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Abstract—We prove two main results on how arbitrary
linear threshold functions f(x) = sign(w · x − θ) over the n-
dimensional Boolean hypercube can be approximated by simple
threshold functions.

Our first result shows that every n-variable threshold func-
tion f is ǫ-close to a threshold function depending only on
Inf(f)2 · poly(1/ǫ) many variables, whereInf(f) denotes the
total influence or average sensitivity off. This is an exponential
sharpening of Friedgut’s well-known theorem [Fri98], which
states that every Boolean functionf is ǫ-close to a function
depending only on 2O(Inf(f)/ǫ) many variables, for the case
of threshold functions. We complement this upper bound by
showing that Ω(Inf(f)2 + 1/ǫ2) many variables are required
for ǫ-approximating threshold functions.

Our second result is a proof that everyn-variable threshold
function is ǫ-close to a threshold function with integer weights
at most poly(n) · 2Õ(1/ǫ2/3). This is a significant improvement,
in the dependence on the error parameterǫ, on an earlier
result of [Ser07] which gave a poly(n) · 2Õ(1/ǫ2) bound.
Our improvement is obtained via a new proof technique
that uses strong anti-concentration bounds from probability
theory. The new technique also gives a simple and modular
proof of the original [Ser07] result, and extends to give low-
weight approximators for threshold functions under a rangeof
probability distributions beyond just the uniform distrib ution.

Keywords-Boolean functions; threshold functions; approxi-
mation

I. I NTRODUCTION

Linear threshold functions (henceforth simply called
threshold functions) are functionsf : {−1, 1}n → {−1, 1}
of the form f(x) = sign(w · x − θ) where the weights
w1, . . . , wn and the thresholdθ may be arbitrary real values.
Threshold functions are a fundamental type of Boolean
function and have played an important role in computer
science for decades, see e.g. [Der65], [Mur71], [SRK95].
Recent years have witnessed a flurry of research activity on
threshold functions from many perspectives of theoretical
computer science, including hardness of learning [FGKP06],
[KS08], efficient learning algorithms in various models
[Kal07], [OS08], [KKMS08], property testing [MORS09],
[GS07], communication complexity and circuit complexity
[She07], monotone computation [BW06], derandomization
[RS08], [DGJ+09], and more.

Despite their seeming simplicity threshold functions can
have surprisingly rich structure, and basic questions about

them can be unexpectedly challenging to answer. As one
example, a moment’s thought shows that every threshold
functionf can be realized with integer weightsw1, . . . , wn:
how large do those integer weights need to be? A fairly
straightforward argument gives a bound of2O(n log n), but
while this upper bound was known at least since 1961
[MTT61] and rediscovered several times (e.g. [Hon87],
[Rag88]), more than thirty years elapsed before a matching
lower bound of2Ω(n log n) was finally obtained via a fairly
sophisticated construction and proof [Hås94], [AV97].

This paper is about approximating arbitrary threshold
functions using “simple” threshold functions, meaning ones
that depend on few variables or have small integer weights.
We use a natural notion of approximation with respect to
the uniform distribution: throughout the paper “h is an ǫ-
approximator forf ” means thatPr[h(x) 6= f(x)] ≤ ǫ. (All
probabilities and expectations overx ∈ {−1, 1}n are taken
with respect to the uniform distribution, unless otherwise
specified.) We prove two main results about approximating
threshold functions, which we motivate and describe below.

A. First main result: optimally approximating threshold
functions by juntas.

The influenceof coordinatei on f : {−1, 1}n→ {−1, 1}
is Infi(f)

def
= Pr[f(x) 6= f(x⊕i)], wherex⊕i denotesx with

the i-th bit flipped. Thetotal influenceof f , written Inf(f),
is

∑
i Infi(f); it is a normalized measure of the fraction

of edges in the hypercube that are rendered bichromatic by
f , and is equal to the “average sensitivity” off . It is well
known (see [FK96] or [BT96] for an explicit proof) that
every threshold function hasInf(f) ≤ √n, and that the
majority function onn variables achievesInf(f) = Θ(

√
n)

– and in fact maximizesInf(f) over all threshold (or even
all unate) functions.

In [Fri98], Friedgut proved the following:

Theorem. [Fri98] Every Boolean function f is ǫ-
approximated by a2O(Inf(f)/ǫ)-junta, i.e. a function depend-
ing only on2O(Inf(f)/ǫ) of then input variables.

Friedgut’s theorem is an important structural result about
boolean functions and has been usefully applied in several
areas of theoretical computer science, including hardnessof



approximation [DS05], [CKK+06], [KR08], metric embed-
dings [KR06], and learning theory [OS07]. In Section II-D
we discuss the role of this theorem in a sequence of results
on the Fourier representation of Boolean functions.

Friedgut showed that his bound is best possible for general
Boolean functions, by giving an explicit family of functions
which require2Ω(Inf(f)/ǫ)-juntas for anyǫ-approximation. A
bound of the form2O(Inf(f)/ǫ) is of course nontrivial only
if Inf(f) ≪ log n, which is rather small; thus, it is natural
to ask whether various restricted classes of functions, such
as threshold functions, might admit stronger bounds.

Our first main result is an exponentially stronger version
of Friedgut’s theorem for threshold functions:

Theorem 1 (First Main Theorem). Every threshold function
f is ǫ-approximated by anInf(f)2 · poly(1/ǫ)-junta (which
is itself a threshold function).

This bound is essentially optimal; easy examples show
that Ω(Inf(f)2 + 1/ǫ2) many variables may be required for
ǫ-approximation. We conjecture that Theorem 1 extends to
degree-d polynomial threshold functions with an exponential
dependence ond in the bound, and also conjecture a different
extension of Theorem 1 that is inspired by a theorem of
Bourgain; see Section II-D.

Techniques. The proof of Friedgut’s theorem makes es-
sential use of the Bonami-Gross-Beckner hypercontractive
inequality [Bon70], [Gro75], [Bec75]. Our proof of Theo-
rem 1 takes a completely different route and does not use
hypercontractivity; instead, the main ingredients are recent
Fourier results on threshold functions from [OS08] and a
probabilistic construction which is reminiscent of Bruck
and Smolensky’s randomized construction of polynomial
threshold functions [BS92].

In more detail, a key notion in our proof is that of aregu-
lar threshold function; roughly speaking, this is a threshold
function where each of the weightswi is “small” relative to
the 2-norm of the weight vector. Given a regular threshold
functiong = sign(w ·x−θ), we use the weightswi to define
a probability distribution over approximators tog (this is
done similarly to [BS92]). We show (Lemmas 5 and 6) that
a randomly drawn approximator from this distribution has
high expected accuracy and does not depend on too many
variables (the upper bound is given in terms of the weights
wi and the regularity parameter).

An obvious problem in using this construction to approxi-
mate arbitrary threshold functions is that not every threshold
function is regular. To get around this, we use a recent result
from [OS08] which shows that every threshold functionf
can be well approximated by a threshold functionf ′ which
has two crucial properties:f ′ is almostregular (in the sense
that it only has a few “large” weights), and its “small”
weights are (appropriately scaled versions of) the influences
of the corresponding variables inf. For each restrictionρ

that fixes the large-weight variables off ′, then, we may
usef ′|ρ as the regular threshold functiong of the previous
paragraph, and we obtain a distribution over approximators
to f ′|ρ where the number of relevant variables for each such
approximator is at mostInf(f)2 ·poly(1/ǫ). From this, using
the probabilistic method, we are able to argue that there is
a single high-accuracy approximator forf that depends on
at mostInf(f)2 · poly(1/ǫ) variables, as required.

B. Second main result: approximating threshold functions
to higher accuracy.

The second main result of this paper is about approxi-
mating an arbitraryn-variable threshold functionf using a
threshold functiong with small integer weights. Goldberg
[Gol06] and Servedio [Ser07] have observed that, because
of the 2Ω(n log n) lower bound [Hås94] on integer weights
to exactly represent arbitrary threshold functions, it is not
possible in general to construct anǫ-approximatorg with
integer weightspoly(n, 1/ǫ). Servedio [Ser07] gave the
first positive result, by showing that for every threshold
function f there is anǫ-approximating threshold function
g in which each weight is an integer of magnitude at most
poly(n)·2Õ(1/ǫ2). This result and the ingredients in its proof
have since played an important role in subsequent work on
threshold functions, e.g. [OS08], [MORS09], [DGJ+09].

Given the usefulness of [Ser07] and the poor dependence
on ǫ in its bound, it is natural to seek a stronger quantitative
bound with a better dependence onǫ; in fact, this was posed
as a main open question in [Ser07]. Our second main result
makes progress in this direction:

Theorem 2 (Second Main Theorem). Every n-variable
threshold functionf is ǫ-approximated by a threshold func-
tion g = sign(w · x − θ) with w1, . . . , wn all integers of
magnituden3/2 · 2Õ(1/ǫ2/3).

Another question posed in [Ser07] asked about small
integer-weight approximators with respect to other proba-
bility distributions beyond just the uniform distribution. As
described below, Theorem 2 can be generalized to hold under
a range of non-uniform distributions.

Theorem 2 is proved using a new approach which we
believe may lead to better bounds for a range of problems
considered in [OS08], [MORS09], [DGJ+09] which use
the approach from [Ser07]. Roughly speaking, the proof
in [Ser07] and the applications in [OS08], [MORS09],
[DGJ+09] all rely on the fact that for suitable weight
vectors w, the random variablew · x (with x uniform
over {−1, 1}n) can be approximated by a Gaussian. Such
approximation provides a great deal of information about
w · x, but the drawback is that the Gaussian is only a fairly
coarse approximator ofw · x even for a weight vector as
well-behaved asw = (1, . . . , 1), and this inevitably seems
to lead to bounds that are exponential in1/ǫ2 (as in [Ser07],



[OS08], [DGJ+09]). We now briefly describe how our new
approach that yields Theorem 2 gets around this barrier.

Techniques. The main conceptual difference between our
new approach and the approach in [Ser07] is this. The
proof in [Ser07] starts with anarbitrary vector of weights
that represent some threshold function; intuitively this could
be problematic because these weights may provide an in-
convenient representation to work with for the underlying
function. In contrast, we focus on thefunction itself, and
prove that every threshold function has a “nice” weight
vector that represents it. This allows us to exploit strong anti-
concentration bounds [Hal77] that apply only under certain
assumptions on the weights; we elaborate below.

The notion ofanti-concentrationis an important ingre-
dient in our approach: a random variable has good anti-
concentration if it does not assign too much mass to
any small interval of the real line. The study of anti-
concentration has a rich history in probability theory, see
e.g. [DL36], [Kol60], [Ess68], [Rog73], [RV08]. Anti-
concentration inequalities for discrete random variablesof
the formw · x are known to be significantly more delicate
than concentration inequalities (i.e. “tail bounds”): while
concentration typically depends on the2-norm of w, anti-
concentration depends on theadditive structureof the coef-
ficients in a subtle way.1

We remark that [Ser07] also (implicitly) uses anti-
concentration bounds, in particular ones based on Gaussian
approximation (that follow from the Berry-Esséen Theorem).
In hindsight it can be seen that no stronger anti-concentration
bounds can be used in the arguments of [Ser07] because
that proof considersall possiblerepresentations of the form
sign(w · x − θ), where w ranges over all ofRn. As an
example, consider the majority function. For the standard
representation assign(

∑
i xi), the anti-concentration bound

given by the Berry-Esséen Theorem is the best possible,
since an arbitrarily small interval that contains the origin
has probability massΩ(1/

√
n). On the other hand, it is

possible to come up with alternate representationssign(w·x)
for the majority function that have better anti-concentration;
this is essentially what our proof does. We prove a structural
theorem which states that every threshold function has a rep-
resentation in which “many” weights are “well-separated;”
under this condition on the weights, we obtain strong anti-
concentration using a result of of Halász [Hal77]. Finally,
we show that strong anti-concentration yields low-weight
integer approximation to get our final desired result.

Discussion: Our general approach is both modular and
robust. It yields a simple and modular proof of thepoly(n) ·
2Õ(1/ǫ2) upper bound from [Ser07] which was proved there
via a rather elaborate case analysis. More importantly, the

1Roughly speaking, if one forbids more and more additive structure in
thewi’s, then one gets better and better anti-concentration; seee.g. [Vu08],
[TV08] and Chapter 7 of [TV06].

new poly(n) · 2Õ(1/ǫ2/3) bound and its proof generalize
easily to a wide range of distributions. These include
constant-biased product distributions and, using the recent
result of [DGJ+09], all K-wise independent distributions
for sufficiently large K (K = Õ(1/ǫ2) suffices for ǫ-
approximation).

Organization. We prove Theorem 1 in Section II and
Theorem 2 in Section III. Because of space constraints our
results on non-uniform distributions, as well as some proofs,
are deferred to the full version [DS09].

II. T HEOREM 1: OPTIMALLY APPROXIMATING

THRESHOLD FUNCTIONS BY JUNTAS

This section is structured as follows: in Section II-A we
describe a randomized construction of approximators for
regular threshold functions. In Section II-B we recall the
result from [OS08] that lets us approximate any threshold
function by a threshold function that is “almost” regular.
In Section II-C we put these pieces together to prove
Theorem 1. We give some discussion and conjectures in
Sections II-D.

Technical Preliminaries. We assume familiarity with the
basic elements of Fourier analysis over{−1, 1}n. A function
f : {−1, 1}n → {−1, 1} is said to be a “junta onJ ⊆ [n]”
if f only depends on the coordinates inJ . As stated earlier,
we say thatf is aJ-junta,0 ≤ J ≤ n, if it is a junta on some
set of cardinality at mostJ . For a vectoru ∈ R

m we write
‖u‖1 to denote theL1 norm of u, i.e. ‖u‖1 =

∑m
i=1 |ui|.

We write “X ← D” to indicate that random variableX is
distributed according to distributionD.

Finally, we give a precise definition of the notion of a
“regular” threshold function:

Definition 3. Let f(x) = sign(w0 +
∑n

i=1 wixi) be a
threshold function where

∑n
i=1 w2

i = 1. We say thatf is
τ -regularif |wi| ≤ τ for all i ∈ [n].2

A. Randomly constructing approximators to regular thresh-
old functions.

Fix hθ(x) = sign(θ +
∑m

i=1 uixi) to be a τ -regular
threshold function, so

∑m
i=1 u2

i = 1 and |ui| ≤ τ for all
i ∈ [m]. Our notation emphasizes the threshold parameterθ
since it will play an important role later.

We begin by defining a distributionD over linear forms
L(x) =

∑m
i=1 cixi. The distributionD is defined using the

weightsui similarly to how Bruck and Smolensky [BS92]
define a distribution over polynomials using the Fourier
coefficients of a Boolean function. A draw ofL(x) from
D is obtained as follows:L(x) is first initialized to 0. Then

2Strictly speaking,τ -regularity is a property of a particular representation
sign(w0 +

Pn
i=1 wixi) and not of a threshold functionf , which could

have different representations some of which areτ -regular and some of
which are not. The particular representation we are concerned with will
always be clear from context. A similar remark holds for Definition 4.



the following is independently repeatedN
def
= Θ(‖u‖21 · 1

τ2 ·
ln(1/τ)) times: an indexi ∈ [m] is selected with probability
|ui|
‖u‖1

, andsign(ui)xi is added toL(x).

Fix any z ∈ {−1, 1}m. For L ← D, we may view
L(z) as a sum ofN i.i.d. ±1-valued random variables
Z1(z), . . . , ZN (z), where the expectation of eachZj(z) is∑m

i=1
|ui|
‖u‖1

sign(ui)zi = 1
‖u‖1

u · z. We thus have:

EL←D[L(z)] =
N∑

j=1

E[Zj(z)] =
N

‖u‖1
(u · z). (1)

With D in hand we define a distributionD′ over threshold
functionsgθ in the following natural way: to draw a function
gθ ← D′ we drawL← D and set

gθ(x) = sign(θ +
‖u‖1
N

L(x)). (2)

We would like to show that forgθ ← D′, the probability
thatgθ(z) disagrees withhθ(z) is “small,” i.e. at mostO(τ).
But such a bound cannot hold for everyz ∈ {−1, 1}m,
for if the value of θ + u · z is arbitrarily close to 0 then
the expected value of the argument tosign in (2) may be
arbitrarily close to 0. Forz such thatθ+u ·z is not too close
to 0, though, it is possible to argue thatgθ(z) is incorrect
only with small probability (over the draw ofgθ ← D′).
Moreover, the regularity ofhθ lets us argue that only a
small fraction of inputsz haveθ + u · z close to 0, so we
can conclude that the expected error ofgθ is low. We now
provide the details.

We will use the following notion of the “margin” of an
input relative to a threshold function:

Definition 4. Let f(x) = sign(w0 +
∑n

i=1 wixi) be a
threshold function where the weights are scaled so that∑n

i=1 w2
i = 1. Given a particular inputz ∈ {−1, 1}n we

definemarg(f, z)
def
= |w0 +

∑n
i=1 wizi|.

Let MARGθ,τ
def
= {z ∈ {−1, 1}m : marg(hθ, z) ≥ τ}

denote the set of points in{−1, 1}m with margin at leastτ
underhθ. We now show that a randomgθ ← D′ has high
expected accuracy on each pointz ∈MARGθ,τ :

Lemma 5. For each z ∈ MARGθ,τ we have
Prgθ←D′ [hθ(z) 6= gθ(z)] ≤ τ. Moreover, eachgθ ← D′
is an N -junta.

Proof: The latter claim is immediate so it suffices to
prove the former. Fix anyz ∈ MARGθ,τ , so |θ +u · z| ≥ τ .
We need to bound from above the probability of the “bad”
event (over the random choice ofgθ ← D′) that hθ(z) 6=
gθ(z); we refer to this bad event asB.

The key claim is that ifB occurs then it must be the case
that|L(z)−EL←D[L(z)]| ≥ Nτ

‖u‖1
. For suppose thathθ(z) =

1 andgθ(z) = −1 (the other case is handled similarly). By
definition, we have thatθ+u·z ≥ 0 andθ+(‖u‖1/N)L(z) <

0. Sincez belongs toMARGθ,τ , the first inequality gives
that θ + u · z ≥ τ , which implies, via (1), thatE[L(z)] ≥
(N/‖u‖1)(τ − θ). The second inequality is equivalent to
L(z) < −θN/‖u‖1, and consequently we haveE[L(z)] −
L(z) ≥ Nτ/‖u‖1.

We thus have thatPrgθ←D′ [hθ(z) 6= gθ(z)] ≤
PrL←D[|L(z)−E[L(z)]| ≥ Nτ

‖u‖1
]. Now we again viewL(z)

as the sum ofN i.i.d. {−1, 1} random variables. The Ho-
effding bound yields thatPrL←D[|L(z)−E[L(z)]| ≥ Nτ

‖u‖1
]

is at most

2 exp

(
−2

(Nτ/‖u‖1)2
4N

)
≤ τ,

where the inequality follows by our choice ofN . This
completes the proof of the lemma.

We next note that by the regularity ofhθ, most points in
{−1, 1}m have a large margin (and hence are covered by
Lemma 5):

Lemma 6. Prx∈{−1,1}m [x /∈MARGθ,τ ] ≤ 4τ .

The proof is a direct consequence of regularity via the
Berry-Esséen theorem (see [DS09]).

Combining Lemmas 5 and 6, we get the main result of
this subsection:

Lemma 7. Egθ←D′ [Prx∈{−1,1}m [gθ(x) 6= hθ(x)]] ≤ 5τ.

B. Approximating threshold functions using their influences
as (almost all of) the weights.

Our next tool is the following theorem on approximating
threshold functions. Roughly, it says that every threshold
functionf can be well approximated by a threshold function
f ′ where all but thepoly(1/ǫ) largest weights off ′ have
a special structure: up to sign, they are the valuesInfi(f).
(Recall that for a threshold functionf we have|f̂(i)| =
Infi(f).)

Theorem 8. [Theorem 17 of [OS08]] There is a fixed
polynomialκ(ǫ) = Θ(ǫ144)3 such that the following holds:
Let f(x) = sign

(
w0 +

∑
i∈H wixi +

∑
i∈T wixi

)
be a

threshold function over head indicesH and tail indices

T , where H
def
= {i : |f̂(i)| ≥ κ(ǫ)2} and T satisfies∑

i∈T w2
i = 1. Then either:

(i) f is O(ǫ)-close to a junta overH ; or,
(ii) f is O(ǫ)-close to the threshold functionf ′(x) =

sign
(
w0 +

∑
i∈H wixi +

∑
i∈T

bf(i)
σT

xi

)
, where σT de-

notes
√∑

i∈T f̂(i)2. Moreover, in this case we haveσT =

Ω(ǫ2).4

Note that
∑

i∈T (f̂(i)/σT )2 = 1, and sinceσT = Ω(ǫ2),
for eachi ∈ T we have

|f̂(i)/σT | < κ(ǫ)2/σT ≤ O(ǫ288)/Ω(ǫ2) = O(ǫ286). (3)

3See the discussion immediately before Equation (24) of [OS08]; our
κ(ǫ) is theτ(ǫ) of [OS08].

4See Equation (24) of [OS08].



This means that for any restrictionρ fixing the variables
in H , the functionf ′|ρ is poly(ǫ)-regular; this is important
since it will allow us to apply the results of Section II-A to
these restrictions.

C. Proof of Theorem 1.

Now we are ready to prove Theorem 1. We first show
that every threshold functionf is O(ǫ)-approximated by a
(1 + Inf(f)2) · poly(1/ǫ)-junta threshold function, and then
argue that this yields Theorem 1. For brevity, in the rest of
this subsection we writeI for Inf(f).

Let 0 < ǫ < 1
2 be given and letf be anyn-variable

threshold function. W.l.o.g. we may consider a representa-
tion f(x) = sign(w0 +

∑n
i=1 wixi) in which eachwi 6= 0,

and by scaling the weights we may further assume that
T = [n] \H has

∑
i∈T w2

i = 1.
We apply Theorem 8 tof . Parseval’s identity implies that

at most1/κ(ǫ)4 many indicesi can have|f̂(i)| ≥ κ(ǫ)2,
so we have|H | ≤ 1/κ(ǫ)4 = poly(1/ǫ). In Case (i) we
immediately have thatf is O(ǫ)-close to apoly(1/ǫ)-junta,
so we suppose that Case (ii) holds, and henceforth argue
about theO(ǫ)-approximatorf ′ defined in Case (ii).

We consider all2poly(1/ǫ) restrictionsρ obtained by fixing
the head variables inH . Our goal is to apply the results of
Section II-A to the functionsf ′|ρ. As noted in Section II-B,
for each restrictionρ the resulting functionf ′|ρ over the tail
variables inT is a τ(ǫ)-regular threshold function, where
τ(ǫ) = O(ǫ286) is the function implicit in the RHS of (3)
(for brevity we henceforth writeτ for τ(ǫ)). Moreover, all
these restrictions are threshold functions defined by the same
linear form over the variables inT : they only differ in their
threshold values, i.e. the valuesθρ

def
= w0 +

∑
i∈H wiρi.

In keeping with the notation of Section II-A, for each
restrictionρ we write hθρ to denotef ′|ρ, i.e. hθρ(xT )

def
=

sign(θρ +
∑

i∈T uixi) whereui
def
=

bf(i)
σT

andxT
def
= (xi)i∈T .

We observe that‖u‖1 =
∑

i∈T |ui| equals

1

σT

∑
i∈T

|f̂(i)| ≤ 1

σT

n∑
i=1

|f̂(i)| ≤ I · poly(1/ǫ). (4)

where the last inequality usesInfi(f) = |f̂(i)| and σT =
Ω(ǫ2). Recalling thatN equalsΘ(‖u‖21 · 1

τ2 · ln(1/τ)), we
have thatN is at mostI2 · poly(1/ǫ).

We consider a distributionD′′ over threshold functions
on {−1, 1}n defined as follows: a draw ofg ← D′′
is obtained by drawingL ← D and settingg(x) =

sign(w0 +
∑

i∈H wixi + ‖u‖1
N · L(xT )). For every outcome

of g ← D′′, the functiong depends on at most|H |+ N =
(1 + I

2)poly(1/ǫ) many variables.
It remains only to argue that someg drawn fromD′′ is is

O(ǫ)-close tof ′. Via the probabilistic method, to do this it
suffices to show thatEg←D′′ [Prx∈{−1,1}n [g(x) 6= f ′(x)]] =
O(τ) (recall thatτ ≪ ǫ). We now do this using the results
of Section II-A.

Fix any assignmentρ to the variables inH. By Lemma 7
we have

Eg←D′′

[
PrxT←{−1,1}|T | [f ′|ρ(xT ) 6= g|ρ(xT )]

]
≤ 5τ.

Averaging over allρ, we get

Eg←D′′

[
Prx←{−1,1}n [f ′(x) 6= g(x)]

]
≤ 5τ

which is the desired bound.

So, we have shown that every threshold functionf is
O(ǫ)-close to a(1+I

2)·poly(1/ǫ)-junta; we finish the proof
of Theorem 1 by arguing that this implies aI2 · poly(1/ǫ)
junta size bound. Letc be an absolute constant such that
everyf is ǫ-close to a(1 + I

2) · (1/ǫ)c-junta; we consider
different cases based on the size ofI. If I > 1, then it is clear
that (1 + I

2)(1/ǫ)c < 2I
2(1/ǫ)c < I

2(1/ǫ)c+1 (using ǫ <
1/2). If I < ǫ2, since

∑
|S|≥1 f̂(S)2 ≤∑

|S|≥1 |S|f̂(S)2 =
I (the equality is a well-known fact in Fourier analysis of
Boolean functions, see e.g. [KKL88]), by Parseval’s identity
we get that|f̂(∅)| ≥ 1 − ǫ. This means thatf is ǫ-close to
a constant function, which is of course a0-junta. Finally, if
ǫ2 ≤ I ≤ 1, then1 + I

2 ≤ 2 ≤ 2I
2ǫ−4 ≤ I

2ǫ−5, so f can
be ǫ-approximated by aI2(1/ǫ)c+5-junta. So in every case
f is ǫ-close to anInf(f)2 · (1/ǫ)c+5-junta, and Theorem 1
is proved.

D. Discussion and Conjectures.

Improved low-weight approximators of threshold func-
tions. Recall the main result of [Ser07]:

Theorem 9. [Ser07] Everyn-variable threshold function
f is ǫ-approximated by a threshold functiong = sign(w ·
x − θ) with w1, . . . , wn all integers satisfying

∑n
i=1 w2

i ≤
n · 2Õ(1/ǫ2).

While a linear dependence onn is the best possible
bound which can hold uniformly for alln-variable threshold
functions, it is possible to give a sharper bound that depends
on f. Applying Theorem 9 to the threshold function junta
which is given by Theorem 1, we obtain:

Corollary 10. Every n-variable threshold functionf is ǫ-
approximated by a threshold functiong = sign(w · x − θ)
with w1, . . . , wn all integers satisfying

∑n
i=1 w2

i ≤ Inf(f)2 ·
2Õ(1/ǫ2).

SinceInf(f)2 is at mostn (but can be much less) for every
threshold functionf , this strengthens Theorem 9.

A lower bound. We observe that theInf(f)2 · poly(1/ǫ)
upper bound of Theorem 1 is nearly best possible: no
strengthening can replace this with a bound smaller than
Ω(Inf(f)2 + 1/ǫ2) (see [DS09]).

Extending to degree-d? It is natural to wonder whether
Theorem 1 extends topolynomialthreshold functions (PTFs)
of degreed, i.e. Boolean functionsf(x) = sign(p(x)) where



p is a degree-d polynomial. We pose the following conjecture
which is a broad generalization of Theorem 1:

Conjecture 1. Every degree-d PTF f is ǫ-approximated by
a (Inf(f)/ǫ)O(d)-junta.

We suspect that even thed = 2 case of Conjecture 1
may be challenging, as the total influence of low-degree
polynomial threshold functions does not seem to be well
understood.

An exponential sharpening of Bourgain’s theorem?
By Parseval’s identity, every Boolean functionf has∑

S⊆[n] f̂(S)2 = 1. Since the total influenceInf(f) equals
∑

S f̂(S)2|S| and the degree of each monomialxS is |S|,
we may interpretInf(f) as the “average” Fourier degree of
f.

With this point of view, Friedgut’s theorem may be viewed
as part of a sequence of three results, all of which essentially
say that Boolean functions with low degree (in some sense)
are close (in some sense) to juntas. The first and earliest of
these results is the following theorem of Nisan and Szegedy:

Theorem 11. [NS94] Every Boolean function with (maxi-
mum) Fourier degreek is a k2k-junta.

This theorem imposes a strong degree condition onf – that
it have zero Fourier weight above degreek – and gets a
strong conclusion, thatf is identical to a k2k-junta. Next,
Friedgut’s theorem [Fri98] relaxed both the degree condition
on f and the resulting conclusion: if the “average” Fourier
degree off (i.e. Inf(f)) is at mostk, thenf is ǫ-close to
a 2O(k/ǫ)-junta. Finally and most recently, Bourgain relaxed
the degree condition even further, by showing that iff puts
most of its Fourier weight on low-degree monomials, then
regardless of where the remaining Fourier weight lies,f
must be close to a junta:

Theorem 12. [Bou02] Every Boolean functionf with∑
|S|>k f̂(S)2 ≤ (ǫ/k)1/2+o(1) is ǫ-close to a 2O(k) ·

poly(1/ǫ)-junta.

Let us consider how each junta size bound changes when
we restrict our attention to threshold functions in the above
theorems. We first observe that the [NS94] bound can be
exponentially improved in this case:

Proposition 13. Every threshold function with (maximum)
Fourier degreek is a (2k − 1)-junta.

(This follows from the easy fact that any threshold function
with r relevant variables contains a subfunction which is an
( r+1

2 )-way AND or OR.) Our Theorem 1, of course, tells us
that Friedgut’s theorem can also be exponentially sharpened
if f is a threshold function. This motivates the natural
question of whether Bourgain’s theorem can be similarly
sharpened for threshold functions. We state the following:

Conjecture 2. Every threshold function f with∑
|S|>k f̂(S)2 ≤ (ǫ/k)1/2+o(1) is ǫ-close to apoly(k/ǫ)-

junta.

III. T HEOREM 2: APPROXIMATING THRESHOLD

FUNCTIONS TO HIGHER ACCURACY.

As outlined in Section I-B, our new approach can be
conceptually broken into the following steps:

1) Show that every threshold function has a representa-
tion in which many weights are “nice”.

2) Use the “niceness” of the weights to establish anti-
concentration ofw · x.

3) Finally, use the anti-concentration ofw · x to obtain
an approximator with small integer weights.

Note that there is a delicate relationship between the first
two steps: the structural result for the weights that is estab-
lished in the first step must match the necessary conditions
for anti-concentration in the second step. The third step is
a simple generic lemma translating anti-concentration into
low-weight approximation.

The structure of this section is as follows: We first recall
the anti-concentration results that we need to implement
Step 2 in our above proof template. We then prove the
simple lemma that implements Step 3 in our proof template.
In Section III-A we give a “warmup” to our main result
by using the template to give a clean and modular proof
of the main result of [Ser07]. In Section III-B we show
how the template yields a variant of Theorem 2 which has
an nO(1/ǫ2/3) bound. This subsection includes our main
new technical contribution of Section III, a new result on
representations of threshold functions, Lemma 22. Roughly
speaking, this lemma says that every threshold function
has a representation such that many of the differences
between consecutive weights are not too small. Finally, in
Section III-C we show how thisnO(1/ǫ2/3) bound can be
improved to fully prove Theorem 2.

All the results of this section can be appropriately gener-
alized to constant-biased product distributions andK-wise
independent distributions (but they provablycannotbe gen-
eralized toeverydistribution). Because of space constraints,
we give these results in [DS09].

Anti-concentration of weighted sums of Bernoulli ran-
dom variables. We start with the formal definition of anti-
concentration:

Definition 14. Let a ∈ R
n be a weight–vector andr ∈ R+.

TheLévy anti-concentration function ofa is defined as

pr(a)
def
= sup

v∈R

Prx←U [|a · x− v| ≤ r].

Thus, the anti-concentration of a weight vectora is an
upper bound on the probability thata · x lies in any small



interval (of length2r). An early and important result on anti-
concentration was given by Erdős [Erd45]; improving on an
earlier result of Littlewood and Offord [LO43], he proved

Theorem 15 (Erdős). Let a = (a1, . . . , ak) ∈ R
k, r ∈

R+ be such that|ai| ≥ r for all i ∈ [k]. Thenpr(a) ≤(
k

k/2

)
/2k = O(k−1/2).

A large body of subsequent work generalized this result
in many different ways (see e.g. Chapter 7 of [TV06]);
anti-concentration results of this general flavor have come
to be known as “Littlewood-Offord theorems.” We shall
require an extension of Theorem 15 which is due to
Halász [Hal77], improving upon Erdős-Moser [Erd65] and
Sárközy-Szemerédi [SS65]. While Erdős’s theorem gives
the best (smallest) possible anti-concentration bound assum-
ing that eachweight ai is large, Halász’s theorem gives
a stronger bound under the stronger assumption that the
differencebetween any two weights is large:

Theorem 16 (Halász). Let a = (a1, . . . , ak) ∈ R
k, r ∈ R+

be such that|ai− aj | ≥ r for all i 6= j ∈ [k]. Thenpr(a) ≤
O(k−3/2).

Looking ahead, we note that the “3/2” exponent instead
of “1/2” is the key to our improvement from2Õ(1/ǫ2) to
2Õ(1/ǫ2/3).

The last fact about anti-concentration that we shall need
is the following simple lemma, which says that if we
extend a weight vectora by adding more weights, its anti-
concentration can only improve:

Lemma 17 (Extension). Let a ∈ R
k be anyk-dimensional

weight vector andr ∈ R+ be any non-negative real. For any
n > k, let a′ ∈ R

n be the vector(a1, . . . , ak, a′k+1, . . . , a
′
n)

where the weightsa′k+1, . . . , a
′
n may be any real numbers.

Then we havepr(a
′) ≤ pr(a).

The proof is by a simple averaging argument, using the
fact that forx← {−1, 1}n uniform random, conditioned on
any outcome of the variablesxk+1, . . . , xn, the distribution
of x1, . . . , xk is still uniform.

From anti-concentration to a low-weight approxima-
tor. The following simple lemma takes us from anti-
concentration to a low-weight approximator. We use it to
implement Step 3 in our proof template.

Lemma 18. Let g = sign(
∑n

i=1 wixi − θ) be any thresh-
old function. If pr(w1, . . . , wn) ≤ ǫ, then there exists a
2ǫ-approximator h for g, where h is a threshold func-
tion with integer weights each of magnitudeO(maxi |wi| ·√

n ln(1/ǫ)/r).

Proof: Let α = r/(
√

n ln(2/ǫ)). For eachi ∈ [n],
let ui be the value obtained by roundingwi to the nearest
integer multiple ofα and vi = ui/α ∈ Z. We claim that
h(x) = sign(

∑n
i=1 vixi− θ/α) is the desired approximator.

It is clear thatmaxi |vi| = O(maxi |wi|/α), so it suffices to
show thath is (ǫ + ǫ)-close tog.

For i ∈ [n], let ei = wi−ui, so thatu·x = w ·x−e·x. We
have thatg(x) 6= h(x) only if |e·x| ≥ r or |w·x−θ| ≤ r. We
bound from above the probability of each of these events by
ǫ. The probability of the second event is bounded byǫ since
Pr[|w ·x−θ| ≤ r] ≤ pr(w) ≤ ǫ. For the first event we have
Pr[|e · x| ≥ r] ≤ Pr[|e · x| ≥ ‖e‖2

√
2 ln(2/ǫ)] ≤ ǫ, where

the first inequality uses the fact‖e‖2 ≤ (r/
√

2 ln(2/ǫ)) and
the second follows from the Hoeffding bound.

A. Warmup: Simple Proof of [Ser07] Main Result.

In this section we give a simple and modular proof
of nearly the same bound as the main result of [Ser07],
following the proof template from the start of Section III.
Let f : {−1, 1}n → {−1, 1} be any threshold function.

First step: This is provided for us by the following result,
which is an immediate consequence of Lemma 14 in [OS08].
Intuitively, this result says that every threshold function has
a representation in which thek-th largest weight is not too
small compared with the largest weight.5

Claim 19. Let f : {−1, 1}n → {−1, 1} be any thresh-
old function, let ǫ > 0, and let k ∈ [n]. There is an
ǫ-approximator g = sign(

∑n
i=1 wixi − θ) for f with

the following property: Suppose (reordering and rescaling
weights if necessary) that1 = |w1| ≥ · · · ≥ |wn|. Then
|wk| ≥ 1/(kk

√
3n ln(2/ǫ)).

Second step:We apply Erdős’s theorem, Theorem 15, to
the weight vector(w1, . . . , wk) from Claim 19 (we will
fix k later), taking r = 1/(kk

√
3n ln(2/ǫ)) to be the

bound from Claim 19. Theorem 15 givespr(w1, . . . , wk) ≤
O(1/

√
k), and the Extension Lemma 17 gives that in fact

pr(w1, . . . , wn) ≤ O(1/
√

k).

Third step: It remains only to fixk = min{1/ǫ2, n} and
observe that theh obtained from Lemma 18 is anO(ǫ)-
approximator forf . (Note that if 1/ǫ2 > n, then integer
weights2Õ(1/ǫ2) suffice toexactlyrepresentf by [MTT61].)
We have thus proved:

Theorem 20. Every n-variable threshold functionf is ǫ-
approximated by a threshold functionh = sign(v · x − θ)

with v1, . . . , vn all integers of magnituden · 2Õ(1/ǫ2).

This is almost identical to the main result of [Ser07]; the
bound of [Ser07] has

√
n in place ofn.

B. Toward Theorem 2: AnnO(1/ǫ2/3) bound.

In this section we prove an intermediate result towards
our ultimate goal ofpoly(n) · 2Õ(1/ǫ2/3):

5We do not repeat the proof of Claim 19 from [OS08] here but we
note that the proof is self-contained and rather straightforward; it follows
along the lines of [MTT61]’s classic argument to upper boundthe weights
required to represent any threshold function.



Theorem 21. Every n-variable threshold functionf is ǫ-
approximated by a threshold functionh = sign(v · x − θ)

with v1, . . . , vn all integers of magnitudenO(1/ǫ2/3).

We follow the same high-level proof template as the
previous section. Letf : {−1, 1}n → {−1, 1} be a threshold
function. We may assume w.l.o.g. thatf depends on alln
input variables, and since the claimed bound follows again
from [MTT61] if 1/ǫ2/3 > n−2, we assume1/ǫ2/3 ≤ n−2.

First step: Our goal now is to apply Halász’s anti-
concentration bound in Step 2 rather than Erdős’s theorem.
To do this we need the following new result on representing
threshold functions, which intuitively says that every thresh-
old function has a representation using weights such that
many of the differences between consecutive weights are
not too small compared to the largest weight:

Lemma 22. Let f : {−1, 1}n → {−1, 1} be a threshold
function that depends on alln variables. There is a rep-
resentationsign(

∑n
i=1 wixi − θ) for f with the following

property: Suppose (reordering and rescaling weights if nec-
essary) that1 = |w1| ≥ · · · ≥ |wn| > 0. For i ∈ [n − 1]

let ∆i
def
= |wi| − |wi+1|. Then for anyk ∈ [n− 2], the k-th

biggest element of the (multiset)∆1, . . . , ∆n−1 is at least
1

(2n+2)2k+8 .

We pause to contrast this result with an earlier theorem
due to Håstad [Hås05] that appeared in [Ser07]. Under the
same hypotheses as Lemma 22, the earlier theorem asserted
that for anyk ∈ [n] the k-th largest weightwk satisfies
|wk| ≥ 1

k!(n+1) . The proof of the earlier theorem centers on
a careful analysis of a linear program in which the variables
are the weightsw1, . . . , wn and there are2n constraints
corresponding to the2n points x ∈ {−1, 1}n. To prove
Lemma 22, we must now analyze a linear program with
some additional constraints which, intuitively, ensure that
there are “gaps” between the weights.6 We prove Lemma 22
in Section III-D.

Second step:We take k = 1/ǫ2/3 and consider thek
largest differences∆i1 = |wi1 |−|wi1+1|, . . . , ∆ik

= |wik
|−

|wik+1|. Lemma 22 implies that for alla 6= b ∈ [k] we
have |wia − wib

| ≥ r, for r = 1/(2n + 2)2k+8. Applying
Halász’s anti-concentration bound, Theorem 16, we get that
pr(wi1 , . . . , wik

) ≤ O(k−3/2) = O(ǫ), and the Extension
Lemma 17 further givespr(w1, . . . , wn) = O(ǫ).

Third step:. We simply apply Lemma 18. Recalling that
r = 1/(2n + 2)Θ(1/ǫ2/3), Theorem 21 is proved.

6In fact, by considering the majority function one can verifythat the
2n-constraint linear program of the earlier proof is not sufficient; that LP
yields a representation in which eachwi is the same and hence the “gaps”
∆i are all 0.

C. Proof of Theorem 2: Apoly(n) · 2Õ(1/ǫ2/3) bound.

Given a threshold functionf(x) = sign(w · x − θ) such
that |w1| ≥ · · · ≥ |wn| > 0, for k ∈ [n] we denote byσk

the quantity
√∑n

i=k w2
i . The analysis in [Ser07] is based

on the notion of the “τ -critical index”:

Definition 23. We define theτ -critical index ℓ(τ) of a
threshold functionf = sign(w ·x− θ) as the smallest index
i ∈ [n] for which |wi| ≤ τ · σi. If this inequality does not
hold for anyi ∈ [n], we defineℓ(τ) =∞.

We now show how to use Theorem 21 and ideas from
[Ser07] to prove Theorem 2. Givenǫ > 0, we proceed
by a case analysis, as in [Ser07], based on the value of
the ǫ-critical index ℓ

def
= ℓ(ǫ). If ℓ > L

def
= Õ(1/ǫ2),

Case IIa in [Ser07] says thatf is ǫ-close to theL-junta
g obtained by truncating the smallest(n − L) weights, i.e.
g(x) = sign(

∑L
i=1 wixi−θ). By applying Theorem 21 tog,

we obtain anǫ-approximatorh with integer weights of mag-
nitudeLO(1/ǫ2/3) = 2Õ(1/ǫ2/3), which is a2ǫ-approximator
for f . It remains to handle the caseℓ ≤ L. To do this, we
use another fact from [Ser07]; that, for every value ofℓ,
there exists anǫ-approximator forf with integer weights of
magnitude

√
n ln(1/ǫ) · 2O(ℓ log ℓ). If ℓ < K

def
= 2/ǫ2/3, this

yields anǫ-approximator with integer weights of magnitude√
n · 2Õ(1/ǫ2/3) and we are done. To handle the caseK ≤

ℓ ≤ L, we use a combination of Gaussian anti-concentration
(for then− ℓ +1 smallest weights) and “Halász-type” anti-
concentration (for the largestℓ− 1 weights).

Let us proceed with the analysis. We start by rounding
the weightswℓ, . . . , wn, exactly as in Case IIb in [Ser07],
to get anǫ-approximatorg(x) = sign(

∑n
i=1 vixi − θ′) for

f with the following properties: (i) Fori ≥ ℓ, eachvi is
an integer of magnitudeO(

√
n ln(1/ǫ)) and

∑n
i=ℓ v2

i =
O(n ln(1/ǫ)/ǫ2); (ii) It holds |v1| ≥ |v2| ≥ . . . ≥
|vℓ−1| > 1. Our goal is to establish the existence of anǫ-
approximationh for g with small integer weights. To achieve
this, we will use the fact that the “tail” ofg has small
integer coefficients, i.e. the integer–valued random variable
t(x)

def
=

∑n
i=ℓ vixi has small support.

Let R, k > 0 be integers. Denote byΩ(R, k) the set
{±1}k−1 × {−R,−R + 1, . . . , R − 1, R}. Now fix an
integerR0 = Θ(

√
n ln(1/ǫ)/ǫ) and denoteΩ0

def
= Ω(R0, ℓ).

Consider the threshold functionh : Ω0 → {±1} de-
fined by h(y) = sign(

∑ℓ−1
i=1 viyi + yℓ − θ′), y ∈ Ω0.

We claim that the threshold functiong′ : {−1, 1}n →
{−1, 1} defined byg′(x) = h(x1, . . . , xℓ−1, t(x)) is ǫ-close
to g. To see this note thatg′(x) equals g(x) whenever
|t(x)| = |∑n

i=ℓ vixi| ≤ R0, and this holds for a random
x with probability 1 − ǫ by a Hoeffding bound (since
R0 ≥

√
2 ln(2/ǫ)

∑n
i=ℓ v2

i by the definition ofR0 and
property (i) ofg).

At this point we use the following technical generalization
of Lemma 22, whose proof is given in [DS09]:



Lemma 24. Let h′ : Ω(R, k) → {±1} be a threshold
function that depends on allk variables. Suppose thath′(y)
has a representation assign(

∑k
i=1 w′iyi − θ′) such that

|w′1| ≥ |w′2| ≥ . . . ≥ |w′k| > 0. There exists an alternate
representation ofh′ as sign(

∑k
i=1 uiyi − θ′′) satisfying

1 = |u1| ≥ · · · ≥ |uk| > 0, with the following property: For

i ∈ [k− 1] let ∆i
def
= |ui| − |ui+1|. Then for anyj ∈ [k− 2],

the j-th biggest element of the (multiset)∆1, . . . , ∆k−1 is
at least 1

(2k+2R)·(2k+2)2j+8 .

Applying this lemma toh, i.e. settingh′ = h, R = R0 and
k = ℓ, and fixing j

def
= 1/ǫ2/3 + 2 < K − 2 ≤ ℓ − 2, we

get a representationsign(
∑ℓ

i=1 uiyi − θ′′) for h such that
the j largest differences∆i1 = |ui1 | − |ui1+1|, . . . , ∆ij =
|uij |−|uij+1| are at leastr0, for r0 = 1

(2ℓ+2R0)·(2ℓ+2)2j+8 =

(1/
√

n) · 2−Õ(1/ǫ2/3). (Note that the latter equality uses the
fact thatℓ ≤ L.) This yields a set ofj′ = 1/ǫ2/3 weights
ul1 , . . . , ulj′ – not includinguℓ – whose absolute differences
are at leastr0, i.e. for alla 6= b ∈ [j′], we have|ula−ulb | ≥
r0.

We are now ready to use our proof template again.
The alternate representation forh from above and the
definition of g′ imply that g′(x) can be represented as

sign(
∑ℓ−1

i=1 uixi +
∑n

i=ℓ u′ixi − θ′′), where u′i
def
= uℓvi,

ℓ ≤ i ≤ n. By Halász’s bound, Theorem 16, applied to
the weightsul1 , . . . , ulj′ , and the Extension Lemma 17 as
before, we conclude thatpr0

(u1, . . . , u
′
n) = O(ǫ). Finally,

since the maximum weight in (the new representation for)g′

is O(
√

n log(1/ǫ)) (as follows from the fact that|ui| ≤ 1,
i ∈ [ℓ], and property (i) ofg), Lemma 18 implies the exis-
tence of anO(ǫ)-approximator forg′ with integer weights
each at mostn3/2 · 2Õ(1/ǫ2/3). This concludes the proof of
Theorem 2.

D. Proof of Lemma 22

Recall Lemma 22:

Lemma 22. Let f : {−1, 1}n → {−1, 1} be a threshold
function that depends on alln variables. There is a rep-
resentationsign(

∑n
i=1 wixi − θ) for f with the following

property: Suppose (reordering and rescaling weights if nec-
essary) that1 = |w1| ≥ · · · ≥ |wn| > 0. For i ∈ [n − 1]

let ∆i
def
= |wi| − |wi+1|. Then for anyk ∈ [n− 2], the k-th

biggest element of the (multiset)∆1, . . . , ∆n−1 is at least
1

(2n+2)2k+8 .

Proof: Let f(x) be a threshold function. We first
consider the case thatf is odd, i.e.f(x) = −f(−x) for
all x ∈ {−1, 1}n; in this casef can be represented with
a threshold of zero. Once we have established the result
for such threshold functions we will use it to establish the
general case.

By symmetry of {−1, 1}n we may assume thatf is
monotone increasing in each coordinatexi. By reordering

coordinates we may assume thatInf1(f) ≥ Inf2(f) ≥ · · · ≥
Infn(f) > 0 (the final inequality is strict becausef depends
on all n coordinates).

We consider the setW ⊆ R
n of weight vectorsw =

(w1, . . . , wn) that satisfy the following properties:
1) w ·x ≥ 1 for everyx ∈ {−1, 1}n such thatf(x) = 1.

Note that sincef is odd these inequalities imply the
corresponding inequalities for negative points,w ·x ≤
−1 for everyx ∈ {−1, 1}n such thatf(x) = −1.

2) wi−wi+1 ≥ 1 for all i = 1, 2, . . . , n−1, andwn ≥ 1.
The first set of2n−1 constraints says thatsign(w · x) is

a valid representation forf (i.e. f(x) = sign(w · x) for all
x ∈ {−1, 1}n). The second set ofn constraints says that
no two weights are precisely the same and moreover all the
weights are positive. (These are the new constraints that did
not feature in the proof of [Hås05].)

Thus W is the feasible set of a linear programLP
consisting of2n−1 + n inequalities onw1, . . . , wn: 2n−1

inequalities correspond to points of the hypercube{−1, 1}n
andn inequalities correspond to the set

Dn = {(1,−1, 0, . . . , 0)1×n, (0, 1,−1, 0, . . . , 0)1×n, . . . ,

(0, . . . , 1,−1)1×n, (0, . . . , 0, 1)1×n}.
We claim that the linear programLP is feasible, or

equivalentlyW 6= ∅. Indeed, by simple standard argu-
ments it can be shown that every odd threshold function
f : {−1, 1}n → {−1, 1} has a representationsign(w · x)
such that (i) for allx ∈ {−1, 1}n, it holds sign(w · x) 6= 0,
and (ii) every partial sum of the weights is distinct, i.e. for
all I 6= J ⊆ [n] it holds

∑
i∈I wi 6=

∑
i∈J wj . The latter

in particular implies thatw1 6= w2 6= . . . 6= wn. Now recall
that Inf1(f) ≥ Inf2(f) ≥ . . . ≥ Infn(f) > 0 and that
f is monotone increasing in all its coordinates. It is well
known and easy to show (see e.g. [FP04]) that there is a
representationsign(w · x) of such a threshold function that
satisfiesw1 ≥ w2 ≥ . . . wn > 0. Therefore, we can scale
the weights so that all the constraints in the linear program
LP are simultaneously satisfied.

Having established thatW 6= ∅, we select a weight vector
w∗ ∈ W that maximizes the number oftight inequalities
(i.e. satisfied with equality) inLP . If more than one weight
vector satisfies a maximum number of tight inequalities, we
choose one arbitrarily. At this point, we invoke the following
crucial claim:

Claim 25. There exists a set ofn points y(1), . . . , y(n) ∈
f−1(1) ∪ Dn such thatw∗ is the unique solutionof the
linear system:{w · y(i) = 1 | i = 1, 2, . . . , n}. (Henceforth,
we shall denote this system by(∗).)

The proof of the claim is essentially the same as in the
proof of Murogaet al.’s [MTT61] classic upper bound on
the size of integer weights that are required to express LTF’s
over {−1, 1}n (see [DS09]).



Note that (∗) is a system ofn linear equations in the
variablesw1, . . . , wn where each coefficient of each variable
in the equations is−1, 0 or 1 and the right-hand side of each
equation is1. Since our goal is to prove a statement about the
magnitude of the differenceswi−wi+1, i = 1, 2, . . . , n−1,
we define an appropriate set ofn new variables and rewrite
(∗). In particular, we define the set of variablesδ1, . . . , δn

as follows:

δn = wn, δi = wi − wi+1 for i = 1, . . . , n− 1.

This is equivalent to

wn = δn, wi = δi + · · ·+ δn for i = 1, . . . , n− 1.

We let δ denote[δ1, . . . , δn]. By rewriting (∗), we get an
equivalentsystem(∗∗) of n equations in variablesδ1, . . . , δn

where the coefficients of each variable in each equation are
integers in the range[−n, n] and all the right-hand sides
remain 1. Hence, the linear system(∗∗) has the unique
strictly positive solution

δ∗n = w∗n, δ∗i = w∗i − w∗i+1 for i = 1, . . . , n− 1.

At this point we reorder the variablesδi in decreasing order
of magnitude of theδ∗i ’s. We thus get a new set of variables
τ1, . . . , τn such that

τ∗i = i-th largest of{δ∗1 , . . . , δ∗n},
breaking ties arbitrarily. We similarly denoteτ =
[τ1, . . . , τn].

So (∗∗) is now a system ofn equations in variables
{τi}i∈[n], where the coefficients of each variable in each
equation are integers in the range[−n, n] and all the right-
hand sides are still1. The valuesτ∗1 , . . . , τ∗n in the unique
solution of this system are strictly positive and ordered in
decreasing order of magnitude. Let us write

αj1τ1 + αj2τ2 + . . . + αjnτn = 1

for the j-th equation whereαij , i, j ∈ [n] are integers
in [−n, n]. It is not difficult to see that the above system
is equivalent to the following system ofn equations in
τ1, . . . , τn:

αj1τ1 + αj2τ2 + . . . + αjnτn = α11τ1 + α12τ2 + . . . + α1nτn

for j = 2, 3, . . . , n, and τn = τ∗n .

Each of the firstn − 1 equations is homogeneous and
can be rewritten asτ · z(j) = 0, where z(j) is a vector
whose entries are integers in[−2n, 2n]. So we have that
τ∗ = [τ∗1 , . . . , τ∗n ] is the unique solution to a linear system:

Zτ = b (5)

whereZ is a non-singularn×n matrix with entries that are
integers in[−2n, 2n] and with last row(0, . . . , 0, 1), andb
is [0, 0, . . . , 0, τ∗n].

Recall thatτ∗1 ≥ · · · ≥ τ∗n > 0. We now show that each
τ∗k is somewhat large compared tow∗1 . The casek = 1 is
easy: since

∑n
i=1 τ∗i = w∗1 , we haveτ∗1 ≥ w∗1/n.

Fix any k ∈ {2, . . . , n}. After possibly reordering the
rows of Z, the (k − 1)-dimensional vector[1, 0, . . . , 0] can
be expressed as a linear combinationa1R1+· · ·+ak−1Rk−1

whereRi is the i-th row of the (k − 1) × (k − 1) upper
left submatrix ofZ. Since all entries inZ are integers in
[−2n, 2n], Cramer’s Rule implies that each|ai| is at most
the maximum determinant of any(k − 1)× (k − 1) matrix
with all entries in[−2n, 2n]; this is easily seen to be at most
(k−1)!(2n)k−1. It follows that there is a linear combination
of the firstk − 1 equations of (5) which yields

τ1 =

n∑

j=k

γk
j τj (6)

where each|γk
j | is at most(k−1) · (2n) · (k−1)!(2n)k−1 ≤

(2(k − 1)n)k. From (6), settingτ = τ∗ and recalling that
the τ∗i ’s are positive and ordered by magnitude, we now get
τ∗1 ≤ (n− k + 1)(maxj |γk

j |)τ∗k which implies

τ∗k ≥
τ∗1

(2(k − 1)n)k(n− k + 1)
≥ τ∗1

(2n)2k+1
(7)

Observing that
∑n

i=1 τ∗i = w∗1 , we haveτ∗1 ≥ w∗1/n, which
implies

τ∗k ≥
w∗1

(2n)2k+2
.

Finally, we observe that fork ∈ [n− 1], thek-th biggest
element of the multiset∆1, . . . , ∆n−1 (see the lemma state-
ment) is at leastτk+1. (It is eitherτk+1 or τk depending on
whether or notδ∗n = w∗n is among thek largest elements of
{δ∗1 , . . . , δ∗n}.) Renormalizing so that the largest weight is 1,
we have shown that for oddf , thek-th biggest element of the
multiset∆1, . . . , ∆n−1 is at least 1

(2n)2k+4 . This completes
the proof of Lemma 22 for the case thatf is odd.

We now treat the case wheref is not odd, i.e.f has a
nonzero threshold. We do this by considering the threshold
function g : {−1, 1}n+1 → {−1, 1} which has zero
threshold,n weights the same asf , and an(n+1)-st weight
which is the threshold off . The result for the zero-threshold
case shows thatg has a representationsign(w1x1 + · · · +
wnxn +wn+1xn+1) where|w1| ≥ · · · ≥ |wn+1|, and letting
∆i = |wi| − |wi+1| for i ∈ [n], the k-th biggest element of
∆1, . . . , ∆n is at least |w1|

(2n+2)2k+4 for any k ∈ [n].

We now observe that fork ∈ [n − 2], the k-th biggest
gap between the magnitudes of thewi’s that correspond
to actual weights off is at least the(k + 2)-th biggest
element of∆1, . . . , ∆n. This holds since at most two of
the values∆j = |wj | − |wj+1| can involve the weight
wj⋆ which corresponds to the threshold off , as opposed
to one of its actual weights. Since|w1| is at least as large
as the absolute value of the largest actual weight off , we



get that fork ∈ [n − 2], the k-th biggest gap between the
magnitudes of the actual weights off is at least (largest
weight off )/(2n+2)2k+8. Renormalizing so that the largest
magnitude weight off is 1, Lemma 22 is proved.

IV. CONCLUSIONS ANDFUTURE WORK

We have already discussed directions for future work
relating to Theorem 1 in Section II-D. Regarding Theorem 2,
we feel that our high-level approach using anti-concentration
holds promise for substantial further progress. Significant
strengthenings of Halász’s anti-concentration bound are
known under stronger restrictions on the additive structure
of the weightsw1, . . . , wn, see e.g. [Vu08], [TV08]. Can
corresponding extensions of Lemma 22 be established, prov-
ing that every threshold function admits a representation
with weights that have the required structure? Perhaps every
threshold functionf can beǫ-approximated using integer
weights at mostpoly(n) ·2polylog(1/ǫ). We hope that further
study of our anti-concentration based approach may yield
such a bound.
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[Ess68] C.G. Esséen. On the concentration function of a sumof
independent random variables.Z. Wahrscheinlichkeit-
stheorie verw. Geb., 9:290–308, 1968.

[FGKP06] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami.
New results for learning noisy parities and halfspaces.
In Proc. 47th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 563–576, 2006.

[FK96] E. Friedgut and G. Kalai. Every monotone graph
property has a sharp threshold.Proceedings of the
AMS, 124:2993–3002, 1996.

[FP04] A. Fiat and D. Pechyony. Decision trees: More
theoretical justification for practical algorithms. In
Algorithmic Learning Theory, 15th International Con-
ference (ALT 2004), pages 156–170, 2004.

[Fri98] E. Friedgut. Boolean functions with low average
sensitivity depend on few coordinates.Combinatorica,
18(1):474–483, 1998.

[Gol06] P. Goldberg. A Bound on the Precision Required
to Estimate a Boolean Perceptron from its Average
Satisfying Assignment. SIAM Journal on Discrete
Mathematics, 20:328–343, 2006.

[Gro75] L. Gross. Logarithmic Sobolev inequalities.Amer. J.
Math., 97(4):1061–1083, 1975.

[GS07] D. Glasner and R. Servedio. Distribution-free testing
lower bounds for basic boolean functions. InProc.
11th International Workshop on Randomization and
Computation (RANDOM), pages 494–508, 2007.



[Hal77] G. Halász. Estimates for the concentration function of
combinatorial number theory and probability.Period.
Math. Hungar., 8(3):197–211, 1977.
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