
Learning random log-depth decision trees under

the uniform distribution

Jeffrey C. Jackson?1 and Rocco A. Servedio2

1 Department of Mathematics and Computer Science
Duquesne University, Pittsburgh, PA 15282

jackson@mathcs.duq.edu
2 Department of Computer Science

Columbia University, New York, NY 10027, USA
rocco@cs.columbia.edu

Abstract. We consider three natural models of random log-depth deci-
sion trees. We give an efficient algorithm that for each of these models
learns—as a decision tree—all but an inverse polynomial fraction of such
trees using only uniformly distributed random examples.

1 Introduction

Decision trees are widely used to represent various forms of knowledge. The
apparent ease with which humans can understand and work with decision trees
has also made them a popular form of representation for knowledge obtained
through heuristic machine learning algorithms (see, e.g., [3, 8]). While heuris-
tic algorithms have proved reasonably successful for many applications, there is
some reason to believe that arbitrary decision trees are not efficiently learnable
from random examples alone, as the class of decision trees is provably not ef-
ficiently learnable in the Statistical Query model, even when the examples are
uniformly distributed [2].

Given the apparent difficulty of learning decision trees in polynomial time,
many researchers have considered alternate learning scenarios. One line of work
which has been pursued is to consider algorithms that run in superpolynomial
time. Ehrenfeucht and Haussler [5] have shown that the class of size-s decision
trees over {0, 1}n can be PAC learned in nlog s time steps. This result was later
simplified by Blum [1]. Another approach which has been pursued is to study de-
cision tree learnability in alternate learning models in which the learner has more
power. Kushilevitz and Mansour [7] gave a polynomial time algorithm which
uses membership queries and can learn decision trees under the uniform distri-
bution. The hypothesis produced by this algorithm is a weighted threshold of
parity functions. Using different techniques, Bshouty [4] gave a polynomial time
algorithm which learns decision trees in the model of exact learning from mem-
bership and (non-proper) equivalence queries; this implies that decision trees

? This material is based upon work supported by the National Science Foundation
under Grant No. CCR-0209064.

can be PAC learned in polynomial time under any distribution if membership
queries are allowed. The hypothesis in this case is a depth-three Boolean circuit.

In this work we propose a third approach to coping with the difficulty of
learning decision trees: looking at the average case. Specifically, since we have
been unable to design algorithms which can learn all decision trees, we focus in-
stead on algorithms which can efficiently learn “average” decision trees. Another
difference between our approach and some of the earlier theoretical work is that
the hypothesis produced by our algorithm is a decision tree. A limitation of our
algorithm is that we assume that examples are uniformly distributed.

In Section 2 we give the necessary background on uniform distribution learn-
ing and decision trees, and describe the three models of random decision trees
which we consider. Section 3 gives useful Fourier properties of decision trees. In
Section 4 we present the learning algorithm, and Sections 5 through 7 contain
the proofs of correctness for the learning algorithm. We conclude in Section 8.

2 Preliminaries

A Boolean decision tree T is a rooted binary tree in which each internal node
has two children and is labeled with a variable, and each leaf is labeled with a
bit b ∈ {−1, +1}. Children are ordered, i.e., each internal node has a definite left
child and right child. We refer to an internal node whose two children are both
leaves as a pre-leaf node. Because we will deal exclusively with Boolean decision
trees in this paper, for convenience we will refer to them simply as decision trees.

A decision tree T computes a Boolean function f : {−1, 1}n → {−1, 1} in
the obvious way: on input x, if variable xi is at the root of T we go to either
the left or right subtree depending on whether xi is −1 or 1. We continue in this
fashion until reaching a bit leaf; the value of this bit is f(x).

We define the depth of a node in a decision tree as follows. First, every
decision tree must have at least one node; we do not admit the empty (0-node)
decision tree. In a tree consisting of a single leaf node (labeled with some bit),
the depth of this node is −1; we call such a tree trivial. The depth of the root in
a non-trivial tree is 0, and the depth of any non-root node is one greater than
the depth of its parent. The depth of a decision tree T is −1 if T is trivial and
the maximum depth over all pre-leaf nodes of T otherwise.

A decision tree is non-redundant if no variable occurs more than once on any
root-to-leaf path. We consider only non-redundant decision trees in this paper.

We let U be the uniform distribution on {−1, 1}n. We write EX(f,U) to
denote a uniform random example oracle for f : {−1, 1}n → {−1, 1} which,
when invoked, outputs a labeled example 〈x, f(x)〉 where x is drawn from U .

We consider three models of random decision trees. Our primary model is the
uniform distribution over the set of all non-redundant decision tree representa-
tions of depth at most d on the variable set {x1, . . . , xn}. We call this the uniform
model and will represent this distribution by T U

d,n. Note that not every Boolean
function that can be represented by a depth-d tree has the same probability
mass under T U

d,n; some functions may have more T U
d,n-good trees which represent

them than others. That is, T U
d,n is a distribution over syntactic representations

of decision tree functions, and not over the functions themselves.
In each of our other two models, the internal nodes form a complete tree of

depth d and are labeled uniformly at random using the variables {x1, . . . , xn},
with the restriction that the tree must be non-redundant. These models, denoted
by T C

d,n and T B
d,n, differ in that the leaves in T C

d,n are selected independently and

uniformly from {−1, 1} while in T B
d,n each sibling pair must have opposite signs,

although the sign of the left node is independently and uniformly chosen from
{−1, 1}. We call these the complete and balanced models, respectively.

Due to the space restrictions in these proceedings, here we prove our main
learning result (Theorem 2) only for the complete model T C

d,n. We have proved

exact analogues of this result for for the uniform and balanced models T U
d,n and

T B
d,n as well; the proofs for these models will be contained in the full version of

the paper.
We assume throughout that d is O(log n), and that the learning algorithm

knows the exact value of d. This latter assumption is w.l.o.g. since the algorithm
can try all values d = 1, 2, . . . until it succeeds.

3 Fourier Properties of Decision Trees

We will be interested in carefully measuring the correlation between a decision
tree f and each of f ’s variables. Define ei to be the n-bit vector that has a 1 in
position i and 0’s elsewhere and define f̂(ei) to be Ea∼U [aif(a)]. Since f(a) and

ai take values in {−1, 1} we have f̂(ei) = Pra∼U [f(a) = ai]− Pra∼U [f(a) 6= ai].

Each f̂(ei) is a first-order Fourier coefficient of f .
Kushilevitz and Mansour [7] showed that decision trees have some particu-

larly useful Fourier properties.1 Define L(i) to be the set of all leaves in a decision
tree f that are descendants of some node labeled by variable xi, and let d(`)
represent the depth of a leaf ` in f . The analysis of [7] directly implies:

Corollary 1 (Kushilevitz Mansour). For every decision tree f and every
1 ≤ i ≤ n, there is a function σ : L(i)→ {−1, 1} such that

f̂(ei) =
∑

`∈L(i)

2−d(`)σ(`).

(Note that this corollary implies that any tree of depth d has each f̂(ei) of the
form i/2d for some integer i. This is because any leaf at depth d + 1 must have

a sibling leaf, so the total number of ±1/2d+1 contributions to f̂(ei) is even.)
From this we easily obtain:

Corollary 2. For every decision tree f of depth d and every 1 ≤ i ≤ n, there is
an integer k such that f̂(ei) = 2k+1

2d if and only if the total number of nodes/pairs
of leaves satisfying the following conditions is odd for xi:
1 [7] considered decision trees in which internal nodes can contain arbitrary parity

functions; however as noted earlier we only allow single variables at internal nodes.

1. A node at depth d is labeled with xi and the children of this node (both leaves)
have opposite signs;

2. A leaf at depth d has an ancestor labeled with xi;
3. A pair of sibling leaves at depth d+1 have the same sign, xi labels an ancestor

of this pair of leaves, and xi is not the label of the parent of the pair.

We say that any first-order Fourier coefficient of the form 2k+1
2d is an odd coeffi-

cient, and all other first-order coefficients are even coefficients. Conditions 2 and
3 may seem redundant, since a tree with two sibling leaves having the same sign
is equivalent to a tree that has a single leaf in place of the parent of the siblings.
We include both conditions because these are syntactically different structures
both of which may arise in the various trees we consider.

A key observation, which follows easily from the above corollaries, is:

Lemma 1. Fix any Boolean decision tree structure of depth d and assign vari-
ables x1 through xn arbitrarily to the internal nodes of the tree, with the con-
straint that the resulting tree is non-redundant. Assign each leaf bit by in-
dependently and uniformly selecting from {−1, 1}. Then for every 1 ≤ i ≤
n such that xi is an ancestor of at least one leaf at depth d + 1, we have
Pr[f̂(ei) is an odd coefficient] = 1

2 .
Moreover, let S be any subset of variables x1, . . . , xn with the following prop-

erty: there is a collection C of |S| pre-leaves in T , each of which is at depth d
and is labeled with a different element of S, such that no variable in S occurs
on any of the paths from the root to any of these pre-leaves. Then we have that
Pr[∀xi ∈ S f̂(ei) is an even coefficient] = 1

2|S| .

Proof. We can view certain leaves of the tree as defining the “parity” of the
internal nodes in a way that corresponds to the conditions of Corollary 2. More
precisely, all internal nodes begin with even parity, and then their parities are
computed by applying the following rules to each leaf and each pair of leaves
(each leaf or leaf pair will meet the conditions of at most one rule):

1. If a pair of sibling leaves are at depth d + 1 and have opposite signs, then
the parity of their depth-d parent node is toggled.

2. If a leaf is at depth d then the parity of each ancestor node is toggled.
3. If a pair of sibling leaves are at depth d + 1 and have identical signs, then

the parity of each ancestor node except their parent node is toggled.

We can then define the parity of a variable xi as the parity of the parity of all
nodes that are labeled by xi. It is clear that for each i, the first-order Fourier
coefficient f̂(ei) is odd if and only if xi has odd parity according to this definition.

Next, notice that since sibling leaves are labeled uniformly at random, any
pair of sibling leaves at depth d + 1 is equally likely to satisfy rule 1 or rule 3
above. So the probability that any given ancestor node of a pair of such sibling
leaves has its parity toggled by a random assignment to these leaf bits is exactly
1/2. The same is true of the parity of the variable labeling the node. Since all
leaves at depth d+1 have sibling leaves (because the tree depth is d), all possible
assignments to leaves at depth d+1 are covered by the conditions of rules 1 and

3. Thus, any variable xi that is an ancestor of at least one leaf at depth d+1 will
have odd parity with probability exactly 1/2, and the first equation is proved.

To see that the second equation also holds, observe that the |S| pre-leaves in
C will each toggle the parity of the corresponding variable with probability 1/2.
Since no variable in S occurs on any path to a node in C, the final parities of
these variables are all independent of each other, and the lemma follows. ut

Kushilevitz and Mansour also observed that it follows from Corollary 1 and
Chernoff bounds that for any decision tree f and any δ > 0, a uniformly dis-
tributed sample A of m labeled pairs 〈a, f(a)〉 is—with probability at least 1− δ
over the choice of A—sufficient to compute all of the first-order Fourier coef-
ficients of f exactly, for m exponential in the depth d of f and polynomial in
log(n/δ). In particular, with probability at least 1−δ over the random draw of A,

f̂(ei) = R
(
(
∑

a∈A aif(a))/m
)

where R(·) represents “rounding” the argument

to the nearest rational number having denominator 2d. Therefore, we also have

Corollary 3 (Kushilevitz Mansour). There is an algorithm FCExact such
that, given δ > 0 and access to EX(f,U) for any decision tree f of depth
O(log n), with probability at least 1 − δ FCExact(n, δ, EX(f,U)) computes all
of the first-order Fourier coefficients of f exactly in time poly(n, log(1/δ)).

For our algorithm we will need uniform random examples which are labeled
not only according to the original tree f, but also according to certain subtrees
obtained by restricting a subset of the variables of f . Each such subset will
lie along a root-to-leaf path in f and—since we consider only trees of depth
O(log n)—will therefore have cardinality O(log n). We can simulate exactly an
example oracle for such a restricted f ′ given an oracle EX(f,U) by simply
drawing examples from EX(f,U) until we obtain one that satisfies the restriction
on the O(log n) variables. Since each example from EX(f,U) will satisfy such a
restriction with probability 1/poly(n), the probability of failing to obtain such
an example after poly(n) many draws from EX(f,U) can be made exponentially
small. Thus the simulation of these subtree oracles is both exact and efficient.
We will use EX(f ′,U) to represent the simulated oracle for a restriction f ′.

4 The Algorithm for Learning Random Decision Trees

Our algorithm for learning random decision trees (Figure 1) operates in two
phases. In the first phase (lines 4-11) the algorithm uses the Fourier properties
outlined above to find a root-like variable for the original tree. (Informally, a root-
like variable has the property that it can be taken as the root of the tree without
increasing the depth of the tree; we give precise definitions later.) Once this is
done, it recursively finds a good root for each of the two subtrees induced by this
root, and so on. The process stops at depth d− 1

2 log n, so when it stops there are
at most 2d/

√
n subtrees remaining, each of depth at most 1

2 log n. (Recall that
w.l.o.g. we may assume the algorithm knows the exact value of d.) In the second

LearnTree(n, d, δ, ε, EX(T,U))

1. if d ≤ (1

2
log n)

2. return UnikDTLearn(n, ε, δ, EX(T,U))
3. endif

4. for i = 1 . . . n
5. for b = −1, 1
6. Call FCExact(n − 1, δ/(4n2), EX(Txi←b,U)) to compute

̂Txi←b(ej) for all j 6= i
7. endfor

8. if none of the coefficients ̂Txi←b(ej) is odd
9. return tree consisting of root xi and children defined by

LearnTree(n − 1, d − 1, δ/4, ε, EX(Txi←b),U) for b ∈ {−1, 1}.
10. endif

11. endfor

12. return “fail”

Fig. 1. Algorithm for learning random decision trees.

phase (lines 1-3) we employ an algorithm UnikDTLearn(n, ε, δ, EX(T,U)) due
to Hancock [6] to learn these remaining “shallow” decision trees.

The intuition underlying the algorithm is that at each step in the first phase,
each of the two subtrees of the root xi of a decision tree T will obviously have
depth at least one less than that of the original tree. These subtrees will therefore
contain no odd first-order Fourier coefficients by Corollary 2, and thus the root
xi will pass the test at line 8. On the other hand, we will show that in our
random decision tree models, if we consider a variable xj which is not the root
(or, more accurately, is not root-like in a sense defined below) then projecting
on xj will result in at least one projection containing odd first-order coefficients.
(This will follow from our earlier Fourier analysis of decision trees plus some
combinatorial arguments showing that if xj is not root-like, then with very high
probability the trees resulting from restricting on xj will have an ω(log n) size
collection C of pre-leaves as in Lemma 1.) Furthermore, we will argue in section 6
that Hancock’s UnikDTLearn efficiently learns random trees of depth at most
1
2 log n, so LearnTree clearly runs in time poly(n) for any value d = O(log n).
The rest of this paper shows that the algorithm with high probability outputs
an accurate decision tree for the complete random tree model T C

d,n.

5 Bottlenecks and Recursing the Algorithm

The first phase of our algorithm attempts to recursively select the root of the
original tree T and its subtrees. One obvious difficulty is that there may be a
tree T ′ that computes the same function as T and that has the same depth but
that has a different root variable; consider any tree representing x1 ⊕ x2, for
example. We will therefore be content with finding any of a set of “root-like”
variables of T , which we call bottlenecks:

xi

xj xj xi xi

xj

T1 T2 T3 T4 T1 T3 T2 T4

Fig. 2. Replacing the left structure by the right structure, or vice versa, is a swap.

Definition 1. A variable xi is a bottleneck for a decision tree T if T is non-
trivial and xi occurs on every root-to-leaf path in T .

Clearly the variable labeling the root is a bottleneck for any tree. We note
that if xi is the root of a tree T , then a variable xj 6= xi is a bottleneck in T if
and only if xj is a bottleneck in both the left and right subtrees of T . Notice also
that if a bottleneck variable is chosen as the root at each stage of the recursion
and FCExact returns accurate values for all first-order Fourier coefficients then
at every stage any bottleneck variable will pass the test at line 8 of LearnTree.

In later sections we will show that for a random tree T drawn from T C
d,n,

any non-bottleneck variable will with very high probability not pass the test of
line 8. Thus each recursive call of LearnTree is performed by restricting on
some bottleneck variable; however, the bottleneck may or may not be the root.
If the root is the bottleneck chosen, then it is easy to see that each of the two
subtrees will be drawn from T C

d−1,n−1 (over a suitable set of n− 1 variables) as
desired, and the inductive assumption of LearnTree (that the tree it is given
is drawn from T C

d,n) will be valid. If a non-root bottleneck is chosen, however,
it is not a priori clear that the two resulting subfunctions for the recursive call
correspond to draws from T C

d−1,n−1.
We now show that as long as any bottleneck is chosen, the two resulting

subfunctions do indeed correspond to draws from T C
d−1,n−1. While the two draws

are not independent of each other, this does not negatively impact the algorithm.
We say that two decision trees T and T ′ are structurally equivalent if T ′ can be

obtained from T by performing a sequence of “swaps” of subtrees, where a swap
is a replacement of one subtree by another subtree as shown in Figure 2. Note
that if two trees are structurally equivalent then they compute the same function
and have the same depth. The following lemma, which can be proved inductively
(omitted due to space limitations), shows that any bottleneck variable can be
swapped to the root of a tree in a way that preserves structural equivalence.

Lemma 2. Let T be any decision tree. If variable xi is a bottleneck for T , then
there is a tree T ′ having xi at its root that is structurally equivalent to T .

Let T i
d,n be the induced distribution over trees obtained by restricting T C

d,n

to trees for which xi is a bottleneck, and let T ĩ
d,n be the distribution over trees

obtained by first selecting a tree T according to T i
d,n and then performing a

minimal sequence of swap operations (implicit in the proof Lemma 2) to pro-
duce a structurally equivalent T̃ having xi as its root. Finally, let T −1

d−1,n−1 (resp.

T 1
d−1,n−1) represent the distribution over trees corresponding to a random vari-

able that selects a tree T̃ according to T ĩ
d,n and then returns the left (resp. right)

subtree as the value of the random variable. Then for the complete model, it
suffices to prove the following lemma:

Lemma 3. Let T i
d,n, T −1

d−1,n−1 and T 1
d−1,n−1 be as defined above. Then for all

1 ≤ i, d ≤ n, T −1
d−1,n−1 and T 1

d−1,n−1 are both identical to T C
d−1,n−1.

Proof. The proof is by induction on d. For the base case d = 1, any tree T drawn
from T i

1,n either has xi at the root or some other variable xj at the root and xi

as the root of both children of xj . In either case, the corresponding tree T̃ of the

process defining T ĩ
1,n will have xi at the root with two depth 0 children. It is easy

to see that, over random draws from T ĩ
1,n, the root variables of these children of

xi are each uniformly distributed over the n−1 variables excluding xi (although
the distributions of these root variables are not necessarily independent). The
values of the leaves are also uniformly and independently distributed. Therefore,
the base case has been shown.

For the inductive case, consider a tree T drawn from T i
d,n, for fixed d > 1.

Since xi must be a bottleneck in T , it is either the root of T or is a bottleneck
in both children of the root of T . If xi is the root of T , the lemma obviously
holds. So we are left with the case in which some variable xj—uniformly chosen
from the n−1 variables excluding xi—labels the root of T and xi is a bottleneck
in both children of xj . Let T−1 (T1) represent the left (right) subtree of T ,

and let T̃−1 (T̃1) represent the tree obtained by swapping xi to the root of T−1

(T1). Since xi is a bottleneck in T−1 (T1), the children of xi in T̃−1 (T̃1) are
drawn from T C

d−2,n−2, by the inductive hypothesis.2 Notice also that, although

the distribution over each child of xi in T̃−1 may be dependent on its sibling’s
distribution, each is independent of both of the distributions over children of xi

in T̃1. Therefore, after performing a final swap of the xi’s at the roots of T̃−1

and T̃1 with the root xj of T , we obtain a tree T̃ in which each child of the root
xi is a tree rooted at uniformly (over n−1 variables) chosen xj and in which the
children of xj are independently distributed according to T C

d−2,n−2. That is, each

child of xi in T̃ is distributed according to T C
d−1,n−1. Since T̃ is by construction

distributed according to T ĩ
d,n, the lemma follows. ut

It remains to show that LearnTree will with high probability choose a bot-
tleneck at each stage of the recursion in the first phase, and that Hancock’s
algorithm can be used to efficiently learn T C

d,n-random trees of depth 1
2 log n

with high probability. We address the second point first in the next section.

2 Strictly speaking, the children of xi are fixed for any given T . What we are actually
claiming here is that over draws of T from T i

d,n, for fixed d > 1, the children of xi in

T̃−1 are distributed according to T C
d−2,n−2. But for ease of exposition, here and below

we often blur the distinction between a single tree produced by one application of a
random process defining a distribution over trees and the distribution itself.

6 Learning Random (1

2
log n)-depth Trees

We stop the recursion in LearnTree at depth 1
2 log n because our analysis de-

pends on trees being somewhat deep. So we use another method for learning
random trees of depth less than 1

2 log n, which is based on the following lemma
plus the UnikDTLearn algorithm due to Hancock [6].

Recall that a decision tree T is read-k if each variable labels at most k nodes
in T . The following lemma is easily proved (proof omitted due to space):

Lemma 4. Let r = ((1 − ε) log n) − 2 for some constant ε > 0. Let C be any
constant. Then we have PrT∈T C

r,n
[T is not read-k] ≤ 1/nC for k = (C + 2)/ε.

Thus, if r = (1
2 log n), then for any constant C we may take k = 8C +16, and

with probability at least 1 − 4
(n−2)C a tree T drawn from T C

d,n is read-k (since

each of the four subtrees of depth r− 2 is not read-(2C + 4) with probability at
most 1/(n− 2)C).

Hancock [6] has given an algorithm UnikDTLearn and shown that it (or
more precisely, a version which takes k as an input along with the parameters
given earlier) efficiently learns read-k trees with respect to the uniform distribu-
tion, producing a decision tree (not necessarily read-k) as its hypothesis. Given
any constant k, his algorithm terminates in time polynomial in n, 1/ε, and 1/δ,
regardless of whether or not the target function f is actually a read-k decision
tree. So our version of UnikDTLearn(n, ε, δ, EX(T,U)) will begin by finding
the smallest integer C such that 1/nC ≤ δ/2. If the δ originally provided to
LearnTree is inverse polynomial in n, then this value C will be a constant in-
dependent of n. Taking k = 8C+16, this means that the target function provided
to UnikDTLearn is a read-k decision tree with probability at least 1 − δ/2.
Then running Hancock’s original UnikDTLearn with this value of k and with
δ/2 as the confidence parameter will succeed at learning an ε-approximating tree
with probability at least 1−δ/2, for an overall success probability at the bottom
of the recursion of 1− δ. In short, we have the following:

Lemma 5. If the oracle EX(T,U) in the call to UnikDTLearn in LearnTree
represents a tree T distributed according to T C

d,n, then UnikDTLearn returns a
decision tree that ε-approximates T with probability (over the random choice of
T and the randomness in EX(T,U)) at least 1− δ.

It remains to show that the first stage of the algorithm successfully finds a
bottleneck variable with high probability given a decision tree drawn at random
according to one of our tree models and with depth at least 1

2 log n. Throughout
the rest of the paper we thus have d = Θ(log n), d ≥ 1

2 log n.

7 Identifying Bottlenecks in the Complete Model T
C
d,n

Since we have already shown that any bottleneck makes an equally good root
in the hypothesis, and since it is easily seen that all bottlenecks (including the

root of T) will pass the test at line 8 of LearnTree, it remains to show the
following: for each i = 1, . . . , n, if xi is not a bottleneck in a random tree T then
the probability that xi passes the test in line 8 is negligibly small.

Our general plan of attack is as follows: we will prove that if x1 is not a
bottleneck, then with 1 − 1

nω(1) probability there are many root-to-leaf paths
in T that do not include x1. We then argue that, conditioned on there being
many such paths, among these pre-leaves there is a collection C satisfying the
condition of Lemma 1 which has |C| = ω(log n). Combining this with the Fourier
properties of random decision trees derived earlier gives us our result.

More precisely, the argument is as follows. Let S be a random variable which
denotes the number of x1-free paths from the root to a pre-leaf in T ∈ T C

d,n.
(Note that each such path ends at a depth-d pre-leaf since we are in the complete
model. Note also that S > 0 iff x1 is not a bottleneck). We will prove the following
lemmas in Appendix A.

Lemma 6. For 0 ≤ d ≤ n− 1, PrT∈T C
d,n

[S = 0] ≤ 1
n−d .

Lemma 7. For any value 1 ≤ k ≤ (log n)3/2 we have Pr[S = k] = 1/nω(1).

Lemma 8. Let T be drawn from T C
d,n conditioned on its having some set of

(log n)3/2 pre-leaves at depth d, each of which has no x1-labeled node as an
ancestor. Then with probability 1 − 1/nω(1) there is a set C of (log n)5/4 pre-
leaves at depth d, each labeled with a distinct variable, each of which has no
ancestor labeled with x1 or with a variable that labels any element of C.

From these lemmas it is easy to prove that each non-bottleneck will pass the
test at line 8 with negligible probability:

Theorem 1. Let T ∈ T C
d,n where d = Θ(log n), d ≥ 1

2 log n. If x1 is not a

bottleneck then the probability that x1 passes the test in line 8 is 1/nω(1).

Proof. Since S = 0 iff x1 is a bottleneck, we have

Pr
T∈T C

d,n

[S < (log n)3/2 | x1 is not a bottleneck] =
Pr[S < (log n)3/2 & S > 0]

Pr[S > 0]

=
Pr[1 ≤ S < (log n)3/2]

Pr[S > 0]

= 1/nω(1)

where the last equality follows from Lemmas 6 and 7. Thus we may assume that
S ≥ (log n)3/2. Lemma 8 now implies that there is a set C of (log n)5/4 pre-leaves
with the stated properties. Now we observe that if a pre-leaf belongs to C, then
under any restriction x1 ← b, the pre-leaf will still occur at depth d with the
desired property (that no variable labeling any node of C occurs as an ancestor
of any node of C) in the tree resulting from the restriction. Thus by Lemma 1,
the probability that all variables labeling nodes in C have even coefficients in

the restricted tree is at most 1/2(log n)5/4

= 1/nω(1). Hence x1 passes the test at
line 8 with negligible probability and the theorem is proved. ut

Combined with our earlier remarks, this establishes

Theorem 2. For any d = O(log n), any polynomial p(·), any δ > 1/p(n), and
any ε > 0, algorithm LearnTree will with probability at least 1 − δ (over a
random choice of tree T from T C

d,n and the randomness of the example oracle)
produce a hypothesis decision tree T ′ that ε-approximates the target with respect
to the uniform distribution. LearnTree runs in time polynomial in n and 1/ε.

Proof. By Lemma 5, the base case of the algorithm will succeed with probability
at least 1−δ as long as it is run on a tree drawn from T C

c,n for some c ≤ 1
2 log n. In

the recursive phase, all first-order Fourier coefficients will be computed exactly
with probability at least 1 − δ/4. Furthermore, assuming that the coefficients
are correctly computed, every bottleneck variable will pass the test at line 8 of
LearnTree, and by the preceding theorem the probability is negligible that any
non-bottleneck variable will pass this test. Thus, in the recursive phase of the
algorithm, with probability at least 1−δ/4 a bottleneck variable will be chosen by
the test. By the arguments of Section 5, if the initial tree is distributed according
to T C

d−k,n−k then the two functions obtained by restricting on either value of

this bottleneck variable will both be distributed according to T C
d−k−1,n−k−1.

Therefore, the two recursive calls to LearnTree will succeed with probability
at least 1− δ/2, so that overall the recursive phase succeeds with probability at
least 1− δ. Furthermore, it is easy to see that the tree returned by the recursive
phase will be an ε-approximator to the target if each of the subtrees returned
by the recursive call is an ε-approximator. Finally, for d = O(log n), the number
of recursive calls is clearly polynomially bounded, and thus the algorithm runs
in the time claimed given the previously mentioned bounds on UnikDTLearn
and FCExact. ut

8 Conclusions and Future Work

We have given positive results for learning several natural models of random
log-depth decision trees under uniform. Many interesting questions remain about
related models of average case learning:

– Can similar results be established for natural models of random decision
trees of polynomial size (as opposed to logarithmic depth)?

– Can similar results be established for random monotone DNF?
– Can our results be extended to learning under broader classes of distribu-

tions, either over examples or over trees?

It seems possible that progress in these directions could eventually lead to
useful practical algorithms.

References

[1] A. Blum. Rank-r decision trees are a subclass of r-decision lists. Information

Processing Letters, 42(4):183–185, 1992.

[2] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly
learning DNF and characterizing statistical query learning using Fourier analysis.
In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages
253–262, 1994.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification of Regression

Trees. Wadsworth, 1984.
[4] N. Bshouty. Exact learning boolean functions via the monotone theory. Information

and Computation, 123(1):146–153, 1995.
[5] A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples.

Information and Computation, 82(3):231–246, 1989.
[6] T. Hancock. Learning kµ decision trees on the uniform distribution. In Proceedings

of the Sixth Annual Conference on Computational Learning Theory, pages 352–360,
1993.

[7] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum.
SIAM J. on Computing, 22(6):1331–1348, 1993.

[8] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

A Proofs of Lemmas 6, 7, and 8

We first prove Lemma 6. Let us write pd,n to denote the probability that S = 0
for a random T drawn from T C

d,n, i.e. pd,n = PrT∈T C
d,n

[x1 is a bottleneck in T].

Lemma 6 follows directly from the following:

Proposition 1. For 0 ≤ d ≤ n− 1 we have pd,n ≤ 1
n−d .

Proof. Clearly p0,n = 1
n . For d ≥ 1, n ≥ 1 we have pd,n = 1

n + n−1
n (pd−1,n−1)

2.
This is because with probability 1/n the root is x1. With probability n−1

n the
root is some xj 6= x1 in which case each of the subtrees of the root is drawn
from T C

d−1,n−1, and x1 is a bottleneck iff it is a bottleneck in each of these two
subtrees.

Fix any m > 0. We prove that for all d ≥ 0 we have pd,d+m ≤ 1
m ; the proof is

by induction on d. The base case holds since p0,m = 1
m . For the induction step,

we have

pd+1,d+m+1 =
1

d + m + 1
+

d + m

d + m + 1
(pd,d+m)2

≤ 1

d + m + 1
+

d + m

d + m + 1

(
1

m

)2

=
m2 + m + d

m2(m + d + 1)
.

This is at most 1/m iff m3 + dm + m2 ≤ m3 + dm2 + m2 which is true since
m ≥ 1, so the proposition is proved. ut

We will prove Lemma 7 in a moment using using Lemma 9 below. First, a
definition and some introductory analysis.

Let pk,d,n denote PrT∈T C
d,n

[S = k]. For k ≥ 1 and d ≥ 1 we have

pk,d,n =
n− 1

n

k∑

i=0

pi,d−1,n−1pk−i,d−1,n−1. (1)

To see this, note that there are exactly k x1-free root-to-preleaf paths in T iff
(1) the root is some variable other than x1, and (2) the left and right subtrees
(each of which is drawn from T C

d−1,n−1) have i and k − i x1-free root-to-preleaf
paths, respectively, for some 0 ≤ i ≤ k. For the base cases, we have pc,0,n = 0
for c ≥ 2 since it is impossible to have two paths to pre-leaves in a tree of depth
0. p1,0,n = n−1

n since there is exactly one x1-free path as long as the root is not
x1. p0,0,n = 1

n by the same reasoning. Finally, p0,d,n ≤ 1
n−d by Lemma 6.

The following lemma is proved in section A.1:

Lemma 9. Let c = Θ(log n), c ≥ 3
8 log n and ` ≤ poly(n). Then

p`,c,n ≤ t(n) +

(log n)1/3∑

j=1

`−(1/4) log n−1∑

i=(1/4) log n+1

pi,c−j,n−j (2)

where t(n) = 1/nω(1).

Proof of Lemma 7. Recall that k ≤ (log n)3/2, d = Θ(log n) and d ≥ 1
2 log n. By

Lemma 9 we have

pk,d,n ≤ t(n) +

(log n)1/3∑

j=1

k−(1/4) log n−1∑

i=(1/4) log n+1

pi,d−j,n−j (3)

We now repeatedly apply Lemma 9 to the right-hand side of inequality (3). The
key observation is that each time we apply Lemma 9 to bound some p`,c,n′ by
the right side of (2), the first subscript (`) decreases by at least 1

4 log n in every
new occurrence of p·,·,·. Hence the “depth” of this repeated replacement will be
at most 4(log n)1/2) (since k ≤ (log n)3/2), at which point the summation over i
in the right hand side of (2) will be empty.

We now observe that each application of Lemma 9 replaces one p·,·,· with at
most (log n)1/3 · (log n)3/2 < (log n)2 new p·,·,·’s. Since the replacement depth is
at most 4(log n)1/2 and t(n) = 1/nω(1), it follows that

pk,d,n ≤
1

nω(1)
·
(
(log n)2

)4(log n)1/2

=
1

nω(1)
· 28(log n)1/2 log log n =

1

nω(1)

and Lemma 7 is proved. ut
Now we prove Lemma 8.

Proof of Lemma 8. Fix any set R of (log n)3/2 pre-leaf nodes in a complete binary
tree structure of depth d. Fix any non-redundant labeling of all of the ancestors
of all of these pre-leaves which does not use x1 anywhere. Now each labeling of
the nodes in R which does not use x1 and maintains non-redundancy is equally
likely under the conditioning of the lemma. Note that for each node in R there
are n − d − 1 legal labelings (since the label must not use x1 or any of the d
ancestors of the node).

Consider a random legal labeling of the nodes in R. Partition the nodes of
R into (log n)5/4 disjoint subsets R1, . . . , R(log n)5/4 each of size (log n)1/4. Let

F denote a set of “forbidden” labels; initially F is the set of all variables which
label ancestors of nodes in R (plus x1). Let F0 denote the size of this initial set,
so initially we have |F | = F0 ≤ 1 + d(log n)3/2 = O((log n)5/2). We consider
the subsets R1, . . . in turn. The probability that every node in R1 is assigned

a forbidden label is at most
(

F0

n−d−1

)(log n)1/4

= 1/nω(1). Thus we may suppose

that there is some pre-leaf v1 ∈ R1 which receives a non-forbidden label; we add
this label to F . Now the probability that every node in R2 receives a forbidden

label is at most
(

F0+1
n−d−1

)(log n)1/4

= 1/nω(1), so we may suppose that there is

some pre-leaf v2 ∈ R2 which receives a non-forbidden label; we add this label
to F. Continuing in this fashion for (log n)5/4 steps, and noting that |F | never
exceeds O((log n)5/2), we have that with probability 1 − 1/nω(1) there is a set
v1, . . . , v(log n)5/4 of nodes each of which receives a non-forbidden label. This set
is easily seen to satisfy the desired conditions for C. ut

A.1 Proof of Lemma 9

Our proof of Lemma 9 will use the following intermediate lemma. Note that we
allow a slightly weaker bound on d than usual in this lemma; we will need this
slightly weaker bound later.

Lemma 10. For any value 1 ≤ k ≤ 1
4 log n and any value d ≥ 1

3 log n we have

pk,d,n = PrT∈T C
d,n

[S = k] = 1/nω(1).

Proof. We first consider the case k = 1. There are exactly 2d possible locations
(pre-leaves) where an x1-free path from the root to a pre-leaf could end. Consider
any such location. In order for this to be the only x1-free path to a pre-leaf in
T, it must be the case that every node on this path (except the root) has the
property that the subtree rooted at its sibling has x1 as a bottleneck. These d
subtrees are clearly disjoint; the one at depth ` is drawn from T C

d−`,n−` (over a
suitable set of n − ` variables which includes x1 since the path is x1-free) and
hence by Lemma 6 each subtree has x1 as a bottleneck with probability at most
2
n . Thus Pr[S = 1] is at most 2d ·

(
2
n

)d
=

(
4
n

)d
which is 1/nω(1) since d ≥ 1

3 log n.
The general case for any 1 ≤ k ≤ 1

4 log n is similar. We use the following fact
which we prove later:

Fact 3 Fix any set of k root-to-preleaf paths in T . Let N be the number of
subtrees of T which are rooted at an internal node and (1) are not rooted on
any of these k paths, but (2) have their parent on one of these k paths. Then
N ≥ d− log k.

There are
(
2d

k

)
possible sets of k pre-leaves where the x1-free paths might end.

As in the case k = 1, each subtree as in Fact 3 must have x1 as a bottleneck, but
as in the k = 1 case each such subtree has x1 as a bottleneck with probability
at most 2/n. Thus the probability that S = k is at most (by Fact 3)
(

2d

k

)
·
(

2

n

)d−log k

≤ 2dk

(
2

n

)d−log k

≤ nd/4 ·
(

2

n

)d

· nlog k = nlog k

(
2

n3/4

)d

,

where the second inequality uses k ≤ 1
4 log n. This is 1/nω(1) since d ≥ 1

3 log n
and k ≤ 1

4 log n. ut
Proof of Fact 3. It is clear that there are exactly 2d − k pre-leaves contained in
the desired subtrees of T. Each subtree contains 2i of these pre-leaves for some
i, and clearly different subtrees have disjoint sets of pre-leaves. Since the binary
representation of 2d−k starts with d− log k ones, there must be at least d− log k
such subtrees (it is impossible to add up t powers of 2 and get a binary number
with more than t ones). ut

Now we prove Lemma 9. From the recursive equation (1) we have

p`,c,n ≤ 2p0,c−1,n−1p`,c−1,n−1 +

`−1∑

i=1

pi,c−1,n−1p`−i,c−1,n−1

≤ 4

n
p`,c−1,n−1 +

`−1∑

i=1

pi,c−1,n−1p`−i,c−1,n−1 (4)

where the last inequality holds (with room to spare) by Lemma 6 since c =
Θ(log n) < n/2. Repeatedly applying (4) we have

p`,c,n ≤
(

4

n

)2

p`,c−2,n−2 +
4

n

`−1∑

i=1

pi,c−2,n−2p`−i,c−2,n−2

+

`−1∑

i=1

pi,c−1,n−1p`−i,c−1,n−1

≤
(

4

n

)c

p`,0,n−c +
c∑

j=1

(
4

n

)j−1 `−1∑

i=1

pi,c−j,n−jp`−i,c−j,n−j .

Since each value p·,·,· is a probability it is easy to see that for any value of j
the inner sum over i is at most ` =poly(n). Recalling that c ≥ 3

8 log n, we may

truncate the sum over j at (say) (log n)1/3 and thus have

p`,c,n ≤
1

nω(1)
+

(log n)1/3∑

j=1

`−1∑

i=1

pi,c−j,n−jp`−i,c−j,n−j

≤ 1

nω(1)
+

(log n)1/3∑

j=1

2

(1/4) log n∑

i=1

pi,c−j,n−j +

`−(1/4) log n−1∑

i=(1/4) log n+1

pi,c−j,n−j

 .

Since c− (log n)1/3 is at least (1/3) logn, Lemma 10 implies that the first sum
over i inside the brackets is 1/nω(1) for all j = 1, . . . , (log n)1/3. We thus have

p`,c,n ≤
1

nω(1)
+

(log n)1/3∑

j=1

`−(1/4) log n−1∑

i=(1/4) log n+1

pi,c−j,n−j

as desired, and Lemma 9 is proved.

