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Abstract such that sgv(z)) = f(z) forall z € {+1, —1}". (Alter-

natively, we sometimes say that such a polynomisign-
In this paper we give new extremal bounds on polyno- representsf.)
mial threshold function (PTF) representations of Boolean Polynomial threshold functions play an important role
functions. Our results include the following: in theoretical computer science. They are very useful in

o Almost every Boolean function has PTF degree at mostStructural complexity theory; the Beiget al. [6] proof that

2 4 O(y/nlogn). Together with results of Anthony PP is close_d under intersec'_tion uses clever constructions
and Alon, this establishes a conjecture of Wang and of polynomial threshold functions, and many oracle results

Williams [26] and Aspnes, Beigel, Furst, and Rudich have been obtained using PTFs, e.g. [3, 4, 11, 25]. Poly-
[3] up to lower order terms. nomial threshold functions can be viewed as threshold-of-

parity circuits and as such have been studied by researchers
e Every Boolean function has PTF density at mdst- in circuit complexity [8, 9] and learning theory [16]. More
otmy)2"- This improves a result of Gotsman [12]. recently, upper bounds on polynomial threshold function
degree have been used to obtain learning algorithms for
o(1)2". This gives a negative answer to a question various c_:Iasses of Boolear_1 circuits [13, 17, 21]. .FinaIIy,
posed by Saks [23]. poly_nomlal threshold functions are an inherently interest
ing intermediate model of computation between purely al-
e PTF degree|log, m| + 1 is necessary and sufficient gebraic models such as Fourier @F; polynomials and

for Boolean functions with sparsity. This answersa  purely combinatorial models such as decision trees or logic

guestion of Beigel [5]. circuits. See Saks [23] for an extensive survey on polyno-
mial threshold functions.

The two most basic complexity measures for a polyno-
mial threshold function are its degree and its density (num-
ber of nonzero monomials). Thilreshold degreef a
Boolean functionf is the minimum degree over all poly-

A broad research gqal n com_putat|ona| comp_lexﬂy IS to nomialsp which sign-represent, and thethreshold density
understand the properties of various representation sehiem : - . . .
: : of f is the minimum density over all polynomiglswhich
for Boolean functions. Many representation schemes have

. .. _sign-represenf. Note that without loss of generality we
been stud|ed,_ such as DNF and CNF formulas, dguspnmay take any sign-representing polynomial to be multilin-
trees, branching programs, the Fourier representatien (i.

olynomials over the reals). polynomials 0¥&F;, mono- ear, and hence every Boolean function has threshold degree
foni span programs, and sé)r())ny > at mostn and threshold density at maxt.

In this paper we consider Boolean functions represented A_splntehset ﬁl‘k[j?’] mtroducte(tj. a useful v?rlant 0|r(1 polly-
aspolynomial threshold functionsGiven a Boolean func- nomial thresnoid representations, namely, weak polyno-

tion f : {+1,-1}" — {+1,—1}, a polynomial thresh- mial threshold representations. Given a Boolean function

old function (PTF) forf is an-variable real polynomiap f o 41 —13" = {41, ~1} we say ther-variable poly-
nomialp is aweak polynomial threshold representatioh
*Supported by NSF grant 99-12342.

TSupported by an NSF Mathematical Sciences PostdoctoraaRes f (altematlvely’p Weakly mgn-representﬁ) if p(x) Is not

Fellowship and by NSF grant CCR-98-77049. Work was performbile identically 0 on {+1, —1}" and sgfip(x)) = f(z) for all
at the Division of Engineering and Applied Sciences, Hataniversity. x € {+1,—1}" such thatp(z) # 0. The “Theorem of

e Every Boolean function has weak PTF density at most

1. Introduction




Strong degree Weak degree
lower upper lower upper
bound bound bound bound
every function n n n n
almost every function 3 3 +O(v/nlogn) || 5 —O(v/nlogn) 5

Table 1. Best bounds to date on strong and weak threshold degr ees of n-variable Boolean functions.
Lower bounds for 2every function® mean that some function ha s this as a lower bound. Boldface
entries are new bounds proved in this paper.

Strong density Weak density
lower upper lower upper
bound bound bound bound
every function a12n | (1 — ﬁ)?‘ 2n/2 o(1)2"
almost every functior] .11 2" | (1 — O(ln))zn (1) ﬁ?‘/? 22
Table 2. Best bounds to date on strong and weak threshold dens ities of m-variable Boolean functions.
Lower bounds for 2every function® mean that some function ha s this as a lower bound. Boldface
entries are new bounds proved in this paper. For (1), we in fact show that everyset of (1 — ﬁﬂ"
monomials can serve as a PTF support for almost every Boolean function.

the Alternative” [3] shows that weak polynomial threshold For threshold density even less was known. Saks [23]
representations are intimately connected to the usualtthre noted that results of Cover [10] imply that almost every
old representations (see Theorem 5), and thus the study oBoolean function has threshold density at le@sfl)2".
weak threshold degreendweak threshold densitgefined Gotsman [12] proved that every Boolean function has
in analogy with threshold degree and threshold density, isthreshold density at mo&t* — 2"/2. Aspneset al. proved

of interest. that every Boolean function has weak threshold density
. at most%2”. Saks [23] has asked whether almost every
1.1. Previous Work Boolean function (i) has threshold density at mdst ¢)2"

for somee > 0, (ii) has weak threshold density at most
Prior to our work many authors have studied extremal (% — €)2" for somee > 0.

properties of polynomial threshold functions. Here we
touch briefly on the most relevant previous results (see Saks; o or Results
[23] for a detailed treatment).

In a famous result Minsky and Papert [20] proved up-
per and lower bounds of for the threshold degree of the
n-variable parity function. Aspneat al. [3] proved upper
and lower bounds ofi for the weak threshold degree of
parity as well. Both Aspnest al. and Wang and Williams
[26] conjectured that almost evenyvariable Boolean func-
tion has threshold degree exactly2. Toward this conjec-
ture, Anthony [2] and Alon [1] used a counting argument to 5
show that almost every Boolean function has threshold de—[ ]
gree atleast /2. For the upper bound Razborov and Rudich o
[22] used a counting argument to show that almost every 1.3. Organization of the paper
Boolean function has threshold degree at mghst, and
Alon [1] used results of Gotsman [12] to show that almost  In Section 2 we give some necessary background on
every Boolean function has threshold degree at n¥9st. strong and weak threshold representations, tail bounds, an

We give many new extremal results on the degree and
density of polynomial threshold functions. These results,
which are summarized in Tables 1 and 2, improve on pre-
vious bounds and answer several of the questions described
above. In addition to the results shown in Tables 1 and 2, we
also prove a tight bound on the threshold degree of sparse
Boolean functions, answering a question posed by Beigel



Fourier analysis. Section 3 gives our new upper bound on 2. f has a weak representation with suportit — S.

threshold density for all Boolean functions. Our results
on threshold degree and threshold density for almost all
Boolean functions are in Section 4. In Section 5 we give Chermoff Bound: Let X;,

Finally, some standard tail bounds will be useful:

..., X, beindependent0-1 ran-

new upper and lower bounds on weak threshold densityfordom variables WithPr[X; = 1] = p < L. LetX =
T - = - -

all and almost all Boolean functions. Finally, we prove a 1
tight bound on the threshold degree of sparse Boolean func-"
tions in Section 6. We close in Section 7 with suggestions

for future work and a conjecture.

2. Preliminaries

Definition 1 A real polynomial  p(z1,...,2zy)
strongly  (sign-)represents a  Boolean  function
£ {+1, -1 = {+1,-1} if p(x) # 0 for
all x € {+1,-1}" and sgiip(z)) = f(z) for all
x € {+1,-1}"

Definition 2 A real polynomial  p(z1,...,2z5)
weakly  (sign-)represents a  Boolean  function

foA{+1, -1} — {+1,-1} if p(z) # 0 for at least
onexr € {+1,—1}" and sgrip(z)) = f(x) for all
x € {+1,—1}" such thap(z) # 0.

Sincex? = 1 for x € {+1,—1}, without loss of gen-
erality any sign-representing polynomjatan be taken to
be multilinear. Hence any boolean functigron n bits has
threshold degree at mastand threshold density at maxst.
We write M to denote the set of ali” multilinear mono-
mials overzy, ..., T,.

Definition 3 Given a Boolean functiofi, we say thetrong
(respectively,weak degreeof f is the minimum degree
over all polynomials which strongly (respectively, weakly
sign-representf. Similarly, we say thestrong (respec-
tively, weal) densityof f is the minimum density (number
of nonzero coefficients) over all polynomials which strgng|
(respectively, weakly) sign-represeft

Definition 4 The supportof a polynomial threshold func-

tion sgr(p(z)) is the set of monomials which have nonzero

coefficients imp.

We will use the so-called “Theorem of the Alternative”

of Aspneset al. [3] which relates weak and strong repre-

sentations. This theorem follows immediately from the the-
orems of the alternative used for proving linear program-
ming duality (e.g., Farkas's Lemma, the Stiemke Transpo-

sition Theorem). See [3, 21, 23] for more details.

Theorem 5 LetS be any set of monomials ovey, . . ., z,

>, X;. Thenforallo < § < p(1 — p), we have
— 5n )
Pr[| X —p|>6] <2exp| ————— | .
% =912 8 < 20w (- o

Hoeffding Bound [15]: Let Fi,..., F; be independent
random variables with common meanand bounded de-
viance from the mean|F; — u| < M. Leto? =
Ls* VarFj], and letF = 13"  F;. Then for each
0 <t < M,we have:

Pr[[F —p| > 1] <
2exp ((—kt/M)[(1+ o®/Mt)In(1 + Mt/o?) — 1]).

This inequality also holds in the scenario whétg . . ., Fj
are chosen without replacement from a fixed popula-
tion {c1,...,en}, and u and o® denote+ SN | ¢; and

LSV (e — p)?, respectively.
2.1. Fourier background

We view Boolean functions as magst1,—1}" —
{+1,—1}. We consider the vector spadé of all real-
valued functions of+1, —1}™ endowed with inner product
(-,-) defined by

(f,9) = E[f(x)g(z)],

where the expectation is over a uniform choiceaofe
{+1,-1}".ForS C [n] we writexs to denotd [, ;. As
is well known, the collection of functiongrs } s, forms
an orthonormal basis fdr. We denote(f(z), zs) by f(S)
and hence for any functiof

fla) = Z f(S)CCs-
SC[n]

This is known as thé&ourier representatiorf f. Thus the
Fourier coefficienff (S) is precisely the coefficient afs in
the (unique) multilinear polynomial fof.

. A 1/p
We denote by||f|||, the quantlty(zsgn] |f(S)|P) .

We also write|||f|||o for maxg |f(S)]. An easy conse-
guence of orthonormality dfz ¢ } is Parseval's identity: for

and letf be any Boolean function. Then exactly one of the any.f : {+1,—1}" = R,

following statements is true:

1. f has a strong representation with supportSn

ANz =27" fl@)*.

>

ze{+1,—1}»



In particular, all Boolean functiong :
{+1,—1} havel||f|||2 = 1.
ForS C 2["l definefs(z) by

=Y f(S)ws;
ses

S0 fs is obtained by zeroing the Fourier coefficients of all
monomialszy such thatl’ ¢ S. Similarly, for0 < d < n

definef;(x) by:
= > f(S)zs
|S|<d
Note thatfs(x) has threshold density at mg§t| and ()

has threshold degree at mast
Finally, we will often use the following simple fact:

Fact6 Suppose thaf C [n] is such tha ¢ < 1F(9)| <
1. Then sgiifs) is a polynomial threshold function fgf.

(+1,-1}" —

3. A new upper bound for threshold density

We first study the maximum threshold density of
any Boolean function. As noted earlier, for arfy :
{+1,-1}" — {+1,-1} the threshold density of is
clearly at mosR™. Gotsman [12] obtained a slightly better
bound of2” —27/2 4 1. The proof s straightforward: L&t
denote the set &f*/2—1 monomials on whiclf has Fourier
coefficients of smallest magnitude. Sin¢g|||. = 1, we
have|||f|||: < 2"/2, and hence the sum of the magnitudes
of the srpallestzn/2 Fourier coefficients is at most 1. Thus
Y oser IF(S)] < 1, so sgiifam—7) sign-representg by
Fact 6.

In this section we improve this upper bound (b —
Theorem7 Let f : {+1,-1}" — {+1,—1} be any
Boolean function. Therf has threshold density at most
(1— 2",

Proof: Let L = |||f]||1. Bruck and Smolensky [9] gave a
randomized construction showing tbﬁhas threshold den-
sity at most[2nL*]. Hence if L < 5 2"/2 then f has
threshold density at mos}2", consequently we assume
L > 1 2n/2

LetT be the set of monomials on whighhas its Fourier
coefficients of smallest magnitude, where the cutoff is se-
lected so that:

> If(s

SgT

Since) g, |/(S)| = L we conclude thaltM — T /2" <
(n—1)/L < 2(n —1)y/n27"/2,s0

(n))

) en—2mn-1). 1)

1
= 7] > 72" )

We now select without replacement a random subset
K C 7T ofsizek = &2” (hereC > 0 is an absolute con-
stant to be determined later), and then form the polynomial
threshold function

=>_f(s

sgK

We will show that for each fixed € {+1,—1}", the prob-
ability that this polynomial threshold function errs ens
at most3~". By taking a union bound over alls it follows
that f is correctly sign-represented by some polynomial of

Im—x(x

density(1 — O(n) )2,
Fix = € {+1,—-1}". We wil prove that
| > sexc f(S)zs| > 1 with probability at most3—"

which suffices to prove the claim. Lét, ...,
the list of numbergf(S)xs)ser. We have:

cn) denote

N
Zci = Z f(S)IS— Zf(S)IS
i=1 SCln] SgT
< 1) F®)zs|+ Y 1f(S)as]
SCln S¢T
< 1+(n-1)=

Write p = & S| ¢, s0|u| < n/N. Now we bounds?:

0,2

N

< NZ;Q(Cg"‘HQ)
5 N

= 2+ N;Cf

< 2u*+2/N

< 3/N

where the nextto last inequality is by Parseval’s identitgt a
the last is since.? < (n/N)? < 1/2N

Finally, we have thal;| < nT and hencée; — pu| < %
forall1 <i < N. The second of these inequalities follows
from the first sincgu| < n/N < 2n2™" < 2 — L. To
see the first inequality, note that otherW|se we would have
1£(S)] > 1/(n—2) forall S ¢ T, hencel M — T| <
(n—2)? becaus§ ., f2(S) < 1by Parseval. But by (1)
and Cauchy-Schwarz we have:

n—2 < Y |f(S)
ST
< VT[S 725)
SeT
< M —T]|,



which is a contradiction.

Suppose that we selektof the¢;’s at random, without
replacement. LeX denote the sum of the selected numbers.
Our goal is to show thatX| > 1 with probability at most
37". By Hoeffding's bound, witht = 5~ andM = 2, we
have:

Pr{|X/k—p| > 1] <
2exp ((—kt/M)[(1 + o /Mt)In(1 + Mt/o?) — 1])

which implies

PrIX — kul > 1/2] <
2exp ((—n/4)[(1 + 3nk/N)In(1 + N/3nk) — 1])

which implies
Pr{|X| > 1/2+ [kp|] <
2exp ((—n/4)[(1 + 3nk/N)In(1 + N/3nk) — 1])
which by (2) implies
Pr[|X|>1/24+2/C] <
2exp ((—n/4)[(1 +6/C)In(1 + C/6) — 1))
which in turn implies
Pr[|X| > 1] < 2exp(—2n)

by taking C' to be a large enough constant, sinde+
z)In(1 +1/z) —1 — oo asz — 0F. HencePr[|X]| >
1] < 37™ as desired, and the proof is complete. O

4. Upper bounds on density and degree for al-
most all functions

In the previous section we showed that every Boolean
function has threshold density at mgst- ~1~)2". In this

O(n)
section we show that every subse{df- 55)2" monomi-

As noted earlier, Anthony and also Alon have used a count-
ing argument to show that almost every Boolean function
has threshold degree at ledst/2|. Together with this
lower bound, our upper bound answers in the affirmative
a conjecture of Wang and Williams [26] and Aspretsal.
[3] up to lower order terms. (They conjectured that almost
all Boolean functions have threshold degree exac}!9.)
We note here that Corollary 9 has also been independently
proved by Samorodnitsky [24].

Using the Theorem of the Alternative, Aspregsl.gave
a simple proof that for any-bit Boolean functionf, the
sum of the strong degree gfand the weak degree gf-
PARITY,, is exactlyn (Lemma 2.5 of [3]). Hence Corollary
9 also implies that almost all Boolean functions have weak

degree at least/2 — O(y/nlogn).
4.1. Proof of Theorem 8

Let f : {+1,—1}" — {+1,—1} denote a randomly
chosen Boolean function. In the sequel, all probabilities
are taken over this choice ¢gf. To motivate our proof of
Theorem 8, we sketch Alon and Gotsman’s simpler proof
(see [12, 23]) of the weaker upper bow2id— ﬁznﬂ in
Appendix A.

Alon and Gotsman’s argument uses a “worst-case” as-
sumption about the magnitude of the sum of the omitted
Fourier coefficients. If the Fourier coefficients of the ran-
dom function f were not just binomially distributed but
wereindependenmandom variables, then we could use stan-
dard tail inequalities on sums of independent random vari-
ables to obtain a stronger bound. However the Fourier co-
efficients are not at all independent, so this direct apgroac
does not seem to work.

We get around this by showing that in fact the error term
>I8]>d f(S)zs can be viewed as a sum of independent ran-
dom variables. These new independent variables no longer
correspond to the individual Fourier coefficiertss), and
thus we cannot use the arguments of Alon and Gotsman to
bound their deviation. However, as shown below, we can

als can serve as a polynomial threshold support for almosteyactly characterize the variance of the sum of these new

every Boolean function. More precisely, we prove:

Theorem 8 LetS C 2" be any collection of subsets [of
such thafS| > (1—z-)2". Then for all but a1 /2" fraction
of Boolean functiong on n bits, there is a polynomigh
whose support is contained ésuch thaip sign-represents

f

random variables, and this enables us to push the argument
through.

We now proceed with the proof. Fere {+1, —1}" let
3, : {+1,—1}" — R be the function

-

1
0 otherwise.

if x =2

An interesting special case of Theorem 8 occurs when we

takeS to be the(1 — ;--)2" smallest subsets af"l. By the

Chernoff bound we then have that < & + O(y/nlogn)
forall S € S. We thus obtain the following corollary:

Corollary 9 Almost all Boolean functions have threshold

degree at most + O(y/nlogn).

The Fourier representation 6f is easily seen to be

(14 z121)(1 + 2z92) - - - (1 + zpxy)

0.(x) o




Consequently any functiofi : {+1,—1}" — R may be
written as:

1
flz) = Z 2) 5> Z 25Ts.
ze{+1,~1}n SCln]
For anyS C 2" we thus have
1
fs@) =g D f=)) asus. 3)
ze{+1,-1}n Ses
Let ds,.(x) = Y ges 2sws. Itis clear thatds ,(z) =
|S| for anyz € {+1,—1}". We now claim:
Lemmal0 For any =z € {+1,-1}", we have
Do 05.2()? = 27[S] — S|,
Proof:
> dsa(x)? = > bsa(2)? = bsa(x)
zF#T ze{+1,—-1}"
=X s -lsP
ze{+1,—-1}n
= D) FsaP—ISP @
ze{+1,—-1}n
= 2" Y bsa(9)?—[S)? (5)
5C[n]
= 2"S| - ISP, (6)
where (4) is becausés .(z) = 0s.(2), (5) is Parse-

val's identity, and (6) follows becausg , has exactlyS]|
nonzero Fourier coefficients, each of magnitude exaktly
O

To prove Theorem 8, fix any C 2 with |S| >
(1 — g-)2" Fixanyz € {+1,—1}". We will show that
for a random Boolean functiofi, with probability at least
1 — 1/4™ we have sgffs(z)) = f(x). If this is the
case, then for a random Boolean functiprwe have that
sgnfs(z)) = f(x) for all z with probability at most /2™
and the theorem is proved.

We have
sgn > f(2)bsx(x)
ze{+1,—-1}"

= sgn (f(:r)ISI +> f(Z)és.,z(:c)) (7)

ZF#T
Since eachf(z) is an independent randoml value, we
may view the sum ovet # z in (7) as a sum o™ — 1
independent random variables, where tki random vari-
able takes valuesds . (x) each with probability /2. From

sgnfs(x))

Lemma 10 we know that the sum of the square%of(z) is
precisely2”|S| - |S|?, and hence the variance of the sum of

these2™ — 1 random variables is precisety = 2"|25n\7\5|2
We can bound each random variable’s deviance from the
mean 0 by noting thabs ,(x)| < 2™ — |S| for all z # =
(this holds since by addm@s zsxs t0 ds,,(x) we

would getzsC zgxg Which is O) Hence by Hoeffding’s

bound, withk = 2” —-1,t= —QLS_ll, andM = 2" — |S|, we
have:
Pr(|3 Y f(2)ds.:(2)] 2 ] <

ZF#T
2exp ((—kt/M)[(1 + o /Mt)In(1 + Mt/o?) — 1])

which implies

Pr| Y f(2)ds.(2)] = |S]]

z#x

< 2exp <_ <2n |f||5|) (14 1) In(1+1) — 1]>
< 2exp(—2n) (8)
< 1/4™,

where the last line useS| > (1 — g-)2". But when

| 2.4 [(2)ds,2(2)| < |S|, the right-hand side of (7) is just
sgn(f(z)|S]) = f(z), and the theorem is proved. (Theo-
rem 8)l

5. Weak threshold density

In this section we give an upper bound on weak thresh-
old density which holds for all Boolean functions and a
stronger upper bound which holds for almost all Boolean
functions. These bounds give a negative answer to a ques-
tion of Saks. We also give a lower bound on weak threshold
density which holds for almost all Boolean functions and a
stronger lower bound which holds for a particular Boolean
function. To the best of our knowledge these are the only
lower bounds known for weak threshold density.

5.1. Upper bounds for weak threshold density

Since any strong representation of a Boolean funcfion
is also a weak representation, Theorem 5 implies that for
any functionf and any seS C M of monomials eitheyf
has a weak representation with support containeslamn f
has a weak representation with support containedfin- S
(or both). TakingS to be any set 0%2” monomials, it
follows that the weak density of every Boolean function is
at most}2".

Saks has asked the following question (Question 2.28.2
of [23]): is it true that for alle > 0 almost all Boolean



functions have weak density at ledst — €)2"? Our next

n — logn + 1 variables such that| is identically 1, and

two theorems show that the answer is “no” in a rather strong hence the weak density ¢f .- is 1. Now use Lemma 131

sense:

Theorem 11 Almost all Boolean functions have weak den-
sity at most22".

Theorem 12 All Boolean functions have weak density
o(1)2™.

The intuition behind the proof of Theorem 11 is straight-
forward: with high probability a random Boolean function
f has some small subcube on whitlis “simple.” We take
advantage of this simplicity to construct a low-densityygol
nomialp which weakly represents on this subcube. Mul-
tiplying p by another polynomial which is 0 off of the sub-
cube, we obtain a weak representativefoore precisely,
we use the following lemma:

Lemma 13 Let 7 be a restriction which fixes — k vari-
ables fromz, ..., x, and keeps variables free. LetD
denote the weak density 6f,. Then the weak density ¢f
is at mos™—*D.

Proof: Without loss of generality we can suppose thas

the restriction which maps variables, ..., z, ; to1 and

leaves the remainingvariables free. Lep be a polynomial
overT,_r+1,.- -, &, Which weakly representg|. and has
D nonzero monomials. Then the polynomial

P(xl,... (1‘1+1)(1‘2+1)($n—k+1)

p(xn—k+17 L) 7x’ﬂ)

,Tn)

has densitg”~*D. To see thaP weakly representg, note
that on any input: = 1%y we haveP(z) = 2" *p(z),
while on any other input we havB(xz) = 0. Sincep is a
weak representative df|, it must be somewhere nonzero,
so the same is true far. O

Proof of Theorem 11: Let f be a random Boolean func-
tion. Consider the”—* disjoint k-dimensional subcubes
of {41, —1} corresponding to restrictionswhich fix vari-

ableszy, ..., x,_j. For any such restriction we have
Pr(f| is notidentically 1 =1 — =
and hence

2nfk

Pr[f|- # 1 forall suchr]

1
-(-)
Taking & = logn — 1, the above probability ig1 —
9-n/2)2"TE =27 Thys with overwhelm-
ingly high probability there is some restriction fixing

Using Lemma 13 it is easy to prove an upper bound of
%2” on the weak density of all Boolean functions without
using Theorem 5. For any Boolean functigron »n vari-
ables, the polynomial

(1 4+ D) (r2a+1) - (xp—1+ 1)y

is easily seen to be a weak representativefofvhich
has density%zn, wherey € {-1,1,—x,,x,} is suitably
chosen depending on the two values ffi"~*,1) and
farn—t —1).

By looking at subcubes of dimension greater than 1 it
is possible to improve this bound. A straightforward case
analysis shows the following:

Fact 14 Every Boolean function oB variables has weak
density at mos3.

Together with Lemma 13, this yields

Corollary 15 Every Boolean function has weak density at
most22".

While Corollary 15 already gives a strong negative an-
swer to the question of Saks, we can obtain the stronger
upper bound of Theorem 12 by using more powerful tools
from Ramsey theory. A&-dimensional affine subspacé
a vector spacé’ is a translate of &-dimensional vector
subspace oV. The following is a special case of the Affine
Ramsey Theorem of Grahaghal.[13, 14]:

Theorem 16 Let A be a finite field. For all-, £ > 1 there
existsn such that if the points ofi™ are r-colored, then
somek-dimensional affine subspace df* has all of its
points the same color.

Takingr = 2 andA = GF3, we can rephrase this as:

Corollary 17 Thereis afunctiog(n) = w(1) such that for
any Boolean functiotf : (GF»)" — {—1,1}, thereis some
g(n)-dimensional affine subspace (@ F:)™ on whichf is
constant.

Proof of Theorem 12: Let f be any Boolean function om
variables and lell’’ be the affine subspace whose existence
is asserted by Corollary 17. Any(n)-dimensional vector
subspacéV of (GF,)" is the set of solutions to some sys-
tem ofn — g(n) homogeneous linear equations, i.e.,

W ={z e (GF)": Az = (0)" 9™}

whereA is an(n — g(n)) x n matrix overGF,. Thus the
g(n)-dimensional affine subspa&®’ is the set of solutions



to some system of — g(n) not necessarily homogeneous
linear equations, i.e.,

W' ={z € (GFy)": Az

b}

for someb € (GF,)"~ 9™ If we identify G F, with the set
{+1, —1}, then this system of equations becomes:

H x; = by,
JiAL ;=1

H Zj = bg,
JiAz ;=1

I[I = = bswr

JiAn_g(n),;=1

Without loss of generality we may suppose tlfét) = 1
forallz € W’. Itis easy to see that the pointsfof 1, —1}"
on which the polynomial

n—g(n)

II

i=1

b;

H z;, | +1

j:Ai,]‘Zl

is nonzero are exactly the pointsTi#i’, and that moreover
this polynomial always takes value exac2y—9(") on .
Thus this polynomial is a weak representative faf den-
sity 27=9(") = o(1)2", and Theorem 12 is proved. O

5.2. Lower bounds for weak threshold density

Here we give our lower bounds for weak threshold den-
sity. The first lower bound holds for almost every Boolean
function:

Theorem 18 Almost all Boolean functions have weak
threshold density at Iea%?l/?

Proof: Recall the proof of Theorem 8; in particular, equa-
tion (8). If we consider sets of size (1 — ¢€)27, then
the probability thatf has no PTF ovesS is bounded by
2 exp(—.38/¢). There are exactly>) such setsS. Hence

if we selecte such that(2,) - 2exp(—.38/¢) is at most

1/2™, then a union bound tells us that almost every Boolean

function can be sign-represented usamyset of(1 — €)2"
monomials. In this case Theorem 5 implies that for almost
every Boolean function, no set e2” monomials can serve
as the support of a weak sign-representation. Taking
ﬁT"/Q, itis easily shown thaf?,) - 2 exp(—.38/¢) <
1/2™, and the theorem is proved. O

We can give a slightly better bound for an explicit
Boolean function. Fon = 2k let IP denote the “inner

productmod 2" function, i.el P(x1, ..., Tk, Y1, -, Yk) =
@k, (z; A y;) whered denotes exclusive-OR (parity) and
A denotes AND.

Theorem 19 I P has weak density at lea®®#/2.

Proof: It is known [8, 19] that/ P is abentfunction, i.e.
a function for which|f(S)| = 773 forall S C [n]. Con-
sequently, for any sef of 2" — 2/2 + 1 monomials, the
function sgrifs(x)) is a strong representative ¢fby Fact
6. By Theorem 5 this means that for any geof 27/2 — 1
monomials, it is not the case thAthas a weak representa-
tive whose support is contained #h. Hence the weak de-
gree off is at leasR™/2. ]

6. Threshold degree of sparse functions

The following question was posed by Richard Beigel
[5]: are sparse sets easy for low-degree polynomial thresh-
old functions? More concretely, let : {+1,-1}" —
{+1, —1} be aBoolean function such thgt ! (1)| = m <
2" so f is the characteristic function of a sparse subset
of the Boolean cube. What is the maximum polynomial
threshold function degree for such ga The following the-
orem gives a complete answer for all valuesrof

Theorem20 For 1 < m < 12", let 7, be the set of
all Boolean functionsf : {+1,-1}" — {+1,—1} such
thatm = min{|f~1(1)|,|f~1(=1)|}. Then the maximum
threshold degree over afl € 7, is exactly|logm | + 1.

Proof: We assume without loss of generality thiat <
|f7*(1)| = m < £2". For the lower bound, lef be any
function which is such that if the last — (|logm| + 1)
inputs are fixed tal then f computes parity on the first
|logm| + 1 inputs. (Note that this uses @p'°s™) < m of

the ones inf’s output; any remaining ones can be located
arbitrarily). Since any polynomial threshold function whi
computes parity ok variables must have degree at lefast

it follows that any polynomial threshold function fgmust
have degree at leafliogm | + 1.

For the upper bound, we begin by constructingran
leaf decision tree over variables, . .., z, such that each
string in £ ~1(1) arrives at a different leaf. Such a tree can
be constructed by a greedy algorithm: initially all stririgs
f71(1) are at the root of the tree. Let be any variable
such that there are two strings fim (1) which disagree on
x; (such a variable must exist as long|#s5'(1)| > 2). La-
bel the root withz;. The strings(z : = € f~1(1),z; = —1}
go to the left child and the strinds : € f~1(1),x; = 1}
go to the right child. Now recurse on each child. At the end



of this process we have an-leaf tree in which each (unla-
beled) leaf has a unique string fit (1) which reaches that
leaf.
Let ¢ be a leaf in this tree and let be the element of
f71(1) which reaches that leaf. We labfelith the degree-
1 polynomial threshold function s¢m(z)) wherep(z) =
T121 4+ Tz —n+ % Note thatp(z) = %, andp(z) <
—% for all binary inputse # 2. Thus we now have am-
leaf decision tre&" in which internal nodes are labeled with
variables and leaves are labeled with degree-1 polynomia
threshold functions, such th@tcomputes exactly. -
The rest of our proof follows the proof of Theorem 2 in !
[18]. Recall that the rank of a decision tréeis defined
inductively as follows:

e If T'is a single leaf thenank(T") = 0.

still room for improvement. One goal is to improve the
lower order term in oun/2 + O(y/nlogn) upper bound

for the threshold degree of almost every Boolean function.
Another goal is to give tighter bounds on the maximum
threshold density of Boolean functions. Saks [23] has asked
whether almost all Boolean functions have threshold den-
sity at least(1 — €)2™ for somee > 0. We conjecture that
the answer is “no” in a strong sense:

iConjecture 21 For n sufficiently large, every Boolean
functionf : {+1,-1}" — {41, -1} has threshold den-
ty at most;2".

Finally, a large gap remains between our upper and lower
bounds for weak threshold density; it would be interesting
to tighten these bounds.

e If T has subtreesT, and 77 then rank(T)
equals max (rank(Ty), rank(Ty)) if rank(Ty) # References
k(T1) and equalsank(Ty) + 1 if k(Ty) =
rank(T1) a ank(To) rank(To) [1] N. Alon. Personal communication to M. Saks, re-

rank(Th).

It follows from this definition that the rank of am-leaf
tree is at mostlog m|. Now we use the fact (see [7]) that
a rank+ decision tree with functiongy, f, ..., f., at the
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threshold function sgP(z)) computes?, where P(z)
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A1C1(@)p1 () + A2Co (2)p2 () + - - A Con ()i ().

(2]

(3]

(4]

(5]
(6]

HereC; is the polynomial of degree at mogbg m | which
outputs 1 ifC; is true and 0 ifC; is false, andd; > A; >
As > --- > A, > 0 are appropriately chosen positive
values. To see that this works, note thatif is the first
conjunction in the decision list which is satisfied bythen

we have
>

§>i,C; (z)=1

P(x) = Aipi(x) + Ajpj(z).

Since|p;(z)| > 1 and4; > A; > 0for j > i, the sign of

P(z) is the same as the sign pf(x), and we are doned [10]
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