn

and we let H denote the class of all linear functions
X → R, i.e. H = {x → v · x,v ∈ Rn}.
Our main result in this section is a proof that any
loss function that satisfies some general conditions, de-
tailed below, is not realizable consistent for the class
of linear scoring functions:

Theorem 10. Let ℓ : R → R>0 = {x ∈ R :
x > 0} be any function such that (a) ℓ is twice con-
tinuously differentiable, (b) ℓ is strictly convex, (c)
limx→+∞ ℓ(x) = +∞, and (d) infx∈R ℓ(x)− x > −∞.
Then the loss function Lℓ defined as

Lℓ(y, h1(x), . . . , hk(x)) := −hy(x) +
k
∑

z=1

ℓ(hz(x))

is not realizable H-consistent, where H is the class of
all linear functions.

It can be easily checked that this theorem implies that
many of the “decoupled” loss functions of (Zhang,
2004) (see Section 4.4.2 of (Zhang, 2004)), shown
there to be consistent, are in fact not realizable H-
consistent. These include the Llogit function (for which
ℓ(x) = ln(1+ ex)) and the LQ loss function defined by

LQ(y, h1(x), . . . , hk(x)) = −hy(x) +
1

2

k
∑

z=1

hz(x)
2
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(for which ℓ(x) = x2/2). (Our proof will establish
lower bounds of 1/5 on the error probability for algo-
rithms minimizing Llogit and LQ.)

The main steps in proving Theorem 10 are to (I) de-
fine a source P that is realizable w.r.t. H, and (II)
prove that the optimal (v⋆

1, . . . ,v
⋆
k) ∈ Hk that min-

imizes E(x,y)∼P [Lℓ(y,v
⋆
1 · x, . . . ,v⋆

k · x)] (over all k-
tuples of functions in H as the final k arguments to
Lℓ) is such that for g(x) = argmaxŷ∈Y hŷ(x), we have
Pr(x,y)∼P [g(x) 6= y] is bounded below by 4α where
α > 0 is a constant that depends only on ℓ (defined
below). Once this is done Theorem 10 is an immediate
consequence (taking ǫ = 4α in Definition 6). We now
turn to these two tasks.

(I): The source P . We now define the source P
over X ×Y that we shall consider. This source is very
simple and in fact only uses the domain X = R2. The
number k of classes is 8. The source depends on the
loss ℓ through a parameter that is defined as follows.
Since ℓ is twice continuously differentiable and strictly
convex, there is a τ > 0 such that

∀x ∈ [−τ, τ ], (1/
√
2) ≤ ℓ′′(x)

ℓ′′(0)
≤

√
2. (3)

Choose such a τ . (For LQ, any positive constant will
work, and for Llogit, we may choose τ = 1.) Let α =
min{τℓ′′(0)/5, 1/20}. (For both LQ and Llogit, α is
1/20.) Next, define the k × 2 matrix W whose rows
are w1, . . . ,wk: for i = 1, . . . , k,

wi = (wi,1, wi,2) = (cos(2πi/k), sin(2πi/k)). (4)

The marginal PX is defined as follows. Each of
w1,w3,w5,w7 have probability α (these are the “light
points”), and each of w2,w4,w6,w8 have probability
1/4 − α (these are the “heavy points”). The weight
matrix W whose rows are w1, ...,w8 is then used to
classify x as y = argmaxzwz · x, so P is realizable
with respect to H.

(II): The vector of functions in H that mini-
mizes Lℓ has poor classification accuracy. Hence-
forth V shall denote a k × 2 matrix whose rows are
v1, . . . ,vk. Let us define the function Ψ as follows:

Definition 11. Ψ(V ) = E(x,y)∼P [Lℓ(y,v1 ·x, . . . ,vk ·
x)].

We want to show that Ψ has a unique minimum. As a
step in this direction, let us first show that Ψ is strictly
convex.

Directly expanding the definition of P , separating the
expectation into the heavy points and the light points,

we get that Ψ(V ) equals

4
∑

s=1

(1/4− α)
(

− v2s ·w2s +

8
∑

z=1

ℓ(vz ·w2s)
)

+

4
∑

s=1

α
(

− v2s−1 ·w2s−1 +

8
∑

z=1

ℓ(vz ·w2s−1)
)

.

Since

• Ψ is convex,

• ℓ is strictly convex (by property (b) of the theorem
statement), and

• modifying any entry of V affects ℓ(vz ·wj) for at
least one z and j,

we have that Ψ is strictly convex.

Now, let us eliminate the possibility that the value of
Ψ can get arbirarily small. First, because ℓ(t) > 0 for
all t, for any example (x, y) we have

−vy ·x+
k
∑

z=1

ℓ(vz ·x) ≥ −vy ·x+ℓ(vy ·x) ≥ inf
u∈R

ℓ(u)−u.

Since infx∈R ℓ(x) − x > −∞ (by property (d) of the
theorem statement), and Ψ is an average of such losses,
the function Ψ is lower bounded (there is some value
C ∈ R such that Ψ(V ) > C for all V ).

Next, let us eliminate the possibility that Ψ has no
minimum; since Ψ is strongly convex, this can only
occur if the value of Ψ gets smaller and smaller as V
heads to infinity in some direction. We claim that any
V with a very large entry must have Ψ(V ) > Ψ(Vzero)
where Vzero is the all-zero input. To see this, suppose
|Vzi| > M for some row z and column i. Choose some
y ∈ {1, .., 8} other than z such that the angle between
vz and wy is at most π/4. (There must be at least
one such y.) Then

Ψ(V ) ≥ αℓ(vz·wy) ≥ αℓ(||vz|| cos(π/4)) ≥ αℓ(M/
√
2),

which is larger than Ψ(Vzero) for M sufficiently large,
by our assumption that ℓ goes to +∞ as M → +∞
(by property (c) of the theorem statement). So for
the purpose of minimizing Ψ, we can assume without
loss of generality that the domain of Ψ is [−M,M ]8×2

for some constant M > 0. Since Ψ is a strictly con-
vex function defined on a bounded domain, there is a
unique V ⋆ at which it achieves its minimum value.

In the rest of the proof we will show that the error rate
of V ⋆ w.r.t. P is at least 4α. To prove this, first let us
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characterize the form of V ⋆. We claim that there are
real values q and r such that

V ⋆ =

(

r 0 −r −q −r 0 r q
r q r 0 −r −q −r 0

)T

. (5)

First, let us prove that V ⋆
2,1 = 0. Suppose V ⋆

2,1 6= 0.
Then the symmetry of Ψ implies that, if we form V ′

by negating V ⋆
2,1 in V ⋆, then V ′ 6= V ⋆ but Ψ(V ′) =

Ψ(V ⋆). Since this contradicts the uniqueness of the
minimizing point V ⋆, it must be the case that V ⋆

2,1 =
0. The other 0-entries in (5) can be established in a
similar way.

We can prove that

V ⋆
4,1 = −V ⋆

8,1, V ⋆
3,1 = −V ⋆

1,1, V ⋆
3,2 = V ⋆

1,2,

V ⋆
5,1 = −V ⋆

7,1, V ⋆
5,2 = V ⋆

7,2

similarly by exploiting the symmetry of Ψ across the
x2 axis, and we can prove that

V ⋆
1,1 = V ⋆

1,2, V ⋆
2,2 = V ⋆

8,1, V ⋆
3,1 = V ⋆

7,2,

V ⋆
3,2 = V ⋆

7,1, V ⋆
4,1 = V ⋆

6,2, V ⋆
5,1 = V ⋆

5,2

similarly by exploiting the symmetry across the line
x1 = x2.

Below we will show that q > 2r; we claim that this
implies Pr(x,y)∼P [g(x) 6= y] ≥ 4α as desired. To see
this, consider first the classification of w1. We have

v⋆
1 ·w1 = (r, r) · (1/

√
2, 1/

√
2) =

√
2r

v⋆
2 ·w1 = (0, q) · (1/

√
2, 1/

√
2) = q/

√
2.

So, if q/r > 2, then V ⋆ misclassifies w1, and, similarly,
all the other light points.

We now proceed to show that q > 2r. Our analysis
will make use of the function t : R → R defined by
t(x) = ℓ′(x)− ℓ′(−x).

Calculating ∂Ψ
∂v1,1

∣

∣

V ⋆ by evaluating ∂L(z,v1·wz,...,vk·wz)
∂v1,1

for z = 1, ..., 8 in order, one per line, we get

α(−1/
√
2 + ℓ′(2r/

√
2)(1/

√
2))

+0

+αℓ′(0)(−1/
√
2)

+(1/4− α)ℓ′(−r)(−1)

+αℓ′(−2r/
√
2)(−1/

√
2)

+0

+αℓ′(0)(1/
√
2)

+(1/4− α)ℓ′(r).

This simplifies to

−α/
√
2 + (α/

√
2)t(

√
2r) + (1/4− α)t(r).

Setting ∂Ψ
∂v1,1

∣

∣

V ⋆ = 0, we get

α/
√
2 = (α/

√
2)t(

√
2r) + (1/4− α)t(r). (6)

It is clear that t(0) = 0. Furthermore,

t′(u) = ℓ′′(u)− ℓ′′(−u)(−1) = ℓ′′(u) + ℓ′′(−u) > 0,

since ℓ is strictly convex. Thus t is increasing on all of
R. Hence by (6) we have that r must be positive, and
moreover that

t(r) ≤ α/
√
2

1/4− α
≤ 5α√

2
. (7)

Now we consider a different partial derivative,
∂Ψ

∂v8,1

∣

∣

V ⋆ . Calculating ∂Ψ
∂v8,1

∣

∣

V ⋆ by evaluating
∂L(z,v1·wz,...,vk·wz)

∂v8,1
for z = 1, ..., 8 in order, one per

line, we get

αℓ′(q/
√
2)(1/

√
2)

+0

+αℓ′(q/
√
2)(1/

√
2)

+(1/4− α)ℓ′(−q)(−1)

+αℓ′(−q/
√
2)(−1/

√
2)

+0

+αℓ′(−q/
√
2)(−1/

√
2)

+(1/4− α)(−1 + ℓ′(q)(1))

so setting ∂Ψ
∂v8,1

∣

∣

V ⋆ = 0, we have

(1/4− α)t(q) +
√
2αt(q/

√
2) = 1/4− α. (8)

Note that from the above equation it is clear that q
must be positive (recall that t(0) = 0 and t is increas-
ing). Also, since t is increasing (8) implies

t(q) ≥ 1/4− α

1/4− α+
√
2α
. (9)

We want to combine this constraint with (7) to prove
that q > 2r.

Toward this end, we claim that t(r) ≤ 5α/
√
2, which

we have from (7), implies that r ≤ τ/2. (Recall that τ
was defined back at (3).) To see this, first assume for
contradiction that r > τ/2. Then,

t(r) =

∫ r

−r

ℓ′′(u) du >

∫ τ/2

−τ/2

ℓ′′(u) du

≥
∫ τ/2

−τ/2

ℓ′′(0)/
√
2 du = τℓ′′(0)/

√
2 ≥ 5α/

√
2,
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since α ≤ τℓ′′(0)/5. Since this is a contradiction, we
have r ≤ τ/2.

Since r ≤ τ/2, we have

t(2r) =

∫ 2r

−2r

ℓ′′(u) du ≤
∫ 2r

−2r

√
2ℓ′′(0) du = 4

√
2rℓ′′(0),

and, similarly t(r) ≥ 2rℓ′′(0)/
√
2, so that

t(2r) ≤ 4t(r)

≤ 4

(

α/
√
2

1/4− α

)

(by (7))

<
1/4− α

1/4− α+
√
2α

(since α ≤ 1/20)

≤ t(q),

by (9). Since t is increasing, this implies q > 2r. This
concludes the proof of Theorem 10.

5. Experiments

Experiments used a source P generated as follows.
The domain X was Rd for d = 100. The number k of
classes was 10. Class labels were assigned by apply-
ing a “target classifier” generated as follows. A weight
matrix W ∈ R10×100 was generated by randomly gen-
erating a 10×2 matrix A and a 2×100 matrix B, and
setting W = AB. The components of A and B were
sampled i.i.d. from the standard normal distribution.
If we refer to the rows of W as w1, ...,wk as before,
then the class y assigned to x was chosen to maxi-
mize wy · x. Elements of X were chosen uniformly at
random from the surface of the unit ball.

We did experiments with three different loss functions:
LCS , Llogit and LQ (Zhang, 2004). For each loss func-
tion L in this list, we experimented with the algo-
rithm that, given (x1, y1), ..., (xm, ym), chooses V and
b1, ..., bk to minimize

λ

2
||V ||2F +

1

m

m
∑

t=1

L(yt,v1 · xt + b1, ...,vk · xt + bk),

where || · ||F is the Frobenius norm, and λ = 10−6.
The minimization was done using Averaged Stochastic
Gradient Descent (Polyak & Juditsky, 1992; Xu, 2011;
Bottou, 2010) (ASGD) with a step size of

√

1/t on the
tth update.

In our experiments, we used 10000 training examples
and 10000 test examples. We ran each algorithm for
100 epochs. At the end of each epoch we evaluated
the accuracy of the algorithm on the test data. We
repeated this process, including the random generation
of the target weight matrix W , five times. Results are
plotted in Figure 1.
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Figure 1. Comparison between the learning curves of clas-
sifiers trained using ASGD with different loss functions,
run on data labeled with five different randomly generated
target functions.

6. Conclusion

In this work we proposed the new notion of realizable
H-consistency, which is a variant of the standard no-
tion of consistency for loss functions. Our experimen-
tal and theoretical results indicate that for multiclass
learning algorithms that work by minimizing a loss
function over a restricted class H of scoring functions,
realizable H-consistency may sometimes be more use-
ful than consistency as a guide to classification perfor-
mance.

Consideration of realizable H-consistency highlights
circumstances where loss functions like LCS , which
involve a competition among the scores for different
classes, may be preferred to generalizations of one-vs-
rest, such as Llogit. As discussed after the proof of
Theorem 9, LCS is realizable H-consistent because it
incorporates such a competition, and not, for example,
because it generalizes the hinge loss. (The hinge loss
was shown to be optimally noise-tolerant for binary
classification, in a certain sense, in (Ben-David et al.,
2012).)

In future work it would be interesting to extend our
analyses to a non-realizable setting.
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A. Proof of Theorem 7

We will analyze the following source P . The domain
consists of a single element x and the number k of
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classes is 3.

P (x, 1) = 3/7, P (x, 2) = 2/7, P (x, 3) = 2/7.

We first characterize the optimal value of P with re-
spect to LCS .

Lemma 12. E(x,y)∼P [LCS(y, h1(x), h2(x), h3(x)] is
minimized by setting h1(x) = h2(x) = h3(x) = 1,
where it takes the value 1.

Before proving Lemma 12, we point out the follow-
ing sanity check: one can easily verify that perturbing
the solution h1(x) = h2(x) = h3(x) = 1 by adding
or subtracting a small positive constant to any of the
variables while keeping the others constant makes the
solution worse.

Now we proceed with the detailed proof.

Proof (of Lemma 12): For possible values u1, u2, u3 of

h1(x), h2(x), h3(x), if [z]+
def
= max{z, 0}, the quantity

to be minimized is

ψ(u1, u2, u3)
def
= (3/7)[1− u1 +max{u2, u3}]+

+ (2/7)[1− u2 +max{u1, u3}]+
+ (2/7)[1− u3 +max{u1, u2}]+.

The minimimum of ψ can be equivalently represented
as

min(3z1 + 2z2 + 2z3)/7

s.t.

z1 ≥ 1− u1 + u2, z1 ≥ 1− u1 + u3, z1 ≥ 0

z2 ≥ 1− u2 + u1, z2 ≥ 1− u2 + u3, z2 ≥ 0

z3 ≥ 1− u3 + u1, z3 ≥ 1− u3 + u2, z3 ≥ 0.

A Lagrange multiplier formulation is

L = (3z1 + 2z2 + 2z3)/7

+λ1,2(1− u1 + u2 − z1)

+λ1,3(1− u1 + u3 − z1) + λ1,+(−z1)
+λ2,1(1− u2 + u1 − z2)

+λ2,3(1− u2 + u3 − z2) + λ2,+(−z2)
+λ3,1(1− u3 + u1 − z3)

+λ3,2(1− u3 + u2 − z3) + λ3,+(−z3).

We claim that the following solution is optimal:

u∗1 = u∗2 = u∗3 = 1

z∗1 = z∗2 = z∗3 = 1

λ∗1,+ = λ∗2,+ = λ∗3,+ = 0

λ∗1,2 = λ∗1,3 = λ∗2,1 = λ∗3,1 = 3/14

λ∗2,3 = λ∗3,2 = 1/14.

Let us now check the KKT conditions. First,
let’s check partial derivatives with respect to
z1, z2, z3, u1, u2, u3 respectively:

3/7− λ∗1,2 − λ∗1,3 − λ∗1,+

= 3/7− 3/14− 3/14− 0 = 0

2/7− λ∗2,1 − λ∗2,3 − λ∗2,+

= 2/7− 3/14− 1/14− 0 = 0

2/7− λ∗3,1 − λ∗3,2 − λ∗2,+

= 2/7− 3/14− 1/14− 0 = 0

−λ1,2 − λ1,3 + λ2,1 + λ3,1

= −3/14− 3/14 + 3/14 + 3/14 = 0

−λ2,1 − λ2,3 + λ1,2 + λ3,2

= −3/14− 1/14 + 3/14 + 1/14 = 0

−λ3,1 − λ3,2 + λ1,3 + λ2,3

= −3/14− 1/14 + 3/14 + 1/14 = 0.

All of the inequalities relating z1, z2, z3 to u1, u2, u3
are binding at z∗1 , z

∗
2 , z

∗
3 , u

∗
1, u

∗
2, u

∗
3, so the complemen-

tary slackness conditions are satisfied for those con-
straints; since λ∗i,+ = 0 for all i, the complementary
slackness constraints are satisfied for those constraints
also. This completes the proof.

Armed with Lemma 12, we are ready for the following.

Proof (of Theorem 7):

Choose δ > 0, and consider g1, ..., g3 for which g1(x) =
g2(x) = 1 and g3(x) = 1 + δ/2. We have

E(x,y)∼P [LCS(y, h1(x), h2(x), h3(x))]

= (3/7)[1− 1 + max{1, 1 + δ/2}]+
+(2/7)[1− 1 + max{1, 1 + δ/2}]+
+(2/7)[1− (1 + δ/2) + max{1, 1}]+

< 1 + δ.

But, if q(x) = argmaxŷ∈Y gŷ(x), no matter how small
δ is, we have q(x) = 3, so, for the Bayes optimal f , we
have

Pr(x,y)∼P [q(x) 6= y] = Pr(x,y)∼P [f(x) 6= y] + 1/7,

completing the proof.
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