
Testing Monotone High-Dimensional Distributions

Ronitt Rubinfeld
Computer Science & Artificial Intelligence Lab.

MIT
Cambridge, MA 02139

ronitt@theory.lcs.mit.edu

Rocco A. Servedio
∗

Department of Computer Science
Columbia University
New York, NY 10027

rocco@cs.columbia.edu

ABSTRACT
A monotone distribution P over a (partially) ordered domain
has P (y) ≥ P (x) if y ≥ x in the order. We study several
natural problems of testing properties of monotone distribu-
tions over the n-dimensional Boolean cube, given access to
random draws from the distribution being tested. We give
a poly(n)-time algorithm for testing whether a monotone
distribution is equivalent to or ε-far (in the L1 norm) from
the uniform distribution. A key ingredient of the algorithm
is a generalization of a known isoperimetric inequality for
the Boolean cube. We also introduce a method for proving
lower bounds on testing monotone distributions over the n-
dimensional Boolean cube, based on a new decomposition
technique for monotone distributions. We use this method
to show that our uniformity testing algorithm is optimal
up to polylog(n) factors, and also to give exponential lower
bounds on the complexity of several other problems (testing
whether a monotone distribution is identical to or ε-far from
a fixed known monotone product distribution and approxi-
mating the entropy of an unknown monotone distribution).

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]; G.3
[Probability and Statistics]: Distribution functions

General Terms
Algorithms, Theory

Keywords
Sublinear algorithms, property testing, distribution testing,
monotone distributions

1. INTRODUCTION
We study the complexity of testing several natural global

properties of monotone probability distributions over large

∗Supported in part by NSF CAREER award CCF-0347282.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05,May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

high-dimensional discrete domains. When no assumptions
are made on the distributions, classical techniques, such as
a naive use of Chernoff bounds or Chi-squared tests, require
a number of samples that is at least linear in the size of
the domain. In recent years, a number of algorithms for
these testing problems have been designed which require a
number of samples that is only sublinear in the size of the
domain, while making no assumptions on the form of the
distribution. For example, on arbitrary domains of size N ,
testing whether a distribution is close to uniform in statis-
tical distance can be performed with only Õ(

√
N) samples

[7, 2], and distinguishing whether two distributions are the
same or far in statistical distance can be performed with
Õ(N2/3) samples [4]. Similar results have been obtained for
testing whether a joint distribution is independent and es-
timating the entropy [2, 3]. Still, in many settings, where
N may be extremely large, such sample complexities can be
quite daunting. Unfortunately, one cannot do much better
for general distributions, since known information theoretic
lower bounds show that a sample complexity with a polyno-
mial dependence on N is required for all of these problems.

This leads us naturally to the question of whether there
are interesting classes of distributions for which these test-
ing problems are exponentially easier in terms of sample
complexity. Recently a number of algorithms that use ex-
ponentially fewer samples on monotone and unimodal dis-
tributions over totally ordered domains have been devised
[3, 5]. A distribution over a totally ordered discrete domain
(w.l.o.g. {1, 2, . . . , N}) is monotone if for all x, y in the do-
main such that x ≤ y, we have that the probability assigned
to x is at most the probability assigned to y. For mono-
tone distributions on totally ordered domains, estimating
the entropy, testing whether two distributions are close and
testing whether a joint distribution over pairs (x, y) is close
to independent can all be done in polylogarithmic time in
the size of the domain [3, 5].

Our results. In this paper we give a detailed study of test-
ing distributions that are monotone over a natural and im-
portant partially ordered domain, namely the Boolean cube
{−1, 1}n. Such distributions can be viewed as distributions
in which the probability of an element depends monotoni-
cally on several different features of the element.

We investigate whether the monotonicity of distributions
over such domains allows us to test various properties of
these distributions with query complexity polylogarithmic in
the domain size (i.e. polynomial in the dimension n), as it
does in the case of totally ordered domains. We will refer to
distribution testing problems for which the answer is affir-

mative as easy, and we refer to all other distribution testing
problems as hard.

Our first result shows that there is an interesting property
which is easy, that is, testing uniformity. More precisely, we
show that it is possible to efficiently distinguish distribu-
tions that are uniform over the Boolean cube {−1, 1}n from
monotone distributions that are far from uniform in statisti-
cal distance. Our algorithm uses Õ(n) many draws from the
distribution; we also give a lower bound which shows that
this algorithm is essentially the best possible.

Somewhat surprisingly, we next exhibit closely related
testing problems which are hard. For example, we show
that any algorithm which distinguishes whether an unknown
monotone distribution is equal to or very far from the prod-
uct distribution P4/5 over {−1, 1}n must use 2Ω(n) samples.1

(It is interesting to note that this exponential gap between
the problems of testing whether a distribution is uniform or
a product distribution is quite different from the behavior
commonly found in other combinatorial and learning set-
tings where the Boolean cube is studied. For example, in
learning theory, most problems that have efficient learning
algorithms under the uniform distribution also have efficient
algorithms under product distributions, see e.g. [10, 6, 11].)
We also give lower bounds with exponential dependence on
n for other problems, such as estimating the entropy of
a monotone distribution over {−1, 1}n, and distinguishing
whether a monotone distribution over {−1, 1}n is indepen-
dent (i.e. a product distribution) or far from any indepen-
dent distribution. All of these lower bounds are in contrast
with the known results for monotone distributions over to-
tally ordered domains [3, 5], where there exist algorithms
that require only a polylogarithmic in the total domain size
number of samples.

Finally, we study many of these testing problems in the
evaluation oracle model, where one can query the probability
that distribution p assigns to any domain element x.

Our techniques. In [3, 5], an efficient test is given for
determining whether a monotone distribution over a totally
ordered domain is uniform. The test estimates whether the
weight of the largest half of the elements (according to the
total order on the domain) is approximately 1/2. In order
to achieve our upper bound for testing whether a monotone
distribution p on the cube is uniform, our test is somewhat
different. Our test essentially estimates the expected value,
according to a choice of x = (x1, . . . , xn) ∈p {−1, 1}n, of
the sum of the xi’s, and rejects if the estimated value is too
big. In order to show correctness, we generalize a known
isoperimetric inequality for the Boolean cube. In particular,
we show that any monotone distribution which is far from
uniform must have many pairs of neighboring nodes whose
probabilities differ significantly. We use this to show that
for any monotone distribution p that is ε-far from uniform
in statistical distance, the expected value of the sum of the
xi’s when x is chosen from p must be at least ε/2.

For our negative results, we present a general technique
for proving lower bounds on testing problems for monotone
distributions, and apply this technique to construct a num-
ber of lower bounds. Our technique is based on describing a
class of special monotone distributions, namely those with

1P4/5 independently picks every entry xi of x ≡
(x1, . . . , xn) ∈ {−1, 1}n to be 1 with probability 4/5 and
−1 otherwise.

subcube decompositions. A monotone subcube distribution
rooted at x is a distribution that is uniform over the set of
all points y such that y ≥ x. A monotone distribution has a
subcube decomposition if can be expressed as a weighted av-
erage of a number of monotone subcube distributions. Not
every monotone distribution has a subcube decomposition.
Roughly speaking, our main claim essentially shows that it
is hard to distinguish between a monotone distribution p
which has a subcube decomposition, and a distribution q
that is a weighted average of randomly chosen monotone
subcube distributions from the decomposition of p. How-
ever, if q is a weighted average of a not too large subset of
the distributions that make up p, it is easy to see that p and
q are very different distributions. All our lower bounds use
this approach with a suitable choice of p and q.

We note that the techniques used to achieve upper bound
results for the problem of testing various properties of distri-
butions over totally ordered domains [3, 5] essentially relied
on showing that every monotone distribution p over a totally
ordered domain could be approximated by a distribution q
with a very concise description of the following form: the
domain is partitioned into a polylogarithmic (in the size of
the domain) number of contiguous segments, such that the
distribution q is uniform over each segment. The testing
algorithms efficiently find an approximation to this segmen-
tation. However, in contrast with this situation for totally
ordered domains, our strong negative results suggest that
no such analogous decomposition of monotone distributions
over the cube may exist.

Other related results. In [5], algorithms are given for
testing whether a distribution over a totally ordered domain
is close to monotone using Θ̃(

√
N) draws. The proofs of [5]

show that the complexity of testing monotonicity is linked
to the complexity of testing uniformity. The algorithm was
extended to domains of dimension 2 (i.e., each element is a

member of M ×M for M2 = N), using Õ(N3/4) queries.

Outline of paper. In the next section, we describe the nec-
essary preliminaries. Our testing algorithm for uniformity
is described in Section 3. In Section 4 we describe a gen-
eral technique for obtaining lower bounds, and then use the
technique in order to obtain lower bounds for several prob-
lems. Finally, in Section 5 we consider the query complexity
of these problems in the evaluation oracle model.

2. PRELIMINARIES
Throughout the paper we use {−1, 1}n as our representa-

tion for the n-dimensional Boolean cube. For x ∈ {−1, 1}n
we write bias(x) to denote

∑n
i=1 xi, and we write ones(x)

to denote the number of indices i such that xi = 1. (Of

course we have ones(x) = bias(x)+n
2

, but it is convenient
to have both notations.) For x, y ∈ {−1, 1}n we write
y ≥ x if yi ≥ xi for all i = 1, . . . , n. We refer to the
(n − ones(x))-dimensional subcube {y ∈ {−1, 1}n : y ≥
x} as the monotone subcube rooted at x, and we write Ux

to denote the uniform distribution over this subcube, i.e.
Ux(y) = 1/2n−ones(x) if y ≥ x and Ux(y) = 0 if y 6≥ x. We
refer to such a distribution Ux as a uniform monotone sub-
cube distribution. A probability distribution p over {−1, 1}n
is monotone if y ≥ x implies p(y) ≥ p(x). It is clear that any
convex combination of uniform monotone subcube distribu-
tions is a monotone distribution. We write U to denote the
uniform distribution over all 2n points of {−1, 1}n.

If p, q are two probability distributions over {−1, 1}n we
write ‖p − q‖1 to denote the L1 distance

∑
x |p(x) − q(x)|

between p and q. We write S ← (p)t to indicate that S is
the random variable which is the output of t independent
draws from p (so S is a t-tuple of strings from {−1, 1}n).

Given a vector τ = (τ1, . . . , τn), the product distribution
with parameter τ , which we denote Pτ , is the distribution
over {−1, 1}n where the i-th bit is chosen independently to
be 1 with probability τi. For τ ∈ [0, 1] we write Pτ to denote
the product distribution with τi = τ for all i = 1, . . . , n.
Each string x has weight τones(x)(1− τ)n−ones(x) under Pτ .
Note that the distribution Pτ is monotone iff 1

2
≤ τ ≤ 1,

and that P1/2 is equivalent to U .
A generation oracle, or simply generator, for a probability

distribution D over {−1, 1}n is an oracle which takes no
input and, at each invocation, returns a random element x
from {−1, 1}n drawn according to D independently from all
previous invocations of the oracle. An evaluation oracle, or
simply evaluator, for a distribution D over {−1, 1}n is an
oracle which, when supplied with x ∈ {−1, 1}n, returns the
probability weight D(x) which D assigns to x.

We will use the following version of the “data processing
inequality:”

Fact 1. Let X1, X2 be two random variables over the
same domain. For any (possibly randomized) algorithm A,
we have that ‖A(X1)−A(X2)‖1 ≤ ‖X1 −X2‖1.

We will typically use this fact in the following way: let
S1 and S2 be random variables which denote samples of
t draws taken from two distributions p1 and p2, and let
A be an algorithm which, given a draw from Si (where
i ∈ {1, 2} is unknown to A), is supposed to output the
correct value of i with high probability. If we know that
‖S1 − S2‖1 is small, then |PrS1←(p1)t [A(S1) outputs “1”]−
PrS2←(p2)t [A(S2) outputs “1”]| must be small as well by
Fact 1, and thus A cannot succeed.

Finally, we will frequently use standard Chernoff bounds;

Fact 2. [Additive Chernoff Bound] Let X1, . . . , Xm be
i.i.d. random variables which take values in the range [−a, a].
Let µ denote 1

m

∑m
i=1 Xi and let µ denote E[µ]. Then for all

γ > 0 we have Pr[|µ− µ| > γ] ≤ 2 exp
(
− γ2

2a2 m
)

.

Fact 3. [Multiplicative Chernoff Bound] Let X1, . . . , Xm

be i.i.d. 0/1-valued random variables with E[Xi] = p. Let X
denote

∑m
i=1 Xi. Then for all 0 < γ < 1 we have Pr[X ≤

(1 − γ)mp] ≤ 2 exp
(
− γ2µ

2

)
and Pr[X ≥ (1 + γ)mp] ≤

2 exp
(
− γ2µ

3

)
.

3. A UNIFORMITY TESTING ALGORITHM
In this section we give an efficient algorithm that can dis-

tinguish the uniform distribution over {−1, 1}n from any
monotone distribution which is far from uniform:

Theorem 4. There is an efficient algorithm TestUniform

(see Figure 1) which, given generator access to an unknown
monotone distribution p over {−1, 1}n, makes O(n

ε2
log n

ε
)

draws and satisfies the following properties: (i) If p ≡ U then
TestUniform outputs “uniform” with probability at least 4

5
;

(ii) If ‖p−U‖1 ≥ ε then TestUniform outputs “nonuniform”
with probability at least 4

5
.

Algorithm TestUniform

1. Draw a sample S = x1, . . . , xs of s =
Θ(n

ε2
log n

ε
) draws from the generator for p.

2. If any xi in the sample has |bias(xi)| >√
2n log(20s), stop and output “nonuniform.”

3. Let µ = 1
s

∑s
i=1 bias(xi), the empirical estimate

of Ep[bias(x)] obtained from S.
4. Output “uniform” if µ ≤ ε

4
, and output

“nonuniform” if µ > ε
4
.

Figure 1: Algorithm for testing whether an un-
known monotone distribution over {−1, 1}n is uni-
form or ε-far from uniform.

The algorithm’s analysis uses the following technical re-
sult, which can be viewed as a generalization of the well-
known fact that any balanced partition of the hypercube
{−1, 1}n into red and blue nodes must have Ω(2n) bichro-
matic edges.

Theorem 5. Let δ : {−1, 1}n → R be a monotone real-
valued function with

∑
x δ(x) = 0 and

∑
x |δ(x)| = ε2n.

Then 1
2n

∑
x

∑n
i=1 xiδ(x) ≥ ε.

Theorem 5 has the following easy corollary:

Corollary 6. If p is a monotone distribution over {−1, 1}n
with ‖p− U‖1 ≥ ε, then Ep[bias(x)] ≥ ε.

Proof. Define δ(x) = 2np(x) − 1. Since ‖p − U‖1 =∑
x |p(x) − 1

2n |, it is easy to check that this function δ(x)
satisfies the condition of Theorem 5. We thus have

Ep[bias(x)] =
∑

x

p(x)

n∑
i=1

xi =
∑

x

n∑
i=1

(
δ(x) + 1

2n

)
xi

=
∑

x

n∑
i=1

δ(x)

2n
xi ≥ ε

where the inequality is by Theorem 5.

Proof of Theorem 5. Let POS = {x ∈ {−1, 1}n :
δ(x) ≥ 0}, i.e. the positive inputs for δ, and let NEG =
{−1, 1}n\POS. Note that

∑
x∈POS δ(x) =

∑
y∈NEG |δ(y)| =

ε
2
2n.
Given x ∈ POS, y ∈ NEG we refer to ∆(x, y) := |δ(x)−

δ(y)| = |δ(x)| + |δ(y)| as the displacement between x and
y. If z = (z0 = x, z1, . . . , zk = y) is a path between x
and y along the edges of the cube, we refer to distz(x, y) :=∑k−1

i=0 |δ(zi)−δ(zi+1)| as the z-distance between x and y. For
any path z between x and y we have distz(x, y) ≥ ∆(x, y).

The total displacement between all pairs (x, y) with x ∈
POS, y ∈ NEG is∑
x∈POS,y∈NEG

∆(x, y)=
∑
x,y

|δ(x)|+ |δ(y)|=
∑
x,y

|δ(x)|+
∑
x,y

|δ(y)|

=
|NEG|ε

2
· 2n +

|POS|ε
2

· 2n =
ε

2
· 22n

Now for each pair (x, y) ∈ POS × NEG, let zx,y be the
canonical path from x to y, i.e. zx,y is the path starting
from x where we scan through the bits from left to right
flipping bits as required. Let e be any “downward-directed”
edge of the Boolean cube, i.e. e = (a1b, a(−1)b) where a, b

are strings of +1/−1’s whose total length is n−1. The edge
e occurs on at most 2n−1 canonical paths zv1,v2 (since if e
is on the canonical path from v1 to v2 it must be the case
that the prefix of v2 is a1 and the suffix of v1 is (−1)b).

Now let DIST denote
∑

x∈POS,y∈NEG distz(x, y) where
each z in the above sum is the canonical path. Since each
downward-directed edge e = (u, v) lies on at most 2n−1

canonical paths, each such edge contributes at most 2n−1|δ(u)−
δ(v)| to DIST. Summing over all edges (u, v) in the downward-
directed edge set E of {−1, 1}n, we have that∑
(u,v)∈E

2n−1(|δ(u)− δ(v)|) ≥ DIST ≥
∑

x∈POS,y∈NEG

∆(x, y)

and thus we have
∑

(u,v)∈E |δ(u)− δ(v)| ≥ ε · 2n.

Let Ei denote the set of all downward-directed edges in
the i-th direction of the cube, i.e. Ei is the set of all 2n−1

ordered pairs (u, v) where u, v ∈ {−1, 1}n differ only in that
ui = 1 while vi = −1. Then

∑
(u,v)∈E |δ(u)− δ(v)| equals

n∑
i=1

∑
(u,v)∈Ei

|δ(u)− δ(v)| =

n∑
i=1

∑
(u,v)∈Ei

(δ(u)− δ(v))

=

n∑
i=1

∑
x∈{−1,1}n

xiδ(x)

where the first equality follows from the monotonicity of δ.
This proves the theorem.

We now give the proof of Theorem 4. The basic idea is
to estimate bias(x) and use Corollary 6; however we must
be careful to bound the variance in order for the algorithm
to succeed with a small number of draws.

Proof of Theorem 4. Part (i): Since p ≡ U , the true
expected value Ep[bias(x)] is 0. By an additive Chernoff
bound, for each fixed i the probability that |bias(xi)| > γn

is at most 2 exp(−γ2n/2). Taking γ =
√

2 log(20s)/n, this
probability is at most 1

10s
, so a union bound over i = 1, . . . , s

implies that we output “nonuniform” in step 2 with proba-
bility at most 1

10
.

If we reach step 3, then each value bias(xi) is drawn
from the binomial distribution (sum of n independent uni-
form ±1 values) conditioned on having each draw satisfy

|bias(xi)| ≤
√

2n log(20s). This conditional random vari-

able has range [−
√

2n log(20s),
√

2n log(20s)] and has zero
mean (by symmetry), so we may apply the additive Chernoff

bound (Fact 2) with a =
√

2n log(20s), γ = ε
4

and m = s,

and we get that Pr[µ > ε
4
] is at most 2 exp(− ε2s

64n log(20s)
).

It is easily verified that taking s = Θ(n
ε2

log n
ε
) makes this

bound at most 1
10

; so the overall probability that we do not

output “uniform” is at most 1
5
.

Part (ii): We consider two cases.

Case 1: Prp[|bias(x)| >
√

2n log(20s)] ≥ 10
s

, i.e. p as-

signs probability at least 10
s

to “unbalanced” strings. In this
case, the probability that we do not output “nonuniform”
in step 2 is at most (1− 10

s
)s < 1

100
.

Case 2: Prp[|bias(x)| >
√

2n log(20s)] < 10
s

, i.e. p as-

signs probability less than 10
s

to unbalanced strings. Since
our goal is to show that the algorithm outputs “uniform”
with probability at most 1

5
, we may assume that the algo-

rithm reaches step 3, i.e. that each sample value bias(xi)
which is obtained is conditioned on satisfying |bias(xi)| ≤

√
2n log(20s). Since Prp[|bias(x)| >

√
2n log(20s)] < 10

s
in

this case and bias(x) always lies in [−n, n], we have that the

conditional expectation Ep[bias(x) | |bias(x)| ≤
√

2n log(20s)]
differs from the unconditional expectation Ep[bias(x)] by at

most 2n· 10
s

= Θ(ε2

log n
ε
) which is less than ε

8
for n sufficiently

large. Corollary 6 thus implies that the true value of the con-
ditional expectation Ep[bias(x) | |bias(x)| ≤

√
2n log(20s)]

is at least 3ε
8

. Thus, as in the proof of part (i) we may apply

Fact 2 (now with a =
√

2n log(20s), γ = ε
8
, and m = s)

and we get that Pr[µ < ε
4
] is at most 2 exp(− ε2s

256n log(20s)
).

Taking s = Θ(n
ε2

log n
ε
) makes this bound at most 1

5
, and

we are done.

4. LOWER BOUNDS
In Section 4.1 we introduce a new general lower bound

technique for testing monotone distributions given access to
a generator. We then apply this technique on several dif-
ferent problems. Section 4.2 gives an Ω(n/ log2(n)) lower
bound on testing whether a monotone distribution is uni-
form or far from uniform. This bound is optimal up to
polylog(n) factors by the positive results of Section 3. Sec-

tion 4.3 gives a 2Ω(n) lower bound on testing whether a
monotone distribution is a particular known product dis-
tribution or is far from this distribution. Section 4.4 gives
lower bounds on approximating the entropy of an unknown
monotone distribution.

4.1 The lower bound technique
Let p be a monotone distribution over {−1, 1}n. We say

that a monotone subcube decomposition of p is a list (w1, z
1),

. . . , (wM , zM) with the following properties:

1. Each wi ≥ 0 and
∑M

i=1 wi = 1.

2. Each zi ∈ {−1, 1}n and zi 6= zj for i 6= j.

3. The distribution p is the wi-weighted convex combi-
nation of the uniform monotone subcube distributions
Uzi , i.e. p(x) =

∑M
i=1 wiUzi(x) for each x ∈ {−1, 1}n.

Thus a draw from p can be simulated by the following two-
stage process: (i) first choose an index i ∈ {1, 2, . . . , M} by
picking each value i with probability wi; and then (ii) make
a draw from Uzi , i.e. pick a random point in the monotone
subcube rooted at zi.

Not every monotone distribution over {−1, 1}n admits a
monotone subcube decomposition (for example, one can eas-
ily show that the monotone distribution p(−1,−1) = 0,
p(−1, 1) = p(1,−1) = p(1, 1) = 1

3
has no such decompo-

sition).
In this section, we show that given a monotone subcube

decomposition of p, we can define a probability distribution
P over distributions on {−1, 1}n, each of which is far from
p, with the property that it is hard to distinguish a sample
drawn from p from a sample drawn from q, where q is a
distribution chosen randomly from P. In the following sub-
sections we will use this fact to obtain lower bounds on the
sample complexity of various distribution testing problems.

So let p be a monotone distribution over {−1, 1}n which is
decomposable into (w1, z

1), . . . , (wM , zM). Consider the fol-
lowing randomized procedure for constructing a probability
distribution q: for i = 1, . . . , T, let ai ∈ {−1, 1}n be obtained
by independently choosing ai to be zj with probability wj

for j = 1, . . . , M. Once a1, . . . , aT have been selected, the
distribution q is defined as q(x) =

∑T
i=1

1
T
Uai(x), i.e. q is

a uniform mixture of the Uai ’s. (The value of T is uncon-
strained; Claim 7 below hold for any choice of T.) We write
D(p, T) to denote the probability distribution over distribu-
tions q which results from the procedure described above.

Fix r to be any positive value which is at most
√

T/10.
Let S1 be a random variable which takes values from the
set of all r-tuples of strings from {−1, 1}n, where a draw
from S1 is obtained by making r independent draws from
p. Let S2 be a random variable which takes values over the
same domain, where a draw from S2 is obtained by (i) first
randomly selecting q from D(p, T) as described above, and
then (ii) making r independent draws from q. The following
claim is the key to all our generator lower bounds:

Claim 7. ‖S1 − S2‖1 ≤ 1
50

.

Proof. We first note that since p is decomposable into
(w1, z

1), . . . , (wM , zM), we may view each string in S1 as
being obtained by independently (i) first choosing a j ∈
{1, . . . , M} where j is chosen with probability wj ; and then
(ii) making a draw from Uzj .

On the other hand, once the strings a1, . . . , aT defining q
have been chosen, we may view each string in S2 as being
obtained by independently (i) first choosing a uniform ran-
dom value ` from {1, . . . , T}; and then (ii) making a draw
from Ua` . For i = 1, . . . , r let `i be the uniform value from
{1, . . . , T} which is chosen in step (i) when the i-th string in
S2 is selected, i.e. `i is the index for which of the T uniform
monotone subcube distributions Ua1 , . . . ,UaT the i-th string
is drawn from. A straightforward application of the Birth-
day Paradox shows that with probability at least 99

100
, all r

indices `1, . . . , `r take distinct values from each other. Con-
ditioned on all these indices being distinct, we may view the
i-th string in S2 as being obtained by independently (i) first
choosing the string a`i by taking it to be zj with probability
wj ; then (ii) making a draw from Ua`i . (We have indepen-
dence across all i because all indices `1, . . . , `r are distinct
from each other.) But this is precisely the same procedure
which is used to obtain S1. So conditioned on all indices
`1, . . . , `r being distinct, the distribution of S2 is identical
to the distribution of S1.

Thus, with probability at least 99
100

over the random choice
of indices `1, . . . , `r in the construction of S2, the distribu-
tions of S2 and S1 are identical. Even if the remaining 1

100
probability mass for S2 completely misses the support of S1,
we have that ‖S1 − S2‖ ≤ 1

50
.

4.2 A lower bound for testing uniformity
Our main result in this section is a Ω(n/ log2 n) lower

bound on the number of draws required to distinguish the
uniform distribution over {−1, 1}n even from monotone dis-
tributions which are quite far from uniform:

Theorem 8. Any algorithm A which, given generator ac-
cess to an unknown monotone distribution p over {−1, 1}n,
determines correctly (with probability at least 4/5) whether
p ≡ U or ‖p− U‖1 > 2− 1

n9 must make Ω(n/ log2 n) draws
from the generator.

(It will be clear from the proof of Theorem 8 that the 2− 1
n9

lower bound on ‖p−U‖1 could in fact be taken to be 2− 1
nk

for any constant k > 0; we give the proof for 2 − 1
n9 for

simplicity.) This lower bound shows that in terms of the
dependence on n, the Θ(n log n) query algorithm given in
Section 3 is optimal up to a polylog(n) factor. It is inter-
esting to contrast this lower bound with the case of test-
ing uniformity for monotone distributions over the domain
[N] = {1, 2, . . . , N}, where (as shown in [5]) there is an al-
gorithm that makes Θ(1/ε2) queries independent of N.

The high-level idea of our lower bound for testing unifor-
mity is as follows. We first show that the uniform distri-
bution U cannot be distinguished from the product distri-
bution Pτ ′ over {−1, 1}n with parameter τ ′ = 1

2
+ 12 log n

n

using fewer than Ω(n/ log2 n) many draws. We then use
the probabilistic method and the technique of Section 4.1
to show that there is a distribution q which is very far from
U , but which cannot be distinguished from Pτ ′ using fewer
than Ω(n/ log2 n) many draws. Combining these bounds, it
follows that q cannot be distinguished from U using fewer
than Ω(n/ log2 n) many draws.

Proof of Theorem 8. The proof is by contradiction; so
suppose that A is an algorithm which makes N = o(n

log2 n
)

draws from the generator and satisfies PrS←(U)N [A(S) out-

puts “uniform”] ≥ 4
5
. We will show that any such algorithm

must also satisfy PrS←(q)N [A(S) outputs “uniform”] ≥ 1
2

for some monotone distribution q which satisfies ‖q−U‖1 ≥
2 − 1

n9 . This proves the theorem, since a correct algorithm

would have PrS←(q)N [A(S) outputs “uniform”] ≤ 1
5

for all
such distributions q.

Let τ ′ = 1
2

+ 12 log n
n

. We have the following claim.

Claim 9. PrS←(Pτ′)N [A(S) outputs “uniform”] ≥ 79
100

.

Proof of Claim 9. If PrS←(Pτ′)N [A(S) outputs “uni-

form”] < 79
100

, then Θ(1) runs of A gives an algorithm
which distinguishes with high success probability (say at
least 9/10) between U and Pτ ′ using Θ(N) many draws
from the unknown generator. But as we show below, any
algorithm which with probability at least 9

10
can correctly

determine whether an unknown generator is U or Pτ ′ must
make Ω(n

log2 n
) draws to the generator.

We show that the uniform distribution U and the product
distribution Pτ , where τ = 1

2
+ ε, are indistinguishable with

fewer than Ω(1
ε2n

) many draws:

Fact 10. Any algorithm which with probability at least 9
10

can correctly determine whether an unknown generator is U
or is Pτ must make Ω(1

ε2n
) many draws to the generator.

Proof. Suppose that A is an algorithm which, given an
unknown coin of bias either 1

2
or 1

2
+ ε, can output the right

answer with probability at least 9
10

. It is well known that

A must make at least Ω(1
ε2

) many coin tosses (see e.g. [4]).
It is clear that T fair coin tosses can be converted into T/n
draws from U , and T biased coin tosses can be converted
into T/n draws from Pτ , simply by grouping the tosses into
strings of length n. Thus any distinguisher as described in
the statement of Fact 10 must make Ω(1

ε2n
) many draws

from the generator, since otherwise it would yield a distin-
guisher for the coin problem which requires o(1

ε2
) many coin

tosses.

Now we use the lower bound technique of Section 4.1 to
show that Pτ ′ is indistinguishable from some distribution q

which is far from U . Given a value τ = 1
2

+ ε with ε ≥ 0,
the following claim shows that making a draw from Pτ is
equivalent to the following two-step process: (i) first pick a
random y from {−1, 1}n according to the distribution P2ε

(i.e. each y with ones(y) = i is chosen with probability
(2ε)i(1− 2ε)n−i); and then (ii) pick a random x from Uy.

Claim 11. For any τ = 1
2

+ ε ∈ [1
2
, 1] the product distri-

bution Pτ is decomposable as

Pτ (x) =

n∑
i=0

∑
y∈{−1,1}n: ones(y)=i

(2ε)i(1− 2ε)i · Uy(x). (1)

Proof. For i = 0, 1, . . . , n let αi denote (2ε)i(1− 2ε)n−i.
We first note that

∑n
i=0

(
n
i

)
αi = 1 and thus the right side of

(1) is a convex combination of uniform monotone subcube
distributions. Now fix an x ∈ {−1, 1}n which has ones(x) =
k. There are

(
k
i

)
points y ≤ x which have ones(y) = i, and

each such y contributes αiUy(x) = (2ε)i (1− 2ε)n−i /2n−i =

(2ε)i
(

1
2
− ε
)n−i

to the probability of x under the right side
of (1). We thus have that the probability of x under the
right side of (1) is

k∑
i=0

(
k

i

)
(2ε)i(1

2
− ε)

n−i
=(1

2
− ε)n−k

k∑
i=0

(
k

i

)
(2ε)i(1

2
− ε)

k−i

= (1
2
− ε)

n−k
(1
2

+ ε)
k

and thus the right side of (1) is indeed a decomposition of
the product distribution Pτ as desired.

Now let q be a distribution over {−1, 1}n which is drawn
from D(Pτ ′ , n2) as described in Section 4.1 (i.e. n2 points

a1, . . . , an2
are independently selected from {−1, 1}n where

each point of weight i is chosen with probability (2ε)i(1 −
2ε)n−i, and q is the uniform convex combination of the cor-
responding uniform monotone subcube distributions). Let
S1 be the random variable defined by making N indepen-
dent draws from Pτ ′ , and let S2 be the random variable
defined by (i) first selecting q randomly as described above,
and then (ii) making N independent draws from q.

Since N < n
10

, by Claim 7 we have that ‖S1 − S2‖1 ≤ 1
50

.
Combining this with Fact 1, we have that |PrS←(Pτ′)N [A(S)

outputs “uniform] − Prq←D(Pτ′ ,n2), S←(q)N [A(S) outputs

“uniform]| ≤ 1
50

, and combining this with Claim 9 we have

that Prq←D(Pτ′ ,n2), S←(q)N [A(S) outputs “uniform”] ≥ 77
100

.
This latter inequality immediately yields the following lemma:

Lemma 12. With probability at least 54
100

over the random

selection of q from D(Pτ ′ , n2) we have that PrS←(q)N [A(S)

outputs “uniform”] ≥ 1
2
.

Now we use the following lemma which we prove shortly:

Lemma 13. With probability 1 − o(1) over the random
choice of q from D(Pτ ′ , n2), we have that ‖q−U‖1 ≥ 2− 2

n9 .

Combining Lemmas 12 and 13, we may conclude that
there exists some distribution q in the support of D(Pτ ′ , n2)
which has both PrS←(q)N [A(S) outputs “uniform”] ≥ 1

2
and

‖q−U‖1 ≥ 2− 2
n9 . Since every distribution q in the support

of D(Pτ ′ , n2) is monotone, this proves Theorem 8.

Proof of Lemma 13. Let ε = 12 log n
n

. The distribu-

tion q is selected from D(Pτ ′ , n2) by independently draw-

ing n2 many points a1, . . . , an2
from the product distri-

bution P2ε and taking q =
∑n2

i=1
1

n2Uai . For any fixed i,

the expected value of ones(ai) is 2εn = 24 log n, and the
multiplicative Chernoff bound implies that Pr[ones(ai) ≤
12 log n] is at most exp(−3 log n) < 1

n3 . A union bound

across i = 1, . . . , n2 gives that with probability 1 − o(1),
no ai has ones(ai) < 12 log n. If each of the n2 many ai’s
has ones(ai) ≥ 12 log n, then each Uai is supported on at
most 2n/n12 points, and thus the support of q contains at
most 2n/n10 points. It follows immediately from this that
‖q−U‖1 must be at least 2− 2

n10 , and the lemma is proved.
(Lemma 13)

In terms of ε, it is easy to see that at least 1/ε2 many
queries are required:

Theorem 14. Any algorithm which determines correctly
(with probability at least 4/5) whether a monotone distribu-
tion p is equivalent to U or has ‖p− U‖1 > ε must make at
least Ω(1/ε2) draws from p.

Proof. We assume without loss of generality that n is
odd, so exactly half the points x ∈ {−1, 1}n have |x| > 0
and exactly half have |x| < 0. Let q be the distribution
which puts weight (1 + ε

2
)/2n on each x with |x| > 0 and

puts weight (1− ε
2
)/2n on each x with |x| < 0. Consider the

problem of determining whether p is equivalent to U or to
q (with a guarantee that it is one of the two). If there were
an o(1

ε2
)-query algorithm for this problem, then there would

be an o(1
ε2

)-query algorithm to determine whether a coin is
perfectly fair or has bias ε. (Given a coin to be tested, we
can convert each “heads” to a string x ∈ {−1, 1}n chosen
uniformly at random from all strings satisfying |x| > 0, and
convert each “tails” to a string chosen uniformly at random
from all strings satisfying |x| < 0.) But it is well known (see
e.g. [4]) that any algorithm for the coin problem requires
Ω(1

ε2
) many samples.

4.3 An exponential lower bound for testing
equivalence to a fixed product distribution

In the previous sections we have seen that Θ̃(n) draws
from a generator for a monotone distribution are necessary
and sufficient to distinguish between the two cases of it being
either equivalent to U or far from U . In contrast, we now
prove a 2Ω(n) lower bound on the number of draws which are
required to distinguish between a generator for an unknown
monotone distribution being either equivalent to P4/5 or far
from P4/5:

Theorem 15. Any algorithm A which, given generator
access to an unknown monotone distribution p over {−1, 1}n,
determines correctly (with probability at least 4/5) whether
p ≡ P4/5 or ‖p − P4/5‖1 > 2 − 1

n
must make at least 2.16n

draws from the unknown generator.

(Here too the bound 2− 1
n

can be strengthened to 2− 1
nk for

any constant k > 0.) Theorem 15 is in sharp contrast with
known results for a similar question of testing whether two
unknown generators p and q for monotone distributions over
[N] are identical or have ‖p − q‖1 ≥ ε. In [5] an algorithm
is given for this problem which runs in polylog(N, 1

ε
) time

steps. In contrast, here even though the generator q is known
exactly and has a very simple structure, the problem is hard.

Proof of Theorem 15. The proof is again by contra-
diction; so suppose that A is an algorithm which makes N <
2.16n draws from the generator and satisfies PrS←(P4/5)N [A(S)

outputs “P4/5”] ≥ 4
5
. By Claim 11 the distribution P4/5 is

decomposable; as described in Section 4.1 we consider the
distribution D(P4/5, T) over distributions q, where now we

take T = 100 · 2.32n. Let S1 be the random variable de-
fined by making N independent draws from P4/5, and let
S2 be the random variable defined by (i) first selecting q
randomly from D(P4/5, T) and then (ii) making N indepen-

dent draws from q. Since N <
√

T/10, by Claim 7 and Fact 1
we have that |Prq←D(P4/5,T), S←(q)N [A(S) outputs “P4/5”]

− PrS←(P4/5)N [A(S) outputs “P4/5”]| ≤ 1
50

so consequently

Prq←D(P4/5,T), S←(q)N [A(S) outputs “P4/5”] ≥ 78
100

. Analo-

gous to Lemma 12, from this we immediately obtain

Lemma 16. With probability at least 56
100

over the random
selection of q from D(P4/5, T) we have that PrS←(q)N [A(S)

outputs “P4/5”] ≥ 1
2
.

The following lemma now suffices to prove Theorem 15.

Lemma 17. For T = 100 · 2.32n, with probability 1− o(1)
over the choice of q from D(P4/5, T) we have that ‖q −
P4/5‖1 ≥ 2− 2

n
.

Proof. Taking τ = 4
5

and ε = 3
10

in Claim 11, the distri-
bution q is selected from D(P4/5, T) by independently draw-

ing T points a1, . . . , aT from the product distribution P3/5

and taking q =
∑T

i=1
1
T
Uai . For any fixed i, since ai is drawn

from P3/5, using the multiplicative Chernoff bound we have

that ones(ai) lies outside the interval [3n
5
− c
√

n log n, 3n
5

+

c
√

n log n] with probability at most 1
2n2 , where c is some

absolute constant. Consequently, the expected fraction of
ai’s which have ones(ai) outside this interval is at most 1

2n2 ;
another multiplicative Chernoff bound gives that with prob-
ability 1 − o(1), at most a 1

n2 fraction of a1, . . . , aT have

ones(ai) outside of [3n
5
− c
√

n log n, 3n
5

+ c
√

n log n]. We will

refer to the ai’s which have ones(ai) ∈ [3n
5
− c
√

n log n, 3n
5

+

c
√

n log n] as good ai’s, and to the other ai’s as bad ai’s.
Thus, we may henceforth assume that at most a 1

n2 fraction
of the probability weight assigned by q corresponds to bad
ai’s. We now analyze how the remaining (at least) 1 − 1

n2

weight assigned by q via the good ai’s is distributed rela-
tive to the weight distribution of P4/5; we will show that
this 1 − 1

n2 weight of q almost entirely misses the weight
assigned by P4/5.

The multiplicative Chernoff bound implies that under the
distribution P4/5, all but (at most) a 1

n2 fraction of prob-

ability weight is on points z which have ones(z) ∈ [4n
5
−

c2

√
n log n, 4n

5
+ c2

√
n log n] for some absolute constant c2.

Fix any integer value r ∈ [4n
5
− c2

√
n log n, 4n

5
+ c2

√
n log n].

It is clear that the distribution P4/5 puts equal weight on

all points z with ones(z) = r. Now, for any i such that ai

is good, the support of Uai contains at most 22n/5+c
√

n log n

points, and thus such an ai contributes nonzero weight to at

most 22n/5+c
√

n log n many points z which have ones(z) = r.
Since there are at most T good ai’s, the total number of
points z ∈ {−1, 1}n with ones(z) = r which receive nonzero

weight from any good ai is at most T22n/5+c
√

n log n = 100 ·
2.72n+c

√
n log n. Since there are

(
n
r

)
> 2(H(r/n)−o(1))n many

points with ones(z) = r, where H(x) = −x log x − (1 −
x) log(1 − x) is the standard binary entropy function (see
e.g. [8]), since H(4/5) > .72 we have that for each r ∈
[4n

5
− c2

√
n log n, 4n

5
+ c2

√
n log n], all but an exponentially

small fraction of the weight which P4/5 assigns to points of
weight r goes to points z which receive zero weight from the
good ai’s under q. Since all but at most 1/n2 weight under
P4/5 is on such r’s, and all but at most 1/n2 weight under

q is assigned by good ai’s, this proves the lemma.

We can use the approach of Theorem 15 to show that an
algorithm given in [5] is close to optimal. In [5] a O(logn m)
time algorithm is given for determining whether a generator
for an unknown monotone distribution over {1, . . . , m}n is
(i) a product of n independent distributions over {1, . . . , m},
or (ii) is ε-far in L1 norm from any such product distribution.
The following theorem shows that any algorithm for this
problem must indeed have an exponential dependence on
the dimension n:

Theorem 18. Let A be an algorithm which, given gen-
erator access to an unknown monotone distribution p over
{−1, 1}n, outputs “product” with probability at least 4/5 if
p is a product distribution, and outputs “not product” with
probability at least 4/5 if for every product distribution Pτ1,...,τn

the distance ‖p − Pτ1,...,τn‖1 is at least 1
8n

. Then A must

make at least 2.16n many queries.

Proof. Suppose that A is an algorithm which makes
N < 2.16n draws from the generator and, for any product
distribution P, satisfies

Pr
S←(P)N

[A(S) outputs “product”] ≥ 4

5
.

Then A must in particular output “product” with probabil-
ity at least 4/5 when run using a generator for P4/5. The
proof now follows that of Theorem 15 up to Lemma 17. The
following variant of Lemma 17 suffices to give Theorem 18:

Lemma 19. For T = 100 · 2.32n, with probability 1− o(1)
over the choice of q from D(P4/5, T) we have that ‖q−P‖1 >
1
8n

for all product distributions P.

Proof of Lemma 19. Fix some i ∈ {1, 2, . . . , n}. A Cher-
noff bound shows that with overwhelmingly high probability
(much higher than 1− 1

n2) a randomly chosen q drawn from

D(P4/5, T) will have |Prq[xi = 1]− 4
5
| ≤ 1

8n
. Taking a union

bound across all i = 1, . . . , n we have that with probability
at least 1− 1

n
, a random q has |Prq[xi = 1]− 4

5
| ≤ 1

8n
for all

i. Now, given any such distribution q, it is immediately clear
that if Pτ1,...,τn has |τi − 4

5
| > 1

4n
for any τi, then we have

‖q − Pτ1,...,τn‖1 ≥ 1
8n

. Thus we need only consider product

distributions Pτ1,...,τn with |τi − 4
5
| < 1

4n
for all i. We now

use the following standard fact:

Fact 20. Let D1,D2 be two distributions over X and D3,
D4 be two distributions over Y. Then we have

‖(D1 ×D3)− (D2 ×D4)‖1 ≤ ‖D1 −D2‖1 + ‖D3 −D4‖1.

Applying this fact repeatedly, we have that any distri-
bution Pτ1,...,τn with |τi − 4

5
| < 1

4n
for all i must satisfy

‖P4/5 − Pτ1,...,τn‖1 ≤ 1
2
. Now applying Lemma 17, we have

that with probability 1 − o(1) a random q will satisfy ‖q −
Pτ1,...,τn‖1 ≥ 3

2
− 2

n
. This proves the lemma.

4.4 Lower bound for approximating entropy
For p a distribution over a finite set, the entropy of p is

H(p) :=
∑

x−p(x) log p(x). For h > 0 we write Dh to denote
the set of all monotone distributions over {−1, 1}n which
have entropy at least h. For γ > 1, we say that algorithm A
γ-approximates the entropy of distributions in Dh if the fol-
lowing condition holds: given access to a generator p for any
distribution in Dh, with probability at least 4/5 algorithm
A outputs a value A(p) such that H(p)/γ ≤ A(p) ≤ γH(p).

In [3] it was shown that for any constant γ > 1, given
generator access to a monotone distribution over [N] with

entropy Ω(γ5/2/(log
√

γ + 1)(
√

γ − 1)), it is possible to γ-

approximate the entropy of the distribution using O(log6 N)
many draws from the generator. In contrast to this positive
result, using the technique of Section 4.1 we can show that
approximating the entropy of an unknown monotone dis-
tribution over {−1, 1}n to within a fixed constant requires

2Ω(n) draws, even if the distribution is guaranteed to have
entropy Ω(n):

Theorem 21. Any algorithm that 1.16-approximates the
entropy of any monotone distribution from Dn/2 must make

at least 1
10

2n/20 many draws from the generator.

A variant of our construction yields ω(1)-inapproximability

for algorithms which make Ω(2
√

n) generator draws, even if
the distribution is guaranteed to have entropy Ω(

√
n):

Theorem 22. Any algorithm that Ω(
√

log n)-approximates
the entropy of any monotone distribution from D√n must

make at least 1
10

2
√

n many draws from the generator.

We prove both of these results.

Proof of Theorems 21 and 22. Let pMAJ be the dis-
tribution p =

∑
y: ones(y)=n/2 Uy, i.e. p is a uniform convex

combination of all
(

n
n/2

)
uniform monotone subcube distri-

butions rooted at points of weight n/2 (we assume through-
out that n is even; the case where n is odd is entirely similar).
We have:

Claim 23. H(pMAJ) > .81n.

Proof. It is easy to see that for i = n/2, n/2 + 1, . . . , n

we have Prx←pMAJ [ones(x) = i] =
(

n/2
i−n/2

)
/2n/2; we write

p
(i)
MAJ to denote this quantity. It is also clear that pMAJ puts

the same probability weight, which is
(

n/2
i−n/2

)
/(2n/2 ·

(
n
i

)
),

on each of the
(

n
i

)
strings x with ones(x) = i. Now consider

the contribution to H(pMAJ) =
∑

x−pMAJ(x) log pMAJ(x)
which comes from those x which have ones(x) = 3n

4
. This

contribution is

p
(3n/4)
MAJ · log

2n/2
(

n
3n/4

)(
n/2
n/4

) = p
(3/4)
MAJ · (H(3/4)− o(1))n.

Thus the contribution to H(pMAJ) from these strings is at

least p
(3n/4)
MAJ · (.811n). Now for each i in [3n/4 −

√
n log n,

3n/4 +
√

n log n], a similar calculation shows that the con-
tribution to H(pMAJ) from those strings x with ones(x) = i

is at least p
(i)
MAJ · (.8105n). Since only a 1 − o(1) fraction

of the weight of pMAJ is on strings i with i /∈ [3n/4 −√
n log n, 3n/4+

√
n log n], we have that H(pMAJ) is at least

(1− o(1))(.8105n) > .81n.

Now consider the distribution D(pMAJ , T) over probabil-
ity distributions q obtained from the decomposition of pMAJ

into
(

n
n/2

)
uniform monotone subcube distributions. Using

the techniques of the previous sections, we can show that if A
is any algorithm which makes fewer than

√
T/10 draws from

the generator, then there is some distribution q in the sup-
port of D(pMAJ , T) which is indistinguishable from pMAJ

with high probability. However, it is easy to see that any
distribution q which may be drawn from D(pMAJ , T) puts

nonzero weight on at most T ·2n/2 many points in {−1, 1}n,
and consequently we have H(pMAJ) ≤ (n/2)+log T. We also
have that q is a convex combination of distributions with en-
tropy n/2, so we must have n/2 ≤ H(q) ≤ (n/2) + log T.

Thus, even with the guarantee that the unknown distribu-
tion has entropy at least n/2, it is hard to distinguish (with

fewer than
√

T/10 draws) between H(·) > .81n and H(·) <
(n/2) + log T. This gives rise to a range of lower bounds; if

we take for example T = 2.1n, then since
√

.81/.6 > 1.16 we
obtain Theorem 21.

A variant of this construction yields ω(1)-inapproximability
for algorithms which make poly(n) many draws from the
generator. Let p? denote the probability distribution p? =∑

y: ones(y)=n−
√

n Uy. An argument similar to that of Claim 23

shows that H(p?) = Ω(
√

n log n). Taking T = 2
√

n, we have

that if A is any algorithm which makes fewer than 1
10

2
√

n/2

many draws from the generator, then there is some distribu-

tion q in the support of D(p?, 2
√

n) which is indistinguishable
from p?. This q must have

√
n ≤ H(q) ≤

√
n+log T = 2

√
n,

and we obtain Theorem 22.

5. THE EVALUATOR ACCESS MODEL
In this section, we study the complexity of the testing

problems for monotone distributions over {−1, 1}n that we
considered earlier, but now in the evaluator model rather
than the generator model. We show that testing uniformity
can be done with a single evaluator query, and that testing
equivalence versus ε-distance from a known distribution can
be done with Θ(1/ε) evaluator queries, independent of n.
While these problems are substantially easier in the evalu-
ator model than the generator model, we also show strong
(superpolynomial in n) lower bounds on the query complex-
ity of approximating the entropy of monotone distributions
on {−1, 1}n in the evaluator model, and on the query com-
plexity of determining whether two unknown monotone dis-
tributions over {−1, 1}n (given as evaluators) are equivalent
or far apart.

Previous authors have considered the evaluator model,
and in particular have studied the problem of estimating the
entropy [3]. For general distributions, it was shown that the
number of queries required to estimate the entropy is Ω(N)
where N is the size of the domain. However, for monotone
distributions over a totally ordered domain, the entropy can
be estimated to within a multiplicative factor of γ > 1 in
time O(d1/ log γe log N) in the evaluator model [3].

We now show how to test whether monotone distributions
are uniform.

Theorem 24. There is a deterministic 1-query evaluator
algorithm which correctly decides whether a monotone dis-
tribution p over {−1, 1}n is identical to U .

Proof. The algorithm queries p(1n) and outputs “uni-
form” if the result is 1/2n and “not uniform” otherwise. If

p(1n) 6= 1/2n the distribution is not uniform. On the other
hand, if p(1n) = 1/2n, then since p is monotone we must
have p(x) ≤ 1/2n for each x ∈ {−1, 1}n. However, the total
sum of all 2n probabilities must be 1, and thus it must be
the case that all domain elements have probability 1/2n.

We next show how to test whether a distribution is iden-
tical to or far from a known distribution.

Theorem 25. Let q be a known distribution over {−1, 1}n
(not necessarily monotone). Given evaluator access to a dis-
tribution p over {−1, 1}n (not necessarily monotone) and a
parameter ε, there is an algorithm which makes 5/ε evalua-
tor queries and has the following behavior: (i) if p ≡ q then
the algorithm outputs “equal” with probability 1; and and
(ii) if ‖p − q‖1 > ε then the algorithm outputs “not equal”
with probability at least 2/3.

Proof. The testing algorithm chooses s = 5/ε points
x1, . . . , xs ∈ {−1, 1}n independently according to q, and
queries the evaluator oracle for p at each. If at any xi it
finds that p(xi) 6= q(xi), the algorithm outputs “not equal”,
otherwise it outputs “equal”.

It is clear that if p ≡ q, the algorithm will always output
“equal”. Say that x ∈ {−1, 1}n is good if p(x) = q(x). Let ρ
be the probability that x is not good when chosen according
to distribution q and ρ′ be the probability that x is not good
when chosen according to distribution p. Note that ρ = ρ′.
To show that if ‖p−q‖1 > ε then the algorithm outputs “not
equal” with probability at least 2/3, we equivalently show
the contrapositive, i.e., that if the algorithm outputs “equal”
with probability greater than 1/3 then ‖p − q‖1 ≤ ε. If
the algorithm outputs “equal” with probability at least 1/3,
then ρ ≤ ε/2. (To see this, note that if ρ > ε/2 then Pr[some
x which is not good occurs in the s examples] = 1−(1−ρ)s >

1 − (1 − ε/2)5/ε which is at least 2/3 for 0 < ε < 2.) Thus
‖p−q‖1 =

∑
x good |p(x)−q(x)|+

∑
x not good |p(x)−q(x)| ≤∑

x not good(p(x) + q(x)) ≤ ρ + ρ′ ≤ ε.

5.1 Lower bounds in the evaluator model
In this section, we prove the following three lower bounds.

Theorem 26. Any evaluator algorithm that
√

n/ log n-
approximates the entropy of any monotone distribution from
Dlog2 n must make Ω(nlog n) calls to the evaluator.

Theorem 27. Any algorithm in the evaluator model that
1.58-approximates the entropy of any monotone distribution
from Dn/10 must make Ω(2n/10) calls to the evaluator.

Theorem 28. Any algorithm that, given access to a pair
of evaluators for two unknown monotone distributions p and
q over {−1, 1}n, correctly distinguishes the case p ≡ q from
the case that ‖p − q‖1 ≥ 1/2 with probability at least 4/5

must make 2Ω(
√

n) calls to the evaluator.

In order to prove the above three theorems, we describe
two families P andQ of monotone distributions over {−1, 1}n
that are hard to distinguish when given access to an eval-
uator oracle. Since distributions p ∈ P and q ∈ Q have
very different entropies and are very far from each other in
L1 distance, this will give us lower bounds for both of those
testing problems which are superpolynomial in n, the dimen-
sion of the cube. Thus, unlike the case of a totally ordered

domain, these testing problems for monotone distributions
over {−1, 1}n cannot be performed with a number of queries
that is polylogarithmic in the size of the domain.
Two families of distributions. Let N denote

∑b
i=0

(
n
i

)
,

the number of points x ∈ {−1, 1}n which have ones(x) ≥
n − b. (b will be set later; it will always be set to a value
between log n and n/100.) Let ` be chosen as the least

positive integer which satisfies
∑`−b−1

i=0

(
`
i

)
≥ N , and let N ′

denote
∑`−b−1

i=0

(
`
i

)
. Note that if y ∈ {−1, 1}n has ones(y) =

n− `, then there are precisely N ′ many points z in {−1, 1}n
such that z ≥ y and ones(z) < n−b. Given y ∈ {−1, 1}n with
ones(y) = n− `, the distribution py is defined as follows: py

puts weight 1/(2N) on each of the N points x in {−1, 1}n
which have ones(x) ≥ n − b, and puts weight 1/(2N ′) on
each of the N ′ points z ∈ {−1, 1}n which have z ≥ y and
ones(z) < n − b. It is easy to see that py is a monotone
distribution. The family P of distributions is P =

⋃
py

where the union is over all y with ones(y) = n− `.
We now define the other family Q. Given y ∈ {−1, 1}n

with ones(y) = n/2, we define the distribution qy as follows:
like the distributions in P, qy puts weight 1/(2N) on each
of the N points x in {−1, 1}n which have ones(x) ≥ n − b.
However, qy distributes the remaining 1/2 weight equally

over all M ≡
∑n/2−b−1

i=0

(
n/2

i

)
many points z which satisfy

z ≥ y and ones(z) < n − b. Note that since M � N ′,
each distribution in Q has much more entropy than each
distribution in P; we make this precise in the next claim.

Claim 29. (i) We have N ≤ (en
b

)b < 2n/10, ` ≤ b log(en
b

)+

1 < n/10, and M ≥ 1
2
2n/2. (ii) The entropy of each py ∈ P

is H(p) ≤ b log(en
b

) + 2. (iii) The entropy of each qy ∈ Q is
H(q) ≥ n/4. (iv) For all p ∈ P, q ∈ Q, |p− q| ≥ 1− o(1).

Proof. (i): Recall that N =
∑b

i=0

(
n
i

)
≤ (en

b
)b (see e.g.

Section 3.4 of [9]), and note that log((en
b

)b) = b log(en
b

)

which is easily shown to be at most 9n
100

since b ≤ n/100.

For `′ = log((en
b

)b) + 1 we have that
∑`′−b−1

i=0

(
`′

i

)
= 2`′ −∑b

i=0

(
`′

i

)
≥ 2N −

∑b
i=0

(
`′

i

)
≥ 2N −

∑b
i=0

(
n
i

)
= N , so

` ≤ `′. The bound on M follows easily from b ≤ n/10.
(ii): This follows from the above arguments which show

that the support of py contains at most 2`′+1 many points.
(iii): This follows from the fact that at least half the

weight of qy is uniform over a set of at least 1
2
2n/2 many

points, and the other half of the weight is uniform over a set
of at least two points.

(iv): This follows easily by comparing the support sizes
of any py ∈ P and qy ∈ Q.

Difficulty of distinguishing P,Q. Members of P and
Q have very different entropies; but randomly chosen p ∈ P
and q ∈ Q are hard to tell apart given access only to an eval-
uator. To see why, first note that in both cases the value of
an evaluator query at any point x with ones(x) ≥ n − b is
exactly 1/(2N). Thus one can assume that the distinguish-
ing algorithm only queries points z with ones(z) < n − b.
Next, note that if the distinguishing algorithm does manage
to find a point z with ones(z) < n − b which has nonzero
probability weight, then it is immediately evident whether
the distribution is from P or Q based on whether the weight
on z is large or small. If the unknown distribution is chosen
at random from P or Q, it is hard to find a point z with
nonzero weight; but points with 0 weight do not give much

information about whether the distribution is from P or Q,
and thus many queries are required. The following makes
this intuition more precise.

Let z : {−1, 1}n → [0, 1] be the function that assigns
value 1/(2N) to each of the N points x with ones(x) ≥
n− b, and assigns value 0 to all other points in {−1, 1}n. In
the following, we show that randomly drawn elements of P
and Q are hard to distinguish from z, and thus are hard to
distinguish from each other.

Theorem 30. Any algorithm that for all a ∈ P
⋃
{z} (re-

spectively Q
⋃
{z}), correctly distinguishes whether a is from

P (respectively Q) or a = z with probability greater than 2/3
must make Ω((n/`)b) (respectively Ω(2b)) evaluator queries
to a.

Proof. We give the proof for P and then sketch the mod-
ifications required for proving the result for Q.

We use Yao’s principle [12] which says the following: if
there is a probability distribution A over the union of all
positive and negative inputs which is such that any deter-
ministic distinguishing algorithm making t queries is correct
with probability less than 4/5 for an input chosen from A,
then one can conclude that t is a lower bound on the query
complexity of any randomized distinguishing algorithm.

We define a distribution over all inputs as follows: the neg-
ative input z is assigned probability 1/2, and each member
of P (the positive inputs) is assigned probability 1/(2|P|).

Let A be a deterministic distinguishing algorithm which
makes at most t queries when run on any evaluator from
P
⋃
{z}. By the discussion above we may assume that A

never queries a string x with ones(x) ≥ n− b, and also that
A halts and outputs the correct answer if it ever receives a
nonzero answer in response to a query. Thus we may view A
as a binary decision tree of depth at most t, where each node
represents a query to a particular string x (which satisfies
ones(x) < n − b) and the two outgoing edges are labelled
with “= 0” or “6= 0”. Each edge labelled “6= 0” can be
assumed to lead to a leaf at which A outputs “positive,” i.e.
a 6= z (note that if the input is z the algorithm will never
follow a “ 6= 0” edge). Each leaf of A represents the end of
a possible computation and is labelled “negative” (a = z)
or “positive” (a 6= z) according to the output of A. Note
that the number of leaves in the tree is only one more than
the depth of the tree (because the “6= 0” edges all lead to
leaves as described above). The error of A, the sum of the
probabilities of those inputs for which A outputs the wrong
answer, is all incurred by inputs a ∈ P which always follow
the “= 0” edge at each node.

If A is incorrect on z, then A is incorrect with probability
at least 1/2; thus we may assume that A is correct on z.
Hence A should output “negative” (a = z) if all t tested
locations are equal to 0. Since inputs from P for which A
does not find a nonzero location end up at the same leaf as
z, they will be labelled incorrectly by A.

We now upper bound the number of inputs from P that
follow the “6= 0” labelled edge at any step in the algorithm
in order to lower bound the number of leaves required for
any A that is incorrect with probability at most 1/5 (and
thus incorrect on at most 2/5 of inputs from P). Consider
a particular step in the algorithm at which a string x ∈
{−1, 1}n is queried. Let w be such that ones(x) = n−w. As
noted above we can assume that ` ≥ w > b, since the query
answers for locations of weight outside that range are known

in advance. There are
(

n−w
n−`

)
=
(

n−w
`−w

)
many strings y with

ones(y) = n − ` and y ≤ x; this number is maximized (for
b < w ≤ `) by taking w = b + 1. Since there are

(
n
`

)
many

strings y with ones(y) = n − `, in order for at least 3/5 of
the inputs in P to reach a different leaf than z there must
be at least 3

5
·
(

n
`

)
/
(

n−b−1
`−b−1

)
> Θ(1) ·

(
n
`

)
/
(

n−b
`−b

)
many leaves

(here the inequality holds because of our bound ` < n/10
from Claim 29). Therefore the depth of the tree is at least
Θ(1) ·

(
n
`

)
/
(

n−b
`−b

)
, which is

Θ(1)
n(n− 1) · · · (n− b + 1)

`(`− 1) · · · (`− b + 1)
> Θ(1) · (n/`)b.

To show the result for Q, consider a query on string x
with ones(x) = n − w where now b < w ≤ n/2. There are(

n−w
n/2

)
many strings y with ones(y) = n/2 and y ≤ x. Since

there are
(

n
n/2

)
many strings y with ones(y) = n/2, arguing

as above we have that the depth of the tree must be at least
Θ(1) ·

(
n

n/2

)
/
(

n−b
n/2−b

)
= Ω(2b).

Theorem 30 gives us the following corollary:

Corollary 31. Any evaluator algorithm that for all a ∈
P
⋃
Q correctly distinguishes whether a is from P or Q with

probability greater than 4/5 must make Ω(2b) queries.

Taking b = log2 n and b = n/10, by combining Claim 29
with Corollary 31 we get Theorems 26 and 27 respectively.
Theorem 28 follows by combining part (iv) of Claim 29 with
Theorem 30.

Acknowledgement. We thank the anonymous referees
and Eli Ben-Sasson for helpful comments.

6. REFERENCES
[1] D. Aldous. On the Markov chain simulation method for

uniform combinatorial distributions and simulated annealing.
Probability in Engineering and Information Sciences,
1:33–46, 1987.

[2] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and
P. White. Testing random variables for independence and
identity. In IEEE Symposium on Foundations of Computer
Science, pages 442–451, 2001.

[3] Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt
Rubinfeld. The complexity of approximating entropy. In ACM
Symposium on Theory of Computing, pages 678–687, 2002.

[4] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D.
Smith, and Patrick White. Testing that distributions are close.
In IEEE Symposium on Foundations of Computer Science,
pages 259–269, 2000.

[5] Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear
algorithms for testing monotone and unimodal distributions. In
ACM Symposium on Theory of Computing, pages 381–390,
2004.

[6] M. Furst, J. Jackson, and S. Smith. Improved learning of AC0

functions. In Proceedings of the Fourth Annual Workshop on
Computational Learning Theory, pages 317–325, 1991.

[7] O. Goldreich and D. Ron. On testing expansion in
bounded-degree graphs. Electronic Colloqium on
Computational Complexity, 7(20), 2000.

[8] W. C. Huffman and V. Pless. Fundamentals of Error
Correcting Codes. Cambridge University Press, 2003.

[9] M. Kearns and U. Vazirani. An introduction to computational
learning theory. MIT Press, Cambridge, MA, 1994.

[10] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits,
Fourier transform and learnability. J. ACM, 40(3):607–620,
1993.

[11] R. Servedio. On learning monotone DNF under product
distributions. In Proc. 14th ACM Conference on
Computational Learning Theory, pages 473–489, 2001.

[12] A. Yao. Probabilistic computations: Towards a unified measure

of complexity. In Symposium on Foundations of Computer

Science, pages 222–227, 1977.

