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Abstract

In this paper we give new extremal bounds on polyno-
mial threshold function (PTF) representations of Boolean
functions. Our results include the following:

• Almost every Boolean function has PTF degree at most
n
2 + O(

√
n log n). Together with results of Anthony

and Alon, this establishes a conjecture of Wang and
Williams [26] and Aspnes, Beigel, Furst, and Rudich
[3] up to lower order terms.

• Every Boolean function has PTF density at most(1 −
1

O(n) )2
n. This improves a result of Gotsman [12].

• Every Boolean function has weak PTF density at most
o(1)2n. This gives a negative answer to a question
posed by Saks [23].

• PTF degree⌊log2 m⌋ + 1 is necessary and sufficient
for Boolean functions with sparsitym. This answers a
question of Beigel [5].

1. Introduction

A broad research goal in computational complexity is to
understand the properties of various representation schemes
for Boolean functions. Many representation schemes have
been studied, such as DNF and CNF formulas, decision
trees, branching programs, the Fourier representation (i.e.
polynomials over the reals), polynomials overGF2, mono-
tone span programs, and so on.

In this paper we consider Boolean functions represented
aspolynomial threshold functions. Given a Boolean func-
tion f : {+1,−1}n → {+1,−1}, a polynomial thresh-
old function (PTF) forf is an-variable real polynomialp
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such that sgn(p(x)) = f(x) for all x ∈ {+1,−1}n. (Alter-
natively, we sometimes say that such a polynomialp sign-
representsf .)

Polynomial threshold functions play an important role
in theoretical computer science. They are very useful in
structural complexity theory; the Beigelet al. [6] proof that
PP is closed under intersection uses clever constructions
of polynomial threshold functions, and many oracle results
have been obtained using PTFs, e.g. [3, 4, 11, 25]. Poly-
nomial threshold functions can be viewed as threshold-of-
parity circuits and as such have been studied by researchers
in circuit complexity [8, 9] and learning theory [16]. More
recently, upper bounds on polynomial threshold function
degree have been used to obtain learning algorithms for
various classes of Boolean circuits [18, 17, 21]. Finally,
polynomial threshold functions are an inherently interest-
ing intermediate model of computation between purely al-
gebraic models such as Fourier orGF2 polynomials and
purely combinatorial models such as decision trees or logic
circuits. See Saks [23] for an extensive survey on polyno-
mial threshold functions.

The two most basic complexity measures for a polyno-
mial threshold function are its degree and its density (num-
ber of nonzero monomials). Thethreshold degreeof a
Boolean functionf is the minimum degree over all poly-
nomialsp which sign-representf , and thethreshold density
of f is the minimum density over all polynomialsp which
sign-representf. Note that without loss of generality we
may take any sign-representing polynomial to be multilin-
ear, and hence every Boolean function has threshold degree
at mostn and threshold density at most2n.

Aspneset al. [3] introduced a useful variant on poly-
nomial threshold representations, namely, weak polyno-
mial threshold representations. Given a Boolean function
f : {+1,−1}n → {+1,−1} we say then-variable poly-
nomialp is a weak polynomial threshold representationof
f (alternatively,p weakly sign-representsf ) if p(x) is not
identically0 on {+1,−1}n and sgn(p(x)) = f(x) for all
x ∈ {+1,−1}n such thatp(x) 6= 0. The “Theorem of
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Strong density Weak density
lower upper lower upper
bound bound bound bound

every function .11 2n (1 −
1

O(n)
)2n 2n/2

o(1)2n

almost every function .11 2n (1 −
1

O(n)
)2n (†) 1

2
√

n
2n/2 2

n
2n
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monomials can serve as a PTF support for almost every Boolean function.

the Alternative” [3] shows that weak polynomial threshold
representations are intimately connected to the usual thresh-
old representations (see Theorem 5), and thus the study of
weak threshold degreeandweak threshold density, defined
in analogy with threshold degree and threshold density, is
of interest.

1.1. Previous Work

Prior to our work many authors have studied extremal
properties of polynomial threshold functions. Here we
touch briefly on the most relevant previous results (see Saks
[23] for a detailed treatment).

In a famous result Minsky and Papert [20] proved up-
per and lower bounds ofn for the threshold degree of the
n-variable parity function. Aspneset al. [3] proved upper
and lower bounds ofn for the weak threshold degree of
parity as well. Both Aspneset al. and Wang and Williams
[26] conjectured that almost everyn-variable Boolean func-
tion has threshold degree exactlyn/2. Toward this conjec-
ture, Anthony [2] and Alon [1] used a counting argument to
show that almost every Boolean function has threshold de-
gree at leastn/2. For the upper bound Razborov and Rudich
[22] used a counting argument to show that almost every
Boolean function has threshold degree at most19

20n, and
Alon [1] used results of Gotsman [12] to show that almost
every Boolean function has threshold degree at most.89n.

For threshold density even less was known. Saks [23]
noted that results of Cover [10] imply that almost every
Boolean function has threshold density at least(.11)2n.
Gotsman [12] proved that every Boolean function has
threshold density at most2n − 2n/2. Aspneset al. proved
that every Boolean function has weak threshold density
at most 1

22n. Saks [23] has asked whether almost every
Boolean function (i) has threshold density at most(1−ǫ)2n

for someǫ > 0, (ii) has weak threshold density at most
(1
2 − ǫ)2n for someǫ > 0.

1.2. Our Results

We give many new extremal results on the degree and
density of polynomial threshold functions. These results,
which are summarized in Tables 1 and 2, improve on pre-
vious bounds and answer several of the questions described
above. In addition to the results shown in Tables 1 and 2, we
also prove a tight bound on the threshold degree of sparse
Boolean functions, answering a question posed by Beigel
[5].

1.3. Organization of the paper

In Section 2 we give some necessary background on
strong and weak threshold representations, tail bounds, and
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Fourier analysis. Section 3 gives our new upper bound on
threshold density for all Boolean functions. Our results
on threshold degree and threshold density for almost all
Boolean functions are in Section 4. In Section 5 we give
new upper and lower bounds on weak threshold density for
all and almost all Boolean functions. Finally, we prove a
tight bound on the threshold degree of sparse Boolean func-
tions in Section 6. We close in Section 7 with suggestions
for future work and a conjecture.

2. Preliminaries

Definition 1 A real polynomial p(x1, . . . , xn)
strongly (sign-)represents a Boolean function
f : {+1,−1}n → {+1,−1} if p(x) 6= 0 for
all x ∈ {+1,−1}n and sgn(p(x)) = f(x) for all
x ∈ {+1,−1}n.

Definition 2 A real polynomial p(x1, . . . , xn)
weakly (sign-)represents a Boolean function
f : {+1,−1}n → {+1,−1} if p(x) 6= 0 for at least
one x ∈ {+1,−1}n and sgn(p(x)) = f(x) for all
x ∈ {+1,−1}n such thatp(x) 6= 0.

Sincex2 = 1 for x ∈ {+1,−1}, without loss of gen-
erality any sign-representing polynomialp can be taken to
be multilinear. Hence any boolean functionf onn bits has
threshold degree at mostn and threshold density at most2n.
We writeM to denote the set of all2n multilinear mono-
mials overx1, . . . , xn.

Definition 3 Given a Boolean functionf , we say thestrong
(respectively,weak) degreeof f is the minimum degree
over all polynomials which strongly (respectively, weakly)
sign-representf . Similarly, we say thestrong (respec-
tively, weak) densityof f is the minimum density (number
of nonzero coefficients) over all polynomials which strongly
(respectively, weakly) sign-representf .

Definition 4 Thesupportof a polynomial threshold func-
tion sgn(p(x)) is the set of monomials which have nonzero
coefficients inp.

We will use the so-called “Theorem of the Alternative”
of Aspneset al. [3] which relates weak and strong repre-
sentations. This theorem follows immediately from the the-
orems of the alternative used for proving linear program-
ming duality (e.g., Farkas’s Lemma, the Stiemke Transpo-
sition Theorem). See [3, 21, 23] for more details.

Theorem 5 LetS be any set of monomials overx1, . . . , xn

and letf be any Boolean function. Then exactly one of the
following statements is true:

1. f has a strong representation with support inS;

2. f has a weak representation with suport inM−S.

Finally, some standard tail bounds will be useful:

Chernoff Bound: LetX1, . . . , Xn be independent 0-1 ran-
dom variables withPr[Xi = 1] = p ≤ 1

2 . Let X =
1
n

∑n
i=1 Xi. Then for all0 < δ < p(1 − p), we have

Pr[|X − p| ≥ δ] ≤ 2 exp

(

− δ2n

2p(1 − p)

)

.

Hoeffding Bound [15]: Let F1, . . . , Fk be independent
random variables with common meanµ and bounded de-
viance from the mean,|Fi − µ| ≤ M . Let σ2 =
1
k

∑k
i=1 Var[Fi], and letF = 1

k

∑k
i=1 Fi. Then for each

0 < t < M , we have:

Pr[|F − µ| ≥ t] ≤
2 exp

(

(−kt/M)[(1 + σ2/Mt) ln(1 + Mt/σ2) − 1]
)

.

This inequality also holds in the scenario whereF1, . . . , Fk

are chosen without replacement from a fixed popula-
tion {c1, . . . , cN}, and µ and σ2 denote 1

N

∑N
i=1 ci and

1
N

∑N
i=1(ci − µ)2, respectively.

2.1. Fourier background

We view Boolean functions as maps{+1,−1}n →
{+1,−1}. We consider the vector spaceV of all real-
valued functions on{+1,−1}n endowed with inner product
〈·, ·〉 defined by

〈f, g〉 = E[f(x)g(x)],

where the expectation is over a uniform choice ofx ∈
{+1,−1}n. ForS ⊆ [n] we writexS to denote

∏

i∈S xi. As
is well known, the collection of functions{xS}S⊆[n] forms

an orthonormal basis forV. We denote〈f(x), xS〉 by f̂(S)
and hence for any functionf,

f(x) =
∑

S⊆[n]

f̂(S)xS .

This is known as theFourier representationof f. Thus the
Fourier coefficient̂f(S) is precisely the coefficient ofxS in
the (unique) multilinear polynomial forf.

We denote by|||f |||p the quantity
(

∑

S⊆[n] |f̂(S)|p
)1/p

.

We also write|||f |||∞ for maxS |f̂(S)|. An easy conse-
quence of orthonormality of{xS} is Parseval’s identity: for
anyf : {+1,−1}n → R,

|||f |||22 = 2−n
∑

x∈{+1,−1}n

f(x)2.
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In particular, all Boolean functionsf : {+1,−1}n →
{+1,−1} have|||f |||2 = 1.

ForS ⊆ 2[n] definefS(x) by:

fS(x) =
∑

S∈S
f̂(S)xS ;

sofS is obtained by zeroing the Fourier coefficients of all
monomialsxT such thatT /∈ S. Similarly, for 0 ≤ d ≤ n
definefd(x) by:

fd(x) =
∑

|S|≤d

f̂(S)xS .

Note thatfS(x) has threshold density at most|S| andfd(x)
has threshold degree at mostd.

Finally, we will often use the following simple fact:

Fact 6 Suppose thatS ⊆ [n] is such that
∑

S /∈S |f̂(S)| <
1. Then sgn(fS) is a polynomial threshold function forf.

3. A new upper bound for threshold density

We first study the maximum threshold density of
any Boolean function. As noted earlier, for anyf :
{+1,−1}n → {+1,−1} the threshold density off is
clearly at most2n. Gotsman [12] obtained a slightly better
bound of2n−2n/2+1. The proof is straightforward: LetT
denote the set of2n/2−1 monomials on whichf has Fourier
coefficients of smallest magnitude. Since|||f |||2 = 1, we
have|||f |||1 ≤ 2n/2, and hence the sum of the magnitudes
of the smallest2n/2 Fourier coefficients is at most 1. Thus
∑

S∈T |f̂(S)| < 1, so sgn(fM−T ) sign-representsf by
Fact 6.

In this section we improve this upper bound to(1 −
1

O(n) )2
n:

Theorem 7 Let f : {+1,−1}n → {+1,−1} be any
Boolean function. Thenf has threshold density at most
(1 − 1

O(n) )2
n.

Proof: Let L = |||f |||1. Bruck and Smolensky [9] gave a
randomized construction showing thatf has threshold den-
sity at most⌈2nL2⌉. Hence ifL ≤ 1

2
√

n
2n/2 thenf has

threshold density at most122n; consequently we assume
L > 1

2
√

n
2n/2.

LetT be the set of monomials on whichf has its Fourier
coefficients of smallest magnitude, where the cutoff is se-
lected so that:

∑

S 6∈T
|f̂(S)| ∈ [n − 2, n − 1). (1)

Since
∑

S⊆[n] |f̂(S)| = L we conclude that|M−T |/2n ≤
(n − 1)/L < 2(n − 1)

√
n2−n/2, so

N := |T | >
1

2
2n. (2)

We now select without replacement a random subset
K ⊆ T of sizek = 1

Cn2n (hereC > 0 is an absolute con-
stant to be determined later), and then form the polynomial
threshold function

fM−K(x) =
∑

S 6∈K
f̂(S)xS .

We will show that for each fixedx ∈ {+1,−1}n, the prob-
ability that this polynomial threshold function errs onx is
at most3−n. By taking a union bound over allx’s it follows
thatf is correctly sign-represented by some polynomial of
density(1 − 1

O(n) )2
n.

Fix x ∈ {+1,−1}n. We will prove that
|
∑

S∈K f̂(S)xS | ≥ 1 with probability at most3−n

which suffices to prove the claim. Let(c1, . . . , cN ) denote
the list of numbers(f̂(S)xS)S∈T . We have:

∣

∣

∣

∣

∣

N
∑

i=1

ci

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

S⊆[n]

f̂(S)xS −
∑

S 6∈T
f̂(S)xS

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

S⊆[n]

f̂(S)xS

∣

∣

∣

∣

∣

∣

+
∑

S 6∈T
|f̂(S)xS |

< 1 + (n − 1) = n.

Write µ = 1
N

∑N
i=1 ci, so|µ| < n/N . Now we boundσ2:

σ2 :=
1

N

N
∑

i=1

(ci − µ)2

≤ 1

N

N
∑

i=1

2(c2
i + µ2)

= 2µ2 +
2

N

N
∑

i=1

c2
i

≤ 2µ2 + 2/N

< 3/N

where the next to last inequality is by Parseval’s identity and
the last is sinceµ2 < (n/N)2 < 1/2N .

Finally, we have that|ci| ≤ 1
n−2 and hence|ci −µ| ≤ 2

n
for all 1 ≤ i ≤ N . The second of these inequalities follows
from the first since|µ| < n/N < 2n2−n < 2

n − 1
n−2 . To

see the first inequality, note that otherwise we would have
|f̂(S)| > 1/(n − 2) for all S 6∈ T , hence|M − T | <

(n−2)2 because
∑

S 6∈T f̂2(S) ≤ 1 by Parseval. But by (1)
and Cauchy-Schwarz we have:

n − 2 ≤
∑

S 6∈T
|f̂(S)|

≤
√

|M− T |
√

∑

S 6∈T
f̂2(S)

≤
√

|M− T |,
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which is a contradiction.
Suppose that we selectk of theci’s at random, without

replacement. LetX denote the sum of the selected numbers.
Our goal is to show that|X | ≥ 1 with probability at most
3−n. By Hoeffding’s bound, witht = 1

2k andM = 2
n , we

have:

Pr[|X/k − µ| ≥ t] ≤
2 exp

(

(−kt/M)[(1 + σ2/Mt) ln(1 + Mt/σ2) − 1]
)

which implies

Pr[|X − kµ| ≥ 1/2] ≤
2 exp ((−n/4)[(1 + 3nk/N) ln(1 + N/3nk) − 1])

which implies

Pr[|X | ≥ 1/2 + |kµ|] ≤
2 exp ((−n/4)[(1 + 3nk/N) ln(1 + N/3nk) − 1])

which by (2) implies

Pr[|X | ≥ 1/2 + 2/C] ≤
2 exp ((−n/4)[(1 + 6/C) ln(1 + C/6) − 1])

which in turn implies

Pr[|X | ≥ 1] ≤ 2 exp(−2n)

by taking C to be a large enough constant, since(1 +
x) ln(1 + 1/x) − 1 → ∞ asx → 0+. HencePr[|X | ≥
1] ≤ 3−n as desired, and the proof is complete. ✷

4. Upper bounds on density and degree for al-
most all functions

In the previous section we showed that every Boolean
function has threshold density at most(1− 1

O(n) )2
n. In this

section we show that every subset of(1− 1
O(n) )2

n monomi-
als can serve as a polynomial threshold support for almost
every Boolean function. More precisely, we prove:

Theorem 8 LetS ⊆ 2[n] be any collection of subsets of[n]
such that|S| ≥ (1− 1

6n )2n. Then for all but a1/2n fraction
of Boolean functionsf on n bits, there is a polynomialp
whose support is contained inS such thatp sign-represents
f.

An interesting special case of Theorem 8 occurs when we
takeS to be the(1− 1

6n )2n smallest subsets of2[n]. By the
Chernoff bound we then have that|S| ≤ n

2 + O(
√

n log n)
for all S ∈ S. We thus obtain the following corollary:

Corollary 9 Almost all Boolean functions have threshold
degree at mostn2 + O(

√
n log n).

As noted earlier, Anthony and also Alon have used a count-
ing argument to show that almost every Boolean function
has threshold degree at least⌊n/2⌋. Together with this
lower bound, our upper bound answers in the affirmative
a conjecture of Wang and Williams [26] and Aspneset al.
[3] up to lower order terms. (They conjectured that almost
all Boolean functions have threshold degree exactlyn/2.)
We note here that Corollary 9 has also been independently
proved by Samorodnitsky [24].

Using the Theorem of the Alternative, Aspneset al.gave
a simple proof that for anyn-bit Boolean functionf, the
sum of the strong degree off and the weak degree off ·
PARITYn is exactlyn (Lemma 2.5 of [3]). Hence Corollary
9 also implies that almost all Boolean functions have weak
degree at leastn/2 − O(

√
n logn).

4.1. Proof of Theorem 8

Let f : {+1,−1}n → {+1,−1} denote a randomly
chosen Boolean function. In the sequel, all probabilities
are taken over this choice off . To motivate our proof of
Theorem 8, we sketch Alon and Gotsman’s simpler proof
(see [12, 23]) of the weaker upper bound2n − 1

2
√

n
2n/2 in

Appendix A.
Alon and Gotsman’s argument uses a “worst-case” as-

sumption about the magnitude of the sum of the omitted
Fourier coefficients. If the Fourier coefficients of the ran-
dom functionf were not just binomially distributed but
wereindependentrandom variables, then we could use stan-
dard tail inequalities on sums of independent random vari-
ables to obtain a stronger bound. However the Fourier co-
efficients are not at all independent, so this direct approach
does not seem to work.

We get around this by showing that in fact the error term
∑

|S|>d f̂(S)xS can be viewed as a sum of independent ran-
dom variables. These new independent variables no longer
correspond to the individual Fourier coefficientsf̂(S), and
thus we cannot use the arguments of Alon and Gotsman to
bound their deviation. However, as shown below, we can
exactly characterize the variance of the sum of these new
random variables, and this enables us to push the argument
through.

We now proceed with the proof. Forz ∈ {+1,−1}n let
δz : {+1,−1}n → R be the function

δz(x) =

{

1 if x = z

0 otherwise.

The Fourier representation ofδz is easily seen to be

δz(x) =
(1 + z1x1)(1 + z2x2) · · · (1 + znxn)

2n

=
1

2n

∑

S⊆[n]

zSxS .
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Consequently any functionf : {+1,−1}n → R may be
written as:

f(x) =
∑

z∈{+1,−1}n

f(z)
1

2n

∑

S⊆[n]

zSxS .

For anyS ⊆ 2[n] we thus have

fS(x) =
1

2n

∑

z∈{+1,−1}n

f(z)
∑

S∈S
zSxS . (3)

Let δS,z(x) =
∑

S∈S zSxS . It is clear thatδS,x(x) =
|S| for anyx ∈ {+1,−1}n. We now claim:

Lemma 10 For any x ∈ {+1,−1}n, we have
∑

z 6=x δS,z(x)2 = 2n|S| − |S|2.

Proof:
∑

z 6=x

δS,z(x)2 =
∑

z∈{+1,−1}n

δS,z(x)2 − δS,x(x)2

=
∑

z∈{+1,−1}n

δS,z(x)2 − |S|2

=
∑

z∈{+1,−1}n

δS,x(z)2 − |S|2 (4)

= 2n
∑

S⊆[n]

δ̂S,x(S)2 − |S|2 (5)

= 2n|S| − |S|2, (6)

where (4) is becauseδS,z(x) = δS,x(z), (5) is Parse-
val’s identity, and (6) follows becauseδS,x has exactly|S|
nonzero Fourier coefficients, each of magnitude exactly1.
✷

To prove Theorem 8, fix anyS ⊆ 2[n] with |S| ≥
(1 − 1

6n )2n. Fix any x ∈ {+1,−1}n. We will show that
for a random Boolean functionf, with probability at least
1 − 1/4n we have sgn(fS(x)) = f(x). If this is the
case, then for a random Boolean functionf we have that
sgn(fS(x)) = f(x) for all x with probability at most1/2n

and the theorem is proved.
We have

sgn(fS(x)) = sgn





∑

z∈{+1,−1}n

f(z)δS,z(x)





= sgn



f(x)|S| +
∑

z 6=x

f(z)δS,z(x)



 .(7)

Since eachf(z) is an independent random±1 value, we
may view the sum overz 6= x in (7) as a sum of2n − 1
independent random variables, where thez-th random vari-
able takes values±δS,z(x) each with probability1/2. From

Lemma 10 we know that the sum of the squares ofδS,z(x) is
precisely2n|S|−|S|2, and hence the variance of the sum of

these2n−1 random variables is preciselyσ2 = 2n|S|−|S|2
2n−1 .

We can bound each random variable’s deviance from the
mean 0 by noting that|δS,z(x)| ≤ 2n − |S| for all z 6= x
(this holds since by adding

∑

S /∈S zSxS to δS,z(x) we
would get

∑

S⊆[n] zSxS which is 0). Hence by Hoeffding’s

bound, withk = 2n − 1, t = |S|
2n−1 , andM = 2n − |S|, we

have:

Pr[| 1k
∑

z 6=x

f(z)δS,z(x)| ≥ t] ≤

2 exp
(

(−kt/M)[(1 + σ2/Mt) ln(1 + Mt/σ2) − 1]
)

which implies

Pr[|
∑

z 6=x

f(z)δS,z(x)| ≥ |S|]

≤ 2 exp

(

−
( |S|

2n − |S|

)

[(1 + 1) ln(1 + 1) − 1]

)

≤ 2 exp(−2n) (8)

< 1/4n,

where the last line uses|S| ≥ (1 − 1
6n )2n. But when

|∑z 6=x f(z)δS,z(x)| < |S|, the right-hand side of (7) is just
sgn(f(x)|S|) = f(x), and the theorem is proved. (Theo-
rem 8)

5. Weak threshold density

In this section we give an upper bound on weak thresh-
old density which holds for all Boolean functions and a
stronger upper bound which holds for almost all Boolean
functions. These bounds give a negative answer to a ques-
tion of Saks. We also give a lower bound on weak threshold
density which holds for almost all Boolean functions and a
stronger lower bound which holds for a particular Boolean
function. To the best of our knowledge these are the only
lower bounds known for weak threshold density.

5.1. Upper bounds for weak threshold density

Since any strong representation of a Boolean functionf
is also a weak representation, Theorem 5 implies that for
any functionf and any setS ⊆ M of monomials eitherf
has a weak representation with support contained inS or f
has a weak representation with support contained inM−S
(or both). TakingS to be any set of122n monomials, it
follows that the weak density of every Boolean function is
at most122n.

Saks has asked the following question (Question 2.28.2
of [23]): is it true that for allǫ > 0 almost all Boolean
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functions have weak density at least(1
2 − ǫ)2n? Our next

two theorems show that the answer is “no” in a rather strong
sense:

Theorem 11 Almost all Boolean functions have weak den-
sity at most2n2n.

Theorem 12 All Boolean functions have weak density
o(1)2n.

The intuition behind the proof of Theorem 11 is straight-
forward: with high probability a random Boolean function
f has some small subcube on whichf is “simple.” We take
advantage of this simplicity to construct a low-density poly-
nomialp which weakly representsf on this subcube. Mul-
tiplying p by another polynomial which is 0 off of the sub-
cube, we obtain a weak representative forf. More precisely,
we use the following lemma:

Lemma 13 Let τ be a restriction which fixesn − k vari-
ables fromx1, . . . , xn and keepsk variables free. LetD
denote the weak density off |τ . Then the weak density off
is at most2n−kD.

Proof: Without loss of generality we can suppose thatτ is
the restriction which maps variablesx1, . . . , xn−k to 1 and
leaves the remainingk variables free. Letp be a polynomial
overxn−k+1, . . . , xn which weakly representsf |τ and has
D nonzero monomials. Then the polynomial

P (x1, . . . , xn) = (x1 + 1)(x2 + 1) · · · (xn−k + 1) ·
p(xn−k+1, . . . , xn)

has density2n−kD. To see thatP weakly representsf , note
that on any inputx = 1n−ky we haveP (x) = 2n−kp(x),
while on any other input we haveP (x) = 0. Sincep is a
weak representative off |τ it must be somewhere nonzero,
so the same is true forP. ✷

Proof of Theorem 11: Let f be a random Boolean func-
tion. Consider the2n−k disjoint k-dimensional subcubes
of {+1,−1} corresponding to restrictionsτ which fix vari-
ablesx1, . . . , xn−k. For any such restrictionτ we have

Pr[f |τ is not identically 1] = 1 − 1

22k

and hence

Pr[f |τ 6≡ 1 for all suchτ ] =

(

1 − 1

22k

)2n−k

.

Taking k = log n − 1, the above probability is(1 −
2−n/2)2

n−log n+1

< e−2n/2+1/n. Thus with overwhelm-
ingly high probability there is some restrictionτ fixing

n − log n + 1 variables such thatf |τ is identically 1, and
hence the weak density off |τ is 1. Now use Lemma 13.✷

Using Lemma 13 it is easy to prove an upper bound of
1
22n on the weak density of all Boolean functions without
using Theorem 5. For any Boolean functionf on n vari-
ables, the polynomial

(x1 + 1)(x2 + 1) · · · (xn−1 + 1)y

is easily seen to be a weak representative off which
has density122n, wherey ∈ {−1, 1,−xn, xn} is suitably
chosen depending on the two values off(1n−1, 1) and
f(1n−1,−1).

By looking at subcubes of dimension greater than 1 it
is possible to improve this bound. A straightforward case
analysis shows the following:

Fact 14 Every Boolean function on3 variables has weak
density at most3.

Together with Lemma 13, this yields

Corollary 15 Every Boolean function has weak density at
most382n.

While Corollary 15 already gives a strong negative an-
swer to the question of Saks, we can obtain the stronger
upper bound of Theorem 12 by using more powerful tools
from Ramsey theory. Ak-dimensional affine subspaceof
a vector spaceV is a translate of ak-dimensional vector
subspace ofV. The following is a special case of the Affine
Ramsey Theorem of Grahamet al. [13, 14]:

Theorem 16 Let A be a finite field. For allr, k ≥ 1 there
existsn such that if the points ofAn are r-colored, then
somek-dimensional affine subspace ofAn has all of its
points the same color.

Takingr = 2 andA = GF2, we can rephrase this as:

Corollary 17 There is a functiong(n) = ω(1) such that for
any Boolean functionf : (GF2)

n → {−1, 1}, there is some
g(n)-dimensional affine subspace of(GF2)

n on whichf is
constant.

Proof of Theorem 12:Let f be any Boolean function onn
variables and letW ′ be the affine subspace whose existence
is asserted by Corollary 17. Anyg(n)-dimensional vector
subspaceW of (GF2)

n is the set of solutions to some sys-
tem ofn − g(n) homogeneous linear equations, i.e.,

W = {x ∈ (GF2)
n : Ax = (0)n−g(n)}

whereA is an(n − g(n)) × n matrix overGF2. Thus the
g(n)-dimensional affine subspaceW ′ is the set of solutions
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to some system ofn − g(n) not necessarily homogeneous
linear equations, i.e.,

W ′ = {x ∈ (GF2)
n : Ax = b}

for someb ∈ (GF2)
n−g(n). If we identify GF2 with the set

{+1,−1}, then this system of equations becomes:
∏

j:A1,j=1

xj = b1,

∏

j:A2,j=1

xj = b2,

...
∏

j:An−g(n),j=1

xj = bn−g(n).

Without loss of generality we may suppose thatf(x) = 1
for all x ∈ W ′. It is easy to see that the points of{+1,−1}n

on which the polynomial

n−g(n)
∏

i=1



bi





∏

j:Ai,j=1

xi



 + 1





is nonzero are exactly the points inW ′, and that moreover
this polynomial always takes value exactly2n−g(n) onW ′.
Thus this polynomial is a weak representative forf of den-
sity 2n−g(n) = o(1)2n, and Theorem 12 is proved. ✷

5.2. Lower bounds for weak threshold density

Here we give our lower bounds for weak threshold den-
sity. The first lower bound holds for almost every Boolean
function:

Theorem 18 Almost all Boolean functions have weak
threshold density at least1

2
√

n
2n/2.

Proof: Recall the proof of Theorem 8; in particular, equa-
tion (8). If we consider setsS of size (1 − ǫ)2n, then
the probability thatf has no PTF overS is bounded by
2 exp(−.38/ǫ). There are exactly

(

2n

ǫ2n

)

such setsS. Hence

if we selectǫ such that
(

2n

ǫ2n

)

· 2 exp(−.38/ǫ) is at most
1/2n, then a union bound tells us that almost every Boolean
function can be sign-represented usinganyset of(1 − ǫ)2n

monomials. In this case Theorem 5 implies that for almost
every Boolean function, no set ofǫ2n monomials can serve
as the support of a weak sign-representation. Takingǫ =

1
2
√

n
2−n/2, it is easily shown that

(

2n

ǫ2n

)

· 2 exp(−.38/ǫ) <

1/2n, and the theorem is proved. ✷

We can give a slightly better bound for an explicit
Boolean function. Forn = 2k let IP denote the “inner

product mod 2” function, i.e.IP (x1, . . . , xk, y1, . . . , yk) =
⊕k

i=1(xi ∧ yi) where⊕ denotes exclusive-OR (parity) and
∧ denotes AND.

Theorem 19 IP has weak density at least2n/2.

Proof: It is known [8, 19] thatIP is a bent function, i.e.
a function for which|f̂(S)| = 1

2n/2 for all S ⊆ [n]. Con-
sequently, for any setS of 2n − 2n/2 + 1 monomials, the
function sgn(fS(x)) is a strong representative off by Fact
6. By Theorem 5 this means that for any setT of 2n/2 − 1
monomials, it is not the case thatf has a weak representa-
tive whose support is contained inT . Hence the weak de-
gree off is at least2n/2. ✷

6. Threshold degree of sparse functions

The following question was posed by Richard Beigel
[5]: are sparse sets easy for low-degree polynomial thresh-
old functions? More concretely, letf : {+1,−1}n →
{+1,−1}be a Boolean function such that|f−1(1)| = m ≪
2n, so f is the characteristic function of a sparse subset
of the Boolean cube. What is the maximum polynomial
threshold function degree for such anf? The following the-
orem gives a complete answer for all values ofm:

Theorem 20 For 1 ≤ m ≤ 1
22n, let Fm be the set of

all Boolean functionsf : {+1,−1}n → {+1,−1} such
that m = min{|f−1(1)|, |f−1(−1)|}. Then the maximum
threshold degree over allf ∈ Fm is exactly⌊log m⌋ + 1.

Proof: We assume without loss of generality that1 ≤
|f−1(1)| = m ≤ 1

22n. For the lower bound, letf be any
function which is such that if the lastn − (⌊log m⌋ + 1)
inputs are fixed to1 then f computes parity on the first
⌊log m⌋+ 1 inputs. (Note that this uses up2⌊log m⌋ ≤ m of
the ones inf ’s output; any remaining ones can be located
arbitrarily). Since any polynomial threshold function which
computes parity onk variables must have degree at leastk,
it follows that any polynomial threshold function forf must
have degree at least⌊log m⌋ + 1.

For the upper bound, we begin by constructing anm-
leaf decision tree over variablesx1, . . . , xn such that each
string inf−1(1) arrives at a different leaf. Such a tree can
be constructed by a greedy algorithm: initially all stringsin
f−1(1) are at the root of the tree. Letxi be any variable
such that there are two strings inf−1(1) which disagree on
xi (such a variable must exist as long as|f−1(1)| ≥ 2). La-
bel the root withxi. The strings{x : x ∈ f−1(1), xi = −1}
go to the left child and the strings{x : x ∈ f−1(1), xi = 1}
go to the right child. Now recurse on each child. At the end
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of this process we have anm-leaf tree in which each (unla-
beled) leaf has a unique string inf−1(1) which reaches that
leaf.

Let ℓ be a leaf in this tree and letz be the element of
f−1(1) which reaches that leaf. We labelℓ with the degree-
1 polynomial threshold function sgn(p(x)) wherep(x) =
x1z1 + · · ·+xnzn−n+ 1

2 . Note thatp(z) = 1
2 , andp(x) ≤

− 1
2 for all binary inputsx 6= z. Thus we now have anm-

leaf decision treeT in which internal nodes are labeled with
variables and leaves are labeled with degree-1 polynomial
threshold functions, such thatT computes exactlyf.

The rest of our proof follows the proof of Theorem 2 in
[18]. Recall that the rank of a decision treeT is defined
inductively as follows:

• If T is a single leaf thenrank(T ) = 0.

• If T has subtreesT0 and T1 then rank(T )
equals max (rank(T0), rank(T1)) if rank(T0) 6=
rank(T1) and equalsrank(T0) + 1 if rank(T0) =
rank(T1).

It follows from this definition that the rank of anm-leaf
tree is at most⌊log m⌋. Now we use the fact (see [7]) that
a rank-r decision tree with functionsf1, f2, . . . , fm at the
leaves is equivalent to somer-decision list, i.e., to a func-
tion “if C1(x) then outputf1(x) else ifC2(x) then output
f2(x) else. . . else outputfm(x)” where eachCi is a con-
junction on at mostr variables. Thus, our decision treeT
is equivalent to such a decision list, wherer = ⌊log m⌋ and
eachfi is a degree-1 polynomial threshold function sgn(pi)
as described above.

We now show that the degree-(⌊logm⌋+ 1) polynomial
threshold function sgn(P (x)) computesT, where P (x)
equals

A1C̃1(x)p1(x) + A2C̃2(x)p2(x) + · · ·AmC̃m(x)pm(x).

HereC̃i is the polynomial of degree at most⌊log m⌋ which
outputs 1 ifCi is true and 0 ifCi is false, andA1 ≫ A2 ≫
A3 ≫ · · · ≫ Am > 0 are appropriately chosen positive
values. To see that this works, note that ifCi is the first
conjunction in the decision list which is satisfied byx, then
we have

P (x) = Aipi(x) +
∑

j>i,Cj(x)=1

Ajpj(x).

Since|pi(x)| ≥ 1
2 andAi ≫ Aj > 0 for j > i, the sign of

P (x) is the same as the sign ofpi(x), and we are done.✷

7. Conclusion

While we have made significant progress on extremal
bounds for threshold degree and threshold density, there is

still room for improvement. One goal is to improve the
lower order term in ourn/2 + O(

√
n log n) upper bound

for the threshold degree of almost every Boolean function.
Another goal is to give tighter bounds on the maximum
threshold density of Boolean functions. Saks [23] has asked
whether almost all Boolean functions have threshold den-
sity at least(1 − ǫ)2n for someǫ > 0. We conjecture that
the answer is “no” in a strong sense:

Conjecture 21 For n sufficiently large, every Boolean
functionf : {+1,−1}n → {+1,−1} has threshold den-
sity at most122n.

Finally, a large gap remains between our upper and lower
bounds for weak threshold density; it would be interesting
to tighten these bounds.
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A. Alon and Gotsman’s threshold density up-
per bound

Theorem 22 (Alon and Gotsman) LetS ⊆ 2[n]

be any collection of subsets of[n] such that
|S| ≥ 2n − 1

2
√

n
2n/2. Then for all but a1/2n fraction

of Boolean functionsf on n bits, there is a polynomialp
whose support is contained inS such thatp sign-represents
f.

Proof: We first claim that for anyS ⊆ [n], the valuef̂(S) is
distributed as1

2n B(±1, 2n), whereB(±1, 2n) denotes the
binomial random variable given by the sum of2n indepen-
dent uniform±1 values. To see this, note that:

f̂(S) = E[f(x)xS ] = Pr[f(x) = xS ] − Pr[f(x) 6= xS ],

and that for a random functionf , each inputx ∈ {+1,−1}
satisfiesf(x) = xS with probability 1

2 .

It’s now straightforward to show that|||f |||∞ ≤ 2
√

n
2n/2

with probability1 − 1/2n; a Chernoff bound tells us that

for each fixed monomialS, Pr[|f̂(S)| > 2
√

n
2n/2 ] ≤ 1/4n and

we take a union bound over all2n subsetsS. Hence for
any fixed set of monomialsS with |S| ≥ 2n − 1

2
√

n
2n/2 we

get
∑

S 6∈S |f̂(S)| < 1 with probability1 − 1/2n. Fact 6
completes the proof. ✷

Corollary 23 All but a1/2n fraction ofn-bit Boolean func-
tions have threshold degree≤ .89n.

Proof: In Theorem 22, take the set of2n − 1
2
√

n
2n/2 small-

est monomials. By standard binomial tail bounds, these all
have size at most.89n. ✷
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