
Learning DNF from Random Walks

Nader H. Bshouty

�

Department of Computer S
ien
e

Te
hnion

bshouty�
s.te
hnion.a
.il

El
hanan Mossel

y

Department of Statisti
s

University of California, Berkeley

mossel�stat.berkeley.edu

Ryan O'Donnell

z

Institute for Advan
ed Study

Prin
eton, NJ

odonnell�theory.l
s.mit.edu

Ro

o A. Servedio

x

Department of Computer S
ien
e

Columbia University

ro

o�
s.
olumbia.edu

O
tober 7, 2004

Abstra
t

We 
onsider a model of learning Boolean fun
tions from examples generated

by a uniform random walk on f0; 1g

n

. We give a polynomial time algorithm for

learning de
ision trees and DNF formulas in this model. This is the �rst eÆ
ient

algorithm for learning these 
lasses in a natural passive learning model where the

learner has no in
uen
e over the 
hoi
e of examples used for learning.

1 Introdu
tion

1.1 Motivation

One of the most notorious open questions in 
omputational learning theory is whether

it is possible to eÆ
iently learn Boolean formulas in disjun
tive normal form, or DNF,

from random examples. This question was �rst posed by Valiant [36℄ in his seminal

paper whi
h formalized the Probably Approximately Corre
t (PAC) model of learning

from independent random examples, and has remained stubbornly open ever sin
e. DNF

formulas a
hieve an attra
tive balan
e between expressiveness and 
larity: any Boolean

�

Supported by the Sydney Goldstein Resear
h Fund 120-122 and the fund for promotion of resear
h

at the Te
hnion, Resear
h no. 120-025.

y

Supported by a Miller Postdo
toral Fellowship.

z

Supported by NSF grant 99-12342. This resear
h was performed while the author was in the De-

partment of Mathemati
s at MIT.

x

Supported by an NSF Mathemati
al S
ien
es Postdo
toral Fellowship and by NSF grant CCR-98-

77049.



fun
tion 
an be represented by a suÆ
iently large DNF, yet DNF formulas are easily

understood by humans and seem to be a natural form of knowledge representation.

Provably 
orre
t and eÆ
ient algorithms for learning DNF from random examples

would be a powerful tool for the design of learning systems, and over the past two

de
ades many resear
hers have sought su
h algorithms. Despite this intensive e�ort, the

fastest algorithms to date for learning polynomial size DNF formulas in Valiant's original

PAC model of learning (where the learner re
eives independent examples drawn from an

arbitrary probability distribution over f0; 1g

n

) run in time 2

~

O(n

1=3

)

[26℄. Even if we only


onsider learning under the uniform distribution, the fastest known algorithms for learn-

ing polynomial size DNF from independent uniform examples run in time n

O(log n)

[37℄.

Sin
e learning DNF formulas from random examples seems to be hard, resear
hers

have 
onsidered alternate models whi
h give more power to the learning algorithm. The

most popular of these is the model of learning from membership queries; in this model

the learner has a

ess to a bla
k-box ora
le for the fun
tion to be learned and thus


an determine the value of the fun
tion on any inputs of its 
hoi
e. Several polynomial

time algorithms have been given for learning in this enhan
ed model. Kushilevitz and

Mansour [28℄ gave a polynomial time membership query algorithm whi
h 
an learn any

polynomial size de
ision tree under the uniform distribution (i.e., the error of the �nal

hypothesis is measured with respe
t to the uniform distribution on f0; 1g

n

). Building on

the work of [28℄, Ja
kson [20℄ gave a polynomial time algorithm for learning polynomial

size DNF formulas under the uniform distribution using membership queries.

While learning from membership queries is interesting in its own right, it represents

a signi�
ant departure from traditional \passive" models of learning (su
h as the PAC

model) in whi
h the learning algorithm has no 
ontrol over the data whi
h it re
eives; the

assumption that a learning algorithm 
an a
tively make queries is a strong one whi
h may

limit the usefulness of membership query learning algorithms. Thus an important goal

is to design eÆ
ient algorithms for learning DNF formulas in natural \passive" learn-

ing models. Towards this end, resear
hers have 
onsidered several alternatives to the

standard uniform distribution PAC model of learning from independent uniform random

examples. Bshouty and Ja
kson [9℄ de�ned a model where the learner 
an a

ess a uni-

form quantum superposition of all labelled examples, and showed that DNF formulas 
an

be eÆ
iently learned in this framework. More re
ently Bshouty and Feldman [2℄ showed

that DNF 
an be eÆ
iently learned in a model 
alled SQ-D

�

, whi
h is intermediate in

power between standard uniform distribution learning and uniform distribution learning

with membership queries; in this model the learner is allowed to make statisti
al queries

about the target fun
tion under produ
t distributions of the learner's 
hoosing. While

Bshouty and Feldman showed that this model is stri
tly weaker than the membership

query model, it is still an \a
tive" learning model sin
e the learner sele
ts the various

distributions whi
h will be used.

1.2 Our results: learning from random walks

We 
onsider a natural variant of the standard uniform distribution PAC learning model,


alled the (Uniform) Random Walk model. In this model the learner's examples are not

generated independently, but are produ
ed sequentially a

ording to a random walk on

2



the Boolean hyper
ube (we give a pre
ise de�nition of the model in Se
tion 2.1). Su
h

learning models have been previously studied [1, 15, 3℄ but no strong learning results

were known. In 
ontrast, we prove that DNF formulas are eÆ
iently learnable in this

model. Our main theorem is the following:

Theorem 1 The 
lass of s-term DNF formulas on n variables 
an be learned in the

Random Walk model to a

ura
y � and 
on�den
e 1� Æ in time poly(n; s; 1=�; log(1=Æ)).

(We note that another 
lass of fun
tions whi
h has been widely studied in learning theory

is the 
lass of Boolean de
ision trees [8, 13, 28℄. Sin
e any de
ision tree of size s 
an be

expressed as an s-term DNF, all of our results for learning DNF formulas immediately

imply 
orresponding results for learning de
ision trees.) Our results give the �rst eÆ
ient

algorithm for learning expressive 
lasses of Boolean fun
tions in a natural passive model

of learning from random examples only.

We also introdu
e another learning model whi
h we 
all the Noise Sensitivity model.

We prove that DNF formulas 
an be eÆ
iently learned in the Noise Sensitivity model as

well. Sin
e the Random Walk model 
an simulate the Noise Sensitivity model but the


onverse does not seem to be true, the Noise Sensitivity model is the weakest model in

whi
h we 
an learn DNF eÆ
iently.

1.3 Previous Work

Variants of PAC learning in whi
h the examples are not i.i.d., but rather are generated

a

ording to a sto
hasti
 pro
ess, were �rst studied by Aldous and Vazirani [1℄. Despite

being quite natural, these models have not been studied as intensively as other variants

of PAC learning. Gamarnik [15℄ studied learning under sto
hasti
 pro
esses but fo
used

mainly on sample 
omplexity and generalization error and did not give algorithms for

learning spe
i�
 
on
ept 
lasses. Bartlett, Fis
her, and H�o�gen [3℄ introdu
ed the Ran-

dom Walk model whi
h we 
onsider, whi
h is arguably the simplest and most natural

model of learning under a sto
hasti
 pro
ess. Bartlett et al. gave learning algorithms

in the Random Walk model for some simple 
on
ept 
lasses, namely Boolean threshold

fun
tions in whi
h ea
h weight is 0 or 1, parities of two monotone 
onjun
tions, and DNF

formulas with two terms.

2 Preliminaries

Throughout this paper TRUE and FALSE will be denoted by �1 and +1 respe
tively, so

the n-dimensional Boolean hyper
ube is f+1;�1g

n

. Sin
e we will be dealing with random

walks, we will refer to two di�erent ways of altering a bit in a bit string. Flipping a bit

x

i

2 f+1;�1g shall mean repla
ing x

i

with �x

i

; updating the bit x

i

shall mean repla
ing

x

i

with a uniformly random bit (equivalently, 
ipping it with probability

1

2

).

3



2.1 Learning models

Our learning models are based on the widely-studied uniform-distribution version of

Valiant's \Probably Approximately Corre
t" (PAC) model [36℄ (see e.g. [4, 6, 7, 12, 10,

18, 17, 20, 21, 23, 24, 25, 29, 30, 33, 34, 35, 37, 38℄ and the referen
es therein).

In uniform-distribution PAC learning, a learning problem is identi�ed with a 
on
ept


lass C = [

n�1

C

n

, whi
h is simply a 
olle
tion of Boolean fun
tions, ea
h f 2 C

n

being a

fun
tion f+1;�1g

n

! f+1;�1g. The goal of a learning algorithm A for C is to identify

an unknown target fun
tion f 2 C by using random examples from this fun
tion only.

Algorithm A takes as input an a

ura
y parameter � and a 
on�den
e parameter Æ; it

also has a

ess to an example ora
le EX(f) for the target fun
tion. Ea
h time it is

queried, EX(f) generates a point x 2 f+1;�1g

n

and provides the learning algorithm

with a labelled example hx; f(x)i. The output of A is a hypothesis h, whi
h is a Boolean

fun
tion h : f+1;�1g

n

! f+1;�1g (in the form of, say, a 
ir
uit). The hypothesis h

is said to be �-
lose to f if Pr[h(x) = f(x)℄ � 1 � � for x drawn from the uniform

distribution. We say that A is a learning algorithm for C if for all f 2 C, when A is run

with example ora
le EX(f), with probability at least 1� Æ it outputs a hypothesis whi
h

is �-
lose to f . Here the probability is over the random examples A re
eives from the

ora
le, and also over any internal randomness of A:

The measure of A's eÆ
ien
y is its running time; this in
ludes both the time whi
h

A takes to 
onstru
t its hypothesis h and the time required to evaluate h on an input

x 2 f+1;�1g

n

: In general we 
onsider A's running time as a fun
tion of n, �

�1

, log(1=Æ),

and a size parameter s for the 
on
ept 
lass. For the 
lass of DNF formulas, s is the

number of terms in the DNF; for the 
lass of de
ision trees, s is the number of nodes in

the tree.

Sin
e uniform-distribution PAC learning seems to be diÆ
ult, relaxed models have

also been 
onsidered. One 
ommon relaxation is to allow the learner to make membership

queries. In the membership query model the learner has a

ess to a membership ora
le

MEM(f) whi
h, on input x 2 f+1;�1g

n

; returns the value f(x): This 
learly gives the

learner quite a bit of power, and departs from the traditional passive nature of learning

from random examples.

We 
onsider a di�erent natural relaxation of the uniform-distribution PAC learning

model, whi
h we 
all the (Uniform) Random Walk model. The RandomWalk model uses

an ora
le RW(f) whi
h does not produ
e i.i.d. examples. Instead, the �rst point whi
h

RW(f) provides to the learning algorithm is uniformly random; su

eeding points are

given by a uniform random walk on the hyper
ube f+1;�1g

n

. That is, if the tth example

given to the learner is hx; f(x)i, then the (t + 1)st example will be hx

0

; f(x

0

)i, where x

0

is 
hosen by 
ipping a uniformly 
hosen random bit of x. Note that the Random Walk

model is a passive model of learning; the learner sees only randomly generated examples

and has no 
ontrol over the data used for learning.

For 
ompleteness we remind the reader that an s-term DNF formula is an s-way

OR of ANDs of Boolean literals. A de
ision tree is a rooted binary tree whi
h is full

(ea
h internal node has 0 or 2 
hildren) and whi
h has ea
h internal node labelled with

a variable from x

1

; : : : ; x

n

and ea
h leaf labelled with a bit from f+1;�1g: Su
h a tree

represents a Boolean fun
tion in the obvious way.

4



2.2 Fourier analysis

Fourier analysis of Boolean fun
tions is a useful tool in uniform distribution learning.

From this perspe
tive Boolean fun
tions are viewed as real-valued fun
tions f : f+1;�1g

n

!

R whi
h happen to have range f+1;�1g: (For our analysis we will also 
onsider non-

Boolean fun
tions on f+1;�1g

n

whi
h do not map to f+1;�1g:)

For a set S � [n℄, let �

S

: f+1;�1g

n

! f+1;�1g be the parity fun
tion �

S

(x) =

Q

i2S

x

i

. We sometimes write x

S

for �

S

(x). Sin
e E[�

;

℄ = 1, E[�

S

℄ = 0 for S 6= ;, and

�

S

�

T

= �

S�T

(where � denotes symmetri
 di�eren
e), the set of fun
tions f�

S

g

S�[n℄

is an orthonormal basis for the ve
tor spa
e of fun
tions f+1;�1g

n

! R. We 
all

^

f(S) = E[f(x)�

S

(x)℄ the S Fourier 
oeÆ
ient of f and f =

P

S�[n℄

^

f(S)�

S

the Fourier

expansion of f . By a small abuse of language, we 
all

^

f(S) a Fourier 
oeÆ
ient of degree

jSj.

We will 
onsider various norms of f . We write jjf jj

p

to denote E[jf(x)j

p

℄

1=p

for p � 1,

and we write jjf jj

1

to denote max

x2f+1;�1g

n

jf(x)j. Parseval's well known identity says

that jjf jj

2

=

P

S�[n℄

^

f(S)

2

. Note that Boolean fun
tions f : f+1;�1g

n

! f+1;�1g have

jjf jj

p

= 1 for all p.

Finally, we will often need to estimate the value of a bounded random variable to

within some additive a

ura
y. Standard tail bounds (see e.g. Chapter 4 of [31℄) imply

that if X is a random variable su
h that jXj < 
 and � > 0, then with O(


2

log(1=Æ)=�

2

)

independent draws from X we 
an estimate E[X℄ to within �� with probability at least

1� Æ:

3 The Random Walk model

In this se
tion we make some straightforward but useful observations about how the

Random Walk model 
ompares with other learning models.

We �rst observe that having a

ess to membership queries is at least as powerful as

having examples generated from a random walk. In fa
t, one 
an show that uniform-

distribution learning with membership queries is stri
tly easier than learning in the Ran-

dom Walk model, under a standard 
ryptographi
 assumption (see Appendix A for the

proof):

Proposition 2 If one-way fun
tions exist then there is a 
on
ept 
lass C whi
h is learn-

able in polynomial time under the uniform distribution with membership queries, but is

not learnable in polynomial time in the Random Walk model.

We next des
ribe a slight variation on the Random Walk ora
le RW(f) whi
h is of

equivalent power. We 
all this variant the updating Random Walk ora
le. In the updating

Random Walk ora
le, the �rst example given to the learner is again uniformly random,

but ea
h su

eeding example is given by updating the previous one, and announ
ing the

bit updated. That is, if the tth example given to the learner is hx; f(x)i, then for the

(t + 1)'st example, the updating ora
le pi
ks i 2 [n℄ uniformly at random, forms x

0

by

updating the ith bit of x, and tells the learner hi; x

0

; f(x

0

)i. Note that with probability

1

2

we have x = x

0

and the learner gains no new information.

5



It is easy to see that the usual Random Walk ora
le and the updating ora
le are of

equivalent power. The updating ora
le 
an trivially simulate the usual ora
le with only


onstant fa
tor slowdown (more pre
isely, simulating a single step of the usual ora
le takes

at most t steps of the updating ora
le with probability 1� 2

�t

). The reverse simulation

is also easy. Given a

ess to the original Random Walk ora
le, to simulate the updating

ora
le the learner �rst tosses a fair 
oin. On heads, it draws a new example from the

standard Random Walk ora
le, noting whi
h input bit was 
ipped. On tails, it 
hooses

a random bit position i and pretends that the updating ora
le announ
ed that the ith

bit was updated but did not 
hange. We will pass freely between these two versions of

the Random Walk ora
le; RW(f) will denote the original Random Walk ora
le unless

otherwise spe
i�ed.

Finally, we note that learning under RandomWalks is at least as easy as PAC learning

under the uniform distribution. To see this we need only note that a learner with a

ess

to the RandomWalk ora
le RW(f) 
an simulate a

ess to i.i.d. uniform examples. This is

be
ause the updating random walk on the hyper
ube mixes rapidly; if a learner dis
ards

O(n logn) su

essive examples from the updating ora
le, then the next example will be

uniformly random and independent of all previous examples.

1

4 The Bounded Sieve

In this se
tion we des
ribe tools previously used to learn de
ision trees and DNF, and

identify those whi
h we will use for learning under Random Walks.

Kushilevitz and Mansour [28℄ �rst gave a polynomial time membership query algo-

rithm for learning de
ision trees under the uniform distribution. Their algorithm uses

a subroutine (often 
alled KM), based on the list-de
oding algorithm of Goldrei
h and

Levin [16℄, whi
h �nds and estimates all \large" Fourier 
oeÆ
ients of the target fun
tion

using membership queries. Subsequently Ja
kson [20℄ extended the KM algorithm and


ombined it with the hypothesis boosting algorithm of Freund [14℄ to give the Harmoni


Sieve algorithm, whi
h uses membership queries to learn DNF under the uniform dis-

tribution in polynomial time. Bshouty and Feldman [2℄ later observed that a 
ertain

algorithmi
 variant of KM, whi
h they 
alled the Bounded Sieve, is all that is ne
essary

for Ja
kson's algorithm to work.

We now de�ne the Bounded Sieve. Performing the Bounded Sieve essentially entails

�nding all large, low-degree Fourier 
oeÆ
ients:

De�nition 3 Let f : f+1;�1g

n

! R be a real-valued Boolean fun
tion. An algorithm A

with some form of ora
le a

ess to f is said to perform the Bounded Sieve if, given input

parameters � > 0, F > kfk

1

; ` 2 [n℄, and Æ > 0, algorithm A runs in time t(n; F; �; `; Æ)

and with probability at least 1 � Æ it outputs a list of subsets of [n℄ su
h that every set

S � [n℄ satisfying jSj � ` and

^

f(S)

2

� � appears in the list.

1

Stri
tly speaking, the example will only be very nearly independent and uniformly random; more

pre
isely we have that with probability 1�Æ the example is independently and uniformly random, where

Æ goes to 0 exponentially fast (i.e. we allo
ate some portion of the 
on�den
e parameter Æ for this).

Throughout this paper all 
onsiderations involving Æ are standard and we will frequently omit tedious

details involving them for 
larity.

6



Bshouty and Feldman impli
itly observe that the following results follow from Kushilevitz-

Mansour [28℄ and Ja
kson [20℄:

Theorem 4 Let A be an algorithm performing the Bounded Sieve whi
h runs in time

t(n; jjf jj

1

; �; `; Æ). Then:

� [28℄ there is a poly(n; 1=�; log(1=Æ)) � t(n; 1; �=8s; log(8s=�); Æ) time algorithm whi
h

(�; Æ)-learns n-variable, size-s de
ision trees using A as a bla
k box and a

ess to

independent uniform random examples for f ; and

� [20℄ for T = poly(n; s; 1=�; log(1=Æ)), there is a T �t(n; poly(1=�); 1=(2s+1); log(s=poly(�)); Æ=T )

time algorithm whi
h (�; Æ)-learns n-variable, s-term DNF formulas using A as a

bla
k box and independent uniform random examples.

We will show that the Bounded Sieve 
an be performed under the Random Walk

model in time poly(n; jjf jj

1

; 1=�; 2

`

; log(1=Æ)). From this we get Theorem 1: s-term

DNF 
an be learned in the Random Walk model in time poly(n; s; 1=�; log(1=Æ)).

5 The Bounded Sieve via Noise Sensitivity estimates

The KM algorithm works by estimating 
ertain sums of squares of the Fourier 
oeÆ
ients

of the target fun
tion. We show that the Bounded Sieve 
an be performed in the required

time bound given a

ess to 
ertain weighted sums of squares of Fourier 
oeÆ
ients.

De�nition 5 Given f : f+1;�1g

n

! R, I � [n℄, and � 2 (0; 1) a 
onstant, de�ne:

T

(I)

�

(f) =

X

S�I

�

jSj

^

f(S)

2

: (1)

When f and � are 
lear from 
ontext, we write simply T (I).

Note that T (I) is monotone de
reasing in I in the sense that I � J implies T (I) � T (J).

Weighted sums of squares as in (1) frequently arise in the study of the noise sensitivity

of Boolean fun
tions, see e.g. [5, 32℄. In parti
ular, the noise sensitivity of f at

1

2

�

1

2

�,

denoted NS

1

2

�

1

2

�

(f); equals 1� 2T

(;)

�

(f) [11, 5, 32℄.

We show that if T

(I)

�

(f) 
an be estimated eÆ
iently then the Bounded Sieve 
an be

performed eÆ
iently. To prove this we �rst need a lemma whi
h bounds the sum of

T

(I)

�

(f) over all sets I of some �xed size:

Lemma 6 For any f : f+1;�1g

n

! R, 0 � j � n, and � 2 (0; 1), we have

P

jIj=j

T

(I)

�

(f) �

jjf jj

2

1

�

j

(1� �)

�j�1

.

7



Proof: We have:

X

jIj=j

T

(I)

�

(f) =

X

jIj=j

X

S�I

�

jSj

^

f(S)

2

=

X

jSj�j

�

jSj

j

�

�

jSj

^

f(S)

2

�

X

jSj�j

^

f(S)

2

1

X

t=j

�

t

j

�

�

t

� jjf jj

2

2

�

�1

�

�

1� �

�

j+1

� jjf jj

2

1

�

j

(1� �)

�j�1

;

where the se
ond inequality follows from Parseval's identity and standard generating

fun
tion identities and the fa
t that � 2 (0; 1): 2

We now show how to perform the Bounded Sieve given the ability to estimate T

(I)

�

(f)

for any �xed � 2 (0; 1):

Theorem 7 Fix � 2 (0; 1): Let B be an algorithm with some form of ora
le a

ess to f

whi
h runs in time u(n; �; jIj; kfk

1

; 
; Æ) and, with probability 1� Æ, outputs an estimate

of T

(I)

�

(f) a

urate to within �
. Then there is an algorithm using bla
k-box a

ess to B

and independent uniform random examples from f whi
h performs the Bounded Sieve in

time U � log(1=Æ)u(n; �; `; kfk

1

; �

`

�=3; Æ=U), where U = poly(n; jjf jj

1

; 1=�; (1� �)

�`

).

Proof: Consider the dire
ted graph on all subsets of [n℄ in whi
h there is an edge from

I to J if I � J and jJ n Ij = 1. The nodes I are divided into n + 1 layers a

ording

to the value of jIj. Our Bounded Sieve algorithm for f performs a breadth-�rst sear
h

on this graph, starting at the node I = ;. For ea
h a
tive node in the sear
h, the

algorithm estimates T (I) to within ��

`

�=3 and estimates

^

f(I)

2

to within ��=2. The

�rst estimate uses algorithm B, takes time u(n; �; jIj; kfk

1

; �

`

�=3; Æ=M); and yields an

estimate with the desired additive a

ura
y with probability at least 1�Æ=M (we spe
ify

M later). The se
ond estimate is performed via empiri
al sampling using independent

uniform random examples from f , takes time log(Æ=M) � poly(n; jjf jj

1

; 1=�); and yields

an a

urate estimate with probability 1� Æ=M as well. (For the rest of the analysis, we

assume that all estimates are in fa
t obtained to within the desired a

ura
y; we dis
uss

the probability of failure at the end of the proof.) If the estimate of

^

f(I)

2

has magnitude

at least �=2 then the algorithm adds I to the list of f 's large Fourier 
oeÆ
ients. Thus

if

^

f(I)

2

� � then I will 
ertainly be added to the list.

The breadth-�rst sear
h pro
eeds to the neighbors of I only if jIj < ` and the estimate

of T (I) is at least 2�

`

�=3. The proof is 
omplete given two 
laims: �rst, we 
laim the

algorithm �nds all Fourier 
oeÆ
ients

^

f(S) with

^

f(S)

2

� � and jSj � `; and se
ond, we


laim the algorithm ends its sear
h after visiting at most n � poly(jjf jj

1

; 1=�; (1� �)

�`

)

sets I.

8



For the �rst 
laim, note that if jSj � ` and

^

f(S)

2

� �, then this Fourier 
oeÆ
ient


ontributes at least �

`

� to the value of T (I) for all I � S. Thus by the monotoni
ity of

T , the sear
h will pro
eed all the way to S.

For the se
ond 
laim, note that by Lemma 6, the number of \a
tive nodes" at layer

j in the breadth-�rst sear
h 
an be at most:

jjf jj

2

1

�

j

(1� �)

�j�1

�

j

�=3

= 3jjf jj

2

1

�

�1

(1� �)

�j�1

:

Sin
e j is never more than `, the total number of a
tive nodes that the breadth-�rst sear
h


an ever en
ounter in any single layer is at most 3jjf jj

2

1

�

�1

(1��)

�(`+1)

= poly(jjf jj

1

; 1=�; (1�

�)

�`

). Sin
e the total number of nodes whi
h are en
ountered at layer (j + 1) is at most

n times the total number of a
tive nodes en
ountered at layer j, the se
ond 
laim is

established.

Finally, we note that at mostM = U estimates are required in total by the algorithm,

and thus the overall failure probability is at most 1�M � (Æ=M) = 1� Æ: 2

By 
ombining Theorems 4 and 7, we get:

Corollary 8 If there is an algorithm B with some form of ora
le a

ess to f : f+1;�1g

n

!

R whi
h, for some � 2 (0; 1), 
an with probability 1� Æ estimate T

(I)

�

(f) to within �
 in

time poly(n; jjf jj

1

; 1=
; [�(1 � �)℄

�jIj

; Æ), then s-term DNF on n-variables 
an be (�; Æ)-

learned using bla
k-box a

ess to B and independent uniform random examples from the

DNF in time poly(n; s




0

; �

�


0

; log(1=Æ)), where 


0

= � log(�(1� �)).

6 Estimating T

(I)

�

(f) via Random Walks

To 
omplete the proof of Theorem 1, we need to show how to estimate T

(I)

�

(f) as in

Corollary 8 for some 
onstant � 2 (0; 1) under the Random Walk model. This is done

in the following theorem:

Theorem 9 Let f : f+1;�1g

n

! R, let I � [n℄, and let � 2 (0; 1). Then there is an

algorithm using a

ess to the Random Walk ora
le RW(f) whi
h with probability 1�Æ es-

timates T

(I)

�

(f) to within �
 in time poly(n; jjf jj

1

; 1=
; log(1=Æ); log(1=�);maxf1; (1=��

1)

�jIj

g).

Proof: Let � = ln(1=�), let � = �n=2, and let M be a Poisson distributed random

value with mean �; i.e., M is 
hosen to be m 2 Z

�0

with probability p

m

=

e

��

�

m

m!

. Note

that M = O(�) = O(log(1=�)n) with very high probability. Let x be a uniform random

string in f+1;�1g

n

, and let y be obtained by taking a random walk from x of length

exa
tly M . Let T be a random subset of I 
hosen by sele
ting ea
h index in I to be in

T independently with probability

1

1+�

. We 
laim that:

E

T

E

M;x;y

[(�1)

jInT j

x

T

y

T

f(x)f(y)℄ = (1=�� 1)

jIj

X

S�I

�

jSj

^

f(S)

2

= (1=�� 1)

jIj

T

(I)

�

(f): (2)

9



Note that we 
an generate the pairs (x; y) and their labels f(x); f(y) using the Ran-

dom Walk ora
le for f . Sin
e j(�1)

jInT j

x

T

y

T

f(x)f(y)j � jjf jj

2

1

, by standard empiri
al

averaging we 
an estimate T

(I)

�

to within �
(1=�� 1)

�jIj

in the 
laimed time bound.

We now prove Equation (2). We begin by analyzing the quantity E

M;x;y

[x

U

y

V

℄ where

U; V � [n℄:

Suppose �rst that U 6= V ; in parti
ular, suppose that i 2 V nU . Then for ea
h way of


hoosingM;x; y, there is a 
orresponding way to 
hoose M;x; y whi
h di�ers only in that

x and y ea
h have the ith bit 
ipped. Sin
e x is 
hosen uniformly, these two out
omes


learly have the same probability. But sin
e i 2 V nU , the values of x

U

y

V

are opposite in

these two out
omes. Pairing up all out
omes in this way, we have that E

M;x;y

[x

U

y

V

℄ = 0.

A similar argument holds when U n V 6= ;.

It remains to 
onsider E

M;x;y

[x

U

y

U

℄ =

P

m�0

p

m

E

x;y

[(xy)

U

j M = m℄, where xy

denotes the bitwise produ
t of x and y: If we let 1

i

denote the random variable whi
h is 1

if the ith step of the random walk is in U , and 0 otherwise, we have E

x;y

[(xy)

U

jM = m℄ =

E[

Q

m

i=1

(�1)

1

i

℄ =

Q

m

i=1

E[(�1)

1

i

℄ = (1 � 2jU j=n)

m

. Thus E

M;x;y

[x

U

y

U

℄ =

P

m�0

p

m

(1 �

2jU j=n)

m

= exp(��) � exp(�(1� 2jU j=n)) = exp(�(�2jU j=n)) = �

jU j

.

Now we 
an analyze Equation (2):

E

T

E

M;x;y

[(�1)

jInT j

x

T

y

T

f(x)f(y)℄

=E

T

2

4

(�1)

jInT j

X

U;V�[n℄

^

f(U)

^

f(V )E

M;x;y

[x

T�U

y

T�V

℄

3

5

=

X

U�[n℄

^

f(U)

2

E

T

[(�1)

jInT j

E

M;x;y

[x

T�U

y

T�U

℄℄

=

X

U�[n℄

^

f(U)

2

E

T

[(�1)

jInT j

�

jT�U j

℄

=

X

U�[n℄

^

f(U)

2

�

jU j

E

T

2

4

 

Y

j2I\U

�(��)

�1

j

!

�

0

�

Y

j2InU

�(��)

1

j

1

A

3

5

;

where for j 2 I, 1

j

is the indi
ator variable for j 2 T . Note that E[�(��)

�1

j

℄ =

�

�1

1+�

+

��

1+�

= (1=�� 1) whereas E[�(��)

1

j

℄ =

�

1+�

+

��

1+�

= 0. Thus

E

T

E

M;x;y

[(�1)

jInT j

x

T

y

T

f(x)f(y)℄ = (1=�� 1)

jIj

X

U�I

�

jU j

^

f(U)

2

as 
laimed. 2

7 Learning DNF in the Noise Sensitivity model

Sin
e we 
an learn DNF in polynomial time in the Random Walk model, it is natural to

ask: What is the weakest model in whi
h we 
an learn DNF eÆ
iently (with respe
t to

the uniform distribution)? Toward this end, we now introdu
e a new passive model of

learning from random examples, the Noise Sensitivity model.

10



For ea
h value of � 2 [0; 1℄ the �-Noise Sensitivity example ora
le NS-EX

�

(f) is de-

�ned as follows. At ea
h invo
ation, NS-EX

�

(f) independently sele
ts a uniform input

x 2 f+1;�1g

n

, forms y by 
ipping ea
h bit of x independently with probability

1

2

�

1

2

�,

and outputs the tuple hx; f(x); y; f(y)i. We note that this ora
le is equivalent to an

\updating" �-Noise Sensitivity ora
le whi
h outputs hx; f(x); y; f(y); Si where x is inde-

pendent and uniform over f+1;�1g

n

; y is formed by updating ea
h bit of x independently

with probability 1� �, and S � [n℄ is the set of indi
es of x whi
h were updated to yield

y: This is be
ause the extra information S 
an be simulated from a

ess to the usual

NS-EX

�

(f) ora
le: upon re
eiving hx; f(x); y; f(y)i from NS-EX

�

(f), the learner 
on-

stru
ts S by in
luding ea
h bit position in whi
h x and y di�er with probability 1, and

in
luding ea
h other bit position independently with probability

1��

1+�

. A straightforward


al
ulation shows that this gives the right distribution.

7.1 Comparison to other models

Let us 
onsider the di�erent learning models obtained by varying �. The 
ases � = 0

and � = 1 are trivially equivalent to the usual PAC model of learning under the uniform

distribution. For values � 2 (0; 1), learning with NS-EX

�

(f) is 
learly at least as easy

as learning under the uniform distribution. For di�erent 
onstants � 6= �

0

2 (0; 1) it

seems that the �- and �

0

-Noise Sensitivity models may be of in
omparable strength. We

will show that DNF 
an be eÆ
iently learned in the �-Noise Sensitivity model for any


onstant � 2 (0; 1); and thus learning in ea
h of these models seems to be stri
tly easier

than learning under the usual uniform distribution PAC model.

We now show that ea
h �-Noise Sensitivity model is a weakening of the RandomWalk

model:

Proposition 10 For any � 2 [0; 1℄, any �-Noise Sensitivity learning algorithm 
an be

simulated in the Random Walk model with only a multipli
ative O(n logn) slowdown in

running time.

Proof: Fix � 2 [0; 1℄. We show how to simulate the ora
le NS-EX

�

using the Ran-

dom Walk model's updating ora
le. To get an example hx; f(x); y; f(y)i, we �rst draw

O(n logn) examples from the updating ora
le to get to a uniformly random point x; this

point and its label f(x) will be the �rst part of our NS-EX

�

example. We now need to

generate a point y whi
h is formed from x by updating ea
h bit with probability 1� �.

This is equivalent to drawing a value u � Bin(n; 1 � �) and updating a random subset

of pre
isely u of x's bits. A

ordingly, in our simulation we randomly 
hoose an integer

0 � u � n a

ording to Bin(n; 1 � �). We then repeatedly draw examples from the

Random Walk updating ora
le until u distin
t bit positions have been updated. The

resulting point is distributed as if a random subset of u bit positions had been updated

(note that updating an input position more than on
e has no extra e�e
t). Therefore,

if we 
all this point y and output hx; f(x); y; f(y)i, then the simulation of NS-EX

�

is


orre
t. (Note that even if u is as large as n, it only takes O(n logn) samples to get a

string in whi
h all u = n distin
t bit positions of x have been updated.) 2

11



7.2 Learning DNF under NS-EX

�

Having shown that the Noise Sensitivity models are no stronger than the Random Walk

model, we now show that for any 
onstant � 2 (0; 1), DNF 
an be learned eÆ
iently

under NS-EX

�

.

Theorem 11 Let � 2 (0; 1), let f : f+1;�1g

n

! R, and let I � [n℄. There is an

algorithm using a

ess to NS-EX

�

(f) whi
h with probability 1 � Æ estimates T

(I)

�

(f) to

within �
 in time poly(n; jjf jj

1

; 1=
; (1� �)

�jIj

; 2

jIj

; log(1=Æ)).

Proof: Given � and I, 
onsider the joint probability distribution D

(I)

�

de�ned over pairs

of strings (x; y) 2 (f+1;�1g

n

)

2

as follows: First x is pi
ked uniformly at random; then y

is formed by updating ea
h bit of x in I with probability 1 and updating ea
h bit of x not

in I with probability 1��. We 
laim that a

ess to pairs from this distribution and their

values under f 
an be simulated by a

ess to NS-EX

�

(f), with slowdown poly((1��)

�jIj

).

This simulation is done simply by 
alling the updating version of the NS-EX

�

(f) ora
le

repeatedly until it returns a tuple hx; f(x); y; f(y); Si whi
h has I � S: The pair (x; y)

thus generated is indeed drawn pre
isely from D

(I)

�

, and the overhead of the simulation

is poly((1� �)

�jIj

) with high probability.

De�ne T

0

(I) to be E

(x;y) D

(I)

�

[f(x)f(y)℄. Sin
e a

ess to NS-EX

�

(f) lets us obtain

pairs from D

(I)

�

and their values under f , we 
an estimate T

0

(I) to within �� with

probability 1� Æ

0

by empiri
al averaging in time poly(n; jjf jj

1

; 1=�; (1��)

�jIj

; log(1=Æ

0

)).

We now observe that the quantity T

0

(I) is very 
losely related to T (I); in parti
ular,

an argument very similar to the one used in the proof of Theorem 9 gives the following


laim (the proof is in Appendix B):

Claim 12 T

0

(I) =

P

S\I=;

�

jSj

^

f(S)

2

.

Let us now de�ne T

00

(I) = T

0

(;) � T

0

(I); this is also a quantity we 
an esti-

mate to within �� in time poly(n; jjf jj

1

; 1=�; (1 � �)

�jIj

; log(1=Æ

0

)). We have T

00

(I) =

P

S\I 6=;

�

jSj

^

f(S)

2

. Thus if we estimate T

00

(J) for all J � I, it is straightforward to esti-

mate T (I) =

P

S�I

�

jSj

^

f(S)

2

using in
lusion-ex
lusion. Sin
e there are only 2

jIj

subsets

J of I; we 
an take � = 
=2

jIj

and Æ

0

= Æ=2

jIj

and thus estimate T (I) to within �
 with

probability 1� Æ in time poly(n; jjf jj

1

; 1=
; (1� �)

�jIj

; 2

jIj

; log(1=Æ)), as 
laimed. 2

Note: We 
lose by observing that for any 
onstant � 2 (0; 1) the �-Noise Sensitivity

model is similar to a \partially observable Random Walk" model in whi
h examples

are generated as in the usual Random Walk s
enario but the learner is only allowed to

observe the lo
ation of the random walk on
e every C � n steps for some 
onstant C > 0

(depending on �). Using te
hniques similar to the above, it 
an be shown that DNF

are eÆ
iently learnable in su
h a partially observable Random Walk model; we omit the

details.

12



8 Dis
ussion

8.1 Noise toleran
e

We observe that our algorithms 
an tolerate any rate � <

1

2

of random 
lassi�
ation

noise in the labelling of examples. More pre
isely, suppose that in ea
h labelled example

re
eived by the learner the 
orre
t label f(x) is 
orrupted (
ipped) with probability �

and this possibly noisy label is instead presented to the learner. A standard analysis

(see e.g. Chapter 5 of [22℄) shows that our algorithms will still su

eed, at the 
ost of a

poly(

1

1�2�

) fa
tor slowdown in running time (the number of samples we must use in order

to estimate T (I) to within the desired a

ura
y will in
rease by this fa
tor).

8.2 Lower bounds on sample size

Our algorithm uses a random walk sample of size poly(n; s) to learn de
ision trees or

DNF of size s. We observe here that any Random Walk algorithm for these 
lasses must

have a polynomial sample size dependen
e on both n and s (the proof is in Appendix C):

Claim 13 Learning the 
lass of DNF expressions of size s (or de
ision trees of size s)

in the Random Walk model requires sample size 
(

sn

log s

):

This is in 
ontrast with the membership query model in whi
h poly(s; logn) queries are

suÆ
ient for a polynomial time algorithm to learn s-term DNF or size-s de
ision trees

under the uniform distribution [10℄.

8.3 Questions for further work

An interesting question for further work is whether a broader 
lass of Boolean fun
tions

than polynomial size DNF 
an be shown to be eÆ
iently learnable in the Random Walks

model. Ja
kson's uniform distribution membership query algorithm for learning DNF


an in fa
t learn any polynomial-weight threshold-of-parity 
ir
uit (sometimes 
alled a

TOP) in polynomial time. Sin
e any s-term DNF on n variables 
an be expressed as a

TOP of weight O(ns

2

) [20, 27℄, this 
lass properly in
ludes the 
lass of polynomial size

DNF (the in
lusion is proper sin
e DNF formulas require exponential size to 
ompute

the parity fun
tion). A dire
t appli
ation of our approa
h to majority of parity does not

seem to work sin
e the parity fun
tions 
an be as large as �(n): It would be interesting

to devise a stronger algorithm whi
h 
an eÆ
iently learn an arbitrary polynomial weight

majority of parities using random walks.

Referen
es

[1℄ D. Aldous and U. Vazirani. A Markovian extension of Valiant's learning model. In

Pro
eedings of the Thirty-First Symposium on Foundations of Computer S
ien
e,

pages 392{396, 1990.

13



[2℄ N. Bshouty andV. Feldman. On using extended statisti
al queries to avoid member-

ship queries. Journal of Ma
hine Learning Resear
h, 2:359{395, 2002.

[3℄ P. Bartlett, P. Fis
her, and K.U. H�o�gen. Exploiting random walks for learning. In

Pro
eedings of the Seventh Annual Conferen
e on Computational Learning Theory,

pages 318{327, 1994.

[4℄ M. Bellare. A te
hnique for upper bounding the spe
tral norm with appli
ations to

learning. In Pro
eedings of the Fifth Annual Workshop on Computational Learning

Theory, pages 62{70, 1992.

[5℄ I. Benjamini, G. Kalai, and O. S
hramm. Noise sensitivity of boolean fun
tions and

appli
ations to per
olation. Inst. Hautes

�

Etudes S
i. Publ. Math., 90:5{43, 1999.

[6℄ A. Blum, M. Furst, J. Ja
kson, M. Kearns, Y. Mansour, and S. Rudi
h. Weakly

learning DNF and 
hara
terizing statisti
al query learning using Fourier analysis. In

Pro
eedings of the Twenty-Sixth Annual Symposium on Theory of Computing, pages

253{262, 1994.

[7℄ D. Boneh and R. Lipton. Ampli�
ation of weak learning over the uniform distri-

bution. In Pro
eedings of the Sixth Annual Workshop on Computational Learning

Theory, pages 347{351, 1993.

[8℄ N. Bshouty. Exa
t learning via the monotone theory. Information and Computation,

123(1):146{153, 1995.

[9℄ N. Bshouty and J. Ja
kson. Learning DNF over the uniform distribution using a

quantum example ora
le. SIAM J. on Computing, 28(3):1136{1153, 1999.

[10℄ N. Bshouty, J. Ja
kson, and C. Tamon. More eÆ
ient PAC learning of DNF with

membership queries under the uniform distribution. In Pro
eedings of the Twelfth

Annual Conferen
e on Computational Learning Theory, pages 286{295, 1999.

[11℄ N. Bshouty, J. Ja
kson, and C. Tamon. Uniform-distribution attribute noise learn-

ability. Information and Computation, 187(2):277{290, 2003.

[12℄ N. Bshouty and C. Tamon. On the Fourier spe
trum of monotone fun
tions. Journal

of the ACM, 43(4):747{770, 1996.

[13℄ A. Ehrenfeu
ht and D. Haussler. Learning de
ision trees from random examples.

Information and Computation, 82(3):231{246, 1989.

[14℄ Y. Freund. Boosting a weak learning algorithm by majority. In Pro
eedings of the

Third Annual Workshop on Computational Learning Theory, pages 202{216, 1990.

[15℄ D. Gamarnik. Extension of the PAC framework to �nite and 
ountable Markov


hains. In Pro
eedings of the 12th Annual Conferen
e on Computational Learning

Theory, pages 308{317, 1999.

14



[16℄ O. Goldrei
h and L. Levin. A hard-
ore predi
ate for all one-way fun
tions. In

Pro
eedings of the Twenty-First Annual Symposium on Theory of Computing, pages

25{32, 1989.

[17℄ T. Han
o
k. The 
omplexity of learning formulas and de
ision trees that have re-

stri
ted reads. PhD thesis, Harvard University, 1992.

[18℄ T. Han
o
k and Y. Mansour. Learning monotone k-� DNF formulas on produ
t

distributions. In Pro
eedings of the Fourth Annual Conferen
e on Computational

Learning Theory, pages 179{193, 1991.

[19℄ J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from

any one-way fun
tion. SIAM Journal on Computing, 28(4):1364{1396, 1999.

[20℄ J. Ja
kson. An eÆ
ient membership-query algorithm for learning DNF with respe
t

to the uniform distribution. Journal of Computer and System S
ien
es, 55:414{440,

1997.

[21℄ J. Ja
kson, A. Klivans, and R. Servedio. Learnability beyond AC

0

. In Pro
eedings

of the 34th ACM Symposium on Theory of Computing, 2002.

[22℄ M. Kearns and U. Vazirani. An introdu
tion to 
omputational learning theory. MIT

Press, Cambridge, MA, 1994.

[23℄ R. Khardon. On using the Fourier transform to learn disjoint DNF. Information

Pro
essing Letters, 49:219{222, 1994.

[24℄ M. Kharitonov. Cryptographi
 hardness of distribution-spe
i�
 learning. In Pro-


eedings of the Twenty-Fifth Annual Symposium on Theory of Computing, pages

372{381, 1993.

[25℄ A. Klivans and R. Servedio. Boosting and hard-
ore sets. In Pro
eedings of the

Fortieth Annual Symposium on Foundations of Computer S
ien
e, pages 624{633,

1999.

[26℄ A. Klivans and R. Servedio. Learning DNF in time 2

~

O(n

1=3

)

. In Pro
eedings of the

Thirty-Third Annual Symposium on Theory of Computing, pages 258{265, 2001.

[27℄ M. Krause and P. Pudlak. On the 
omputational power of depth 2 
ir
uits with

threshold and modulo gates. In Pro
eedings of the Twenty-Sixth Annual Symposium

on Theory of Computing, pages 48{57, 1994.

[28℄ E. Kushilevitz and Y. Mansour. Learning de
ision trees using the Fourier spe
trum.

SIAM J. on Computing, 22(6):1331{1348, 1993.

[29℄ N. Linial, Y. Mansour, and N. Nisan. Constant depth 
ir
uits, Fourier transform

and learnability. Journal of the ACM, 40(3):607{620, 1993.

[30℄ Y. Mansour. An O(n

log log n

) learning algorithm for DNF under the uniform distri-

bution. Journal of Computer and System S
ien
es, 50:543{550, 1995.

15



[31℄ R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

Melbourne, Australia, 1995.

[32℄ R. O'Donnell. Hardness ampli�
ation within NP. In Pro
eedings of the 34th ACM

Symposium on Theory of Computing, 2002.

[33℄ Y. Sakai and A. Maruoka. Learning monotone log-term DNF formulas under the

uniform distribution. Theory of Computing Systems, 33:17{33, 2000.

[34℄ R. Servedio. On PAC learning using Winnow, Per
eptron, and a Per
eptron-like al-

gorithm. In Pro
eedings of the Twelfth Annual Conferen
e on Computational Learn-

ing Theory, pages 296{307, 1999.

[35℄ R. Servedio. On learning monotone DNF under produ
t distributions. In Pro
eedings

of the Fourteenth Annual Conferen
e on Computational Learning Theory, pages 473{

489, 2001.

[36℄ L. Valiant. A theory of the learnable. Communi
ations of the ACM, 27(11):1134{

1142, 1984.

[37℄ K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial

time. In Pro
eedings of the Third Annual Workshop on Computational Learning

Theory, pages 314{326, 1990.

[38℄ K. Verbeurgt. Learning sub-
lasses of monotone DNF on the uniform distribution.

In Pro
eedings of the Ninth Conferen
e on Algorithmi
 Learning Theory, pages 385{

399, 1998.

A Proof of Proposition 2

Proof: It is well known that the existen
e of one-way fun
tions implies the existen
e

of pseudorandom fun
tion families [19℄. Let ff

s

: f+1;�1g

n

! f+1;�1gg

s2f+1;�1g

n

be

any pseudorandom fun
tion family. For s 2 f+1;�1g

n

let g

s

: f+1;�1g

n

! f+1;�1g be

de�ned by:

g

s

(x) =

(

s

i

if x = e

i

for some i 2 [n℄,

f

s

(x) otherwise.

(Here e

i

denotes the string (�1; : : : ;�1;+1;�1; : : : ;�1), with the +1 in the ith position.)

We will show that the 
on
ept 
lass C = fg

s

g

s2f+1;�1g

n

has the desired properties.

It is easy to see that any g

s

2 C 
an be learned exa
tly in polynomial time if mem-

bership queries are allowed. The algorithm simply queries e

1

; : : : ; e

n

to learn all bits

s

1

; : : : ; s

n

of s and outputs a representation of g

s

: On the other hand, a random walk

whi
h pro
eeds for only poly(n) steps will with probability 1� 2

�
(n)

miss all the points

e

i

. A straightforward argument shows that 
onditioned on missing all these points, it is

impossible to learn g

s

in polynomial time. (To see this, note that an algorithm whi
h has

ora
le a

ess to a pseudorandom fun
tion f

s


an easily simulate a random walk whi
h

misses all e

i

: Thus if it were possible to learn g

s

in polynomial time from a random walk

16




onditioned on missing all e

i

; it would be possible to learn the 
lass ff

s

g given ora
le a
-


ess to f

s

. But this is easily seen to 
ontradi
t the de�nition of a pseudorandom fun
tion

family.) 2

B Proof of Claim 12

By de�nition we have that

T

0

(I) = E

(x;y) D

(I)

�

[f(x)f(y)℄

=

X

U�[n℄;V�[n℄

^

f(U)

^

f(V )E

(x;y) D

(I)

�

[x

U

y

V

℄:

We will show that any (U; V ) with U 6= V 
ontributes zero to the above sum. Suppose

�rst that there is some i 2 (U n I) su
h that i =2 V (the 
orresponding 
ase with U and

V swit
hed is similar). As in the proof of Theorem 9, for ea
h way of drawing (x; y)

from D

(I)

�

there is a 
orresponding way to draw (x; y) whi
h di�ers only in that x and

y ea
h have the ith bit 
ipped. Sin
e x is 
hosen uniformly, these two out
omes have

the same probability; but sin
e i 2 U n V the values of x

U

y

V

are opposite in these two

out
omes. Pairing up these all out
omes in this way, we have that E

(x;y) D

(I)

�

[x

U

y

V

℄ = 0

for su
h (U; V ): Now suppose that there is some i 2 (U \ I) su
h that i =2 V (again the


orresponding 
ase with U and V swit
hed is similar). It is easy to see that for ea
h

out
ome of (x; y) from D

(I)

�

there is a 
orresponding way to draw (x; y) whi
h di�ers only

in the value of x

i

: These two out
omes have the same probability and the values of x

U

y

V

are opposite in these two out
omes, so we have that E

(x;y) D

(I)

�

[x

U

y

V

℄ = 0 in this 
ase as

well.

We thus have that

T

0

(I) =

X

U�[n℄

^

f(U)

2

E

(x;y) D

(I)

�

[x

U

y

U

℄:

Now observe that for any i 2 I; the values x

i

and y

i

are independent uniform �1 random

variables. It follows that E

(x;y) D

(I)

�

[x

U

y

U

℄ = 0 if i 2 U; and thus we have

T

0

(I) =

X

U\I=;

^

f(U)

2

E

(x;y) D

(I)

�

[x

U

y

U

℄:

To prove the 
laim it remains only to show that E

(x;y) D

(I)

�

[x

U

y

U

℄ = �

jU j

for any U with

U \ I = ;: This follows immediately on observing that for ea
h i 2 U; the values x

i

y

i

are

independent �1 random variables with expe
ted value �: 2

C Proof of Claim 13

We suppose that the target fun
tion is sele
ted uniformly at random from the set of

all 2

s

Boolean fun
tions whi
h depend only on bits x

1

; : : : ; x

log s

: (Note that ea
h su
h

17



fun
tion has a DNF of size s and a de
ision tree of size s). We will show that with very

high probability a random walk of fewer than

sn

24 log s

steps will realize at most s=4 of

the s possible settings for the �rst log s variables. Sin
e the target fun
tion is randomly

sele
ted as des
ribed, any hypothesis has expe
ted error (over the 
hoi
e of the random

target) exa
tly 1=2 on all unseen settings. Thus 
onditioned on at most s=4 of the settings

having been seen, with very high probability the hypothesis has error at least 1=3 on the

unseen settings (whi
h have probability weight at least 3=4), so the overall error rate is

at least 1=4:

Thus it suÆ
es to prove the following fa
t: a random walk of

sn

24 log s

steps on f0; 1g

n

will with probability at least :99 realize at most s=4 settings of the �rst log s bits. But

this is easily seen: the expe
ted number of times that su
h a walk 
ips one of the �rst

log s bits is s=24, so a standard Cherno� bound (see e.g. Exer
ise 4.1 of [31℄) implies

that su
h a walk 
ips at least s=4 bits with probability at most 2

�s=4

; whi
h is less than

0:01 for s � 28:

18


