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Abstract—We prove two main results on how arbitrary
linear threshold functions f(z) = sign(w - = — 6) over the n-
dimensional Boolean hypercube can be approximated by simel
threshold functions.

Ouir first result shows that every n-variable threshold func-
tion f is e-close to a threshold function depending only on
Inf(f)? - poly(1/€) many variables, whereInf(f) denotes the
total influence or average sensitivity off. This is an exponential
sharpening of Friedgut's well-known theorem [Fri98], which
states that every Boolean functionf is e-close to a function
depending only on 2°M(f)/9) many variables, for the case
of threshold functions. We complement this upper bound by
showing that Q(Inf(f)* + 1/€*) many variables are required
for e-approximating threshold functions.

Our second result is a proof that everyn-variable threshold
function is e-close to a threshold function with integer weights
at most poly(n) - 2°/<”*)_ This is a significant improvement,
in the dependence on the error parametere, on an earlier
result of [Ser07] which gave a poly(n) - 2°/<>) bound.
Our improvement is obtained via a new proof technique
that uses strong anti-concentration bounds from probabilty
theory. The new technique also gives a simple and modular
proof of the original [Ser07] result, and extends to give low
weight approximators for threshold functions under a rangeof
probability distributions beyond just the uniform distrib ution.

Keywords-Boolean functions; threshold functions; approxi-
mation

I. INTRODUCTION

Linear threshold functions (henceforth simply calle

threshold functionsare functionsf : {—1,1}" — {-1,1}
of the form f(x) = sign(w - x — ) where the weights

wr,. .., w, and the threshold may be arbitrary real values. /» @nd is equal to the
Threshold functions are a fundamental type of Boolea
function and have played an important role in compute

them can be unexpectedly challenging to answer. As one
example, a moment’s thought shows that every threshold
function f can be realized with integer weighis, . .., w,:

how large do those integer weights need to be? A fairly
straightforward argument gives a bound 25t(*1°g™) | put
while this upper bound was known at least since 1961
[MTT61] and rediscovered several times (e.g. [Hon87],
[Rag88]), more than thirty years elapsed before a matching
lower bound of22("1°g") was finally obtained via a fairly
sophisticated construction and proof [Has94], [AV97].

This paper is about approximating arbitrary threshold
functions using “simple” threshold functions, meaning ®ne
that depend on few variables or have small integer weights.
We use a natural notion of approximation with respect to
the uniform distribution: throughout the papek fs an e-
approximator forf” means tha®Pr[h(z) # f(z)] < e. (Al
probabilities and expectations overc {—1,1}" are taken
with respect to the uniform distribution, unless otherwise
specified.) We prove two main results about approximating
threshold functions, which we motivate and describe below.

A. First main result: optimally approximating threshold
functions by juntas.

Theinfluenceof coordinatei on f : {—1,1}" — {-1,1}
is Inf, (f) &' Pr[f(z) # f(2®%)], wherez®' denotess with

g thei-th bit flipped. Thetotal influenceof f, written Inf(f),

is >, Inf;(f); it is a normalized measure of the fraction
of edges in the hypercube that are rendered bichromatic by
“average sensitivity” 6f It is well

rknown (see [FK96] or [BT96] for an explicit proof) that
jevery threshold function hakf(f) < y/n, and that the

science for decades, see e.g. [Der65], [Mur71], [SRK95]Maiority function onn variables achievemf(f) = ©(y/n)

Recent years have witnessed a flurry of research activity on

and in fact maximize$nf(f) over all threshold (or even

threshold functions from many perspectives of theoreticafl!l unate) functions.

computer science, including hardness of learning [FGKP06]
[KS08], efficient learning algorithms in various models Theorem.

[Kal07], [OS08], [KKMSO08], property testing [MORS09],

In [Fri98], Friedgut proved the following:

[Fri98] Every Boolean function f is e-
approximated by 2°(f(/)/€)_junta, i.e. a function depend-

[GS07], communication complexity and circuit comp_lexi_ty ing only on20af(H/) of then input variables.
[She07], monotone computation [BWO06], derandomization

[RS08], [DGJI09], and more.

Friedgut's theorem is an important structural result about

Despite their seeming simplicity threshold functions canboolean functions and has been usefully applied in several
have surprisingly rich structure, and basic questions fabolareas of theoretical computer science, including hardogss



approximation [DS05], [CKK 06], [KR08], metric embed- that fixes the large-weight variables ¢f, then, we may
dings [KRO6], and learning theory [OS07]. In Section II-D use f’|, as the regular threshold functignof the previous
we discuss the role of this theorem in a sequence of resulgaragraph, and we obtain a distribution over approximators
on the Fourier representation of Boolean functions. to f'|, where the number of relevant variables for each such
Friedgut showed that his bound is best possible for genera@pproximator is at modf(f)?-poly(1/¢). From this, using
Boolean functions, by giving an explicit family of functisn the probabilistic method, we are able to argue that there is
which require2?»f(f)/¢)_juntas for any-approximation. A a single high-accuracy approximator fof that depends on
bound of the form@(f(£)/<) is of course nontrivial only at mostInf(f)? - poly(1/e) variables, as required.
if Inf(f) < logn, which is rather small; thus, it is natural
to ask whether various restricted classes of functions) sucB. Second main result: approximating threshold functions
as threshold functions, might admit stronger bounds. to higher accuracy.
Our first main result is an exponentially stronger version

of Friedguts theorem for threshold functions: The second main result of this paper is about approxi-

mating an arbitrary:-variable threshold functiorf using a
Theorem 1 (First Main Theorem) Every threshold function threshold functiong with small integer weightsGoldberg

f is e-approximated by arinf(f)? - poly(1/¢)-junta (which ~ [Gol06] and Servedio [Ser07] have observed that, because
is itself a threshold function). of the 22(*logn) Jower bound [H&s94] on integer weights

to exactly represent arbitrary threshold functions, it & n

This bound is essentially optimal; easy examples shon) : : ‘ :

: . ossible in general to construct arapproximatorg with
thatQ(In_f(f)? +1/¢%) many variables may be required for integer weightspoly(n,1/¢). Servedio [Ser07] gave the
e-approximation. We conjecture thf’ﬂ The_orem 1 extend_s Birst positive result, by showing that for every threshold
degreed polynomial threshold functions with an exponential function f there is ane-approximating threshold function
dependence odiin the bound, and also conjecture a different which each weight is an integer of magnitude at most

: co in
;xtenspr! of Tgeotr_em “1Dthat is inspired by a theorem Of)oly(n)-QO(l/g). This result and the ingredients in its proof
ourgain; see section 1I-b. have since played an important role in subsequent work on

Techniques. The proof of Friedgut's theorem makes es- threshold functions, e.g. [0S08], [MORS09], [DGIB].

sential use of the Bonami-Gross-Beckner hypercontractive Given the usefulness of [Ser07] and the poor dependence
inequality [Bon70], [Gro75], [Bec75]. Our proof of Theo- ONe in its bound, it is natural to seek a stronger quantitative
rem 1 takes a completely different route and does not useound with a better dependence @rin fact, this was posed
hypercontractivity; instead, the main ingredients areen¢éc as a main open question in [Ser07]. Our second main result
Fourier results on threshold functions from [0S08] and amakes progress in this direction:

probabilistic construction which is reminiscent of Bruck Theorem 2 (Second Main Theorem)Every n-variable
and Smolensky's randomized construction of pOIynor'n'althreshold functionf is e-approximated by a threshold func-

threshold funct?ons [BSQZ]_‘ . ) tion g = sign(w - x — ) with wy,...,w, all integers of
In more detail, a key notion in our proof is that ofegu- magnituden?/? - 90(1/&/%)

lar threshold function; roughly speaking, this is a threshold

function where each of the weighis is “small” relative to Another question posed in [Ser07] asked about small

the 2-norm of the weight vector. Given a regular thresholdnteger-weight approximators with respect to other proba-

functiong = sign(w-x—0), we use the weights; to define  bility distributions beyond just the uniform distributioAs

a probability distribution over approximators tp (this is  described below, Theorem 2 can be generalized to hold under

done similarly to [BS92]). We show (Lemmas 5 and 6) thata range of non-uniform distributions.

a randomly drawn approximator from this distribution has Theorem 2 is proved using a new approach which we

high expected accuracy and does not depend on too mamelieve may lead to better bounds for a range of problems

variables (the upper bound is given in terms of the weightgonsidered in [0S08], [MORS09], [DG09] which use

w; and the regularity parameter). the approach from [Ser07]. Roughly speaking, the proof
An obvious problem in using this construction to approxi-in [Ser07] and the applications in [OS08], [MORS09],

mate arbitrary threshold functions is that not every thotsh [DGJT09] all rely on the fact that for suitable weight

function is regular. To get around this, we use a recenttesulvectors w, the random variablav - = (with x uniform

from [OS08] which shows that every threshold functibn over {—1,1}") can be approximated by a Gaussian. Such

can be well approximated by a threshold functignwvhich ~ approximation provides a great deal of information about

has two crucial propertieg? is almostregular (in the sense w - z, but the drawback is that the Gaussian is only a fairly

that it only has a few “large” weights), and its “small” coarse approximator of - = even for a weight vector as

weights are (appropriately scaled versions of) the infleenc well-behaved asv = (1,...,1), and this inevitably seems

of the corresponding variables ifi For each restrictiop  to lead to bounds that are exponentialjfx? (as in [Ser07],



[0S08], [DGJ09]). We now briefly describe how our new new poly(n) - 20(1/¢) hound and its proof generalize
approach that yields Theorem 2 gets around this barrier. easily to a wide range of distributions. These include

Techniques. The main conceptual difference between ourconstant-biased product distributions and, using thentece
new approach and the approach in [Ser07] is this. Théesult o_f _[DGJOQ], all K-wise |Qdependent_d|str|but|ons
proof in [Ser07] starts with aarbitrary vector of weights for sufficiently large K (K = O(1/€?) suffices for e-

that represent some threshold function; intuitively trasld ~ @PProximation).

be problematic because these weights may provide an ifdrganization. We prove Theorem 1 in Section Il and
convenient representation to work with for the underlyingTheorem 2 in Section Ill. Because of space constraints our
function. In contrast, we focus on tHanction itself and  results on non-uniform distributions, as well as some Epof
prove that every threshold function has a “nice” weightare deferred to the full version [DS09].

vector that represents it. This allows us to exploit stromiir a
concentration bounds [Hal77] that apply only under certain
assumptions on the weights; we elaborate below.

The notion ofanti-concentrationis an important ingre- This section is structured as follows: in Section II-A we
dient in our approach: a random variable has good antidescribe a randomized construction of approximators for
concentration if it does not assign too much mass tdegular threshold functions. In Section 1I-B we recall the
any small interval of the real line. The study of anti- result from [OSO08] that lets us approximate any threshold
concentration has a rich history in probability theory, seefunction by a threshold function that is “almost” regular.
e.g. [DL36], [Kol60], [Ess68], [Rog73], [RV08]. Anti- In Section II-C we put these pieces together to prove
concentration inequalities for discrete random varialmes Theorem 1. We give some discussion and conjectures in
the formw - = are known to be significantly more delicate Sections II-D.
than concentration inequalities (i.e. “tail bounds”): iehi
concentration typically depends on tBenorm of w, anti-
concentration depends on thdditive structureof the coef-
ficients in a subtle way.

We remark that [Ser07] also (implicitly) uses anti-
concentration bounds, in particular ones based on Gaussi
approximation (that follow from the Berry-Esséen Theayem
In hindsight it can be seen that no stronger anti-conceairat
bounds can be used in the arguments of [Ser07] becau
that proof considerall possiblerepresentations of the form
sign(w -  — ), wherew ranges over all ofR™. As an .
example, consider the majority function. For the standard
representation asign(>"; x;), the anti-concentration bound Definition 3. Let f(x) = sign(wo + Y.i~, wiz;) be a
given by the Berry-Esséen Theorem is the best possiblghreshold function wheré"!  w? = 1. We say thatf is
since an arbitrarily small interval that contains the arigi 7-regularif |w;| < 7 for all i € [n].
has probability mas$2(1/4/n). On the other hand, it is
possible to come up with alternate representatims(w-x)
for the majority function that have better anti-concernnat
this is essentially what our proof does. We prove a struttura Fix hg(z) = sign(d + >_I", u;z;) to be ar-regular
theorem which states that every threshold function has-a reghreshold function, s&_;", 7 = 1 and |u;| < 7 for all
resentation in which “many” weights are “well-separated;”? € [m]. Our notation emphasizes the threshold paranteter
under this condition on the weights, we obtain strong anti-since it will play an important role later.
concentration using a result of of Halasz [Hal77]. Finally We begin by defining a distributio® over linear forms
we show that strong anti-concentration yields low-weightL(z) = Y-, ¢;z;. The distributionD is defined using the
integer approximation to get our final desired result. weightsu; similarly to how Bruck and Smolensky [BS92]

Discussion: Our general approach is both modular anddefin_e_a distribution over poly_nomials using the Fourier
robust. It yields a simple and modular proof of thely(n)-  coefficients of a Boolean function. A draw df(x) from
90(1/¢) upper bound from [Ser07] which was proved thereD is obtained as followsL(x) is first initialized to 0. Then

via a rather elaborate case analysis. More importantly,

Il. THEOREM 1: OPTIMALLY APPROXIMATING
THRESHOLD FUNCTIONS BY JUNTAS

Technical Preliminaries. We assume familiarity with the
basic elements of Fourier analysis oyerl, 1}". A function
f:{-1,1}" - {-1,1} is said to be a “junta o7 C [n]"
if f only depends on the coordinatesjn As stated earlier,
we say thatf is aJ-junta,0 < J < n, ifitis a junta on some
Yt of cardinality at mosf. For a vectoru € R™ we write
|lul|1 to denote theL; norm of u, i.e. |jully = >t |ul.
We write “X < D" to indicate that random variabl& is
HWistributed according to distributiob.

Finally, we give a precise definition of the notion of a
regular” threshold function:

N

A. Randomly constructing approximators to regular thresh-
old functions.

the 2Strictly speakingz-regularity is a property of a particular representation
sign(wo + Y 1, wiz;) and not of a threshold functiof, which could
1Roughly speaking, if one forbids more and more additivecstme in have different representations some of which areegular and some of

thew;’s, then one gets better and better anti-concentratione se¢Vu08], which are not. The particular representation we are coecermith will

[TV08] and Chapter 7 of [TVO06]. always be clear from context. A similar remark holds for Digifin 4.



the following is independently repeatéd dﬁf@(”u”% =

In(1/7)) times: an index € [m] is selected with probability
H‘Zlil‘l' andsign(u;)z; is added toL(x).

Fix any z € {-1,1}". For L «— D, we may view
L(z) as a sum ofN i.id. £1-valued random variables
Z1(2),...,Zn(z), where the expectation of eady(z) is

> ﬁsign(ui)zi = 1w 2. We thus have:

flwlls
N N
ELoplL(z)] = 2 BlZ;(z)] = Hulh(u'z)' (1)

With D in hand we define a distributicR’ over threshold
functionsgy in the following natural way: to draw a function

go — D’ we drawL «— D and set
— i Ilully
go(w) = sign(6 + " L(w)). @)

We would like to show that fopy < D’, the probability
that gy (z) disagrees withhy(z) is “small,” i.e. at mosO(r).
But such a bound cannot hold for evegye {-1,1}™,
for if the value off + u - z is arbitrarily close to 0 then
the expected value of the argumentsign in (2) may be
arbitrarily close to 0. For such tha®+u- z is not too close
to 0, though, it is possible to argue that(z) is incorrect
only with small probability (over the draw aofy «— D).
Moreover, the regularity ofiy lets us argue that only a
small fraction of inputs: have# + v - z close to 0, so we
can conclude that the expected errorgpfis low. We now
provide the details.

We will use the following notion of the “margin” of an
input relative to a threshold function:

Definition 4. Let f(z) = sign(wo + Y., w;z;) be a

threshold function where the weights are scaled so tha

> w? = 1. Given a particular inputz € {—1,1}" we
. def n
definemarg(f, z) = |wo + >, wizil.

Let MARGy - def {z € {-1,1}" : marg(hg,z) > 7}

denote the set of points if—1,1}™ with margin at least
underhy. We now show that a randomy < D’ has high
expected accuracy on each poinE MARGy ,:

Lemma 5. For each = € MARGy, we have
Pry,p/[ho(z) # go(z)] < 7. Moreover, eachgg — D’
is an N-junta.

0. Sincez belongs toMARGy -, the first inequality gives
thatd + v - z > 7, which implies, via (1), thaE[L(z)] >
(N/||ul|1)( — 8). The second inequality is equivalent to
L(z) < —0N/|ull1, and consequently we hawg[L(z)] —
L(z) = N7/[[ul]1-

We thus have thatPrg,.p[he(z) # go(z)] <
Prp_p[|L(2)-E[L(2)]| > HJX—IIZ]' Now we again viewZ,(z)
as the sum ofV i.id. {—1,1} random variables. The Ho-
effding bound yields thaPr;,. p[|L(z) — E[L(2)]| > -

. = IIUH1]
IS at most
(NT/HUH1)2
—92~ 1 " 1<

2 exp ( 2 AN ST,

where the inequality follows by our choice d¥. This
completes the proof of the lemma. ]

We next note that by the regularity éf, most points in
{-1,1}™ have a large margin (and hence are covered by
Lemma 5):

Lemma 6. Procq_11ym[z € MARGy ;] < 47.

The proof is a direct consequence of regularity via the
Berry-Esséen theorem (see [DS09]).

Combining Lemmas 5 and 6, we get the main result of
this subsection:

Lemma 7. By, p/[Proci_1,1ym[g0() # ho()]] < 57.

B. Approximating threshold functions using their influence
as (almost all of) the weights.

Our next tool is the following theorem on approximating
threshold functions. Roughly, it says that every threshold
function f can be well approximated by a threshold function
1" where all but thepoly(1/¢) largest weights off’ have
a special structure: up to sign, they are the vall(f).
&Recall that for a threshold functiofi we have|f(i)| =

nf;(f).)

Theorem 8. [Theorem 17 of [OS08]] There is a fixed
polynomialx(e) = ©(¢'4*)2 such that the following holds:
Let f(z) = sign (wo + D ien Wii + D ier wia:i) be a
threshold function over head indiced and tail indices
T, where H &' {i + |f(i)| > k(e)?} and T satisfies
> ier wi = 1. Then either:

(i) f is O(e)-close to a junta ovefd; or,

(i) f is O(e)-close to the threshold functiofi’(z) =

sign (wo + D iem Wili + Y sep {7(;) xl) , Where or de-

~

Proof: The latter claim is immediate so it suffices to notesy/> . . f(i)2. Moreover, in this case we haver =

prove the former. Fix any € MARGy -, sO|0 +u-z| > 7.

We need to bound from above the probability of the “bad”

event (over the random choice ¢gf — D’) that hy(z) #
go(2); we refer to this bad event &3.

The key claim is that ifB occurs then it must be the case

that|L(z)—Er_p[L(2)]| > . For suppose thaty(z) =

= Jlull

Q(e2).

Note that}>, ., (f(i)/or)? = 1, and sincerr = Q(¢?),
for eachi € T we have

F(0)/or| < 5(€)2/ar < O(¥) /() = O(*%). (3)

3See the discussion immediately before Equation (24) of EDS6ur

1 andgy(z) = —1 (the other case is handled similarly). By ,(c) s ther(c) of [0S08].

definition, we have that+u-z > 0 andf+(||ull1/N)L(z) <

4See Equation (24) of [0S08].



This means that for any restrictiom fixing the variables

in H, the functionf’|, is poly(e)-regular; this is important

since it will allow us to apply the results of Section II-A to
these restrictions.

C. Proof of Theorem 1.

Now we are ready to prove Theorem 1. We first show

that every threshold functioff is O(e)-approximated by a
(14 Inf(f)?) - poly(1/¢)-junta threshold function, and then

Fix any assignmen to the variables ind. By Lemma 7
we have

Ejpr [PrmTH{fl,l}‘T‘ [f/|p(xT) # 9|p($T)]] < o7

Averaging over allp, we get

Eg<—D” [Prw—{fl,l}" [f/((E) 7& g(l’)]] < oT

which is the desired bound.

argue that this yields Theorem 1. For brevity, in the rest of So, we have shown that every threshold functipris

this subsection we writé for Inf(f).
Let0 < € < % be given and letf be anyn-variable

O(e)-close to a(1+12)-poly(1/e€)-junta; we finish the proof
of Theorem 1 by arguing that this impliesl&- poly(1/¢)

threshold function. W.l.o.g. we may consider a representajunta size bound. Let be an absolute constant such that

tion f(z) = sign(wo + Y., w;z;) in which eachw; # 0,

every f is e-close to a(1 + 12) - (1/¢)°-junta; we consider

and by scaling the weights we may further assume thadlifferent cases based on the sizé.af I > 1, thenitis clear

=[]\ H hasy,pw? = 1.
We apply Theorem 8 tg. Parseval's identity implies that

at most1/x(e)* many indicesi can have|f(i)| > r(e)?,
so we havelH| < 1/k(e)* = poly(1/¢). In Case (i) we
immediately have thaf is O(e)-close to apoly(1/e€)-junta,

that (1 + I2)(1/e)¢ < 2H2(1/e) < I*(1/e)et! (usinge <
1/2). If I < €%, since} <Z\5>1|S|f( )2 =

I (the equahty is a we‘l Lnown fact in Fourier analysis of
Boolean functions, see e.g. [KKL88]), by Parseval’s idgnti
we get that| f(0)| > 1 — e. This means thaf is e-close to

so we suppose that Case (i) holds, and henceforth argug constant function, which is of coursedgunta. Finally, if

about theO(¢)-approximatorf’ defined in Case (ii).

We consider alprov(1/¢) restrictionsp obtained by fixing
the head variables i/. Our goal is to apply the results of
Section II-A to the functiong’|,. As noted in Section II-B,
for each restrictiorp the resulting functiory’|, over the tail
variables inT is a 7(¢)-regular threshold function, where
7(€) = O(€%¥9) is the function implicit in the RHS of (3)
(for brevity we henceforth write- for 7(e)). Moreover, all
these restrictions are threshold functions defined by thesa
linear form over the variables ifi: they only differ in their

threshold values, i.e. the valués def wo + D ey Wipi-

In keeping with the notation of Section II-A, for each
restriction p we write hy, to denotef’|p, i.e. hg,(27) def
sign(f, + >, cp uiz;) Whereu; def 7 gn ndxr ZEf (4)ieT-

orT
We observe thaful/; = ZZGT i equals

S |fG)) s — Z /(@) <T-poly(1/e).  (4)
0T €T
where the last inequality usdsf;(f) = |f(i)| andor =
Q(€?). Recalling thatV equals®(||u||2 % -In(1/7)), w

have thatV is at mostl? - poly(1/e).

We consider a distributioD” over threshold functions
on {—1,1}" defined as follows: a draw off «— D"
is obtained by drawingL — D and settingg(z)
sign(wo + ;e g wits + % - L(z7)). For every outcome
of g — D", the functiong depends on at mos$ti| + N =
(1 + I?)poly(1/¢) many variables.

It remains only to argue that songedrawn fromD” is is
O(e)-close tof’. Via the probabilistic method, to do this it
suffices to show thadl,. p/ [Pr,c_1,13»[g(x) # f'(2)]] =
O(7) (recall thatr < €). We now do this using the results
of Section II-A.

2 <I<1,thenl +1%2 <2 < 21274 < T%5, so f can
be e-approximated by d2(1/¢)“*5-junta. So in every case
f is e-close to aninf(f)? - (1/€)**®-junta, and Theorem 1
is proved. O

D. Discussion and Conjectures.
Improved low-weight approximators of threshold func-
tions. Recall the main result of [Ser07]:

Theorem 9. [SerQ7] Everyn-variable threshold function
f is e-approximated by a threshold functign= sign(w
z — 0) with wy,...,w, all integers satisfyingd_"_, w? <

n . 2001/e%)
While a linear dependence on is the best possible
bound which can hold uniformly for att-variable threshold

functions, it is possible to give a sharper bound that depend
on f. Applying Theorem 9 to the threshold function junta
which is given by Theorem 1, we obtain:

Corollary 10. Everyn-variable threshold functiory is e-
approximated by a threshold functign= sign(w - « — 6)
with wy, ..., w, all integers satisfyingd " , w? < Inf(f)?-
90(1/€%)

Sincelnf(f)? is at mostn (but can be much less) for every
threshold functionf, this strengthens Theorem 9.

A lower bound. We observe that thénf(f)? - poly(1/e)
upper bound of Theorem 1 is nearly best possible: no
strengthening can replace this with a bound smaller than
Q(Inf(f)% + 1/€%) (see [DS09]).

Extending to degreed? It is natural to wonder whether
Theorem 1 extends feolynomialthreshold functions (PTFs)
of degreel, i.e. Boolean functiong(x) = sign(p(x)) where



pis a degreet polynomial. We pose the following conjecture Conjecture 2. Every threshold function f with
which is a broad generalization of Theorem 1: Y5k ()7 < (e/k)/?+°() is e-close to apoly(k/e)-
Conjecture 1. Every degreet PTF f is e-approximated by junta.
O(d)_j
a (Inf(f)/€) junta. [1l. THEOREM2: APPROXIMATING THRESHOLD
We suspect that even thé = 2 case of Conjecture 1 FUNCTIONS TO HIGHER ACCURACY
may be challenging, as the total influence of low-degree

polynomial threshold functions does not seem to be well As outiined in Se(_:t|on B, our new approach can be
conceptually broken into the following steps:

understood.
1) Show that every threshold function has a representa-
An exponential sharpening of Bourgain's theorem? tion in which many weights are “nice”.
By Parseval's identity, every Boolean functiofi has 2) Use the “niceness” of the weights to establish anti-
>-5Cn] f(S)? = 1. Since the total influencknf(f) equals concentration ofw - .
dos £(9)2]S| and the degree of each monomigj is | S|, 3) Finally, use the anti-concentration of - = to obtain
we may interpreinf(f) as the “average” Fourier degree of an approximator with small integer weights.
I Note that there is a delicate relationship between the first

With this point of view, Friedgut's theorem may be viewed o steps: the structural result for the weights that iskesta
as part of a sequence of three results, all of which essbntial ished in the first step must match the necessary conditions
say that Boolean functions with low degree (in some senseg anti-concentration in the second step. The third step is

are close (in some sense) to juntas. The first and earliest ¢f simple generic lemma translating anti-concentration int
these results is the following theorem of Nisan and Szegedyg-weight approximation.

Theorem 11. [NS94] Every Boolean function with (maxi- The structure of this section is as follows: We first recall
mum) Fourier degreé is a k2*-junta. the anti-concentration results that we need to implement

Step 2 in our above proof template. We then prove the
This theorem imposes a strong degree conditiorf enthat  simple lemma that implements Step 3 in our proof template.
it have zero Fourier weight above degrele — and gets a |n Section III-A we give a “warmup” to our main result
strong conclusion, thaf is identical to a k2*-junta. Next, by using the template to give a clean and modular proof
Friedgut’s theorem [Fri98] relaxed both the degree coaditi of the main result of [Ser07]. In Section 1I-B we show
on f and the resulting conclusion: if the “average” Fourier how the template yields a variant of Theorem 2 which has
degree off (i.e. Inf(f)) is at mostk, then f is e-close to g ,0(1/€’*) pound. This subsection includes our main
a29(+/9-junta. Finally and most recently, Bourgain relaxed new technical contribution of Section Ill, a new result on
the degree condition even further, by showing thaf fiuts  representations of threshold functions, Lemma 22. Roughly
most of its Fourier weight on low-degree monomials, thenspeaking, this lemma says that every threshold function
regardless of where the remaining Fourier weight li¢s, has a representation such that many of the differences

must be close to a junta: between consecutive weights are not too small. Finally, in
Theorem 12. [Bou02] Every Boolean functionf with ~ Section Ill-C we show how this: (/") bound can be

S isi>k F(8)2 < (e/k)/2+°() s e-close to a20(k) .  improved to fully prove The_orem 2. _
poly(1/e)-junta. All the results of this section can be appropriately gener-

. ) ) alized to constant-biased product distributions dfidvise
Let us consider how each junta size bound changes wheggependent distributions (but they provakgnnotbe gen-

we restrict our attention to threshold functions in the &ov eralized toeverydistribution). Because of space constraints,
theorems. We first observe that the [NS94] bound can b give these results in [DS09].

exponentially improved in this case:

. ) , : Anti-concentration of weighted sums of Bernoulli ran-
Proposition 13. Every threshold function with (maximum) 4o yariaples. We start with the formal definition of anti-
Fourier degreek is a (2k — 1)-junta. concentration:

(This follows from the easy fact that any threshold functionDefinition 14. Leta € R™ be a weight-vector and € R .
with r relevant variables contains a subfunction which is ang,, Levy anti-concentration function of is defined as
(=H)-way AND or OR.) Our Theorem 1, of course, tells us
that Friedgut’s theorem can also be exponentially shaghene po(a) def sup Pr la-z—v| <7l
if f is a threshold function. This motivates the natural " ek U -
guestion of whether Bourgain's theorem can be similarly

sharpened for threshold functions. We state the following: 1hUS, the anti-concentration of a weight vectoris an
upper bound on the probability that- z lies in any small



interval (of length2r). An early and important result on anti- It is clear thatmax; |v;| = O(max; |w;|/@), so it suffices to
concentration was given by Erd6s [Erd45]; improving on anshow thath is (e + €)-close tog.
earlier result of Littlewood and Offord [LO43], he proved Fori € [n], lete; = w; —u;, SO thatu-x = w-x—e-z. We
~ & have thay(x) # h(z) only if |e-z| > r or |w-z—0| < r. We

&he%r:rg ir? t(E;doé) >Let ? - ||(a.1’ - '];ak%he RE, o i bound from above the probability of each of these events by

N u_ _‘j?g' 2 rforall i € [k]. Thenp,(a) < e. The probability of the second event is bounded:tsince
(k/2)/2 =O(k )- Pr{jw-z—0] <r] < p,.(w) < e. For the first event we have

A large body of subsequent work generalized this resullPr{le - | > r] < Pr{le- z| > |le|l2\/21n(2/€)] < €, where
in many different ways (see e.g. Chapter 7 of [TV06)); the first inequality uses the faffe|» < (r//21n(2/¢)) and
anti-concentration results of this general flavor have coméhe second follows from the Hoeffding bound. [ ]
to be known as “Littlewood-Offord theorems.” We shall
require an extension of Theorem 15 which is due to ) ) ) i
Halasz [Hal77], improving upon Erdés-Moser [Erd65] and [N this section we give a simple and modular proof
Sarkozy-Szemerédi [SS65]. While Erdés’s theorem give Of nearly the same bound as the main result of [Ser07],
the best (smallest) possible anti-concentration bounanass following the proof template from the start of Se_ctlon M.
ing that eachweight a; is large, Halasz's theorem gives L€t f:{—1,1}" — {—1,1} be any threshold function.

a stronger bound under the stronger assumption that theirst step: This is provided for us by the following result,
differencebetween any two weights is large: which is an immediate consequence of Lemma 14 in [0S08].
Theorem 16 (Halasz) Leta = (ai, ..., a;) € RF, r € R, Intuitively, this result says that every threshold funaotiwas

be such thata; —a;| > r for all i # j € [k]. Thenp,(a) < & representation in which thieth largest weight is not too
O(k~3/2). L = small compared with the largest weight.

Looking ahead, we note that the “3/2” exponent insteaoCIaim 19_‘ Let f: {-1,1}" — {~1,1} be any thrESh'
of “1/2” is the key to our improvement from©(/<) to old function, lete > 0, and letk € [n]. There is an
90(1/€*/?) e-approximator g = sign(}. , w;z; — 0) for f with

The last fact about anti-concentration that we shall neeéhe. foIIov_vmg property: Suppose (reordering and rescaling

weights if necessary) that = |wy| > -+ > |w,|. Then

is the following simple lemma, which says that if we P e WY
extend a weight vectai by adding more weights, its anti- [wr| 2 1/(k%/3n1n(2/€)).

concentration can only improve:

A. Warmup: Simple Proof of [Ser07] Main Result.

Second step:We apply Erdés’s theorem, Theorem 15, to
Lemma 17 (Extension) Let a € R* be anyk-dimensional the weight vector(ws,...,w;) from Claim 19 (we will
weight vector and € R, be any non-negative real. For any fix & later), takingr = 1/(k*\/3nIn(2/¢)) to be the

n >k, leta’ € R" be the vectofay, ..., ax,a),,,...,a,)  bound from Claim 19. Theorem 15 gives(w, ..., wy) <
where the weights) ,,...,a/, may be any real numbers. O(1/Vk), and the Extension Lemma 17 gives that in fact
Then we have, (a') < p,(a). pr(wi, ..., w,) < O1/VE).

The proof is by a simple averaging argument, using theThird step: It remains only to fixk = min{1/¢? n} and
fact that forz < {—1,1}" uniform random, conditioned on Observe that the: obtained from Lemma 18 is a0(e)-
any outcome of the variables,, 1, . .., z., the distribution ~approximator forf. (Note that if 1/e* > n, then integer
of z1,...,x is still uniform. weights20(1/<*) suffice toexactlyrepresenyf by [MTT61].)

. . ) ] We have thus proved:
From anti-concentration to a low-weight approxima-

tor. The following simple lemma takes us from anti- Theore_m 20. Every n-variable thre_shold functiory is e-
concentration to a low-weight approximator. We use it to@Pproximated by a threshold functign= sign(v -  — 6)

implement Step 3 in our proof template. with v1, ..., v, all integers of magnitude - 200/<*),
Lemma 18. Let g = sign(3", w;z; — §) be any thresh- This is almost identical to the main result of [Ser07]; the
old function. If p,(w1,...,w,) < e then there exists a bound of [Ser07] hag/n in place ofn.

2e-approximator i for g, where  is a threshold func- g toward Theorem 2: AnC/<*®) bound.
tion with integer weights each of magnitud¥max; |w;]| -

vnln(1/€)/r).
Proof: Let « = r/(y/nln(2/¢)). For eachi € [n],

let u; be the value obtained by roundmg to the nearest SWe do not repeat the proof of Claim 19 from [0S08] here but we

. . . note that the proof is self-contained and rather straigivied; it follows
integer multiple ofa andv; = u;/a € Z. We claim that along the lines of [MTT61]'s classic argument to upper botimel weights

h(z) = sign(>"1_, v;z; — 0/a) is the desired approximator. required to represent any threshold function.

In this section we prove an intermediate result towards
our ultimate goal opoly(n) - 20/<*/");



Theorem 21. Every n-variable threshold functiory is e-
approximated by a threshold functidn= sign(v - z — 6)
with v1, ..., v, all integers of magnitude®(/<*’*).

We follow the same high-level proof template as the

previous section. Lef : {—1,1}™ — {—1,1} be a threshold
function. We may assume w.l.0.g. thAtdepends on alh

C. Proof of Theorem 2: Avoly(n) - 201/<*”*) pound.

Given a threshold functiorf(z) = sign(w - = — ) such
that |wy| > -+ > |w,| > 0, for k € [n] we denote by,

the quantity/) ., w?. The analysis in [Ser07] is based
on the notion of the +-critical index”:

Definition 23. We define ther-critical index ¢(7) of a

input variables, and since the claimed bound follows againhreshold functiory = sign(w - = — 0) as the smallest index

from [MTT61] if 1/€%/% > n—2, we assumé /e?/3 < n—2.

First step: Our goal now is to apply Halasz's anti-
concentration bound in Step 2 rather than Erdés’s theore
To do this we need the following new result on representin

threshold functions, which intuitively says that everyetin-

old function has a representation using weights such th

dhe e-criical index ¢ £ ¢(c). If ¢ > L £

i € [n] for which |w;| < 7 - 0;. If this inequality does not
hold for anyi € [n], we define/(7) = co.

We now show how to use Theorem 21 and ideas from
Ser07] to prove Theorem 2. Given > 0, we proceed
y a case analysis, as in [Ser07], based on the value of
= oa/e),

many of the differences between consecutive weights ar&ase lla in [Ser07] says that is e-close to theL-junta

not too small compared to the largest weight:

Lemma 22. Let f : {-1,1}" — {—1,1} be a threshold
function that depends on all variables. There is a rep-
resentationsign(> ., w;z; — 6) for f with the following

g obtained by truncating the smallest — L) weights, i.e.
g(z) = sign(>2%, w;z; —0). By applying Theorem 21 tg,

we obtain anc-approximator with integer weights of mag-
nitude LO/<**) = 20(1/¢*”*) "\which is a2e-approximator
for f. It remains to handle the cage< L. To do this, we

property: Suppose (reordering and rescaling weights if-nec use another fact from [Ser07]; that, for every value/pf

essary) thatl = |wy| > -+ > |w,| > 0. For i € [n — 1]

let A, &ef |w;| = |wit1]. Then for anyk € [n — 2], the k-th

biggest element of the (multised,,...,A,,_; is at least
1

En2)7FFs

We pause to contrast this result with an earlier theore
due to Hastad [Has05] that appeared in [Ser07]. Under t
same hypotheses as Lemma 22, the earlier theorem asserte

that for anyk € [n] the k-th largest weightw; satisfies

(wi| =

(n+1)°

a careful analysis of a linear program in which the variable

are the weightswy,...,w, and there ar&™ constraints
corresponding to th@™ pointsz € {—1,1}". To prove

Lemma 22, we must now analyze a linear program with

some additional constraints which, intuitively, ensuratth
there are “gaps” between the weighté/e prove Lemma 22
in Section III-D.

Second step:We take k = 1/¢%/3 and consider thek
largest differenced;, = |w;, |—|wi;+1], .-, g, = |wi,, | —
|w;, +1]. Lemma 22 implies that for alk # b € [k] we
have |w;, — w;,| > r, for r = 1/(2n + 2)?%+8. Applying

Halasz’s anti-concentration bound, Theorem 16, we gat thgconsider the threshold

pr(wiy, ..., w;,) < O(k=3/2) = O(¢), and the Extension
Lemma 17 further givep, (w1, ..., w,) = O(e).

L The proof of the earlier theorem centers on
s

there exists am-approximator forf with integer weights of
magnitude,/n In(1/e) - 20¢10e0) If ¢ < K %'2/¢2/3 this
yields ane-approximator with integer weights of magnitude
Vi - 2001/€%) and we are done. To handle the cdse<

¢ < L, we use a combination of Gaussian anti-concentration

rr%for then — ¢+ 1 smallest weights) and “Halasz-type” anti-

oncentration (for the largegt— 1 weights).
c[et us proceed with the analysis. We start by rounding
the weightswy, . .
to get ane-approximatorg(z) = sign(>_;_, viz; —

., wy, exactly as in Case llIb in [Ser07],
0" for

f with the following properties: (i) Foi > ¢, eachw; is
an integer of magnitud®(y/nln(1/e)) and 1 ,v? =
O(nin(1/€)/€?); (i) It holds |vi| > |vo| > ... >
|vg—1] > 1. Our goal is to establish the existence of @n
approximatiorh for g with small integer weights. To achieve
this, we will use the fact that the “tail” off has small
integer coefficients, i.e. the integer—valued random Wégia
t(x) def Yo, vix; has small support.

Let R,k > 0 be integers. Denote b)(R, k) the set
{£1}*! x {-R,—R + 1,...,R — 1,R}. Now fix an
integer Ry = O(y/n1n(1/€)/e) and denote d:EfQ(RO,é).
functioh : Qy — {+1} de-
fined by h(y) = sign(X\lvivi + ve — 0), y € Q.
We claim that the threshold functiog’ : {-1,1}" —
{—1,1} defined byg'(x) = h(x1,...,2xe—1,t(x)) IS e-Close

Third step:. We simply apply Lemma 18. Recalling that t0 g. To see this note thay’(z) equalsg(x) whenever

r=1/(2n+ 2)°1/¢"") Theorem 21 is proved. O

6In fact, by considering the majority function one can verihat the
2™-constraint linear program of the earlier proof is not sigfit; that LP

yields a representation in which eaah is the same and hence the “gaps”

A; are all 0.

[t(z)] = | Y i, vizi| < Ry, and this holds for a random
2 with probability 1 — ¢ by a Hoeffding bound (since
Ro > +/2In(2/e)>_;_,v? by the definition of R, and
property (i) of g).

At this point we use the following technical generalization
of Lemma 22, whose proof is given in [DS09]:




Lemma 24. Let b’ : Q(R,k) — {+1} be a threshold coordinates we may assume thaf; (f) > Infy(f) > --- >
function that depends on all variables. Suppose that (y) Inf,,(f) > 0 (the final inequality is strict becaugedepends
has a representation asign(zfz1 wiy; — 6") such that on all n coordinates).

|wi| > |ws] > ... > Jwy| > 0. There exists an alternate
representation ofh’ as sign(Zf:1 ugy; — ) satisfying (
1 =|ui| > -+ > |ug| > 0, with the following property: For
iek—1]letA; d:ef|ui| — |ui41]- Then for anyj € [k — 2],

We consider the setV C R™ of weight vectorsw =
wi, . .., w,) that satisfy the following properties:
1) w-xz > 1 for everyz € {—1,1}" such thatf(x) = 1.
Note that sincef is odd these inequalities imply the

the j-th biggestlelement of the (multisel);, ..., Ay is corresponding inequalities for negative points,z <
at least mrropy =S - —1 for everyz € {—1,1}" such thatf(z) = —1.
Applying this lemma toh, i.e. settingh’ = h, R = R, and 2) wi—wipq > 1foralli=1,2,...,n—1, andw, > 1.
k = ¢, and fixing j def /2342 < K —2< (-2, we The first set of2"~! constraints says thaign(w - ) is
get a representatioﬂgn(Zf:1 wiyi — 0") for h such that @ valid reprensentatmn fof (i.e. f(x) = sign(zy -x) for all
the j largest differences\;, = |us, | — |ui,41),..., A, = & € {-=1,1}™). The second set of constraints says that

1 ’ no two weights are precisely the same and moreover all the

|ui; | —|ui; 1| are at least, for ro = OTTIR) T =
(1/+/n) - 2-00/<*) (Note that the latter equality uses the
fact that?/ < L.) This yields a set of’ = 1/¢*/3 weights
upy, ..., g, — NOt includingu, — whose absolute differences
are at leasty, i.e. for alla # b € [j'], we haveju;, —u;,| >

weights are positive. (These are the new constraints tkat di
not feature in the proof of [Has05].)

Thus W is the feasible set of a linear prografiP
consisting of2"~! + n inequalities onwy, ..., w,: 27!
inequalities correspond to points of the hyperciibd, 1}

To- _andn inequalities correspond to the set

We are now ready to use our proof template again.
The alternate representation fér from above and the Dn = {(1,—1,0,...,0)1xn,(0,1,-1,0,...,0)1xn,-- -,
definition of ¢’ imply that ¢’(z) can be represented as 0,...,1,—1)15n, (0,0, D)1xn ).

sign(Zf;ll wixi + Yoo, uix; — 60”), where u] def UpV;,
¢ < i < n. By Halasz’'s bound, Theorem 16, applied to
the weightsu;, , . . . S UL, and the Extension Lemma 17 as
before, we conclude that,,(u1,...,u,) = O(e). Finally,

since the maximum weight in (the new representation §or)

is O(y/nlog(1/¢€)) (as follows from the fact thaju,| < 1,

i € [£], and property (i) ofg), Lemma 18 implies the exis-

tence of anO(¢)-approximator forg’ with integer weights
3/2 . 90(1/€/?) i

each at mosh 2 . This concludes the proof of that Inf,(f) > Infa(f) > ... > Infu(f) > 0 and that

Theorem 2. = f is monotone increasing in all its coordinates. It is well
D. Proof of Lemma 22 known and easy to show (see e.g. [FPO4]) that there is a
representatiosign(w - ) of such a threshold function that
satisfiesw; > wy > ...w, > 0. Therefore, we can scale
Lemma 22.Let f : {~1,1}" — {—1,1} be a threshold the weights so that all the constraints in the linear program
function that depends on alt variables. There is a rep- £7P are simultaneously satisfied.
resentationsign (3", w;z; — 6) for f with the following Having established thad + (), we select a weight vector
property: Suppose (reordering and rescaling weights if-necw® € W that maximizes the number dight inequalities
essary) thatl = |wy| > -+ > |w,| > 0. Fori € [n — 1] (i.e. satisfied with equality) iP. If more than one weight
let A, def |wi| — |wis1|. Then for anyk € [n — 2], the k-th vector satisfies a maximum number of tight inequalities, we
choose one arbitrarily. At this point, we invoke the follogi
crucial claim:

We claim that the linear programt? is feasible, or
equivalently W # (. Indeed, by simple standard argu-
ments it can be shown that every odd threshold function
f:{-1,1}" — {—1,1} has a representatiasign(w - x)
such that (i) for allz € {—1,1}", it holdssign(w - z) # 0,
and (ii) every partial sum of the weights is distinct, i.et fo
all I #J C [n]itholds), ;w; # > ,c;wj. The latter
in particular implies thaty; # wa # ... # w,. Now recall

Recall Lemma 22:

biggest element of the (multised,,...,A,,_; is at least
1
(@n+2)2FFs -

Proof: Let f(x) be a threshold function. We first
consider the case thgt is odd, i.e.f(z) = —f(—x) for
all x € {—1,1}"; in this casef can be represented with
a threshold of zero. Once we have established the resuf!
for such threshold functions we will use it to establish the The proof of the claim is essentially the same as in the
general case. proof of Murogaet al's [MTT61] classic upper bound on

By symmetry of {—1,1}" we may assume thaf is the size of integer weights that are required to expressd.TF’
monotone increasing in each coordinate By reordering over{—1,1}" (see [DS09]).

Claim 25. There exists a set of pointsy(®),... 4™ ¢
f~1(1) U D,, such thatw* is the unique solutionof the
linear system{w -y =14 =1,2,...,n}. (Henceforth,
e shall denote this system by).)



Note that(x) is a system ofn linear equations in the
variablesws, ..
in the equations is-1, 0 or 1 and the right-hand side of each

Recall thatry > --- > 7* > 0. We now show that each

., w, Where each coefficient of each variable 7} is somewhat large compared i@;. The casek = 1 is

n

easy: since ., 7" = w}, we haver; > wi/n.

equation isl. Since our goal is to prove a statementaboutthe Fix any k e {2,...,n}. After possibly reordering the

magnitude of the differences; — w;;1,i=1,2,...,n—1,
we define an appropriate set ofnew variables and rewrite
(*). In particular, we define the set of variablgs ..., d,
as follows:
§n:wn, 5i=wi—wi+1 forizl,...,n—l.
This is equivalent to
Wy, = O, w; =0; +---+06, for i=1,...,n—1.

We letd denote[dy, ..., d,]. By rewriting (x), we get an
equivalensystem(xx) of n equations in variables, . . ., d,

where the coefficients of each variable in each equation are

integers in the rangé—n,n] and all the right-hand sides
remain 1. Hence, the linear systertxx) has the unique
strictly positive solution

* * .
o =wy, 0f =w; —wy, for i=1,...,n—1.

At this point we reorder the variablés in decreasing order
of magnitude of thé;'s. We thus get a new set of variables
T,...,Tn SUCh that

T = i-th largest of{67,...,d,},

breaking ties arbitrarily. We similarly denote
[T1, -, Tnl-

So () is now a system ofr equations in variables

rows of Z, the (k — 1)-dimensional vectofl, 0,...,0] can
be expressed as a linear combinatiQi®; +- - - +ax_1 Rk 1
where R; is thei-th row of the (k — 1) x (k — 1) upper
left submatrix of Z. Since all entries inZ are integers in
[—2n, 2n], Cramer’s Rule implies that eadh;| is at most
the maximum determinant of arfys — 1) x (k — 1) matrix
with all entries in[—2n, 2n]; this is easily seen to be at most
(k—1)!(2n)*~1. It follows that there is a linear combination
of the firstk — 1 equations of (5) which yields

n
§ : k

T = ’}/jTj
=k

where eactiy}| is at most(k—1)-(2n)- (k—1)!(2n)F ! <

(2(k — 1)n)*. From (6), settingT = 7* and recalling that
the 7*'s are positive and ordered by magnitude, we now get
7 < (n— k + 1)(max; |y¥|)7; which implies

(6)

o o .7
PRk - D)k —k+1) = (2n)2hH

Observing thad """ | 7 = wi, we haver; > w}/n, which
implies

(@)

wi
(2n)2k+2'

Finally, we observe that fok € [n — 1], the k-th biggest
element of the multised\q, ..., A, (see the lemma state-

TR >

{7i}iem)» Where the coefficients of each variable in eachment) is at least;. . (It is eitherr;., or 7, depending on

equation are integers in the rangen,n| and all the right-
hand sides are still. The valuesr{, ..., 7 in the unique

r'n

whether or not} = w} is among the: largest elements of
{6%,...,0;}.) Renormalizing so that the largest weight is 1,

solution of this system are strictly positive and ordered inwe have shown that for odf] thek-th biggest element of the

decreasing order of magnitude. Let us write
Qj1T1 + QjoTe + ...+ QjpTh = 1

for the j-th equation wherew;;, i,j € [n] are integers
in [—n,n]. It is not difficult to see that the above system
is equivalent to the following system of equations in
Tlyeooy T

Qj51T1 + Qj2T2 + ...+ QjnTn = O117T1 + 2T + ... Fa1nTh

for 7=2,3,...,n, and 7, =7,.

Each of the firstn — 1 equations is homogeneous and A, .

can be rewritten as - z0) = 0, wherez\) is a vector
whose entries are integers [pr-2n,2n|. So we have that
* = [rf,...,7}] is the unique solution to a linear system:

(5)

whereZ is a non-singulan x n matrix with entries that are
integers in[—2n, 2n] and with last row(0,...,0,1), andb
is [0,0,...,0,77].

ZT=10b

multisetAq, ..., A, is at leastz—5—. This completes
the proof of Lemma 22 for the case thatis odd.

We now treat the case wheyrgis not odd, i.e.f has a
nonzero threshold. We do this by considering the threshold
function g : {-1,1}"*' — {—1,1} which has zero
threshold;: weights the same g§ and an(n+ 1)-st weight
which is the threshold of. The result for the zero-threshold
case shows thaj has a representationign(wizy + -+ +
WLy + Wnt12Tn41) Wherelwy| > -+ > |w,41|, @and letting
A; = |wg| — |wiga] fori e [nH, the k-th biggest element of
., A, is at Ieast(%rgﬁ for any k € [n].

We now observe that fok € [n — 2], the k-th biggest
gap between the magnitudes of thg's that correspond
to actual weights off is at least the(k + 2)-th biggest
element ofA4,...,A,. This holds since at most two of
the valuesA; = |w;| — |w;+1| can involve the weight
w;+ Which corresponds to the threshold ¢f as opposed
to one of its actual weights. Sinde| is at least as large
as the absolute value of the largest actual weight ofve



get that fork € [n — 2], the k-th biggest gap between the [CKK106] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani,

magnitudes of the actual weights ¢fis at least (largest
weight of f)/(2n+2)2++8. Renormalizing so that the largest
magnitude weight off is 1, Lemma 22 is proved. [ ]

[Der65]
IV. CONCLUSIONS ANDFUTURE WORK

We have already discussed directions for future work[DG J+09]

relating to Theorem 1 in Section II-D. Regarding Theorem 2,
we feel that our high-level approach using anti-conceiatnat
holds promise for substantial further progress. Signitican
strengthenings of Halasz's anti-concentration bound ar
known under stronger restrictions on the additive structur
of the weightswy,...,w,, see e.g. [Vu08], [TV08]. Can
corresponding extensions of Lemma 22 be established, pro
ing that every threshold function admits a representatio
with weights that have the required structure? Perhapyever
threshold functionf can bee-approximated using integer
weights at mospoly (n) - 2P°¥1e(1/9) We hope that further [PS09]
study of our anti-concentration based approach may yield
such a bound.

[DL36]
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