Computational Sample Complexity and Attribute-Efficient

Learning

Rocco A. Servedio*
Division of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138

rocco@deas.harvard.edu

July 26, 1999

*Supported in part by an NSF Graduate Fellowship and by grants NSF-CCR-95-04436 and ONR-N00014-96-1-

0550.

Proposed running head: Sample complexity and attribute-efficiency

Author to whom proofs should be sent:

Rocco Servedio

Division of Engineering and Applied Sciences

40 Oxford Street

Harvard University

Cambridge, MA 02138

Abstract

Two fundamental measures of the efficiency of a learning algorithm are its running time and
the number of examples it requires (its sample complexity). In this paper we demonstrate that
even for simple concept classes, an inherent tradeoff can exist between running time and sample
complexity. We present a concept class of 1-decision lists and prove that while a computation-
ally unbounded learner can learn the class from O(1) examples, under a standard cryptographic
assumption any polynomial-time learner requires almost ©(n) examples. Using a different con-
struction, we present a concept class of k-decision lists which exhibits a similar but stronger gap
in sample complexity. These results strengthen the results of Decatur, Goldreich and Ron [9] on
distribution-free computational sample complexity and come within a logarithmic factor of the
largest possible gap for concept classes of k-decision lists. Finally, we construct a concept class
of decision lists which can be learned attribute-efficiently and can be learned in polynomial time
but cannot be learned attribute-efficiently in polynomial time. This is the first result which
shows that attribute-efficient learning can be computationally hard. The main tools used are

one-way permutations, error-correcting codes and pseudorandom generators.

List of symbols:

© capital theta
Q capital omega
[T product (capital pi)
€ epsilon

0 delta

« alpha

T tau

T x bar

D calligraphic D
T calligraphic I
T calligraphic T
S calligraphic S
C calligraphic C
G calligraphic G
U calligraphic U
Z calligraphic Z
O capital oh

0 zero

o lowercase oh

£ lowercase ell

1 one

oo infinity

(left angle

) right angle
o circle

— right arrow
* asterix

C subset

€ element of

~—— overbrace

1 Introduction

A broad research goal in computational learning theory is to discover fast (i.e., polynomial-time)
learning algorithms for various concept classes. Another broal goal is to discover algorithms which
can learn from few examples. This paper studies how these two goals can sometimes be mutually

exclusive.

In Valiant’s Probably Approximately Correct model of concept learning [29], the sample com-
plezity of a concept class C' is the minimum number of labelled examples which any successful
learning algorithm for C must require. Lower bounds on sample complexity were first given by
Ehrenfeucht et. al. in [10], where it was shown that any algorithm which learns a concept class of
Vapnik-Chervonenkis dimension d must use Q(d/e) examples. Similar bounds were subsequently
established in [18] for a generalization of the PAC model to learning probabilistic concepts. How-
ever, these results do not address the question of how many examples a polynomial-time learning
algorithm must require. (Of course, since drawing an example takes at least one time step, a

polynomial-time learning algorithm can require at most polynomially many examples.)

The first indication that polynomial-time learning might be computationally hard for the unre-
stricted class of boolean circuits of polynomial size was given by Valiant in his original paper [29].
Kearns and Valiant [19] subsequently established the existence of concept classes of polynomial-size
boolean formulae which are hard for any polynomial-time algorithm to learn but are learnable from
polynomially many examples by a computationally unbounded algorithm. Their results were later

refined and extended by Kharitonov [21].

Decatur, Goldreich and Ron [9] were the first to study concept classes in which polynomial-time

learning is doable but requires more examples than learning using a computationally unbounded

algorithm. Among other results, they proved the following theorem:

Theorem 1 Let p(n) be any polynomial such that p(n) > n. If one-way functions exist, then there

s a concept class C of polynomial-size circuits such that

e any polynomial-time PAC learning algorithm for C must use Q(p(n)/e) examples,

o there is a computationally unbounded PAC learning algorithm for C which uses O(n/e) ez-

amples.

The proof of Theorem 1 relies essentially on the idea that a pseudorandom generator can be
used to hide information from a computationally bounded learner but not from a computationally

unbounded learner.

The first contribution of the present paper is to strengthen the results of Decatur et. al. by
establishing stronger gaps of this sort and showing that such gaps hold even for concept classes
whose concepts have an extremely simple and natural representation as decision lists; we do this
via two constructions. Qur first construction yields a concept class whose concepts are 1-decision
lists and which has the following property: a computationally unbounded learner can learn the
class from O(1/¢) examples, but under a standard cryptographic assumption any polynomial-time
learner requires almost ©(n/¢) examples. This construction uses error-correcting codes and requires
only very basic cryptography (the notion of a one-way function). Our second construction makes
more extensive use of cryptographic machinery to prove the following result: for any & > 1 there
is a concept class of k-decision lists which a computationally unbounded algorithm can learn from

O(1/e) examples, but under a widely held cryptographic assumption any polynomial-time learner

requires ©(n*/e) examples. This is within a logarithmic factor of the largest possible gap for

concept classes of k-decision lists.

Our last main result concerns attribute-efficient learning. Loosely speaking, a concept class
C is said to be attribute-efficiently learnable if there is a learning algorithm for C which requires
only poly(size(c),logn)/e examples to learn any concept ¢ € C over n variables (we give a precise
definition in Section 5). Attribute-efficient learning algorithms are particularly useful when the
target concept depends on few variables but n, the total number of variables, is large. Results
of Haussler [16] and Littlestone [22] yield attribute-efficient learning algorithms for k-CNF and
k-DNF formulae; more recent results on attribute-efficiency can be found in [4, 7, 28]. Blum [2]
and Valiant [30] have each posed the question of whether there exists a polynomial-time attribute-
efficient learning algorithm for the concept class of 1-decision lists of length k. Such an algorithm
would run in time poly(n) (this is unavoidable since each example is of length n) but would require

only poly(k,logn)/e examples, and could potentially be a useful tool in machine learning.

We take a step toward answering Blum and Valiant’s question by providing the first proof that
attribute-efficient learning can be computationally hard. We do this by exhibiting a concept class
of decision lists which can be learned in polynomial time and can be learned by a computation-
ally unbounded attribute-efficient learning algorithm but cannot (under a plausible cryptographic

assumption) be learned in polynomial time by any attribute-efficient algorithm.

A common paradigm for concepts and examples is used throughout this paper. In each of the
concept classes which we consider, each concept is associated with a secret key; it is easy to exactly
identify the target concept if this key is known. Also, in each of our constructions examples come

in two types, which we call useful and useless. Useful examples each contain an encrypted version

of the secret key as well as a small amount of unencrypted information about the target concept.

Useless examples all have label 0 and contain no information about the target concept.

Our constructions are based on the following simple idea: a computationally unbounded learning
algorithm can decrypt the secret key and hence can learn the target concept exactly from a single
useful example. Consequently, such a learning algorithm requires few examples. On the other
hand, a polynomial-time learner cannot decrypt the secret key; instead, it can only use the small
amount of unencrypted information in each useful example. Hence a polynomial-time learner will
need many useful examples in order to acquire a significant amount of information about the target

concept.

The remainder of the paper is structured as follows. Section 2 contains preliminary definitions
which we use throughout the paper. In Section 3 we exhibit a concept class of 1-decision lists which
has a substantial gap between its information-theoretic and computational sample complexities.
Section 4 contains analogous results (obtained using a different construction) for a concept class of
k-decision lists. In Section 5 we show that attribute-efficient learning of polynomial-time learnable

concept classes can be computationally hard. Section 6 concludes with some open problems.

2 Preliminaries

In the boolean PAC learning model, a concept ¢ : {0,1}" — {0,1} is a boolean function and a
concept class C is a collection of concepts. The learner has access to an ezample oracle EX (¢, Dy,)
which, on each call, takes one time step and outputs a labelled boolean example (z, c(z)) where
is drawn from the distribution D,, over {0,1}". Given two boolean functions h, ¢ and a distribution

Dy, over {0,1}", we say that h is e-accurate under D,, with respect to c if Pryep, [h(z) # c(z)] < €

alternatively, such a function h is said to e-approzimate the concept ¢ under D,. An algorithm L is
said to be a PAC learning algorithm for concept class C' if the following condition holds: for every
distribution D,,, for every ¢ € C and for every 0 < ¢,0 < 1, if L is given access to EX (¢, D,) then
with probability at least 1 — §, algorithm L outputs a hypothesis A which e-approximates ¢ under

D,,. See [20] for a thorough discussion of PAC learning.

The following definitions are from [9]: The distribution free information theoretic sample com-
plezity of a concept class C, denoted Z7 SC(C;n,e€), is the minimum sample size (as a function of
n and €) needed for PAC learning the class C with accuracy € and confidence § = 9/10, where no
computational limitations exist on the learning algorithms which may be used. The distribution
free computational sample complezity of a concept class C, denoted CSC(C;n,¢€), is the minimum
sample size (as a function of n and ¢) needed for PAC learning the class C' with accuracy e and

confidence § = 9/10, where the learning algorithm must operate in polynomial (in n and 1/¢) time.

A k-decision list of length £ over the boolean variables 1, ..., z, is a boolean function L which
is represented by a list of £ pairs (m1,b1), (m2,b2),. .., (mg,bg), where each m; is a conjunction of
at most k literals over zi,...,z, and each b; is either 0 or 1. Given any z € {0,1}", the value of

L(z) is b; if i is the smallest index such that m; is satisfied; if no m, is satisfied then L(z) = 0.
We write z o y to denote the concatenation of binary strings z,y and |z| to denote the length
of z. We say that a permutation f : {0,1}* — {0,1}* is length-preserving if |f(z)| = |z| for all
z € {0,1}*.
A length-preserving one-way permutation is a length-preserving permutation f which has the

following properties: there is a deterministic polynomial-time algorithm which computes f, but

for sufficiently large n there is no probabilistic polynomial-time algorithm which inverts f on a

10

1/poly(n) fraction of {0,1}".

3 A Construction Using Error-Correcting Codes

In this section we prove the following theorem:

Theorem 2 Let 0 < 7 < 1 be any constant. If length-preserving one-way permutations exist, then

there is a concept class C; which has
ITSC(Cr;n,e) = O(1/e)
and
Q(n'~"/e) = CSC(Cy;n,e) = O(n/e)

where each concept in C; is a 1-decision list over {0,1}".

3.1 Error-correcting codes

We need some basic terminology from the theory of error-correcting codes. As in [26, 27] we say
that a binary code of block length £ and rate 1y is a code in which codewords are £ bits long,
where 1 - £ positions are “message bits” that can be filled with any combination of 0’s and 1’s
and the remaining (1 — r¢)¢ positions have their contents determined by the message bits. Let
Ay - {0,1}7 — {0,1}¢ be a binary code of block length £ and rate r; for z € {0,1}7¢¢, the j-th

bit of the ¢-bit string A,(z) is denoted by Ay(z);.

We say that the code Ay has minimum relative distance &y if any pair of distinct codewords

{Ay(z), A¢(y)} has Hamming distance at least d; - £. For ay < d;/2, we say that an algorithm D

11

is an ay-decoding algorithm for Ay if, when D is given a string z € {0,1}¢ which has Hamming

distance at most ay - £ from some codeword Ay(z), the algorithm D outputs z.

The papers [26, 27] each contain versions of the following important theorem:

Theorem 3 [Sipser, Spielman] There exists a polynomial-time-constructible family {Ag}32, of
binary error-correcting codes, where each Ay is a function from {0,1}7¢¢ to {0, 1}¢, with the following

properties:

e limy_,oo 7y > 0, limy_,oo 6y > 0 and limy_,, ay > 0,

e For each £, there is an ay-decoding algorithm for Ay which runs in time poly(£).

Recall that in the PAC framework, a learning algorithm succeeds if it can construct a hypothesis
which agrees with the target concept on all but a small fraction of points. In the construction which
we use to prove Theorem 2, such a hypothesis will yield a string z which is close to a codeword
Ag(z). By the polynomial-time decoding algorithm of Theorem 3, the ability to find an accurate
hypothesis in polynomial time would thus imply the ability to find z in polynomial time. However,
we will show that this is impossible (under a cryptographic assumption) if few examples have been

seen.

3.2 The Concept Class C;

Before giving a formal description of the concept class C, we mention that in this concept class
the secret key for each concept is composed of many small subkeys, each of which is encrypted

separately. The reason is that each useful example will contain a small amount of unencrypted

12

information about exactly one of the subkeys. Hence, unless many useful examples have been seen,

there will exist subkeys about which no unencrypted information has been revealed.

Before we can describe the concept class C.., we must first specify some numerical parameters.
Let {A;}72, be a fixed family of error-correcting codes with the properties stated in Theorem 3 (so
the block length is 7, the minimum relative distance is g, and there is a poly(£)-time a,-decoding
algorithm for Ay). Given a positive integer m, let ¢ = mFTT, let £ be the smallest integer such that

r¢+ £ > m, and let n = mq + gf. The following facts can be easily verified:

Fact 4 oy = 0O(1), 7, = O(1) (follows from Theorem 3).

Fact 5 £=0O(m) (follows from definition of £ and Fact 4).

Fact 6 n = O(mgq) (follows from definition of n and Fact 5).

Fact 7 m = 0(n"), ¢ = O(n'~") (follows from definition of q¢ and Fact 6).

Let f be a fixed length-preserving one-way permutation. The set ({0,1}™)? will be our set of
secret keys; each secret key v = (v!,...,v?) € ({0,1}™)4 is composed of ¢ subkeys each of which is

m bits long. The class C; has a concept ¢, for each secret key v.

We now describe a concept ¢, over {0,1}". If ¢, is the target concept, then an example = €
{0,1}™ is said to be useful if 1+ Tmq = f(v!) o--- o f(v?) and is useless otherwise. Given an
example z € {0,1}", let i(z) € {1,...,q},j(z) € {1,...,£} be such that T4 (i(x)-1)¢+j(z) 15 the
first bit of Zyyg41 - Trmg+qe Whose value is 1. (If yg41 = -+ = Tingqe = 0 then i(z) = j(z) = 0.)

Figure 1 illustrates the structure of a useful example. The concept ¢, is defined as follows:

13

e ¢,(z) =0 if is useless,

e ¢,(z) = Ag(ui(w))j(m), the j(z)-th bit of Ay(v(®)), if z is useful and i(z), j(z) > 1. If z is useful

and i(z) = j(z) = 0 then ¢,(z) = 0.

3.3 Proof of Theorem 2

First we establish that ¢, is a 1-decision list. For each 1 < k < mg, let /5 denote the literal Ty if
the k-th bit of f(v!)o---0 f(v9) is 1, and let £, denote zj otherwise. Then the following is seen to

be a 1-decision list which computes ¢, :

(ela 0)1 sy (emqa O)a (zmq—l—laAe(Ul)l)a (mmq—I—Qa Aﬁ(vl)Q)’ teey

(gt (i—1)e+is Ae(V")5)5 - -5 (Tmgerqer Ae(vD)g).

This is because the first mg pairs ensure that all useless examples will be labelled 0, and the ordering

of the last gf pairs ensures that the label of each useful example will be as described in Section 3.2.

To prove the information-theoretic sample complexity upper bound, we must show that under
any distribution at most O(1/¢) examples are required. Since each positive example contains
f(wh o...0 f(v9), a computationally unbounded learner can learn the target concept exactly from
a single positive example by inverting the one-way permutation f to find each v* and then computing
each A,(v%). Such a learner can thus make, say, 20/¢ calls to the oracle EX(c, D,) and output the
identically zero hypothesis if all examples are negative, otherwise output the correct hypothesis
as described above. A simple calculation shows that this algorithm finds an e-accurate hypothesis

with high probability, and hence ZTSC(Cr;n,e) = O(1/e).
It remains to bound the computational sample complexity of C;; we begin with the simpler

14

upper bound. We say that a 1-decision list over {0,1}" is well-structured if its length is exactly n
and it has the following structure: for 1 <t < mg the t-th pair of the decision list has z; or T; as its
conjunction and has 0 as its output bit, and for mqg+ 1 <t < mq+ ¢f the t-th term of the decision
list has x; as its conjunction. Given a sample S of examples which are labelled according to the
concept ¢y, it is easy for a polynomial-time algorithm to find a well-structured 1-decision list which
is consistent with S. Any positive example of S identifies the first mgq literals of the well-structured
1-decision list, and each useful example provides the output bit for one of the last g¢ pairs (note that
it is possible to identify useful examples as long as S contains at least one positive example). Since
there are 2" well-structured 1-decision lists, Occam’s Razor [6] immediately implies that O(n/e)

examples suffice for this polynomial-time learning algorithm.

Now we show the lower bound on CSC(C;;n,e). The idea of the proof is as follows: we will
exhibit a particular distribution on {0, 1}" and show that any polynomial-time learning algorithm
for C; which learns to accuracy e using gay/18¢ examples drawn from this distribution can be used
to invert the one-way permutation f in polynomial time with nonnegligible success probability. This
contradiction implies that every polynomial-time learning algorithm must use more than goy/18¢
examples. Since Facts 4 and 7 together imply that qay/18¢ = ©(n' 7 /¢), this will prove that

CSC(Cr;n,e) = Q(n'~7/¢) as desired.

Let D, be the distribution on {0,1}" which assigns weight 3¢/(ay - ¢f) to each of the gf useful

examples

{f(w!) o--- f(v7) 0 0F107-K 1},

and assigns the remaining 1 — 3e/ay weight to the single useless example 0". (Recall from Section

3.1 that ay is the frequency of errors up to which the error-correcting codes of [26, 27] can be

15

successfully decoded using a poly(¢)-time algorithm.) Note that under this distribution, each bit

of each Ay(v') is equally likely to occur as the label of a useful example.

Let S be a sample of gay/18¢ examples which are drawn from EX (c,Dy,). Since the expected
number of useful examples in S is ¢/6, a simple application of Chernoff bounds (see, e.g., [1, 20])
shows that with overwhelmingly high probability the sample S will contain at least one useful
example. Since each useful example contains f(v!) o--- f(v9) as its mg-bit prefix, it follows that
with overwhelmingly high probability a polynomial-time learning algorithm which has access to S

can identify the strings f(v'),..., f(v9).

Now suppose that a polynomial-time learning algorithm could achieve an e-accurate hypothesis
from the sample S. Since the learning algorithm knows f(v!),..., f(v9), the algorithm can apply
its e-accurate hypothesis to each of the ¢f useful examples described above. The algorithm can
thus construct B!, ..., B? in polynomial time, where each B’ is an £-bit string which is the learning
algorithm’s “guess” at the string A,(v*). Since by assumption the hypothesis is e-accurate under D,
at most an ay/3 fraction of the g/ total bits in the strings B?,..., B? can be incorrect. By Markov’s
inequality, at least 2/3 of the B"s must each have at most ay - £ incorrect bits; consequently, by
using the polynomial-time decoding algorithm for Ay, the learning algorithm can find at least 2/3 of
the subkeys {v!,...,v9} in polynomial time. However, since as noted earlier the expected number
of useful examples in S is ¢/6, by a straightforward application of Chernoff bounds it is extremely
unlikely that S contained more than ¢/3 useful examples. As a result, we have that with very
high probability the polynomial-time learner has received no information at all (other than f(v'))
for at least 2/3 of the subkeys. It follows that the poly(n)-time learner was able to invert f on

at least 1/3 of the f(v%)’s “from scratch.” Since each subkey v* is m = ©(n") bits long, though,

16

our poly(n)-time learner is also a poly(m)-time algorithm; but this contradicts the fact that f is

one-way. Hence CSC(C,;n,€) > qay/18¢ = Q(n'~7 /¢). [|

4 A Stronger Gap

In this section we prove the following:

Theorem 8 Let k > 1 be any integer. If length-preserving one-way permutations exist, then there
s a concept class Cy which has

ITSC(Cy;n,e) = O(1/e)

and

CSC(C;n,e) = O(n*/e)

where each concept in Cy is a k-decision list over {0,1}".

This strengthens the result of Decatur et. al. [9] on distribution-free computational versus
information-theoretic sample complexity in two ways: we improve the upper bound on information-
theoretic sample complexity from O(n/e) to O(1/e), and we prove this stronger gap for the much

simpler class of k-decision lists (rather than poly-size circuits).

4.1 Cryptographic Preliminaries

The cryptographic definitions we present in this section are slightly more general than the standard
definitions (we will need this extra generality in Section 5). Throughout this section the function g(-)

denotes an arbitrary nondecreasing integer-valued function which satisfies g(n) > n. The standard

17

cryptographic definitions are obtained if g(n) is taken to be a polynomial in n (the reader is
encouraged to verify this for herself). Intuitively, the faster g(n) grows, the less plausible are
the resulting cryptographic assumptions. In Section 5 we will take g(n) to be a function which
grows very slightly faster than any polynomial in n; this is a stronger-than-standard cryptographic

assumption, but as we discuss in Section 5, we believe that it is still quite a reasonable assumption.

The notation “x € D,,” means that z is selected from the set {0,1}" according to distribution

Dy,; we write Uy, to denote the uniform distribution over {0,1}".

Definition 9 A length-preserving permutation f is said to be q(n)-one-way if the following condi-

tions hold:

e there is a deterministic poly-time algorithm which computes f(x),

e for all probabilistic poly(q(n))-time algorithms A, for all polynomials Q, for all sufficiently

large n, we have

Definition 10 Let f be a length-preserving permutation. A polynomial-time computable predicate
B :{0,1}* — {0,1} is said to be a g(n)-hard-core predicate of f if the following condition holds:
for all probabilistic poly(q(n))-time decision algorithms A, for all polynomials Q, for all sufficiently
large n, we have

1
$1635n[A(f($)) = B(z)] < ot 0lgm))”

Suppose that g is a length-preserving poly(n)-one-way permutation. Let z = p o y where

Ip| = |y| = n, and let f be the function defined as f(z) = p o g(y). It is easy to check that f is

18

also a length-preserving poly(n)-one-way permutation. Goldreich and Levin [14] have shown that
B(z) = X7 piyi (mod 2) is a poly(n)-hard-core predicate for f (see Appendix C.2 of [13] for a very
readable proof of this result). An entirely straightforward modification of their proof shows that
if g is a length-preserving g(n)-one-way permutation, then f is a length-preserving ¢(n)-one-way

permutation and B(z) is a ¢(n)-hard-core predicate for f.

Definition 11 A family of probability distributions { Xy} on {0, 1}9(") is g(n)-pseudorandom if
{Xym)} is poly(q(n))-time indistinguishable from {Ugn}. That is, for all probabilistic poly(q(n))-

time decision algorithms A, for all polynomials Q, for all sufficiently large n, we have

Zegin)[A(z) =1- Zellj:(m[A(z) =1 < Qa(n))’

Definition 12 A poly(q(n))-time deterministic algorithm G : {0,1}™ — {0,1}¢™ s said to be
a q(n)-pseudorandom generator if {Gyn)} is a q(n)-pseudorandom family of distributions, where

Gq(n) is the distribution on {0, 1}‘1(") obtained as follows: to select z € Gy(n), pick z € Uy and set

z = G(z). We write G(z); to denote the i-th bit of G(z).

Now we can state the following useful theorem:

Theorem 13 Let f be a length-preserving q(n)-one-way permutation and let B be a q(n)-hard-core

predicate of f. Let G : {0,1}" — {0,1}4() be defined as follows:
G(z) = B(z) o B(f(x)) o B(f(f(2))) o --- 0 B(f1™~}(z)).
Then G is a q(n)-pseudorandom generator. Moreover, the distributions

{G(2) o 1" (2) }2es

19

and

{wo fq(n) (2) }wEUq(n),ZEUn

are poly(q(n))-time indistinguishable.

In the case where g(n) is a polynomial, this theorem is a standard result (see, e.g., Proposition
3.17 of [12]). This construction of a pseudorandom generator, along with the definition of a pseu-
dorandom generator, is originally from [5]. The proof of the more general theorem which is stated
above (where ¢(n) need not be a polynomial) is a straighforward modification of the proof of the
standard result, entirely analogous to the modification of the Goldreich-Levin theorem mentioned

above.

Observation 14 We note that by Theorem 13, even if a poly(q(n))-time algorithm is given f4((2)
along with some bits of G(z), the algorithm still cannot predict the unseen bits of G(z) with accuracy
significantly better than 1/2. This is because the ability to do such prediction would violate the
poly(q(n))-time indistinguishability which is asserted in Theorem 13, since clearly no poly(q(n))-
time algorithm (in fact, no algorithm at all) can successfully predict the unseen bits of a uniformly

selected random string.

4.2 The Concept Class C}

Let f be a length-preserving one-way permutation. The set {0, 1} will be our set of secret keys. As
discussed in Section 4.1 we can suppose without loss of generality that f has a hard-core predicate.
Let G be the (})-pseudorandom generator associated with f whose existence is asserted by Theorem

13 (so G maps inputs of length m to outputs of length (7).) Let n = 2m. For 1 < i < (7)), let T;

20

denote the i-th k-element subset of the set {m+1,...,2m} under some fixed and easily computable
ordering (e.g., lexicographic), and let z; be the conjunction [[,cr, x;. Given any input = € {0, 1}",
let i(z) be the the smallest index in {1,..., ()} such that z,) is satisfied by = (if no z(, is
satisfied by z for 1 < i(x) < (') then let i(z) = 0).

The class Cy has a concept ¢, for each secret key v € {0,1}™. If ¢, is the target concept, then
an example z is useful if z1 -z, = f(m(v) and is useless otherwise. (As in Section 4.1, f(m (v)

denotes the result of applying f exactly (7,?) times to v.) The concept ¢, is defined as follows:

e ¢y(z) =0 if z is useless,

e ¢y(z) = G(v)(y), the i(x)-th bit of G(v), if z is useful and i(z) > 1. If z is useful and i(z) = 0
(z)

then ¢, (z) = 0.

4.3 Proof of Theorem 8

First we show that c, is a k-decision list. For each 1 < j < m, let £; denote the literal Z; if the j-th
bit of f(rl?)('u) is 1, and let ¢; denote z; otherwise. The following k-decision list of length m + (')
computes ¢, :

(81,0), ceey (ém,O), (2’1, G(’U)l), ceey (Z('r;:), G(’U)(m))

k

To bound ZT7 SC(Cy;n,¢€), note that upon receiving a single positive example, an unbounded
learner can invert f (7;)(1;) to find v (this is possible since f is a permutation) and thus learn the

target concept ¢, exactly. As in the proof of Theorem 2, it follows that Z7T SC(Cy;n,€) = O(1/e¢).

An analogous argument to the computational sample complexity upper bound proof of Theorem

2 establishes that CSC(Cy;n, €) = O(() /€) = O(n¥/e).

21

For the computational lower bound, consider the distribution D,, over {0,1}" which assigns
weight 1 — 6e to the single useless example 0" and assigns weight 6¢/ (")) to each of the () useful

examples

(O) oy E)

(here we are viewing each T; as an m-bit string in the obvious way). Let S be a sample of (') /24€
examples which are drawn from EX (¢, D,,). By Theorem 13, we have that the string-valued random

variables

m

{G(2) o 1) (2) }octan
and
w o (71?) 2
{ f ()}weu(?),zeum

are polynomial-time indistinguishable. Consequently, even though a polynomial-time learner which
has drawn the sample S may discover f (%) (v) from any positive example, by Observation 14 such
a learner cannot predict the bits of G(v) which it has not seen with accuracy significantly better
than 1/2. Since the expected number of useful examples in S is (T,?) /4, a straightforward application
of Chernoff bounds shows that with very high probability S will contain fewer than (') /2 useful
examples, and thus with very high probability the polynomial-time learner will have seen at most
half of the () bits of G(v). Since useful examples which correspond to the unseen bits of G(v)
have weight at least 3¢ under the distribution D,,, the polynomial-time learner’s overall error rate
will exceed e (with very high probability it will be at least 3¢/2). Hence (') /24€¢ examples do not

suffice for polynomial-time learnability, and we have that CSC(Cy;n,€) > (7)/24e = O(n*/c). W

It is interesting to contrast the bounds given in Theorem 8 with other known bounds. The

upper bound on information-theoretic sample complexity which is given in Theorem 8 is the best

22

possible for nontrivial concept classes. Rivest’s polynomial-time algorithm for learning k-decision
lists [25] requires O(% min{log n, log %}) examples; thus our lower bound on computational sample
complexity could be improved by at most a logarithmic factor for concept classes of k-decision lists.
Ehrenfeucht et. al. [10] have shown that (n*/e¢) examples are required for information-theoretic
reasons for learning k-decision lists. Our Theorem 8 shows that €(n*/e) examples can be required
for learning subclasses of k-decision lists for computational reasons even in the absence of any

information-theoretic barriers to learning from fewer examples.

5 Hardness of Attribute-Efficient Learning

We now turn our attention to attribute-efficient learning algorithms. These algorithms require
very few examples relative to the total number of input variables (i.e., attributes), and hence have
exceptionally good performance over high-dimensional input spaces which contain many irrelevant
attributes. This property has led researchers to apply attribute-efficient learning algorithms to
real-world problems such as calendar scheduling [3], text categorization [8], and context-sensitive

spelling correction [11].

Attribute-efficiency has chiefly been studied in the on-line mistake-bound model of concept
learning which was introduced in [22, 23]. In this model learning proceeds in a series of trials,
where in each trial the learner is given an unlabelled boolean example z € {0,1}" and must predict
the value c(z); after each prediction the learner is told the true value of ¢(z) and can update its
hypothesis. The mistake bound of a learning algorithm on a target concept ¢ is measured by the
worst-case number of mistakes that the algorithm makes over all (possibly infinite) sequences of

examples, and the mistake bound of a learning algorithm on a concept class C is the worst-case

23

mistake bound across all concepts ¢ € C. A learning algorithm L for a concept class C over {0,1}"
is said to run in polynomial time if the mistake bound of L on C is poly(n) and the time required

by L to make its prediction and update its hypothesis on each example is poly(n).

A boolean function ¢ over x1,..., T, is said to depend on a variable z; if there are two vectors
y,z € {0,1}" which have y; = z; for all j # i, y; # 2z;, and ¢(y) # c(z). Let C be a class of boolean
functions on z1,...,x, each of which depends on at most r variables and each of which has a
description of length at most s under some reasonable encoding scheme. Following [4], we say that
a learning algorithm L for C' in the mistake-bound model is attribute-efficient if the mistake bound

of L on any concept ¢ € C is poly(r, s,logn).

In this section we provide strong evidence that there are concept classes learnable in polynomial
time for which attribute-efficient learning is information-theoretically possible but computationally

hard. We do this by proving the following theorem:

Theorem 15 For any integer ¢ > 2, let log(c,n) denote

[

———
loglog---logn.

Let q(c,n) = nl°8(em) If there is some integer ¢ > 2 such that length-preserving q(c,n)-one-way
permutations exist, then there exists a concept class C of O(log(c,n))-decision lists which has the

following properties in the mistake-bound model:

o A computationally unbounded learner can learn C' with at most 1 mistake,
o C can be learned in polynomial time,

o C cannot be learned in polynomial time by an attribute-efficient learning algorithm.

24

While the existence of length-preserving g(c, n)-one-way permutations is not a standard cryp-
tographic assumption, we believe that it is still a very reasonable assumption. As we discuss in
Appendix B, if there does not exist a collection of g(c,n)-one-way permutations (where each per-
mutation in the collection is defined over a finite domain)®, then there must exist algorithms for
factoring Blum integers which are far more powerful than any currently known algorithms for this

well-studied problem.

5.1 Proof of Theorem 5
First we define the concept class C. This construction is similar to the construction of Section 4.2
but with some different parameters.

Let f be a length-preserving q(c, n)-one-way permutation; as before, the set {0,1}™ will be our
set of secret keys. Let G be the ¢(c,n)-pseudorandom generator whose existence is guaranteed by
Theorem 13. Let n be such that m = n'/1°8(¢") and let k(n) denote the least integer such that

(ka)) > q(c, m). The following claims can be easily verified:

Claim 16 For g, m, and k as defined above, we have:
1. gq(e,m) =nl"o0),
2. k(n) = O(log(c,n)).
Proof: See Appendix A. |

Fori=1,...,q(c,m) let T; denote the i-th k(n)-element subset of the set {m+1,...,2m} and

!This is a slightly different notion of a one-way function than the notion which we have been using thus far in the

paper. See Section 2.4.2 of [12] for a discussion of the relationship between these two notions.

25

let 2z; be the conjunction [];c7; z;. Given any input z € {0,1}", let i(z) be the the smallest index

in {1,...,q(c,m)} such that z, is satisfied by x (if no 2; is satisfied by z then i(z) = 0).

For each secret key v € {0,1}™, there exists a corresponding concept ¢, € C. If ¢, is the target
concept, then an example z is useful if &1 - - - &, = f2&™) (v) and is useless otherwise. The concept

¢y is defined as follows:

e ¢y(z) =0 if z is useless,

® cy(z) = G(v)(g), the i(z)-th bit of G(v), if z is useful and i(x) > 1. If z is useful and i(z) =0

then ¢, (z) = 0.

Now we prove that C' has the properties listed in Theorem 15. The first property is easy:
a computationally unbounded learner can achieve a mistake bound of 1 by predicting 0 until it
makes a mistake. From this positive example the unbounded learner can compute v (by inverting

faem) () and hence can exactly identify the target concept.

For the second property, note that the concept ¢, can be represented as a O(log(c, n))-decision
list of length at most m + g(c,m). As in the computational sample complexity upper bound of
Theorem 2, a polynomial-time algorithm can learn the first m pairs of the target decision list from
a single positive example, and will make at most one mistake for each of the last g(c,m) pairs of

1—o(1)

the decision list. Since g(¢,m) = n , such an algorithm will make poly(n) mistakes, and it

follows that C' can be learned in polynomial time.

Now suppose that there is a polynomial-time attribute-efficient learning algorithm for the con-
cept class C. Since each concept ¢, has an m-bit description (the string v), we have that s = O(m).

Each function ¢, depends only on the variables 1, ..., T2y, so r is also O(m). Hence any attribute-

26

efficient learning algorithm for C' must have mistake bound poly(m,logn) = poly(m).

Consider the g(c,m)-long sequence S of useful examples {f 9(em) (y) o Tj o O”_Qm}gicl’m). From
Theorem 13, we have that no poly(g(c, m))-time learning algorithm can predict an unseen bit of G(v)

1-o(1) we have that poly(g(c,m)) =

with accuracy significantly better than 1/2. Since g(c,m) =n
poly(n). Consequently, any poly(n)-time learning algorithm will have probability 1/2 of making
a mistake on each example in the sequence §; it follows that with very high probability, any

poly(n)-time algorithm will make ©(g(c,m)) mistakes on S. But this means that no polynomial-

time attribute-efficient learning algorithm can exist for C, since poly(m) = o(g(c,m)). [|

6 Conclusion

We have demonstrated the existence of various subclasses of k-decision lists which can be information-
theoretically learned from a constant number of examples but which requires any polynomial-time
learner to use ©(n*) examples. We have also shown that under a plausible cryptographic assump-
tion, attribute-efficient learning is computationally hard but information-theoretically possible for

a polynomial-time learnable class whose concepts are O(log(c,n))-decision lists.

Many directions remain for future research. For one thing, it would be interesting to see if
gaps such as the ones we have demonstrated in Sections 3 and 4 can be shown for concept classes
whose concepts are even simpler than decision lists, and to determine whether the cryptographic
assumptions which are used to establish these gaps can be weakened. In a similar vein, it would be
nice to be able to replace the cryptographic assumption which is used to prove Theorem 15 with a

more standard (i.e., weaker) cryptographic assumption.

27

As noted in Section 5, each concept of the class described there has a natural m-bit representa-
tion. However, to represent a concept in this class as a decision list requires more than m bits; our
attribute-efficient hardness result relies on the m-bit representation. It would be very interesting to
see an attribute-efficient hardness result for a concept class of decision lists where the description

length of a concept is taken to be the length of the decision list which computes it.

A related goal is to prove computational hardness results for attribute-efficient learning of sim-
pler concept classes. In particular, let Lj denote the class of 1-decision lists of length k. Using
the Halving Algorithm [22] the class Ly can be learned with O(k logn) mistakes, but no algorithm

o(1)

running in time n is known which makes poly(k,logn) mistakes (there is a polynomial-time al-

gorithm which make O(kn) mistakes [2], and Littlestone’s Winnow algorithm [22] makes 2°*) logn
mistakes). Perhaps techniques such as those used in this paper can help resolve whether Lj is
attribute-efficiently learnable in polynomial time.

7 Acknowledgements

We thank Amos Beimel and Les Valiant for helpful suggestions which greatly improved the structure
of the paper.

References

[1] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and match-

ings, J. Comput. System Sci. 48 (1979), 155-193.

28

2]

[10]

[11]

A. Blum, On-line algorithms in machine learning, available at

http://www.cs.cmu.edu/ avrim/Papers/pubs.html, 1996.

A. Blum, Empirical support for winnow and weighted-majority algorithms: results on a cal-

endar scheduling domain, Machine Learning 26 (1997), 5-23.

A. Blum, L. Hellerstein, and N. Littlestone, Learning in the presence of finitely or infinitely

many irrelevant attributes, J. Comput. System Sci. 50 (1995), 32-40.

M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random

bits, SIAM J. Comput. 13 (1984), 850-864.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Occam’s razor, Inform. Process.

Lett. 24 (1987), 377-380.

N. Bshouty and L. Hellerstein, Attribute efficient learning with queries, J. Comput. System

Sci. 56 (1998), 310-319.

I. Dagan, Y. Karov, and D. Roth, Mistake-driven learning in text categorization, in “2nd

Conf. on Empirical Methods in Natural Language Processing (EMNLP-97),” 1997.

S. E. Decatur, O. Goldreich, and D. Ron, Computational sample complexity, in “Proc. Tenth

Ann. Conf. on Comp. Learning Theory,” ACM Press, New York, 1997, 130-142.

A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant, A general lower bound on the number

of examples needed for learning, Inform. and Comput. 82(3) (1989), 247-261.

A R. Golding and D. Roth, A winnow-based approach to spelling correction, Machine Learning

34 (1999), 107-130.

29

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

O. Goldreich, Foundations of cryptography (Fragments of a Book), available at

http://www.wisdom.weizmann.ac.il/"oded/frag.html, 1995.

O. Goldreich, “Modern cryptography, probabilistic proofs and pseudo-randomness,” Algo-

rithms and Combinatorics series (Vol. 17), Springer, 1998.

O. Goldreich and L. Levin, A hard-core predicate for all one-way functions, in “Proc. 21st

Ann. Symp. on Theory of Comp.,” ACM Press, New York, 1995, 25-32.

S. Goldwasser and M. Bellare, Lecture notes on cryptography, available at

http://www-cse.ucsd.edu/users/mihir/papers/gb.html, 1996.

D. Haussler, Quantifying inductive bias: Al learning algorithms and Valiant’s learning frame-

work, Artificial Intelligence 36(2), (1988), 177-221.

M. Kearns, M. Li, L. Pitt, and L. Valiant, Recent results on boolean concept learning, in
“Proc. 4th Int. Workshop on Machine Learning,” Morgan Kaufmann, Los Altos, CA, 1987,

337-352.

M. J. Kearns and R. E. Schapire, Efficient distribution-free learning of probabilistic concepts,

J. Comput. System Sci. 48 (1994), 464-497.

M. Kearns and L. G. Valiant, Cryptographic limitations on learning boolean formulae and

finite automata, J. ACM 41(1), (1994), 67-95.

M. Kearns and U. Vazirani, “An introduction to computational learning theory,” MIT Press,

Cambridge, MA, 1994.

30

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

M. Kharitonov, Cryptographic lower bounds for learnability of boolean functions on the uni-

form distribution, J. Comput. System Sci. 50 (1995), 600-610.

N. Littlestone, Learning quickly when irrelevant attributes abound: a new linear-threshold

learning algorithm, Machine Learning 2 (1988), 285-318.

N. Littlestone, “Mistake bounds and logarithmic linear-threshold learning algorithms,” Ph.D.

thesis, Technical Report UCSC-CRL-89-11, Univ. of Calif., Santa Cruz, 1989.

M. Rabin, Digitalized signatures as intractable as factorization, Technical Report

MIT/LCS/TR-212, MIT Lab. for Comp. Sci., 1979.

R. L. Rivest, Learning decision lists, Machine Learning 2(3) (1987), 229-246.

M. Sipser and D. A. Spielman, Expander codes, IEEE Trans. Inf. Theory 42(6) 1996, 1710-

1722.

D. A. Spielman, Linear-time encodable and decodable error-correcting codes, IEEFE Trans. Inf.

Theory 42(6) 1996, 1723-1731.

R. Uehara, K. Tsuchida, and I. Wegener, Optimal attribute-efficient learning of disjunction,
parity, and threshold functions, in “Proc. 3rd European Conf. on Comp. Learning Theory,”

LNAI, Vol. 1208, Springer, pp. 1761-184, 1997.

L. G. Valiant, A theory of the learnable, Comm. ACM 27(11) (1984), 1134-1142.

L. G. Valiant, Projection learning, in “Proc. Eleventh Ann. Conf. on Comp. Learning Theory,”

ACM Press, New York, 1998, 287-293.

31

A Proof of Claim 16

In this appendix we prove Claim 16. We first remind the reader of what this claim says:
Claim 16 For q,m, and k as defined in Section 5.1, we have:

1. g(e,m) =nto0),

2. k(n) = O(log(c, n)).
Proof: Recall that log(2,n) = loglogn and log(c,n) = log(c — 1,logn) for ¢ > 2. We first note
that

log(c,m) = log(c,n'/18en)
= log(c — 1,log(n'/'o8(em)y)

= log(c—1,logn/log(c,n))

= log(c— 2,log(logn/log(c,n)))

= log(c— 2,loglogn —log(c+ 1,n))

It follows that

ale,m) = mbslem

('n,l/ log(c,n)) log(c—2,loglog n—log(c+1,n))

1—o(1)

which proves the first part of the claim.

For the bound on k(n), recall that k(n) is the least integer such that (k?:l)) > g(c,m). We prove

that k(n) < 2log(c,n) by showing that (QIO;T(LC n)) > g(c,m). To see this, note that by the standard

32

inequality (;) > (z/y)Y, we have

og(e,n og(e,n) \ 2los(en)
m _ n1/log(c;n) . nl/log(e;n) \ “708 _ n2 _ L 2oll)
2log(c,m) 2log(c,m)] — \ 2log(c,n) (2log(c, n))?loglen)

Since g(c,m) = n' () the claim is proved. [|

B Factoring Blum Integers and One-Way Permutations

Let J, be the set of all n-bit primes which are congruent to 3 mod 4. An n-bit Blum integer is
an integer of the form N = p; - po where p; # p2 and p1,p2 € Jy, /2. Given an n-bit Blum integer
N, let Qn denote the set of quadratic residues modulo N, and let fy : Qv — @n be the function
fn(2) = 22 mod N. Blum and Williams have noted that fy is a permutation on Qx (see Lemma

2.3.29 of [15] for a proof).
As discussed in Section 2.4.3 of [12], it is widely believed that the collection
{f~}Bium = {fn : N is a Blum integer}
has the following properties:
1. Given n, it is computationally easy to uniformly select a random n-bit Blum integer N (with
negligible error probability) by taking N = p; - p2, where p1, p2 are uniformly selected n/2-bit

primes with p; < ps and p; = p2 = 3 mod 4 (this assumes that the set J, /, of such primes is

non-negligibly dense in the set of n/2-bit integers).

2. Given an n-bit Blum integer N, it is easy to uniformly select a quadratic residue r mod N

(this can be done by squaring a randomly chosen element of Z%).

33

3. For every sufficiently large n, for every probabilistic poly(n)-time algorithm A’ for every

polynomial @, given N and r selected as described above, we have

Pr[A (fn(r),N) =71] < —.

As in [12], we say that {fx}Bium i a collection of one-way permutations.

Now consider the following variant of Property 3:

3'. For every sufficiently large n, for every probabilistic poly(g(n))-time algorithm A’ for every
polynomial @, given N and r selected as described above, we have

1

Pr[A'(fn(r),N) =] < Olgm))”

If {fN}Bium satisfies Properties 1, 2 and 3’ then we say that {fn}Bium is a collection of q(n)-

one-way permutations.

Rabin’s results in [24] yield the following: Suppose that A’ is a probabilistic poly(g(n))-time
algorithm which, when given as input the pair (fy(r), N) with N and r selected as described
above, outputs r with probability at least 1/poly(g(n)). Then there is a poly(g(n))-time algorithm

A which, when given a uniformly selected n-bit Blum integer N, factors N with success probability

at least 1/poly(g(n)).

Thus, if {f~}Bium is not a collection of ¢(c,n)-one-way permutations, then there is a ¢(c, n)-
time algorithm which factors randomly selected Blum integers with success probability at least
1/poly(g(c,n)). This would be an extremely surprising result, since to date the best algorithms
for factoring n-bit Blum integers require time 20(\/@), which is a much faster-growing function
than g(c,n) for all ¢ > 2 (recall that g(2,n) = nl°8l8" ¢(3,n) = nloslosloen etc.).

34

column

04

35

j(z)
(000 --- L - 000] |
: : (000 --- - 000]
row i(z) [000 --- 0001101 110
J (1 (101 --- - 011]
/
N—— ~ ~ -

m bits ¢ bits
(a) (b)
Figure 1

Figure 1: A useful example <:(;,Ag(vi(“))j(m)). Part (a) depicts the mg-bit prefix of z; since z is
useful this must be f(v')o---o f(v9). Part (b) depicts the gf-bit suffix Zpgi1 ... zn, where the bit
Trngt(r—1)e+c 18 in Tow 7 and column ¢ for 1 <7 < ¢, 1 < ¢ < /. As shown in (b), the values of i(z)

and j(z) are determined by the location of the first 1 in the ¢f-bit suffix of z.

36

