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Abstract. This paper studies the query complexity of learning classes
of expressions in propositional logic from equivalence and membership
queries. We give new constructions of polynomial size certificates of non-
membership for monotone, unate and Horn CNF functions. Our con-
structions yield quantitatively different bounds from previous construc-
tions of certificates for these classes. We prove lower bounds on certificate
size which show that for some parameter settings the certificates we con-
struct for these classes are exactly optimal. Finally, we also prove that a
natural generalization of these classes, the class of renamable Horn CNF
functions, does not have polynomial size certificates of non-membership,
thus answering an open question of Feigelson.

1 Introduction

This paper is concerned with the model of exact learning from equivalence and
membership queries [1]. Since its introduction [1] this model has been exten-
sively studied and many classes have been shown to be efficiently learnable. Of
particular relevance for the current paper are learning algorithms for monotone
DNF expressions [26, 1], unate DNF expressions [7], and Horn CNF expressions
[2, 11]. Some results in this model have also been obtained for sub-classes of
Horn expressions in first order logic but the picture there is less clear. Except
for a “monotone-like case” [24] the query complexity is either exponential in
one of the crucial parameters (e.g. universally quantified variables) [17, 4] or the
algorithms use additional syntax based oracles [5, 25]. It is thus interesting to
investigate whether this gap is necessary. The current paper takes a first step in
this direction by studying the query complexity in the propositional case.
Query complexity can be characterized using the combinatorial notion of
polynomial certificates [14, 12] (see also [6, 3]). In particular, [14, 12] show that
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a class C is learnable from a polynomial number of proper equivalence queries
(using hypotheses in C) and membership queries if and only if the class C has
polynomial certificates. This characterization is information theoretic and ig-
nores run time. Certificates have already proved to be a useful tool for studying
learnability. For example, conjunctions of unate formulas are learnable with a
polynomial number of queries but not learnable in polynomial time unless P=NP
[10]. A recent result [15] shows that DNF expressions require a super-polynomial
number of queries even when the hypotheses are larger than the target function
by some (relatively small) factor.

Our own results establish lower and upper bounds on certificates for several
classes. We give constructions of polynomial certificates for (1) monotone CNF
where no variables are negated, (2) unate CNF where by renaming some vari-
ables as their negations we get a monotone formula, and (3) Horn CNF where
each clause has at most one positive literal. We give certificates in the standard
learning model as well as the model of learning from entailment [11] which is
studied extensively in Inductive Logic Programming (see e.g. [8]). The construc-
tion of certificates for the Horn case is based on an analysis of saturation forming
a “standardized representation” for Horn expressions that has useful properties.

The learnability results that follow from these certificate results are weaker
than the results in [26, 1, 7, 2] since we obtain query complexity results and
the results cited are for time complexity. However, the certificate constructions
which we give are different from those implied by these earlier algorithms, so our
results may be useful in suggesting new learning algorithms. We also give new
lower bounds on certificate size for each of these concept classes. For some pa-
rameter settings, our lower bounds imply that our new certificate constructions
are exactly optimal.

Finally, we also consider the class of renamable Horn CNF expressions. Note
that unate CNF and Horn CNF generalize monotone expressions in two different
ways. Renamable Horn expressions combine the two allowing to get a Horn
formula after renaming variables. Renamable Horn formulas can be identified
in polynomial time and have efficient satisfiability algorithms and are therefore
interesting as a knowledge representation. While unate CNF and Horn CNF each
have polynomial certificates, we give an exponential lower bound on certificate
size for renamable Horn CNF. This answers an open question of Feigelson [9]
and proves that renamable Horn CNF is not learnable in polynomial time from
membership and equivalence queries.

2 Preliminaries

We assume that the reader is familiar with basic propositional logic. For com-
pleteness we give some of the definitions we use repeatedly in the paper.

We consider families of expressions built from n > 1 propositional variables.
We assume some fixed ordering so that an element of {0, 1}™ specifies an assign-
ment of a truth value to these variables. A literal is a variable or its negation.
A term is a conjunction of literals. A clause is a disjunction of literals. A Horn



clause is a clause in which there is at most one positive literal. A DNF expression
is a disjunction of terms. A CNF expression is a conjunction of clauses; it is Horn
if all its clauses are Horn.

Let z,y € {0,1}" be two assignments. Their intersection z Ny is the assign-
ment that sets to 1 only those variables that are 1 in both z and y.

The DNF size of a boolean function f C {0,1}", denoted |f|,np, is the
minimum number of terms in a DNF representation of f. The CNF size of f,
|flon s is defined analogously. In general, let R be a representation class for
boolean formulas. Then |f|; is the size of a minimal representation for f in R.
If f ¢ R, we assign |f|, = oc.

Let C be a boolean class, i.e. C C 21%1}" Then C,,, denotes the subclass of C
whose concepts have size at most m.

Definition 1 (Polynomial Certificates, from [14]). Let R be a class of
representations defining a boolean concept class C. The class R has polynomial
certificates if there exist two-variable polynomials p(-,-) and q(-,-) such that for
every n,m > 0 and for every boolean function f C {0,1}" s.t. |f|r > p(m,n),
there is a set QQ C {0,1}" satisfying the following: (1) |Q| < g(m,n) and (2) for
every g € Cp, there is some x € Q s.t. g(x) # f(z). In other words, (2) states
that no function in C,, is consistent with f over Q.

We also need the notion of redundant expressions:

Definition 2. A clause C in a Horn expression f is redundant if f\ {C} = f.
An expression f is redundant if it contains a redundant clause.

3 Certificates for Monotone and Unate CNFs

In this section we construct polynomial certificates for anti-monotone CNF's
(generalizable to unate CNF/DNF). This is to facilitate the presentation of cer-
tificates for Horn CNF. A certificate for unate DNF was given in [9]:

Theorem 1 (Lemma 5 from [9], page 26). The classes of monotone and
unate functions under DNF have polynomial size certificates with p(m,n) = m
and g(m,n) = O(mn).

Feigelson’s construction is based on the fact that to show that a unate DNF
function has more than m terms, it is sufficient to prove that it has m + 1
minterms, which can be done by including in the certificate m + 1 positive
assignments corresponding to the minterms and O(mn) negative assignments
corresponding to the assignments one level below the positive ones.

We next show a construction that achieves a certificate of size O(m?) which
improves Feigelson’s construction when m < n.

An anti-monotone CNF expression is a CNF where all variables appear
negated. In this case we have that anti-monotone CNFs satisfy:

Vz,y € {0,1}": (z <y = f(z) > f(y)),



where < between assignments denotes the standard bit-wise relational operator.
Notice that an anti-monotone CNF expression can be seen as a Horn CNF

whose clauses have empty consequents. As an example, the anti-monotone CNF

(@Vb) A (bVe) is equivalent to the Horn CNF (ab — false) A (bc — false).

Theorem 2. The class of anti-monotone CNF has polynomial size certificates
with p(m,n) = m and g(m,n) = (") +m + 1.

Proof. Fix m,n > 0. Fix any f C {0,1}" s.t. |f|,ticmoncnrF > P(M,n) = m.
We proceed by cases.

Case 1. f is not anti-monotone. In this case, there must exist two assignments
z,y € {0,1}" s.t. x < y but f(z) < f(y) (otherwise f would be anti-monotone).
Let @ = {x,y}. Notice that by definition no anti-monotone CNF can be consis-
tent with Q. Moreover, |Q| < g(m,n).

Case 2. f is anti-monotone. Let ¢; A ¢c2 A ... A ¢y A ... A ¢ be a minimal
representation for f. Notice that k > m+1since | f|,..;i_moncnr > P(M,n) = m.
Define assignment z[¢! as the assignment that sets to 1 exactly those variables
that appear in ¢;’s antecedent. For example, if n = 5 and ¢; = vzvs — false
then zl°! = 00101.

Remark 1. Notice that every z[¢] falsifies ¢; (antecedent is satisfied but conse-
quent is false) but satisfies every other clause in f. If this were not so, then
we would have that some other clause ¢; in f is falsified by zl] that is, the
antecedent of ¢; is true and therefore all variables in ¢; appear in ¢; as well (i.e.
¢; C ¢;). This is a contradiction since ¢; would be redundant and we are looking
at a minimal representation of f.

Now, define the set Q = Q1 U Q~ where

Q = {x[u]

1<i<m+ 1} and QF = {x[c"] N zleil

1§i<j§m+1}.

Notice that |Q| < (™f') + m + 1 = g(m,n). The assignments in Q~ are
negative for f, since z!! clearly falsifies clause ¢; (and hence it falsifies f). The
assignments in Q* are positive for f. To see this, suppose some zl¢l Nzl € QF
is negative. This implies that there is some clause ¢ in f that is falsified by
zleil N gledl € QF. That is, all variables in ¢ are set to 1 by zl] N zlsl € QF.
Therefore, all variables in ¢ are set to 1 by %! and 2[%]. Hence, they falsify the
same clause which is a contradiction by the remark above. Hence, all assignments
in Q1 are positive for f.

It is left to show that no anti-monotone CNF g s.t. 9|, ri—monone < M iS
consistent with f over Q. Fix any g = ¢} A ... A ¢ with I < m. If g is consistent
with Q~, then thereis a ¢’ € g falsified by two different z[°, zl¢] € Q— (because
we have m + 1 assignments in @~ but less than m + 1 clauses in g). Since they
falsify ¢/, all variables in ¢’ are set to 1 in both z[¢! and zl%]. Therefore, all
variables in ¢’ are set to 1 in their intersection z[%! N zl%]. Hence, clause ¢ (and
therefore g) is falsified by zl¢! N zle]. Thus, zl¢! N zls] € QT is negative for g
and g is not consistent with f over Q). O



By duality of the boolean operators and DNF/CNF representations we get
that Monotone CNF, monotone DNF and anti-monotone DNF have polynomial
certificates of size O(min(mn,m?)).

3.1 TUnate CNF

Definition 3. Leta,z,y € {0,1}™ be three assignments. The inequality between
assignments © <, y is defined as x D a < y D a, where < is the bit-wise standard
relational operator and @ is the bit-wise exclusive OR.

Definition 4. A boolean CNF function f (of arity n) is unate if there erists
some assignment a such that:

Vo,y € {0,1}": (z <, y = f(z) < f(y))

Equivalently, o variable cannot appear both negated and unnegated in any mini-
mal CNF representation of f. Variables are either monotone or anti-monotone.

The construction above can be used to give certificates for unate CNF. Case
2 in the proof follows along the same lines but reversing N with U for variables
on which the function is anti-monotone. Case 1 can be dealt with using 4 as-
signments showing that f is neither monotone nor anti-monotone in one of the
variables ([13]). We therefore get:

Theorem 3. Unate CNFs have polynomial certificates of size O(min(mn,m?)).

4 Saturated Horn CNF's

This section develops a “standardized” representation for Horn expression which
can be obtained by an operation we call saturation. We establish properties on
saturated expressions that makes it possible to construct a set of certificates in
a similar way to the case of anti-monotone CNF.

Definition 5. Let f be a Horn expression. We define Saturation(f) as the
Horn expression returned by the following function:

— Sat :=f
— repeat until no changes are made to Sat
o if there are two clauses s; — b; and s; — b; in Sat s.t.
(Z) bz # bj, (’Ll) Sj g S; and ('LZZ) bj € S; then
% 8; =8; U {b]}
« replace s; — b; with s; — b; in Sat.
— return Sat

Ezample 1. Notice that an expression can have many possible saturations. As an
example, take f = {a — b,a — c¢}; this expression has two possible saturations:
Saty = {ac = b,a — ¢} and Sata = {a — b,ab — c}. Clearly, the result depends
on the order in which we saturate clauses.



The proofs of the next two lemmas are omitted due to space limit; both can
be done by induction on the number of modifications in the saturation process.

Lemma 1. Every Horn expression is logically equivalent to its saturation.

Notice that we use the notion of a “sequential” saturation in the sense that
we use the updated expression to continue the process of saturation. There is a
notion of “simultaneous” saturation that uses the original expression to saturate
all the clauses. Lemma 1 does not hold for simultaneous saturation. An easy
example illustrates this. Let f = {a — b,a — ¢}. Clearly, SimSat(f) = {ac —
b,ab — ¢} is not logically equivalent to f (notice f = a — b but SimSat(f) &
a —b).

Definition 6. An expression f is saturated iff f = Saturation(f).

Lemma 2. If a Horn expression f is non-redundant, then all of its saturations
are non-redundant, too.

The converse of the previous lemma does not hold. That is, there are redun-
dant expressions f with non-redundant saturations. As an example: f = {ab —
¢, ¢ = d,ab — d} is clearly redundant since the third clause ab — d can be de-
duced from the first two. If we saturate the first clause with the third, we obtain:
Saturation(f) = {abd — ¢,¢ — d,ab — d} which is not redundant! However,
if we saturate the third clause with the first, we obtain a redundant saturation
Saturation'(f) = {ab — ¢,c — d,abc = d}

Lemma 3. Let f be a non-redundant Horn expression. Let s; — b and s; = b
be any two distinct clauses in f with the same consequent. Then, s;  s;.

Proof. If s; C s, then s; — b subsumes s; — b and f is redundant. O

Lemma 4. Let f be a non-redundant, saturated Horn expression. Let ¢ be any
clause in f. Let z!! be the assignment that sets to one exactly those variables in
the antecedent of c. Then, zl9 falsifies ¢ but satisfies every other clause ¢ in f.

Proof. Let ¢ = s — b. Clearly, z!l¢ falsifies ¢: its antecedent is satisfied but its
consequent is not. It also satisfies every other clause ¢ = s’ — b’ in f. To see
this, we look at the following two cases: if s’ € s, there is a variable in s’ not
in s. Hence z¢ £ s' and !9 |= ¢'. Else, s’ C s and Lemma 3 guarantees that
b # b (otherwise there would be a redundant clause in f). Furthermore, b’ € s
(otherwise f would not be saturated). Thus, z[¢ |= b’ and 2l |= ¢ m|

5 Certificates for Horn CNF

We proceed with the construction of the certificates for Horn CNFs. The follow-
ing characterization is due to [22], although it was stated in a different context
and in more general terms. It was further explored by [16]. Finally, a proof
adapted to our setting can be found e.g. in [19]. Horn CNF expressions are
characterized by

v,y €{0,1}": (2 E )N E )= (eny ) (1)



Theorem 4. Horn CNF's have polynomial size certificates with p(m,n) = m(n+
1) and g(m,n) = ("F) + m + 1.

Proof. Fix m,n > 0. Fix any f C {0,1}" s.t. | f|,ornonr > P(m,n) = m(n +1).
Again, we proceed by cases.

Case 1. f is not Horn. In this case, there must exist two assignments z,y €
{0,1}"st.z = fand y | f but zNy [~ f (otherwise f would be Horn). Let
Q = {z,y,z Ny}. Notice that by (1) no Horn CNF can be consistent with Q.
Moreover, |Q| < g(m,n).

Case 2. f isHorn. Let ¢; A ¢2 A ... A ¢ be a minimal, saturated representation
of f. Notice that ¥ > m(n + 1) + 1 since |f|,,,none > P(m,n) = m(n + 1)
and saturation does not produce redundant clauses when starting from a non-
redundant representation (see Lemma 2). Since there are more than m(n + 1)
clauses, there must be at least m + 1 clauses sharing a single consequent in f
(there are at most n + 1 different consequents among the clauses in f — we must
count the constant false, too). Let these clauses be ¢; = s1 — b, ...,cx = sp —
b, with k& > m + 1. Define assignment z[%! as the assignment that sets to 1
exactly those variables that appear in ¢;’s antecedent. For example, if n = 5 and
¢; = v305 — vy then z!%] = 00101. Define the set Q = Q+ U Q™ where

Q = {x[cz-]

Notice that |Q| = |Q*|+|Q~| < (™f') + m + 1 = g(m,n). The assignments
in Q~ are negative for f, since !¢ clearly falsifies clause ¢; (and hence it falsifies
f)- The assignments in Q* are positive for f. To see this, we show that every
assignment in Q7 satisfies every clause in f. Take any assignment %! N zlei] €
Q*. For clauses ¢ with a different consequent than ¢; (thus ¢ # ¢;,c # ¢;),
Lemma 4 shows that z[%! = ¢ and z!%! |= c. Since c is a Horn clause, we obtain
that =l N zl%] = c. For clauses with the same consequent as ¢; (and ¢;), we
have two cases. Either (1) ¢ # ¢; or (2) ¢ # ¢;. If (1) holds, then Lemma 3
guarantees that s Z s;, where s is ¢’s antecedent. Therefore some variable in s
is set to 0 by z[%! and hence by zl] N z[¢], too. Thus, ! Nzl |= ¢. Case (2)
is analogous. Hence, all assignments in QT are positive for f.

It is left to show that no Horn CNF g s.t. |g,,.nonr < M is consistent with
fover Q.Fixany g =c}| A ... A ¢; with [ < m.If g is consistent with Q~, then
there is a ¢’ € g falsified by two different z!¢], 2l € Q— (because we have m +1
assignments in @~ but less than m + 1 clauses in g). Since they falsify ¢/, all
variables in the antecedent of ¢’ are set to 1 in both z[¢! and z!]. Also, in both
assignments the consequent of ¢ is set to 0. Therefore, the assignment x[°] Nzlcs]
sets all variables in the antecedent of ¢’ to 1 and the consequent to 0, too. Hence,
clause ¢ (and therefore g) is falsified by z[¢] N zl%]. Thus, zl¢! N zlsl € Q1 is
negative for g and g is not consistent with f over Q. O

1<i<m+ 1} and QF = {x[c"] N zle]

1§i<j§m+1}.

6 Learning from Entailment

The learning model we have been using, where an example is an assignment
to propositional variables is natural in the propositional setting. Models for



learnability of first order logic have generalize this in two ways [8]. Learning
from interpretations is a direct lifting of the above. In learning from entailment,
formalized in [11] examples are clauses. An example is positive iff it is implied
by the target expression. This model has been widely used in inductive logic
programming both in theoretical studies and in practice. We can adapt the
query model to treat such examples in a natural manner. Membership queries
accept clauses and give their classification and equivalence queries return clauses
as counterexamples.

We present a general transformation that allows us to obtain an entailment
certificate from an interpretation certificate for propositional logic. Similar ob-
servations have been made before in different context (e.g. [18, 8]) where one
transforms efficient algorithms not just certificates. Note however, that for ef-
ficiency we must be able to solve the implication problem for the language of
hypotheses used by the algorithm.

Definition 7. Let x be an interpretation. Then ones(z) is the set of variables
that are set in x.

Lemma 5. Let f be a boolean expression and x an interpretation. Then,
z |: f — f l# Ones(x) - Vbeones(w) b.

Proof. Suppose z |= f. By construction, = (£ ones(z) = Vygones(s) b Sup-
pose by way of contradiction that f |= ones(z) — Vbeanes(z) b. But since
z [ ones(z) = Vygones(s) b We conclude that @ j~ f, which contradicts our ini-
tial assumption. Now, suppose z [~ f. Hence, there is a clause s — \/, b; in f falsi-
fied by z. This can happen only if s C ones(z) and b; ¢ ones(z) for all . Clearly,

s =V, bi E ones(z) = Vigones(s) b Therefore f = ones(z) = Vigopes(r) b and
the result follows. O

Theorem 5. Let S be an interpretation certificate for a boolean expression f
w.r.t. a class C of boolean expressions. Then, the set of clauses {ones(x) —
Vigones(z) b | © € S} is an entailment certificate for f w.r.t. C.

Proof. If S is an interpretation certificate for f w.r.t. some class C of propo-
sitional expressions, then for all g € C there is some assignment x € S such
that z = f and z [£ g or vice versa. Therefore, by Lemma 5, it follows that
[ ones(z) = Vigones) b and g = ones(z) = Viygopesr) b OF vice versa.
Given the arbitrary nature of g the theorem follows. Moreover, both sets have
the same cardinality. O

7 Certificate Size Lower Bounds

The certificate results above imply that Monotone and Horn CNF are learnable
with queries but as mentioned in the introduction this was already known. It is
therefore useful to review the relationship between the certificate size of a class



and its query complexity. From [12, 14] we know that if C'S(C) is the certificate
size of a certain class C, then its query complexity (denoted QC(C)) satisfies:

CS(C) £ QC(C) < CS(C)log(IC])

For the class of monotone DNF there is an algorithm that achieves query
complexity O(mn) [26, 1]. Since log(|MonotoneDN F,,,|) = ©(mn), a certificate
result is not likely to improve the known learning complexity. In the case of
Horn CNF, there is an algorithm that achieves query complexity O(m?2n) [2].
Since again log(|HornCN F,,|) = ©(mn) improving on known complexity would
require a certificate for Horn of size o(m). The results in this section show that
this is not possible and in fact that our certificate constructions are optimal.

In particular, for every m, n with m < n we construct an n-variable monotone
DNF f of size greater than m and show that any certificate that f has more
than m terms must have cardinality at least g(m,n) =m+ 1+ (™F ). We also
show that if m > n then there is a monotone DNF of size greater than m that
requires a certificate of size £2(mn). These results also apply to both unate and
Horn CNF/DNF as described below. We first give the result for m < n:

Theorem 6. Any certificate construction for monotone DNF for m < n with
p(m,n) = m has size g(m,n) >m+1+ ("F).

Proof. Let X,, = {z1,..,2,} be the set of n variables and let m < n. Let f =
t1 V- Vitne1 where t; is the term containing all variables (unnegated) except
z;. Such a representation is minimal and hence f has size exactly m + 1. We
show that any set with less than m + 1 + (m; 1) assignments cannot certify that
f has more than m terms. That is, for any set () of size less than m + 1+ (m; 1)
assignments we will show that there is a monotone DNF with at most m terms
consistent with f over Q.

If @ contains at most m positive assignments of weight n — 1 then it easy to
see that the function with minterms corresponding to these positive assignments
is consistent with f over ). Hence we may assume that () contains at least m+1
positive assignments of weight n—1. Since f only has m+2 positive assignments,
one of which is 1™, () must include all m + 1 positive assignments corresponding
to the minterms of f. Thus if |Q| <m+ 1+ (™) 1) then @ must contain strictly
less than (m;' 1) negative assignments. Notice that all the intersections between
pairs of positive assignments of weight n — 1 are different and there are (m; 1)
such intersections. It follows that ) must be missing some intersection between
some pair of positive assignments in (). But then there is an m-term monotone
DNF consistent with ) which uses one term for the missing intersection and
m — 1 terms for the other m — 1 positive assignments. O

We can strengthen the previous theorem so that for every n a fixed function
f serves for all m < n. The motivation behind this is that the lower bound
in Theorem 6 implies a lower bound on the query complexity of any strongly
proper learning algorithm [15, 23]. Such algorithms are only allowed to output
hypotheses that are of size at most that of the target expression; this is in



contrast with the usual scenario in which learning algorithms are allowed to
present hypotheses of size polynomial in the size of the target. In the following
certificate lower bound we use a function f of DNF size n, so the resulting lower
bound for learning algorithms applies to algorithms which may use hypotheses
of size at most n — 1 (even if the target function is much smaller).

Theorem 7. Any certificate construction for monotone DNF for m < n with
p(m,n) < n has size g(m,n) > m+ 1+ (™).

Proof. Let g(m,n) = m + 1+ (™') and let f be defined as f = Vieqi, nyti
where ¢; is the term containing all variables (unnegated) except ;. Clearly, all
t; are minterms, f has size exactly n and f is monotone. We will show that for
any m < n and any set of assignments @) of cardinality strictly less than g(m,n),
there is a monotone function g of at most m terms consistent with f over Q.

We first claim that w.l.o.g. we can assume that all the assignments in the
potential certificate ) have exactly one bit set to zero (positive assignments)
or two bits set to zero (negative assignments). We prove that if ) contains
the positive assignment 1", or a negative assignment with more than 2 bits set
to zero, then we can replace these by appropriate assignments with exactly 1
or 2 zeros so that any monotone function g consistent with the latter set of
assignments (call it @)') is also consistent with @. Suppose first that we have a
function g consistent with f over @)’ where the positive assignment b € () with
all its bits set to 1 has been changed to b’ with just one bit set to 0 (choose
it arbitrarily). Since g is monotone, g is consistent with f over @', b’ < b, and
g(t') = 1, it follows that g(b) = 1 and hence g is also consistent with f over
the initial (). Now suppose that we have a function g consistent with the set @
where one negative assignment a with more than two bits set to zero has been
(arbitrarily) changed so that some of the extra zero bits are set to one (call the
new assignment a'). Since g is consistent with @', g(a') = 0, and since g is also
monotone and a < a' it follows that g(a) = 0, too. Hence, g is consistent with @
in this second case. By induction, our assumption results in no loss of generality.

We may assume, then, that @) is a set of fewer than ¢(m, n) assignments each
of which has either 1 or 2 zeros. We model the problem of finding a suitable
monotone function as a graph coloring problem. We map () into a graph Gg =
(V,E) where V. ={p € Q| f(p) =1} and E = {(p1,p2) | {p1,p2,p1 Np2} C Q}-
Let |V| =v and |E| =e.

First we show that if Gg is m-colorable then there is a monotone function g
of DNF size at most m that is consistent with f over ). It is sufficient that for
each color we find a single term ¢, that (1) is satisfied by the positive assignments
in () that have been assigned some color ¢, with the additional condition that (2)
t. is not satisfied by any of the negative assignments in ). We define t. as the
minterm corresponding to the intersection of all the assignments colored ¢ by the
m-coloring. Property (1) is clearly satisfied, since no variable set to zero in any
of the assignments is present in .. To see that (2) holds it suffices to notice that
the assignments colored ¢ form an independent set in Gg and therefore none of
their pair-wise intersections is in (). By the assumption no negative point below



the intersections is in @) either. The resulting consistent function g contains all
minterms ¢.. Since the graph is m-colorable, g has at most m terms.

It remains to show that Gg is m-colorable. Note that the condition |Q| <
g(m,n) translates into v + e < g(m,n) in Gg. If v < m then there is a trivial
m-coloring. For v > m + 1, it suffices to prove the following: any v-node graph
with v > m + 1 with at most (m; 1) + m — v edges is m colorable. We prove this
by induction on v.

The base case is v = m +1; in this case since the graph has at most (m;— 1) -1
edges it can be colored with only m colors (reuse one color for the missing edge).
For the inductive step, note that any v-node graph which has at most (m; 1) +
m — v edges must have some node with fewer than m neighbors (otherwise there
would be at least vm/2 nodes in the graph, and this is more than (™) +m —v
since v is at least m + 2 in the inductive step). By the induction hypothesis there
is an m-coloring of the (v — 1)-node graph obtained by removing this node of
minimum degree and its incident edges. But since the degree of this node was
less than m in G, we can color G using at most m colors. O

Finally, we give an 2(mn) lower bound on certificate size for monotone DNF
for the case m > n. Like Theorem 6 this result gives a lower bound on query
complexity for any strongly proper learning algorithm.

Theorem 8. Any certificate construction for monotone DNF for m > n with
p(m,n) = m has size g(m,n) = 2(mn).

Proof. Fix any constant k. We show that for all n and for all m = (}) — 1, there
is a function f of monotone DNF size m + 1 such that any certificate showing
that f has more than m terms must contain {2(nm) assignments.

Fix n, fix k. We define f as the function whose satisfying assignments have
at least n — k bits set to 1. Notice that the size of f is exactly (Z) =m+ 1. Let
P be the set of assignments corresponding to the minterms of f, i.e. P consists
of all assignments that have exactly n — k bits set to 1. Let N be the set of
assignments that have exactly n — (k + 1) bits set to 1. Notice that f is positive
for the assignments in P but negative for those in N. Clearly, assignments in
P are minimal weight positive assignments and assignments in N are maximal
weight negative assignments. As in the previous proof, we may assume w.l.o.g.
that any certificate ) contains assignments in P U N only. Notice, too, that
|P| = (}) and |N| = W = (,11) = £2(mn) for constant k. Moreover,
any assignment in N is the intersection of two assignments in P.

Let Q C PUN. If () has at most m positive assignments then it is easy
to construct a function consistent with () regardless of how negative examples
are placed. Otherwise, () contains all the m + 1 positive assignments in P and
the rest are assignments in N. If () misses any assignment in N then we build
a consistent function as follows: use the minterm corresponding to the missing
intersection to “cover” two of the positive assignments with just one term. The
remaining m — 1 positive assignments in P are covered by one minterm each.
Hence, any certificate () must contain P U N and thus is of size £2(nm). O



We note that all of the lower bounds above apply to unate or Horn CNF/DNF
as well. This follows from the fact that monotone CNF/DNF is a special case of
unate or Horn CNF/DNF and that the function f is outside the class (has size
more than m in all cases).

It is known [20] that the VC-dimension of m-term monotone DNF is 2(mn),
so a result in [21] implies a {2(mn) lower bound on the number of queries to
learn this class. Our result gives an alternative proof of this fact. For the Horn
case we have a gap between the 2(mn) and O(m?) bounds on certificate size,
and the O(m?n) query complexity of the algorithm from [2]. Closing this gap is
an interesting problem for future work.

8 An Exponential Lower Bound for Renamable Horn

In this section we show that Renamable Horn CNF expressions do not have poly-
nomial certificates. This answers an open question posed in [9] and implies that
the class of Renamable Horn CNF is not exactly learnable using a polynomial
number of membership and equivalence queries [14, 12].

Definition 8. A boolean CNF function f (of arity n) is renamable Horn if there
exists some assignment ¢ such that f. is Horn, where f.(x) = f(x ® c) for all
z € {0,1}". In other words, the function obtained by renaming the variables
according to c¢ is Horn. We call such an assignment ¢ an orientation for f.

To show non-existence of certificates, we need to prove the negation of the
property in Definition 1, namely: for all two-variable polynomials p(-, -) and g(-, )
there exist n,m > 0 and a boolean function f C {0,1}™ s.t. |f‘ > p(m,n)

renH
such that for every @ C {0,1}™ it holds (1) |Q| > g(m,n) or (2) some g € Cp, is
consistent with f over Q.

In particular, we define an f that is not renamable Horn, so that ‘ f

renH
oo > p(m,n) holds for any function p(m,n).

Hence, we need to show: there exist n,m > 0 and a non-renamable Horn
fc{o, 1}" s.t. if no g € C,, is consistent w1th f over some set, of assignments
Q, then |Q| > ¢g(m,n) for every polynomial g(m,n). We say that a set () such
that no g € C,, is consistent with f over () is a certificate that f is not small
renamable Horn.

What we actually show is: for each n which is a multiple of 3, there exists
a non-renamable Horn f C {0,1}" s.t. if no g € C,¢ is consistent with f over
some set of assignments (), then |Q| > %22"/ 3. Equivalently, for every such n
every certificate @) that f is not a renamable Horn CNF function of size n® has
to be of super-polynomial (in fact exponential) size. This is clearly sufficient to
prove the non-existence of polynomial certificates for renamable Horn boolean
functions. The following lemma due to Feigelson will be useful:

Lemma 6 (Lemma 44 from [9], page 86). Let f be a renamable Horn func-
tion. Then there is an orientation c for f such that c = f.



Definition 9. The function f which we use is as follows: Let n = 3k for some
k > 1. We define f : {0,1}™ — {0,1} to be the function whose only satisfying
assignments are 0¥1%1% 1¥0F 1% and 1F1%0*.

Lemma 7. The function f defined above is not renamable Horn.

Proof. To see that a function f is not renamable Horn with orientation ¢ it
suffices to find a triple (p1,p2, q) such that p; = f, p2 = f but ¢ [~ f where ¢ =
p1Nep2. By Lemma 6 it is sufficient to check that the three positive assignments
are not valid orientations for f:

The triple (1¥1%0% 1%0F1% 1¥1¥1%) rejects ¢ = 0F1F1%.

The triple (0¥1¥1% 1¥1k0% 1¥1¥1%) rejects ¢ = 1¥0F 1%,

The triple (0¥1¥1% 1%0F1% 1¥1¥1%) rejects ¢ = 1¥1F0F. O

The following lemma is an extension of Lemma 57 from [9]. We say that
a triple (p1,p2,q) such that p1 = f, po |E f but ¢ & f is suitable for c if
q Sc yai Ne D2.

Lemma 8. If () is a certificate that f is not small renamable Horn with orien-
tation ¢, then Q includes a suitable triple (p1,p2,q) for c.

Proof. Following the same strategy as in [9], suppose that a certificate @) that f
is not small renamable Horn with orientation ¢ does not include a suitable triple
(p1,p2,q) for c. That is, p1 |= f, p2 = f but q [~ f where g <. p1 N p2. Feigelson
[9] defines a function g that is consistent with f on @ as follows:

liwaQandxlzf

9(x) =< 1if z <, (s1 N, 82) for any 51,82 € @ s.t. 51 = f and s, = f
0 otherwise.

The function g is consistent with @) since by assumption no negative example
is covered by the second condition. Feigelson [9] shows that g is renamable Horn
with orientation c¢; here, we show that it is also small. We use the fact that
our particular f is designed to have very few positive assignments. First notice
that g only depends on the positive assignments in (). Moreover, these must be
positive assignments for f. Suppose that () contains any [ < 3 of these positive
assignments. Let these be z1,..,2;. A DNF representation for g is:

g= \/ t; V \/ tij

1<i<i 1<i<j<i

where ¢; is the term that is true for the assignment z; only and ¢; ; is the term
that is true for the assignment z; N, z; and all assignments below it (w.r.t. ¢).
Notice that we can represent this with just one term by removing literals that
correspond to maximal values (w.r.t. c).

Since I < 3, g has at most 3 + (3) = 6 terms. Hence, g has CNF size at
most n® (multiply out all terms to get the clauses). Now we use the fact that
if there is a CNF formula representing g of size at most n%, then there must be



a (syntactically) renamable Horn representation § for g which is also of size at
most n8. (It is well known that if a function h is Horn and g is a non-Horn CNF
representation for h, then every clause in g can be replaced with a Horn clause
which uses a subset of its literals; see e.g. [22] or Claim 6.3 in [19].) We arrive at

a contradiction: @) is not a certificate that f is not small renamable Horn with
orientation c since g is not rejected. O

Theorem 9. For all n = 3k, there is a function f : {0,1}™ — {0,1} which
is not renamable Horn such that any certificate () showing that the renamable
Horn size of f is more than n® must have |Q| > $227/3.

Proof. The Hamming distance between any two positive assignments for f is
2n/3. Since, as observed in [9, 10], the intersection of two different bits equals the
minimum of the two bits, any triple can be suitable for at most 2"/ orientations.
A negative example in () can appear in at most 3 triples (only 3 choices for p;, p2).
Hence any negative example in @ contributes to at most 3 - 2/ orientations.
The theorem follows since we must reject all orientations. O

Corollary 1. Renamable Horn CNFs do not have polynomial size certificates.
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