
Learning DNF in Time 2Õ(n1/3)

Adam R. Klivans∗

Laboratory for Computer Science
MIT

Cambridge, MA 02139
klivans@math.mit.edu

Rocco A. Servedio†

Division of Engineering and Applied Sciences
Harvard University

Cambridge, MA 02138
rocco@deas.harvard.edu

Abstract

Using techniques from learning theory, we show that any s-term DNF over n variables
can be computed by a polynomial threshold function of degree O(n1/3 log s). This upper
bound matches, up to a logarithmic factor, the longstanding lower bound given by Minsky
and Papert in their 1968 book Perceptrons. As a consequence of this upper bound we obtain
the fastest known algorithm for learning polynomial size DNF, one of the central problems
in computational learning theory.

∗Supported in part by NSF grant CCR-97-01304.
†Supported in part by NSF grant CCR-95-04436 and by NSF grant CCR-98-77049.

0

1 Introduction

1.1 Polynomial Threshold Functions

Let f be a Boolean function f : {0, 1}n → {−1, 1} and let p be a degree d polynomial in n
variables with rational coefficients. If the sign of p(x) equals f(x) for every x ∈ {0, 1}n, then
we say that f is computed by a polynomial threshold function of degree d. In their well known
1968 book Perceptrons, Minsky and Papert studied some computational aspects of polynomial
threshold functions from an Artificial Intelligence perspective [37]. They proved, among other
things, that no polynomial threshold function of degree less than n can compute the parity
function on n variables, and that there is a read-once DNF formula which cannot be computed
by any polynomial threshold function of degree less than Ω(n1/3). Since then, complexity
theorists have used these and related properties of polynomial threshold functions to prove
several important results in both circuit and structural complexity [3, 4, 7, 21, 45].

In the computational learning theory community, learning a polynomial threshold function
from labeled examples has long been a central problem and continues to be an active area of
research. A special focus of attention has been directed toward learning polynomial threshold
functions of degree 1, which are known as linear threshold functions. The problem of learning a
linear threshold function over {0, 1}n can be formulated as a linear programming problem and
thus can be solved in poly(n) time in both the PAC model of learning from random examples
and in the model of exact learning from equivalence queries [12, 36]. Refinements of the basic
linear programming approach have led to polynomial-time algorithms for PAC learning linear
threshold functions in the presence of classification noise [9, 16]. Much attention has also
been given to fast, simple heuristics, most notably the Winnow and Perceptron algorithms, for
learning linear threshold functions [14, 20, 30, 34, 39, 40].

1.2 Learning DNF

Another intensively studied problem in computational learning theory, which has met with less
success, is the problem of learning DNF formulae. DNF are attractive from a learning theory
perspective because of their high expressive power (any Boolean function can be represented as
a DNF) and because they seem to be a natural form of knowledge representation for humans.
Valiant first posed the question of whether DNF are efficiently learnable in his seminal 1984
paper introducing the PAC learning model [42]; more than fifteen years later this question is
widely regarded as one of the most important open problems in learning theory. While many
partial results have been given for restricted versions of the DNF learning problem (see e.g.
[10, 11, 24, 27, 29, 31, 32, 38, 43, 44]), the difficulty of the unrestricted DNF learning problem
is evidenced by the fact that, prior to the current work, only two algorithms were known which
improve on the naive 2n time bound [13, 41].

The first subexponential time algorithm for learning DNF was due to Bshouty [13], who

gave an algorithm which learns any s-term DNF over n variables in time 2O((n log s)1/2 log3/2 n).
At the heart of Bshouty’s algorithm is a structural result which shows that that any s-term
DNF can be expressed as an O((n log n log s)1/2)-decision list; armed with this result, Bshouty
uses a standard algorithm [26] for learning decision lists to obtain his DNF learning result.

Tarui and Tsukiji [41] gave a completely different proof of a similar time bound for learning
DNF. They adapted the machinery of “approximate inclusion/exclusion” developed by Linial

1

and Nisan [33] to show that for any s-term DNF f and any distribution D over {0, 1}n, there is

a conjunction C of size O(n1/2 log s) which has |Prx∈D[C(x) = f(x)] − 1
2 | = 2−O(n1/2 log n log s).

Using this result in conjunction with Freund’s “boost-by-majority” algorithm [19], Tarui and

Tsukiji obtained an algorithm for learning s-term DNF in time 2O(n1/2 log n log s).

1.3 A New Approach: Learning DNF via Polynomial Threshold Functions

In this paper we approach the DNF learning problem by representing a DNF formula as a
low-degree polynomial threshold function. As we observe in Section 2, we can use known
polynomial-time algorithms for learning linear threshold functions to learn polynomial threshold
functions of degree d in time nO(d). Thus, upper bounds on the degree of polynomial threshold
functions which compute DNF translate directly into bounds on the running time of a DNF
learning algorithm.

Viewing DNF formulae as polynomial threshold functions immediately yields a new inter-
pretation of the DNF learning algorithms of Bshouty [13] and Tarui and Tsukiji [41]. Since any
r-decision list is equivalent to a polynomial threshold function of degree r [18], in the language
of polynomial threshold functions Bshouty’s structural result implies that any s-term DNF can
be expressed as a polynomial threshold function of degree O((n log n log s)1/2). In the case of
Tarui/Tsukiji, it can be shown as a corollary of their results that any s-term DNF can be
expressed as a polynomial threshold function of degree O(n1/2 log s). Thus, each of these earlier
learning algorithms implies an O(n1/2 log n) upper bound on the degree of a polynomial thresh-
old function for any polynomial-size DNF. A substantial gap still remains, though, between
these O(n1/2 log n) upper bounds and the Ω(n1/3) lower bound due to Minsky and Papert.1

1.4 Our Results

Our first result is the following theorem:

Theorem 1 Any s-term DNF over {0, 1}n in which each conjunction is of size at most t can
be expressed as a polynomial threshold function of degree O(t1/2 log s).

A useful feature of Theorem 1 is that the degree bound depends on t1/2 which can be
much smaller than n1/2. Close inspection of the results due to Tarui/Tsukiji reveal that a
similar theorem can be derived from their analysis. An advantage of our proof (which is self-
contained and does not use approximate inclusion-exclusion or boosting) is that it highlights
this dependence which plays a crucial role in our later results.

We then use Theorem 1 to give several new results about the degree of polynomial threshold
functions which compute various classes of Boolean formulas.

By combining Theorem 1 with a decomposition technique due to Bshouty [13] we obtain
our main result:

Theorem 2 Any s-term DNF over {0, 1}n can be expressed as a polynomial threshold function
of degree O(n1/3 log s).

1Beigel et al. stated in [6] that Minsky and Papert gave an Ω(n1/2) lower bound for DNF but this was in
error [5].

2

Theorem 2 essentially closes the gap which was left open by the O(n1/2 log n) upper bounds
implicit in [13, 41]; it shows that the Minsky-Papert lower bound is in fact tight, up to a

logarithmic factor, for all polynomial-size DNF. Theorem 2 also yields a 2O(n1/3 log2 n)-time
algorithm for learning polynomial-size DNF, which improves on the algorithms of Bshouty and
Tarui/Tsukiji and is the fastest known algorithm for the unrestricted DNF learning problem.

We can improve upon the bounds of Theorem 2 for read-once DNF:

Theorem 3 Any read-once DNF over {0, 1}n can be expressed as a polynomial threshold func-
tion of degree O(n1/3 log2/3 n).

Finally, since a DNF formula is simply a Boolean circuit of depth 2, it is natural in this
context to also consider Boolean circuits of fixed depth d ≥ 3. We would ultimately like to
prove upper bounds on the degree of polynomial threshold functions for arbitrary constant
depth circuits; however this seems to be quite difficult. As a first step in this direction, we
prove

Theorem 4 For d ≥ 3, any read-once Boolean formula of depth d over {∧,∨,¬} can be com-

puted by a polynomial threshold function of degree Õ(n
1− 1

3·2d−3).

Theorem 4 implies that the class of read-once constant depth formulas can be learned in
subexponential time.

2 Preliminaries

2.1 DNF, Decision Lists, Decision Trees, and Polynomial Threshold Func-

tions

A disjunctive normal form formula or DNF is a disjunction T1 ∨ · · · ∨ Ts of conjunctions of
Boolean literals. An s-term DNF is one which has at most s conjunctions (also known as
terms) and a t-DNF is one in which each term is of size at most t. A DNF (or Boolean formula)
is read-once if it contains at most one occurrence of each variable.

A k-decision list is a list L = (T1, f1), . . . , (Tm, fm) where each Ti is a term of size at most
k and each fi is a Boolean function on {0, 1}n. Given an input x ∈ {0, 1}n the value of L(x) is
fj(x) where j ≥ 1 is such that Tj(x) = 1 and Ti(x) = 0 for i < j. If Ti(x) = 0 for all 1 ≤ i ≤ m
then L(x) = 1.

A k-decision tree is a rooted binary tree where each internal node has 2 children and is
labeled with a term of size at most k and each leaf is labeled with a Boolean function. A
decision tree represents a Boolean function as follows: if the root is labeled with a term T
then then to compute the value of the tree on an input x ∈ {0, 1}n we go left from the root if
T (x) = 0 and go right if T (x) = 1. We continue in this fashion until reaching a leaf ` labeled
with some function f` and then output f`(x).

The rank of a decision tree T is defined inductively as follows:

• If T is a single leaf then rank(T) = 0.

3

• If T has subtrees T0 and T1 then

rank(T) =

{

max (rank(T0), rank(T1)) if rank(T0) 6= rank(T1)
rank(T0) + 1 otherwise.

The following lemma will be useful:

Lemma 5 [8] Let f be computed by a 1-decision tree of rank r whose leaves are labeled with the
functions f1, . . . , fm. Then there is an r-decision list (T1, f1), . . . , (Tm, fm) which is equivalent
to f.

A polynomial threshold function is defined by a real-valued multivariate polynomial p(x1, . . . , xn).
The output of the polynomial threshold function on input x ∈ {0, 1}n is 1 if p(x1, . . . , xn) ≥ 0
and is −1 otherwise. The degree of a polynomial threshold function is simply the degree of
the polynomial p. If each coefficient aα of the polynomial is an integer, then the weight of the
polynomial threshold function is

∑

|aα|.

2.2 Learning theory background

We consider two widely studied learning models: the Probably Approximately Correct (PAC)
model introduced by Valiant [42] and the model of exact learning from equivalence queries
introduced by Angluin [1] and Littlestone [34]. In each of these models a concept class C is a
collection of Boolean functions c : {0, 1}n → {−1, 1}.

In the PAC model, for Boolean functions c, h on {0, 1}n and D a distribution on {0, 1}n,
we say that h is an ε-approximator for c under D if PrD[c(x) = h(x)] ≥ 1 − ε. The learning
algorithm has access to an example oracle EX(c,D) which, when queried, provides a labeled
example 〈x, c(x)〉 where x is drawn from {0, 1}n according to the distribution D and c ∈ C is
the unknown target concept which the algorithm is trying to learn. The goal of the learner is
to generate an ε-approximator for c under D. An algorithm A is a PAC learning algorithm for
a concept class C if the following condition holds: for any c ∈ C, any distribution D on {0, 1}n,
and any 0 < ε, δ < 1, if A is given ε and δ and has access to EX(c,D), then with probability at
least 1− δ algorithm A outputs an ε-approximator for c under D. We say that A PAC learns C
in time t if A runs for at most t time steps and outputs a hypothesis h which can be evaluated
on any point x ∈ {0, 1}n in time t.

In the model of exact learning from equivalence queries, learning proceeds in a sequence of
stages. In each stage the learning algorithm submits an equivalence query (a Boolean hypothesis
function h) to the teacher. If h is equivalent to the target concept c then the teacher answers
“YES” and learning halts; otherwise the teacher sends back a point x ∈ {0, 1}n such that
h(x) 6= c(x). A learning algorithm A learns concept class C in time t if for all c ∈ C, algorithm
A can exactly identify the target c in at most t time steps, using at most t equivalence queries,
with hypotheses h which each can be represented with t bits and can be evaluated on any point
x ∈ {0, 1}n in time t.

The following fact is well known:

Fact 6 ([12, 36]) In both the PAC model and the model of exact learning from equivalence
queries, there are algorithms which learn the class of linear threshold functions over {0, 1}n in
time poly(n).

4

The algorithms of Fact 6 are based on polynomial time linear programming. We will need the
following extension of Fact 6:

Fact 7 Let C be a class of functions each of which can be expressed as an degree-d polynomial
threshold function over {0, 1}n. Then in both the PAC learning model and the model of exact
learning from equivalence queries, there is a learning algorithm for C which runs in time nO(d).

Proof: For the model of exact learning from equivalence queries, we run the polynomial time
algorithm for learning linear threshold functions over an expanded version of the input space.
Since z2 = z for z ∈ {0, 1} we can suppose without loss of generality that the target polynomial
threshold function is a multilinear polynomial of degree d. Such a polynomial threshold function
can be viewed as a linear threshold function over the space of all multilinear monomials of degree
at most d. There are N =

∑d
i=1

(n
i

)

≤ nd such monomials and hence by Fact 6 we can learn
such a polynomial threshold function in the model of exact learning from equivalence queries
by running a poly(N)-time algorithm for learning linear threshold functions over the domain
{0, 1}N where N ≤ nd.

For the PAC learning model, we can use a standard transformation from the model of
exact learning from equivalence queries to the PAC learning model [1]. It is easy to verify
that this transformation (in which equivalence queries are simulated by testing the hypothesis
against a set of examples drawn from the PAC oracle) preserves running time up to polynomial
factors. Alternatively, using the fact [2] that the Vapnik-Chervonenkis dimension of the class
of polynomial threshold functions of degree d over n variables is

∑d
i=0

(n
d

)

, a direct proof can
be given along the lines of [12].

2.3 The Minsky Papert Lower Bound

It is clear that any depth-1 circuit over {∧,∨,¬} can be expressed as a linear threshold function.
In contrast, Minsky and Papert gave a Ω(n1/3) lower bound on the degree of any polynomial
threshold function which computes a particular read-once DNF. For completeness we give their
simple proof.

Theorem 8 (Minsky & Papert [37]) Let f = T1∨· · ·∨Tm be an m-term DNF over {0, 1}n

where each term Ti is a conjunction over 4m2 variables, each variable appears in precisely one
term, and n = 4m3. Then any polynomial threshold function which computes f must have degree
at least m.

Proof: Let p(x1, . . . , xn) be a polynomial of degree d such that for all x ∈ {0, 1}n we have
p(x) ≥ 0 iff x satisfies f. For i = 1, . . . , m let Si be the set of 4m2 variables which appears
in term Ti. It is clear that for any permutations π1, . . . , πm over a set of size 4m2, we have
p(S1, . . . , Sm) ≥ 0 iff p(π1(S1), . . . , πm(Sm)) ≥ 0. Consequently the polynomial

q(x1, . . . , xn) =
∑

π1,...,πm

p(π1(S1), . . . , πm(Sm))

is of degree at most d and has q(x1, . . . , xn) ≥ 0 iff x satisfies f. Since q(x) is symmetric
in the elements of each set Si, one can straightforwardly show that there is a polynomial
r(

∑

S1
xj , · · · ,

∑

Sm
xj) of degree at most d such that r(

∑

S1
xj , . . . ,

∑

Sm
xj) = q(x1, . . . , xn) for

5

all x ∈ {0, 1}n. It follows from the definition of f that for all (a1, . . . , am) ∈ {0, 1, . . . , 4m2}m, we
have r(a1, . . . , am) ≥ 0 iff some ai = 4m2. Let s(t) be the univariate polynomial r(a1(t), . . . , am(t))
where ai(t) = 4m2− (2i−1− t)2 for i = 1, . . . , m. Then the degree of s is at most 2d, and more-
over we have that s(0), s(2), s(4), . . . , s(2m) < 0 and s(1), s(3), . . . , s(2m−1) ≥ 0. Consequently
s has at least 2m real zeros, so 2d ≥ deg(s) ≥ 2m.

3 An Optimal Bound for Representing DNF by Polynomial

Threshold Functions

In this section we prove our main result: any s-term DNF over {0, 1}n can be computed by a
polynomial threshold function of degree O(n1/3 log s).

3.1 Low-Degree Polynomial Threshold Functions for DNF with Small Terms

We start by proving Theorem 1:

Theorem 1 Any s-term t-DNF can be expressed as a polynomial threshold function of degree
O(t1/2 log s).2

This theorem plays an important role in the proof of the main result. We discuss some other
consequences of Theorem 1 in Section 4.

The main tools used in the proof are the Chebyshev polynomials of the first kind. These
polynomials play an important role in numerical analysis and approximation theory; here we
will need only a few simple properties. The d-th Chebyshev polynomial of the first kind, Cd(x),
is a univariate degree-d polynomial which satisfies the following conditions [15]:

Fact 9 The polynomial Cd(x) satisfies

• |Cd(x)| ≤ 1 for |x| ≤ 1 with Cd(1) = 1;

• C ′
d(x) ≥ d2 for x > 1 with C ′

d(1) = d2.

Proof of Theorem 1: Let f = T1 ∨ T2 ∨ · · · ∨ Ts be an s-term t-DNF. The arithmetization
of a Boolean literal ` is xj if ` = xj and is 1 − xj if ` = xj . Let Si denote the sum of the
arithmetizations of the literals appearing in Ti and let ti denote the number of literals in Ti.
We define the polynomial

Qi(x) = p

(

Si

ti

)

where

p(y) = Cd

(

y

(

1 +
1

t

))

.

Here Cd is the d-th Chebyshev polynomial of the first kind and d = dt1/2e. Fact 9 now implies
that p(1) ≥ 2 but |p(y)| ≤ 1 for y ∈ [0, 1 − 1

t].
Consider the polynomial threshold function “P (x) ≥ s + 1

2” where

2We analyze the size of the coefficients of the polynomial threshold function in Section 4.

6

P (x) =
s

∑

i=1

Qi(x)log 2s.

Since Cd is a polynomial of degree d = t1/2 and Si is a polynomial of degree 1, this polynomial
threshold function has degree t1/2 log 2s. We will show that this polynomial threshold function
computes the DNF f exactly.

Fix any element x ∈ {0, 1}n.

• If f(x) = 0 then in each term Ti at least one arithmetized literal takes value 0 on x. Thus
for each i = 1, . . . , s we have Si/ti ≤ (ti − 1)/ti ≤ 1 − 1

t and hence each |Qi(x)| ≤ 1.
Consequently P (x) ≤ s.

• If f(x) = 1 then some term Ti must be satisfied by x so Si/ti = 1. Consequently Qi(x) ≥ 2
and hence Qi(x)log 2s contributes at least 2s to P (x). Since Qi(x)log 2s ≥ −1 for all i, we
have P (x) ≥ s + 1.

3.2 From DNF to Decision Trees

Let f be an arbitrary s-term DNF over n variables. As the first step in our construction of a
polynomial threshold function for f, we transform f into a 1-decision tree in which each leaf
is a DNF with small terms; this is a refinement of a transformation given by Bshouty in [13].
Our original proof gave a bound on the size of the resulting decision tree. S. Lokam [35] has
observed that a slightly stronger bound can be obtained by considering the rank of the decision
tree instead. We use Lokam’s approach in the following lemma:

Lemma 10 Let f : {0, 1}n → {−1, 1} be an s-term DNF. For any value 1 ≤ t ≤ n, f can be
expressed as a 1-decision tree T where

• each leaf of T contains an s-term t-DNF,

• T has rank at most (2n/t) ln s + 1.

Proof of Lemma 10: Let T1, . . . , Tp be the terms of f that have size at least t. Since each
term Ti contains at least t literals, there must be some variable xi that occurs (either negated or
unnegated) in at least pt/n of these terms. This variable xi is placed in the root of the decision
tree, and the left and right children of xi will be decision trees for the restrictions f |xi←0 and
f |xi←1 respectively. This construction is recursively carried out for each of the functions f |xi←0

and f |xi←1, stopping when a DNF with no terms larger than t is obtained.
It is clear that this recursive procedure generates some 1-decision tree T. Since the function

obtained by fixing some subset of variables of an s-term DNF is an s-term DNF, we have that
each leaf of T contains an s-term t-DNF.

Let r(n, p) be the maximum (taken over all DNFs f on n variables with p terms having size
at least t) rank of the decision tree generated by the above procedure. We bound r(n, p) using
the following simple observation: if Ta is a term of f which contains an unnegated (negated)
variable xi (xi), then the restriction f |xi←0 (f |xi←1) causes the term Ta to vanish. Since the

7

variable xi at the root of T occurs in at least pt/n terms of size at least t, for at least one
of the bit values b ∈ {0, 1} the restriction f |xi←b will be a DNF which has at most p(1 − t

2n)
terms of size at least t. Let T0 (T1) denote the subtree of T which corresponds to the restriction
f |xi←0 (f |xi←1), and suppose without loss of generality that f |xi←0 is a s-term DNF which
has at most p(1 − t

2n) terms of size at least t. Note that rank(T0) ≤ r(n − 1, p(1 − t
2n)) and

rank(T1) ≤ r(n − 1, p). We consider several cases:

• If rank(T0) < rank(T1), then rank(T) = rank(T1) and hence rank(T) ≤ r(n − 1, p).

• If rank(T0) > rank(T1), then rank(T) = rank(T0) and hence rank(T) ≤ r(n − 1, p(1 −
t

2n)).

• If rank(T0) = rank(T1), then rank(T) = rank(T0)+1 and hence rank(T) ≤ r(n−1, p(1−
t

2n)) + 1.

Thus r(n, p) obeys the recurrence relation r(n, p) ≤ max{r(n − 1, p), r(n − 1, p(1 − t
2n)) + 1}.

To establish initial conditions for the recurrence relation we consider the case p = 1. In this
case there is one term in f which contains more than t variables; without loss of generality we
suppose that this term is v1v2 . . . v`. Then the 1-decision list

(v1, f |v1←0), . . . , (v`, f |v`←0)

is equivalent to a rank-1 decision tree in which each leaf contains an s-term t-DNF. Hence for
any n we have r(n, 1) = 1.

Solving the recurrence relation for r(n, p) shows that r(n, p) ≤ (2n/t) ln p + 1. Since p ≤ s
the lemma is proved.

3.3 An Optimal Bound for Representing DNF by Polynomial Threshold

Functions

Theorem 2 Let f be an s-term DNF over n variables. Then f can be expressed as a polynomial
threshold function of degree O(n1/3 log s).

Proof: From Lemma 10 and Theorem 1, we know that f can be expressed as a 1-decision tree
T of rank (2n/t) ln s + 1 where each leaf contains a polynomial threshold function of degree
O(t1/2 log s) (the value of t will be fixed later). From Lemma 5 we know that this decision
tree T can be expressed as an r-decision list where r = (2n/t) ln s + 1 and each output of the
decision list is a polynomial threshold function of degree O(t1/2 log s). Call this decision list L.

Let C1, . . . , CR be the conjunctions contained in the successive nodes of L and let P1(x), . . . , PR(x)
be the corresponding polynomials for the associated polynomial threshold functions at the out-
puts, i.e. the polynomial threshold function corresponding to the j-th conjunction Cj computes
the function “Pj(x) ≥ 0.” If Pj(x) = 0 for some x ∈ {0, 1}n then we can replace Pj(x) by
Pj(x) + δ/2, where δ = min{−Pj(x) : x ∈ {0, 1}n and Pj(x) < 0}, without changing the func-
tion computed by the polynomial threshold function. Now by scaling each Pj by an appropriate
multiplicative factor we can suppose without loss of generality that for each j = 1, . . . , R we
have minx∈{0,1}n |Pj(x)| ≥ 1.

Consider the polynomial

Q(x) = A1C̃1(x)P1(x) + A2C̃2(x)P2(x) + · · · + ARC̃R(x)PR(x). (1)

8

Here C̃j is the zero/one valued polynomial which corresponds to the monomial Cj (e.g. if Cj is
x3x4x5 then C̃j(x) is x3(1−x4)x5). Each value Aj is a positive constant chosen so as to satisfy
the following conditions:

AR = 1,

AR−1 > max
x∈{0,1}n

|ARC̃R(x)PR(x)|,

...

Aj > max
x∈{0,1}n

|Aj+1C̃j+1(x)Pj+1(x) + · · · + ARC̃R(x)PR(x)|.

...

A1 > max
x∈{0,1}n

|A2C̃2(x)P2(x) + · · · + ARC̃R(x)PR(x)|.

Then the polynomial threshold function “Q(x) ≥ 0” computes exactly the same function as the
decision list L. To see this, fix an input x ∈ {0, 1}n. If j is the index of the first conjunction
Cj which is satisfied by x, then C̃1(x) = C̃2(x) = · · · = C̃j−1(x) = 0, so the only terms of (1)
which make a nonzero contribution to Q(x) are AiC̃i(x)Pi(x) for i ≥ j. Since C̃j(x) = 1 and
|Pj(x)| ≥ 1, the choice of Aj ensures that the sign of Q(x) will be the same as the sign of Pj(x).

The degree of the polynomial Q(x) is at most (2n/t) ln s + 1 + O(t1/2 log s). If we take
t = n2/3 then this value is O(n1/3 log s).

Corollary 11 The Ω(n1/3) lower bound given by Minsky and Papert for the degree of a poly-
nomial threshold function required to compute a polynomial size DNF over {0, 1}n is tight up
to a logarithmic factor.

Applying Fact 7 gives our main DNF learning result:

Corollary 12 The class of s-term DNF formulae over {0, 1}n can be learned (in both the PAC

model and the model of exact learning from equivalence queries) in time 2O(n1/3 log s log n).

Remark: Several algorithms are known [9, 16] for PAC learning linear threshold functions over
{0, 1}n in the presence of classification noise in time poly(n). It follows that our time bounds for
learning DNF continue to hold in the presence of classification noise. In fact, in [9] a polynomial
time algorithm is given for learning linear threshold functions in the statistical query model of
Kearns [28], and hence our 2O(n1/3 log s log n) time bound for learning DNF holds in the statistical
query model as well. This upper bound gives an interesting contrast to an information-theoretic
lower bound of 2Ω(log s log n) which is known for learning s-term DNF, even under the uniform
distribution, in the statistical query model [10].

4 Discussion

Since t ≤ n in Theorem 1, Fact 7 implies that there is a linear-programming based algorithm
for PAC learning DNF which takes 2O(n1/2 log n log s) time steps. Tarui and Tsukiji gave an iden-
tical time bound for a different algorithm based on hypothesis boosting using conjunctions. In

9

this section we note that the proof of Theorem 1 gives an upper bound on the weight of the
resulting polynomial threshold function. This observation can be used to prove correctness of
the Tarui/Tsukiji boosting-based algorithm and to show that simpler algorithms such as Win-
now or Perceptron can be used to learn Õ(n1/2) degree polynomial threshold functions which
compute a DNF (instead of boosting algorithms or algorithms for solving linear programs).

The d-th Chebyshev polynomial Cd(x) =
∑d

i=0 aix
i has all integer coefficients with each

|ai| ≤ 2d [15]. By inspection of the proof of Theorem 1 we obtain

Corollary 13 Any s-term t-DNF can be expressed as a polynomial threshold function of degree
O(t1/2 log s) and weight tO(t1/2 log s).

Using this corollary we obtain an easy proof of one of the main theorems from [41], described
in Section 1.2, which asserts that for any DNF f and any probability distribution D there exists
some short conjunction which is noticeably correlated with f under D. We use a simple lemma
due to Goldmann, Hastad and Razborov ([23] Lemma 4) which states that if a function f
over {0, 1}n can be expressed as a majority of at most W ±1-valued functions (possibly with
repetitions) drawn from a set H, then for any distribution D over {0, 1}n there is some function
h ∈ H such that |Prx∈D[h(x) = f(x)] − 1

2 | ≥
1
W . In our setting we take H to be the set of

all conjunctions of length O(t1/2 log s) and their negations. There is a clear correspondence
between polynomial threshold functions with integer coefficients and depth-2 circuits with a
MAJORITY gate at the root and (possibly negated) AND gates at depth 1. Corollary 13 gives
the required bound on W, and we obtain

Corollary 14 Given any s-term t-DNF f and any distribution D over {0, 1}n, there is a con-

junction C of size at most O(t1/2 log s) such that |Prx∈D[C(x) = f(x)]− 1
2 | = 2−O(t1/2 log t log s).

Taking t = n gives Tarui and Tsukiji’s Theorem 1.1, which immediately implies the existence
of a boosting-based algorithm for learning DNF in time 2Õ(n1/2).

Finally, we observe that the weight bound given in Corollary 13 implies that we do not need
to solve linear programs (or even to use boosting algorithms) in order to learn polynomial-sized

DNF in time 2Õ(n1/2). If f is a polynomial threshold function of degree 1 and weight W over the
domain {0, 1}N , then either the Perceptron algorithm or the Winnow algorithm can be used to
learn f in poly(N, W) time steps [30, 34]. As in Fact 7, we can view an degree-d polynomial

threshold function over {0, 1}n as a degree-1 polynomial threshold function over {0, 1}nd
, and

thus we can in fact use either the Perceptron or Winnow algorithm to learn s-term DNF in
time 2O(n1/2 log n log s).

5 Low-Degree Polynomial Threshold Functions for Read-Once

DNF

As seen in Section 2.3 the Minsky-Papert Ω(n1/3) lower bound on polynomial threshold function
degree for polynomial size DNF is proved using a read-once DNF. Since any read-once DNF
can have at most n terms, Theorem 2 implies that any read-once DNF can be expressed as a
polynomial threshold function of degree O(n1/3 log n). Here we give a slightly better bound:

10

Theorem 3 Any read-once DNF over variables x1, . . . , xn can be expressed as a polynomial
threshold function of degree O(n1/3 log2/3 n).

To prove Theorem 3 we use the following sharper version of Lemma 10:

Lemma 15 Let f : {0, 1}n → {−1, 1} be a read-once DNF. For any value 1 ≤ t ≤ n, f can be
expressed as a 1-decision tree T where each leaf of T contains a read-once t-DNF and T has
rank at most n/t.

Proof of Lemma 15: Let T1, . . . , Tp be the terms of f that have size at least t. We use the
same decomposition procedure as in Lemma 10, and we let r(n, p) be the maximum (taken over
all read-once DNFs f on n variables with p terms having size at least t) rank of the decision
tree generated by the decomposition procedure. Since each variable occurs in at most one term,
the recurrence which we obtain in this setting is r(n, p) ≤ r(n − 1, p − 1) + 1. As before the
initial condition is r(n, 1) = 1 for all n, and thus r(n, p) ≤ p. Since f is read-once we have that
p ≤ n/t, and the lemma is proved. (Lemma 15)

Proof of Theorem 3: Let f be a s-term read-once DNF over {0, 1}n. Lemma 15, Theorem
1 and Lemma 5 together imply that f is computed by a (n/t)-decision list where each output
of the decision list is a polynomial threshold function of degree O(t1/2 log s). As in the proof of
Theorem 2 there is a polynomial threshold function for f which is of degree n/t + O(t1/2 log s).
Since f is read-once s is at most n, and taking t = n2/3/ log2/3 n proves the theorem. (Theorem
3)

By the arguments given in Section 2, we immediately have

Corollary 16 The class of read-once DNF can be learned (in both the PAC model and the

model of exact learning from equivalence queries) in time 2O(n1/3 log5/3 n).

Remark: Standard reductions are known in learning theory which reduce the problem of PAC
learning DNF to that of PAC learning read-once DNF. We note that applying these reductions
here does not yield a 2Õ(n1/3)-time algorithm for learning arbitrary polynomial-size DNF. The
reductions work by converting a DNF with p(n) total occurrences of variables to a read-once
DNF over p(n) variables, and thus if used in conjunction with Corollary 16 would yield a

2Õ(p(n)1/3)-time algorithm for learning such a DNF.

6 Future Work

Many directions remain for further research. From a learning theory perspective, an obvious
goal is to construct learning algorithms for DNF which have even lower time complexity than
the algorithm of this paper. The Minsky-Papert lower bound implies that our time bounds
are essentially optimal for algorithms which work by learning polynomial threshold functions.
It would be interesting to close the remaining gap between the Minsky-Papert Ω(n1/3) lower
bound and our O(n1/3 log n) upper bound on the degree of polynomial threshold functions for
polynomial-size DNF.

11

Another goal is to establish a bound on polynomial threshold function weight to go along
with our degree bound from Theorem 3. Is every polynomial-size DNF computed by a polyno-
mial threshold function of degree Õ(n1/3) and weight 2Õ(n1/3)? As in Section 4, an affirmative
answer to this question would mean that the Perceptron or Winnow algorithm could be used
instead of a linear programming based algorithm.

A natural generalization of our results for DNF would be to prove upper bounds on the
degree of polynomial threshold functions which compute circuits of size s and depth d for fixed
values of d ≥ 3. Obtaining such upper bounds, however, seems to be quite difficult. We note
that the parity function on n variables is known to require polynomial threshold functions of
degree n [37, 3], and hence any proof of even an n−1 upper bound on the degree of polynomial
threshold functions for constant depth polynomial size circuits would immediately yield a new
proof of the well-known fact that parity is not computable by constant depth polynomial size
circuits [22, 25].

As a first step towards proving upper bounds on polynomial threshold function degree for
constant depth circuits, we show how the techniques of this paper can be used to obtain a
nontrivial upper bound on the degree of polynomial threshold functions for read-once constant
depth formulae.

Theorem 4 For d ≥ 2, any read-once Boolean formula of depth d over {∧,∨,¬} can be computed

by a polynomial threshold function of degree O(n
1− 1

3·2d−3 log
1

3·2d−3 n).

Proof: The proof is by induction on d. The base case d = 2 is supplied by Theorem 3. We
suppose that the theorem holds for d = 2, . . . , k − 1 and prove it for d = k.

Let f be a depth-k read-once formula. We say that a term is a gate at the bottom level
of f together with the literals that feed into it. Since f is read-once there can be at most n/t
terms of size greater than t. We apply the decomposition procedure described in the proof of
Lemma 10 to transform f into a 1-decision tree whose leaves each contain a depth-k read-once
formula in which each term is of size at most t. As in Lemma 15 this decision tree is of rank at
most n/t.

In each leaf of this tree, we replace each term with a new “dummy” variable that appears
only once. We thus obtain a decision tree of rank n/t whose leaves each contain a read-once
formula of depth k − 1 over these dummy variables. By the induction hypothesis, each such

formula is equivalent to a polynomial threshold function of degree O(n
1− 1

3·2k−4 log
1

3·2k−4 n) which
is defined over the dummy variables described above.

In each such polynomial threshold function, we now replace each dummy variable with
a real-valued polynomial over the original variables which interpolates precisely the Boolean
function computed by the original term. Since each term was of size at most t, each such
polynomial is of degree at most t. Consequently the function computed at each leaf of the

decision tree is a polynomial threshold function of degree O(tn
1− 1

3·2k−4 log
1

3·2k−4 n).
As in the proof of Theorem 3, our original function f can now be expressed as a polynomial

threshold function of degree

n

t
+ O(tn

1− 1

3·2k−4 log
1

3·2k−4 n).

Taking t = n
1

3·2k−3 / log
1

3·2k−3 n proves the theorem.

12

Corollary 17 The class of read-once constant depth formulae can be learned in subexponential
time.

7 Acknowledgements

We thank R. Beigel for several useful conversations and L. Valiant for his advice. We also thank
S. Lokam for allowing us to include his proof of Lemma 10.

References

[1] D. Angluin. Queries and concept learning. Machine Learning 2 (1988), 319-342.

[2] M. Anthony. Classification by polynomial surfaces. Discrete Applied Mathematics 61
(1995), 91-103.

[3] J. Aspnes, R. Beigel, M. Furst and S. Rudich. The expressive power of voting polynomi-
als. Combinatorica 14:2 (1994), 1-14. Earlier version in “Proc. 23rd ACM Symposium on
Theory of Computation” (1991), 402-409.

[4] R. Beigel. The polynomial method in circuit complexity, in “Proc. 8th Conf. on Structure
in Complexity Theory” (1993), 82-95.

[5] R. Beigel, personal communication, 2000.

[6] R. Beigel, N. Reingold and D. Spielman. The perceptron strikes back, in “Proc. 6th Conf.
on Structure in Complexity Theory” (1991), 286-291.

[7] C. Berg and S. Ulfberg. A lower bound for perceptrons and an oracle separation of the PP
hierarchy. J. Comput. Syst. Sci. 56:3 (1998), 263-271.

[8] A. Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing
Letters 42:4 (1992), 183-185.

[9] A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning
noisy linear threshold functions, in “Proc. 37th Symp. on Found. of Comp. Sci.” (1996),
330-338.

[10] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning
DNF and characterizing statistical query learning using Fourier analysis, in “Proc. 26th
Ann. Symp. on Theory of Computing” (1994), 253-262.

[11] A. Blum and S. Rudich. Fast learning of k-term DNF formulas with queries. J. Comp.
Syst. Sci. 51(3) (1995), 367-373.

[12] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. J. ACM 36:4 (1989), 929-965.

[13] N. Bshouty. A subexponential exact learning algorithm for DNF using equivalence queries.
Information Processing Letters 59 (1996), 37-39.

13

[14] T. Bylander. Worst-case analysis of the perceptron and exponentiated update algorithms.
Artificial Intelligence 106 (1998).

[15] E. W. Cheney. Introduction to approximation theory. McGraw-Hill, 1966.

[16] E. Cohen. Learning noisy perceptrons by a perceptron in polynomial time, in “Proc. 38th
Symp. on Found. of Comp. Sci.” (1997), 514-523.

[17] A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples. Informa-
tion and Computation 82:3 (1989), 231-246.

[18] A. Ehrenfeucht, D. Haussler, M. Kearns and L. Valiant. A general lower bound on the
number of examples needed for learning. Information and Computation 82:3 (1989), 247-
251.

[19] Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation
121:2 (1995), 256-285.

[20] Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm, in
“Proc. Eleventh Ann. Conf. on Comp. Learning Theory” (1998), 209-217.

[21] B. Fu. Separating PH from PP by relativization. Acta Math. Sinica 8:3 (1992), 329-336.

[22] M. Furst and J. Saxe and M. Sipser. Parity, circuits and the polynomial-time hierarchy.
Mathematical Systems Theory 17:1 (1984), 13-27.

[23] M. Goldmann, J. H̊astad and A. Razborov. Majority gates vs. general weighted threshold
gates. Computational Complexity 2 (1992), 277-300.

[24] T. Hancock and Y. Mansour. Learning monotone k-µ DNF formulas on product distribu-
tions, in “Proc. 4th Ann. Workshop on Comp. Learning Theory” (1991), 179-183.

[25] J. H̊astad. Computational Limitations for Small Depth Circuits. Ph.D. thesis, MIT Press,
1986.

[26] D. Helmbold, R. Sloan and M. Warmuth. Learning nested differences of intersection-closed
concept classes. Machine Learning 5 (1990), 165-196.

[27] J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the
uniform distribution. J. Comput. Syst. Sci. 55 (1997), 414-440.

[28] M. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM 45(6) (1998),
983-1006.

[29] R. Khardon. On using the Fourier transform to learn disjoint DNF. Inf. Proc. Lett. 49
(1994), 219-222.

[30] J. Kivinen, M. Warmuth, and P. Auer. The perceptron algorithm vs. winnow: linear vs.
logarithmic mistake bounds when few input variables are relevant, in “Proc. 8th Conf. on
Computational Learning Theory,” (1995), 289-296.

14

[31] L. Kucera, A. Marchetti-Spaccamela and M. Protassi. On learning monotone DNF formulae
under uniform distributions. Inf. and Comput. 110 (1994), 84-95.

[32] E. Kushilevitz and D. Roth. On learning visual concepts and DNF formulae, in “Proc.
Sixth Ann. ACM Conference on Computational Learning Theory” (1993), 317-326.

[33] N. Linial and N. Nisan. Approximate inclusion-exclusion. Combinatorica 10:4 (1990), 349-
365.

[34] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold
algorithm. Machine Learning 2 (1988), 285-318.

[35] S. Lokam, personal communication (2001).

[36] W. Maass and G. Turan. How fast can a threshold gate learn? in “Computational Learn-
ing Theory and Natural Learning Systems: Volume I: Constraints and Prospects,” S. J.
Hanson, G. Drastal, & R. Rivest, eds., MIT Press (1994), 381-414.

[37] M. Minsky and S. Papert. Perceptrons. MIT Press, 1968 (expanded edition 1988).

[38] Y. Sakai and A. Maruoka. Learning monotone log-term DNF formulas under the uniform
distribution. Theory Comput. Systems 33 (2000), 17-33.

[39] M. Schmitt. Identification criteria and lower bounds for Perceptron-like learning rules.
Neural Computation 10 (1998), 235-250.

[40] R. Servedio. On PAC learning using Winnow, Perceptron, and a Perceptron-like algorithm,
in “Proc. Twelfth Ann. Conf. on Comp. Learning Theory” (1999), 296-307.

[41] J. Tarui and T. Tsukiji. Learning DNF by approximating inclusion-exclusion formulae, in
“Proc. IEEE Conference on Computational Complexity” (1999), 215-220.

[42] L. G. Valiant. A theory of the learnable. Comm. ACM 27:11 (1984), 1134-1142.

[43] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time, in
“Proc. 3rd Ann. Workshop on Comp. Learning Theory” (1990), 314-326.

[44] K. Verbeurgt. Learning sub-classes of monotone DNF on the uniform distribution, in “Proc.
9th Conf. on Algorithmic Learning Theory” (1998), 385-399.

[45] N. Vereshchagin. On the power of PP, in “Proc. 7th Conf. on Structure in Complexity
Theory” (1992), 138-143.

15

