
On Learning Monotone DNF under Produ
t

Distributions

Ro

o A. Servedio

Division of Engineering and Applied S
ien
es, Harvard University

Cambridge, MA 02138

ro

o�deas.harvard.edu

Abstra
t. We show that the 
lass of monotone 2

O(

p

log n)

-term DNF

formulae 
an be PAC learned in polynomial time under the uniform dis-

tribution from random examples only. This is an exponential improve-

ment over the best previous polynomial-time algorithms in this model,

whi
h 
ould learn monotone o(log

2

n)-term DNF, and is the �rst eÆ
ient

algorithm for monotone (log n)

!(1)

-term DNF in any nontrivial model of

learning from random examples. We also show that various 
lasses of

small 
onstant-depth 
ir
uits whi
h 
ompute monotone fun
tions on few

input variables are PAC learnable in polynomial time under the uniform

distribution. All of our results extend to learning under any 
onstant-

bounded produ
t distribution.

1 Introdu
tion

A disjun
tive normal form formula, or DNF, is a disjun
tion of 
onjun
tions of

Boolean literals. The size of a DNF is the number of 
onjun
tions (also known

as terms) whi
h it 
ontains. In a seminal 1984 paper [30℄ Valiant introdu
ed the

distribution-free model of Probably Approximately Corre
t (PAC) learning from

random examples and posed the question of whether polynomial-size DNF are

PAC learnable in polynomial time. Over the past �fteen years the DNF learning

problem has been widely viewed as one of the most important { and 
hallenging

{ open questions in 
omputational learning theory. This paper substantially

improves the best previous results for a well-studied restri
ted version of the

DNF learning problem.

1.1 Previous Work

The la
k of progress on Valiant's original question { are polynomial-size DNF

learnable from random examples drawn from an arbitrary distribution in poly-

nomial time? { has led many resear
hers to study restri
ted versions of the DNF

learning problem. As detailed below, the restri
tions whi
h have been 
onsidered

in
lude

{ allowing the learner to make membership queries for the value of the target

fun
tion at points sele
ted by the learner;



{ requiring that the learner su

eed only under restri
ted distributions on ex-

amples, su
h as the uniform distribution, rather than all distributions;

{ requiring that the learner su

eed only for restri
ted sub
lasses of DNF for-

mulae su
h as monotone DNF with a bounded number of terms.

A SAT-k DNF is a DNF in whi
h ea
h truth assignment satis�es at most

k terms. Khardon [22℄ gave a polynomial time membership query algorithm

for learning polynomial-size SAT-1 DNF under the uniform distribution; this

result was later strengthened by Blum et al. [4℄ to SAT-k DNF for any 
onstant

k: Bellare [6℄ gave a polynomial time membership query algorithm for learning

O(log n)-term DNF under the uniform distribution. This result was strengthened

by Blum and Rudi
h [7℄ who gave a polynomial time algorithm for exa
t learning

O(log n)-term DNF using membership and equivalen
e queries; several other

polynomial-time algorithms for O(log n)-term DNF have sin
e been given in

this model [3, 9, 10, 25℄. Mansour [27℄ gave a n

O(log logn)

-time membership query

algorithm whi
h learns polynomial-size DNF under the uniform distribution.

In a 
elebrated result, Ja
kson [18℄ gave a polynomial-time membership query

algorithm for learning polynomial-size DNF under 
onstant-bounded produ
t

distributions. His algorithm, the eÆ
ien
y of whi
h was subsequently improved

by several authors [11, 23℄, is the only known polynomial time algorithm for

learning the unrestri
ted 
lass of polynomial size DNF in any learning model.

In the standard PAC model without membership queries positive results are

known for various sub
lasses of DNF under restri
ted distributions. A read-k

DNF is one in whi
h ea
h variable appears at most k times. Kearns et al. [20, 21℄

showed that read-on
e DNF are PAC learnable under the uniform distribution

in polynomial time. Han
o
k [15℄ extended this result to read-k DNF for any


onstant k: Verbeurgt [31℄ gave an algorithm for learning arbitrary polynomial-

size DNF under the uniform distribution in time n

O(logn)

; and Linial et al. [26℄

gave an algorithm for learning any AC

0


ir
uit (
onstant depth, polynomial size,

unbounded fanin AND/OR gates) under the uniform distribution in n

poly(logn)

time.

A monotone DNF is a DNF with no negated variables. It is well known that

in the distribution-independent setting, learning monotone DNF is equivalent to

learning general DNF [20℄. However this equivalen
e does not hold for restri
ted

distributions su
h as the uniform distribution, and many resear
hers have stud-

ied the problem of learning monotone DNF under restri
ted distributions. Han-


o
k and Mansour [16℄ gave a polynomial time algorithm for learning monotone

read-k DNF under 
onstant-bounded produ
t distributions. Verbeurgt [32℄ gave

a polynomial time uniform distribution algorithm for learning poly-disjoint one-

read-on
e monotone DNF and read-on
e fa
torable monotone DNF. Ku
era et

al. [24℄ gave a polynomial-time algorithm whi
h learns monotone k-term DNF

under the uniform distribution using hypotheses whi
h are monotone k-term

DNF. This was improved by Sakai and Maruoka [29℄ who gave a polynomial-

time algorithm for learning monotone O(log n)-term DNF under the uniform

distribution using hypotheses whi
h are monotone O(log n)-term DNF. In [9℄

Bshouty gave a polynomial-time uniform-distribution algorithm for learning a




lass whi
h in
ludes monotone O(log n)-term DNF. Later Bshouty and Tamon

[12℄ gave a polynomial-time algorithm for learning a 
lass whi
h in
ludes mono-

tone O(log

2

n=(log logn)

3

)-term DNF under 
onstant-bounded produ
t distri-

butions.

1.2 Our Results

We give an algorithm for learning monotone DNF under the uniform distribu-

tion. If the desired a

ura
y level � is 
onstant as a fun
tion of n (the number of

variables), then the algorithm learns 2

O(

p

logn)

-term monotone DNF over n vari-

ables in poly(n) time. (We note that the algorithm of [12℄ for learning monotone

DNF with O((logn)

2

=(log logn)

3

) terms also requires that � be 
onstant in order

to a
hieve poly(n) runtime.) This is the �rst polynomial time algorithm whi
h

uses only random examples and su

essfully learns monotone DNF with more

than a polylogarithmi
 number of terms. We also show that essentially the same

algorithm learns various 
lasses of small 
onstant-depth 
ir
uits whi
h 
ompute

monotone fun
tions on few variables. All of our results extend to learning under

any 
onstant-bounded produ
t distribution.

Our algorithm 
ombines ideas from Linial et al.'s in
uential paper [26℄ on

learning AC

0

fun
tions using the Fourier transform and Bshouty and Tamon's

paper [12℄ on learning monotone fun
tions using the Fourier transform. By ana-

lyzing the Fourier transform of AC

0

fun
tions, Linial et al. showed that almost

all of the Fourier \power spe
trum" of any AC

0

fun
tion is 
ontained in \low"

Fourier 
oeÆ
ients, i.e. 
oeÆ
ients whi
h 
orrespond to small subsets of vari-

ables. Their learning algorithm estimates ea
h low Fourier 
oeÆ
ient by sam-

pling and 
onstru
ts an approximation to f using these estimated Fourier 
oeÆ-


ients. If 
 is the size bound for low Fourier 
oeÆ
ients, then sin
e there are

�

n




�

Fourier 
oeÆ
ients 
orresponding to subsets of 
 variables the algorithm requires

roughly n




time steps. Linial et al. showed that for AC

0


ir
uits 
 is essentially

poly(logn); this result was later sharpened for DNF formulae by Mansour [27℄.

Our algorithm extends this approa
h in the following way: Let C � AC

0

be

a 
lass of Boolean fun
tions whi
h we would like to learn. Suppose that C has

the following properties:

1. For every f 2 C there is a set S

f

of \important" variables su
h that almost all

of the power spe
trum of f is 
ontained in Fourier 
oeÆ
ients 
orresponding

to subsets of S

f

:

2. There is an eÆ
ient algorithm whi
h identi�es the set S

f

from random ex-

amples.

(Su
h an algorithm, whi
h we give in Se
tion 3.1, is impli
it in [12℄ and requires

only that f be monotone.) We 
an learn an unknown fun
tion f from su
h a


lass C by �rst identifying the set S

f

; then estimating the low Fourier 
oeÆ
ients

whi
h 
orrespond to small subsets of S

f

and using these estimates to 
onstru
t an

approximation to f: To see why this works, note that sin
e f is in AC

0

almost all

of the power spe
trum of f is in the low Fourier 
oeÆ
ients; moreover, property



(1) implies that almost all of the power spe
trum of f is in the Fourier 
oeÆ
ients

whi
h 
orrespond to subsets of S

f

: Consequently it must be the 
ase that almost

all of the power spe
trum of f is in low Fourier 
oeÆ
ients whi
h 
orrespond

to subsets of S

f

: Thus in our setting we need only estimate the

�

jS

f

j




�

Fourier


oeÆ
ients whi
h 
orrespond to \small" subsets of variables in S

f

: If jS

f

j � n

then this is mu
h more eÆ
ient than estimating all

�

n




�

low Fourier 
oeÆ
ients.

In Se
tion 2 we formally de�ne the learning model and give some ne
essary

fa
ts about Fourier analysis over the Boolean 
ube. In Se
tion 3 we give our

learning algorithm for the uniform distribution, and in Se
tion 4 we des
ribe

how the algorithm 
an be modi�ed to work under any 
onstant-bounded produ
t

distribution.

2 Preliminaries

We write [n℄ to denote the set f1; : : : ; ng and use 
apital letters for subsets

of [n℄: We write jAj to denote the number of elements in A: Barred lower
ase

letters denote bitstrings, i.e. x = (x

1

; : : : ; x

n

) 2 f0; 1g

n

: In this paper Boolean


ir
uits are 
omposed of AND/OR/NOT gates where AND and OR gates have

unbounded fanin and negations o

ur only on inputs. We view Boolean fun
tions

on n variables as real valued fun
tions whi
h map f0; 1g

n

to f�1; 1g: A Boolean

fun
tion f : f0; 1g

n

! f�1; 1g is monotone if 
hanging the value of an input bit

from 0 to 1 never 
auses the value of f to 
hange from 1 to �1:

If D is a distribution and f is a Boolean fun
tion on f0; 1g

n

; then as in [12,

16℄ we say that the in
uen
e of x

i

on f with respe
t to D is the probability that

f(x) di�ers from f(y); where y is x with the i-th bit 
ipped and x is drawn from

D: For ease of notation let f

i;0

denote the fun
tion obtained from f by �xing x

i

to 0 and let f

i;1

be de�ned similarly. We thus have

I

D;i

(f) = Pr

D

[f

i;0

(x) 6= f

i;1

(x)℄ =

1

2

E

D

[jf

i;1

� f

i;0

j℄:

For monotone f this 
an be further simpli�ed to

I

D;i

(f) =

1

2

E

D

[f

i;1

� f

i;0

℄ =

1

2

(E

D

[f

i;1

℄�E

D

[f

i;0

℄) : (1)

We frequently use Cherno� bounds on sums of independent random variables

[14℄:

Theorem 1. Let x

1

; : : : ; x

m

be independent identi
ally distributed random vari-

ables with E[x

i

℄ = p; jx

i

j � B; and let s

m

= x

1

+ � � �+ x

m

: Then

m �

2B

2

�

2

ln

2

Æ

implies that Pr

h

�

�

�

s

m

m

� p

�

�

�

> �

i

� Æ:



2.1 The Learning Model

Our learning model is a distribution-spe
i�
 version of Valiant's Probably Ap-

proximately Corre
t (PAC) model [30℄ whi
h has been studied by many re-

sear
hers, e.g. [4, 6, 11{13, 16, 18, 22, 24, 26, 27, 31, 32℄. Let C be a 
lass of Boolean

fun
tions over f0; 1g

n

; let D be a probability distribution over f0; 1g

n

; and let

f 2 C be an unknown target fun
tion. A learning algorithm A for C takes as

input an a

ura
y parameter 0 < � < 1 and a 
on�den
e parameter 0 < Æ < 1:

During its exe
ution the algorithm has a

ess to an example ora
le EX(f;D)

whi
h, when queried, generates a random labeled example hx; f(x)i where x is

drawn a

ording to D: The learning algorithm outputs a hypothesis h whi
h

is a Boolean fun
tion over f0; 1g

n

; the error of this hypothesis is de�ned to be

error(h; f) = Pr

D

[h(x) 6= f(x)℄: We say that A learns C under D if for every

f 2 C and 0 < �; Æ < 1; with probability at least 1 � Æ algorithm A outputs a

hypothesis h whi
h has error(h; f) � �:

2.2 The Dis
rete Fourier Transform

Let U denote the uniform distribution over f0; 1g

n

: The set of all real valued

fun
tions on f0; 1g

n

may be viewed as a 2

n

-dimensional ve
tor spa
e with inner

produ
t de�ned as

hf; gi = 2

�n

X

x2f0;1g

n

f(x)g(x) = E

U

[fg℄

and norm de�ned as kfk =

p

hf; fi: Given any subset A � [n℄; the Fourier

basis fun
tion �

A

: f0; 1g

n

! f�1; 1g is de�ned by �

A

(x) = (�1)

jA\Xj

; where

X is the subset of [n℄ de�ned by i 2 X i� x

i

= 1: It is well known that the

2

n

basis fun
tions �

A

form an orthonormal basis for the ve
tor spa
e of real

valued fun
tions on f0; 1g

n

; we refer to this basis as the � basis. In parti
ular,

any fun
tion f 
an be uniquely expressed as f(x) =

P

A

^

f(A)�

A

(x); where the

values

^

f(A) are known as the Fourier 
oeÆ
ients of f with respe
t to the � basis.

Sin
e the fun
tions �

A

form an orthonormal basis, the value of

^

f(A) is hf; �

A

i;

also, by linearity we have that f(x) + g(x) =

P

A

(

^

f(A) + ĝ(A))�

A

(x): Another

easy 
onsequen
e of orthonormality is Parseval's identity

E

U

[f

2

℄ = kfk

2

=

X

A�[n℄

^

f(A)

2

:

If f is a Boolean fun
tion then this value is exa
tly 1. Finally, for any Boolean

fun
tion f and real-valued fun
tion g we have [12, 26℄

Pr

U

[f 6= sign(g)℄ � E

U

[(f � g)

2

℄ (2)

where sign(z) takes value 1 if z � 0 and takes value �1 if z < 0:



3 Learning under Uniform Distributions

3.1 Identifying Relevant Variables

The following lemma, whi
h is impli
it in [12℄, gives an eÆ
ient algorithm for

identifying the important variables of a monotone Boolean fun
tion. We refer to

this algorithm as FindVariables.

Lemma 1. Let f : f0; 1g

n

! f�1; 1g be a monotone Boolean fun
tion. There

is an algorithm whi
h has a

ess to EX(f;U); runs in poly(n; 1=�; log 1=Æ) time

steps for all �; Æ > 0; and with probability at least 1 � Æ outputs a set S

f

� [n℄

su
h that

i 2 S

f

implies

X

A:i2A

^

f(A)

2

� �=2 and i =2 S

f

implies

X

A:i2A

^

f(A)

2

� �:

Proof. Kahn et al. ([19℄ Se
tion 3) have shown that

I

U ;i

(f) =

X

A:i2A

^

f(A)

2

: (3)

To prove the lemma it thus suÆ
es to show that I

U ;i

(f) 
an be estimated to

within a

ura
y �=4 with high probability. By Equation (1) from Se
tion 2 this


an be done by estimating E

U

[f

i;1

℄ and E

U

[f

i;0

℄: Two appli
ations of Cherno�

bounds �nish the proof: the �rst is to verify that with high probability a large

sample drawn from EX(f;U) 
ontains many labeled examples whi
h have x

i

= 1

and many whi
h have x

i

= 0; and the se
ond is to verify that a 
olle
tion of

many labeled examples with x

i

= b with high probability yields an a

urate

estimate of E

U

[f

i;b

℄: ut

3.2 The Learning Algorithm

Our learning algorithm, whi
h we 
all LearnMonotone, is given below:

{ Use FindVariables to identify a set S

f

of important variables.

{ Draw m labeled examples hx

1

; f(x

1

)i; : : : ; hx

m

; f(x

m

)i from EX(f;U): For

every A � S

f

with jAj � 
 set �

A

=

1

m

P

m

i=1

f(x

i

)�

A

(x

i

): For every A su
h

that jAj > 
 or A 6� S

f

set �

A

= 0:

{ Output the hypothesis sign(g(x)); where g(x) =

P

A

�

A

�

A

(x):

The algorithm thus estimates

^

f(A) for A � S

f

; jAj � 
 by sampling and 
on-

stru
ts a hypothesis using these approximate Fourier 
oeÆ
ients. The values of

m and 
 and the parameter settings for FindVariables are spe
i�ed below.



3.3 Learning Monotone 2

O(

p

logn)

-term DNF

Let f : f0; 1g

n

! f�1; 1g be a monotone t-term DNF. The proof that algorithm

LearnMonotone learns f uses a DNF 
alled f

1

to show that FindVariables

identi�es a small set of variables S

f

and uses another DNF 
alled f

2

to show that

f 
an be approximated by approximating Fourier 
oeÆ
ients whi
h 
orrespond

to small subsets of S

f

:

Let f

1

be the DNF whi
h is obtained from f by removing every term whi
h


ontains more than log

32tn

�

variables. Sin
e there are at most t su
h terms ea
h

of whi
h is satis�ed by a random example with probability less than �=32tn; we

have Pr

U

[f(x) 6= f

1

(x)℄ <

�

32n

(this type of argument was �rst used by Verbeurgt

[31℄). Let R � [n℄ be the set of variables whi
h f

1

depends on; it is 
lear that

jRj � t log

32tn

�

:Moreover, sin
e I

U ;i

(f

1

) = 0 for i =2 R; equation (3) from Se
tion

3.1 implies that

^

f

1

(A) = 0 for A 6� R:

Sin
e f and f

1

are Boolean fun
tions, f�f

1

is either 0 or 2, so E

U

[(f�f

1

)

2

℄ =

4Pr

U

[f 6= f

1

℄ < �=8n: By Parseval's identity we have

E

U

[(f � f

1

)

2

℄ =

X

A

(

^

f(A)�

^

f

1

(A))

2

=

X

A�R

(

^

f(A)�

^

f

1

(A))

2

+

X

A6�R

(

^

f(A)�

^

f

1

(A))

2

=

X

A�R

(

^

f(A)�

^

f

1

(A))

2

+

X

A6�R

(

^

f(A))

2

< �=8n:

Thus

P

A6�R

^

f(A)

2

<

�

8n

; and 
onsequently we have

i =2 R implies

X

A:i2A

^

f(A)

2

<

�

8n

: (4)

We set the parameters of FindVariables so that with high probability

i 2 S

f

implies

X

A:i2A

^

f(A)

2

� �=8n (5)

i =2 S

f

implies

X

A:i2A

^

f(A)

2

� �=4n: (6)

Inequalities (4) and (5) imply that S

f

� R; so jS

f

j � t log

32tn

�

: Furthermore,

sin
e A 6� S

f

implies i 2 A for some i =2 S

f

; inequality (6) implies

X

A6�S

f

^

f(A)

2

� �=4: (7)

The following lemma is due to Mansour ([27℄ Lemma 3.2):



Lemma 2 (Mansour). Let f be a DNF with terms of size at most d: Then for

all � > 0

X

jAj>20d log(2=�)

^

f(A)

2

� �=2:

One approa
h at this point is to use Mansour's lemma to approximate f by

approximating the Fourier 
oeÆ
ients of all subsets of S

f

whi
h are smaller

than 20d log(2=�); where d = log

32tn

�

is the maximum size of any term in f

1

:

However, this approa
h does not give a good overall running time be
ause d is too

large. Instead we 
onsider another DNF with smaller terms than f

1

whi
h also


losely approximates f: By using this stronger bound on term size in Mansour's

lemma we get a better �nal result.

More pre
isely, let f

2

be the DNF obtained from f by removing every term

whi
h 
ontains at least log

32t

�

variables. Let 
 = 20 log

128t

�

log

8

�

: Mansour's

lemma implies that

X

jAj>


^

f

2

(A)

2

� �=8: (8)

Moreover, we have Pr

U

[f 6= f

2

℄ � �=32 and hen
e

4Pr

U

[f 6= f

2

℄ = E

U

[(f � f

2

)

2

℄ =

X

A

(

^

f(A)�

^

f

2

(A))

2

� �=8: (9)

Let �

A

and g(x) be as de�ned in LearnMonotone. Using inequality (2) from

Se
tion 2.2, we have

Pr[sign(g) 6= f ℄ � E

U

[(g � f)

2

℄ =

X

A

(�

A

�

^

f(A))

2

= X + Y + Z;

where

X =

X

jAj�
;A6�S

f

(�

A

�

^

f(A))

2

;

Y =

X

jAj>


(�

A

�

^

f(A))

2

;

Z =

X

jAj�
;A�S

f

(�

A

�

^

f(A))

2

:

To bound X; we observe that �

A

= 0 for A 6� S

f

; so by (7) we have

X =

X

jAj�
;A6�S

f

^

f(A)

2

�

X

A6�S

f

^

f(A)

2

� �=4:

To bound Y; we note that �

A

= 0 for jAj > 
 and hen
e Y =

P

jAj>


^

f(A)

2

:

Sin
e

^

f(A)

2

� 2(

^

f(A)�

^

f

2

(A))

2

+ 2

^

f

2

(A)

2

, we have

Y � 2

X

jAj>


(

^

f(A)�

^

f

2

(A))

2

+ 2

X

jAj>


^

f

2

(A)

2



� 2

X

A

(

^

f(A)�

^

f

2

(A))

2

+ �=4

� �=2

by inequalities (8) and (9) respe
tively.

It remains to bound Z =

P

jAj�
;A�S

f

(�

A

�

^

f(A))

2

: As in Linial et al. [26℄

this sum 
an be made less than �=4 by taking m suÆ
iently large so that with

high probability ea
h estimate �

A

di�ers from the true value

^

f(A) by at most

p

�=4jS

f

j




: A straightforward Cherno� bound argument shows that taking m =

poly(jS

f

j




; 1=�; log(1=Æ)) suÆ
es.

Thus, we have X + Y + Z � �: Re
alling our bounds on jS

f

j and 
; we have

proved:

Theorem 2. Under the uniform distribution, for any �; Æ > 0; the algorithm

LearnMonotone 
an be used to learn t-term monotone DNF in time polynomial

in n; (t log

tn

�

)

log

t

�

log

1

�

and log(1=Æ):

Taking t = 2

O(

p

log n)

we obtain the following 
orollary:

Corollary 1. For any 
onstant � algorithm LearnMonotone learns 2

O(

p

logn)

-

term monotone DNF in poly(n; log(1=Æ)) time under the uniform distribution.

As noted earlier, Bshouty and Tamon's algorithm [12℄ for learning monotone

DNF with O((logn)

2

=(log logn)

3

) terms also requires that � be 
onstant in order

to a
hieve poly(n) runtime.

3.4 Learning Small Constant-Depth Monotone Cir
uits on Few

Variables

Let C be the 
lass of depth d; sizeM 
ir
uits whi
h 
ompute monotone fun
tions

on r out of n variables. An analysis similar to that of the last se
tion (but

simpler sin
e we do not need to introdu
e auxiliary fun
tions f

1

and f

2

) shows

that algorithm LearnMonotone 
an be used to learn C: As in the last se
tion the

FindVariables pro
edure is used to identify the \important" relevant variables,

of whi
h there are now at most r: Instead of using Mansour's lemma, we use the

main lemma of Linial et al. [26℄ to bound the total weight of high-order Fourier


oeÆ
ients for 
onstant-depth 
ir
uits:

Lemma 3 (Linial et al.). Let f be a Boolean fun
tion 
omputed by a 
ir
uit

of depth d and size M and let 
 be any integer. Then

X

jAj>


^

f(A)

2

� 2M2

�


1=d

=20

:

Taking m = poly(r




; 1=�; log(1=Æ)) and 
 = �((log(M=�))

d

) in LearnMonotone

we obtain:



Theorem 3. Fix d � 1 and let C

d;M;r

be the 
lass of depth d, size M 
ir
uits

whi
h 
ompute monotone fun
tions on r out of n variables. Under the uniform

distribution, for any �; Æ > 0; algorithm LearnMonotone learns 
lass C

d;M;r

in

time polynomial in n; r

(log(M=�))

d

and log(1=Æ):

One interesting 
orollary is the following:

Corollary 2. Fix d � 1 and let C

d

be the 
lass of depth d; size 2

O((logn)

1=(d+1)

)


ir
uits whi
h 
ompute monotone fun
tions on 2

O((logn)

1=(d+1)

)

variables. Then

for any 
onstant � algorithm LearnMonotone learns 
lass C

d

in poly(n; log(1=Æ))

time.

While this 
lass C

d

is rather limited from the perspe
tive of Boolean 
ir-


uit 
omplexity, from a learning theory perspe
tive it is fairly ri
h. We note

that C

d

stri
tly in
ludes the 
lass of depth d; size 2

O((logn)

1=(d+1)

)


ir
uits on

2

O((logn)

1=(d+1)

)

variables whi
h 
ontain only unbounded fanin AND and OR

gates. This follows from results of Okol'nishnikova [28℄ and Ajtai and Gurevi
h

[1℄ (see also [8℄ Se
tion 3.6) whi
h show that there are monotone fun
tions whi
h


an be 
omputed by AC

0


ir
uits but are not 
omputable by AC

0


ir
uits whi
h

have no negations.

4 Produ
t Distributions

A produ
t distribution over f0; 1g

n

is 
hara
terized by parameters �

1

; : : : ; �

n

where �

i

= Pr[x

i

= 1℄: Su
h a distribution D assigns values independently to

ea
h variable, so for a 2 f0; 1g

n

we have D(a) =

�

Q

a

i

=1

�

i

� �

Q

a

i

=0

(1� �

i

)

�

:

The uniform distribution is a produ
t distribution with ea
h �

i

= 1=2: The

standard deviation of x

i

under a produ
t distribution is �

i

=

p

�

i

(1� �

i

): A

produ
t distribution D is 
onstant-bounded if there is some 
onstant 
 2 (0; 1)

independent of n su
h that �

i

2 [
; 1 � 
℄ for all i = 1; : : : ; n: We let � denote

max

i=1;:::;n

(1=�

i

; 1=(1 � �

i

)): Throughout the rest of this paper D denotes a

produ
t distribution.

Given a produ
t distribution D we de�ne a new inner produ
t over the ve
tor

spa
e of real valued fun
tions on f0; 1g

n

as

hf; gi

D

=

X

x2f0;1g

n

D(x)f(x)g(x) = E

D

[fg℄

and a 
orresponding norm kfk

D

=

p

hf; fi

D

: We refer to this norm as the

D-norm. For i = 1; : : : ; n let z

i

= (x

i

� �

i

)=�

i

: Given A � [n℄; let �

A

be

de�ned as �

A

(x) =

Q

i2A

z

i

: As noted by Bahadur [5℄ and Furst et al. [13℄, the

2

n

fun
tions �

A

form an orthonormal basis for the ve
tor spa
e of real valued

fun
tions on f0; 1g

n

with respe
t to the D-norm, i.e. h�

A

; �

B

i

D

is 1 if A = B

and is 0 otherwise. We refer to this basis as the � basis. The following fa
t is

useful:



Fa
t 1 (Bahadur; Furst et. al) The � basis is the basis whi
h would be ob-

tained by Gram-S
hmidt orthonormalization (with respe
t to the D-norm) of the

� basis performed in order of in
reasing jAj:

By the orthonormality of the � basis, any real fun
tion on f0; 1g

n


an be uniquely

expressed as f(x) =

P

A

~

f(A)�

A

(x) where

~

f(A) = hf; �

A

i

D

is the Fourier 
o-

eÆ
ient of A with respe
t to the � basis. Note that we write

~

f(A) for the �

basis Fourier 
oeÆ
ient and

^

f(A) for the � basis Fourier 
oeÆ
ient. Also by

orthonormality we have Parseval's identity

E

D

[f

2

℄ = kfk

2

D

=

X

A�[n℄

~

f(A)

2

whi
h is 1 for Boolean f: Finally, for Boolean f and real-valued g we have ([13℄

Lemma 10)

Pr

D

[f 6= sign(g)℄ � E

D

[(f � g)

2

℄: (10)

Furst et al. [13℄ analyzed the � basis Fourier spe
trum of AC

0

fun
tions

and gave produ
t distribution analogues of Linial et al.'s results on learning

AC

0


ir
uits under the uniform distribution. In Se
tion 4.1 we sharpen and

extend some results from [13℄, and in Se
tion 5 we use these sharpened results

together with te
hniques from [13℄ to obtain produ
t distribution analogues of

our algorithms from Se
tion 3.

4.1 Some � Basis Fourier Lemmas

A random restri
tion �

p;D

is a mapping from fx

1

; : : : ; x

n

g to f0; 1; �g where x

i

is mapped to � with probability p; to 1 with probability (1� p)�

i

; and to 0 with

probability (1 � p)(1 � �

i

): If f is a Boolean fun
tion then fd� represents the

fun
tion f(�

p;D

(x)) whose variables are those x

i

whi
h are mapped to � and

whose other x

i

are instantiated as 0 or 1 a

ording to �

p;D

:

The following is a variant of H�astad's well known swit
hing lemma [17℄:

Lemma 4. Let D be a produ
t distribution with parameters �

i

and � as de�ned

above, let f be a CNF formula where ea
h 
lause has at most d literals, and let

�

p;D

be a random restri
tion. Then with probability at least 1� (4�pd)

s

;

1. the fun
tion fd� 
an be expressed as a DNF formula where ea
h term has at

most s literals;

2. the terms of su
h a DNF all a

ept disjoint sets of inputs.

Proof sket
h: The proof is a minor modi�
ation of arguments given in Se
tion 4

of [2℄. ut

The following 
orollary is a produ
t distribution analogue of ([26℄ Corollary

1):



Corollary 3. Let D be a produ
t distribution with parameters �

i

and �; let f be

a CNF formula where ea
h 
lause has at most d literals, and let �

p;D

be a random

restri
tion. Then with probability at least 1� (4�pd)

s

we have that

g

fd�(A) = 0

for all jAj > s:

Proof. Linial et al. [26℄ show that if fd� satis�es properties (1) and (2) of Lemma

4 then

d

fd�(A) = 0 for all jAj > s: Hen
e su
h a fd� is in the spa
e spanned by

f�

A

: jAj � sg: By Fa
t 1 and the nature of Gram-S
hmidt orthonormalization,

this is the same spa
e whi
h is spanned by f�

A

: jAj � sg; and the 
orollary

follows. ut

Corollary 3 is a sharpened version of a similar lemma, impli
it in [13℄, whi
h

states that under the same 
onditions with probability at least 1 � (5�pd=2)

s

we have

g

fd�(A) = 0 for all jAj > s

2

: Armed with the sharper Corollary 3, using

arguments from [13℄ it is straightforward to prove

Lemma 5. For any Boolean fun
tion f; for any integer t;

X

jAj>t

~

f(A)

2

� 2 Pr

�

p;D

[

g

fd�(A) 6= 0 for some jAj > tp=2℄:

Boolean duality implies that the 
on
lusion of Corollary 3 also holds if f is

a DNF with ea
h term of length at most d: Taking p = 1=8�d and s = log

4

�

in

this DNF version of Corollary 3 and t = 16�d log

4

�

in Lemma 5, we obtain the

following analogue of Mansour's lemma (Lemma 2) for the � basis:

Lemma 6. Let f be a DNF with terms of size at most d: Then for all � > 0

X

jAj>16�d log(4=�)

~

f(A)

2

� �=2:

Again using arguments from [13℄, Corollary 3 
an also be used to prove the

following version of the main lemma from [13℄:

Lemma 7. Let f be a Boolean fun
tion 
omputed by a 
ir
uit of depth d and

size M and let 
 be any integer. Then

X

jAj>


~

f(A)

2

� 2M2

�


1=d

=8�

:

The version of this lemma given in [13℄ has 1=(d + 2) instead of 1=d in the

exponent of 
: This new tighter bound will enable us to give stronger guarantees

on our learning algorithm's performan
e under produ
t distributions than we


ould have obtained by simply using the lemma from [13℄.



5 Learning under Produ
t Distributions

5.1 Identifying Relevant Variables

We have the following analogue to Lemma 2 for produ
t distributions:

Lemma 8. Let f : f0; 1g

n

! f�1; 1g be a monotone Boolean fun
tion. There is

an algorithm whi
h has a

ess to EX(f;D); runs in poly(n; �; 1=�; log 1=Æ) time

steps for all �; Æ > 0; and with probability at least 1 � Æ outputs a set S

f

� [n℄

su
h that

i 2 S

f

implies

X

A:i2A

~

f(A)

2

� �=2 and i =2 S

f

implies

X

A:i2A

~

f(A)

2

� �:

The proof uses the fa
t ([12℄ Lemma 4.1) that 4�

2

i

I

D;i

(f) =

P

A:i2A

~

f(A)

2

for

any Boolean fun
tion f and any produ
t distribution D: The algorithm uses

sampling to approximate ea
h �

i

(and thus �

i

) and to approximate I

D;i

(f): We


all this algorithm FindVariables2.

5.2 The Learning Algorithm

We would like to modify LearnMonotone so that it uses the � basis rather than

the � basis. However, as in [13℄ the algorithm does not know the exa
t values

of �

i

so it 
annot use exa
tly the � basis; instead it approximates ea
h �

i

by a

sample value �

0

i

and uses the resulting basis, whi
h we 
all the �

0

basis. In more

detail, the algorithm is as follows:

{ Use FindVariables2 to identify a set S

f

of important variables.

{ Drawm labeled examples hx

1

; f(x

1

)i; : : : ; hx

m

; f(x

m

)i from EX(f;D): Com-

pute �

0

i

=

1

m

P

m

j=1

x

j

i

for 1 � i � n: De�ne z

0

i

= (x

i

� �

0

i

)=

p

�

0

i

(1� �

0

i

) and

�

0

A

=

Q

i2A

z

0

i

:

{ For every A � S

f

with jAj � 
 set �

0

A

=

1

m

P

m

j=1

f(x

j

)�

0

A

(x

j

): If j�

0

A

j > 1

set �

0

A

= sign(�

0

A

): For every A su
h that jAj > 
 or A 6� S

f

set �

0

A

= 0:

{ Output the hypothesis sign(g(x)); where g(x) =

P

A

�

0

A

�

A

(x):

We 
all this algorithm LearnMonotone2. As in [13℄ we note that setting �

0

A

to

�1 if j�

0

A

j > 1 
an only bring the estimated value 
loser to the true value of

~

f(A):

5.3 Learning Monotone 2

O(

p

logn)

-term DNF

For the most part only minor 
hanges to the analysis of Se
tion 3.3 are required.

Sin
e a term of size greater than d is satis�ed by a random example from D with

probability less than (

��1

�

)

d

; we now take log �

��1

32tn

�

= �(� log

tn

�

) as the term

size bound for f

1

: Pro
eeding as in Se
tion 3.3 we obtain jS

f

j = O(�t log

tn

�

):

We similarly set a term size bound of �(� log

t

�

) for f

2

: We use the � basis



Parseval identity and inequality (10) in pla
e of the � basis identity and in-

equality (2) respe
tively. Lemma 6 provides the required analogue of Mansour's

lemma for produ
t distributions; using the new term size bound on f

2

we obtain


 = �(�

2

log

t

�

log

1

�

):

The one new ingredient in the analysis of LearnMonotone2 
omes in bounding

the quantity Z =

P

jAj�
;A�S

f

(�

0

A

�

~

f(A))

2

: In addition to the sampling error

whi
h would be present even if �

0

i

were exa
tly �

i

; we must also deal with error

due to the fa
t that �

0

A

is an estimate of the �

0

basis 
oeÆ
ient rather than the

� basis 
oeÆ
ient

~

f(A): An analysis entirely similar to that of Se
tion 5.2 of [13℄

shows that taking m = poly(
; jS

f

j




; �




; 1=�; log(1=Æ)) suÆ
es. We thus have

Theorem 4. Under any produ
t distribution D; for any �; Æ > 0; algorithm

LearnMonotone2 
an be used to learn t-term monotone DNF in time polynomial

in n; (�t log

tn

�

)

�

2

log

t

�

log

1

�

; and log(1=Æ):

Sin
e a 
onstant-bounded produ
t distribution D has � = �(1); we obtain

Corollary 4. For any 
onstant � and any 
onstant-bounded produ
t distribu-

tion D; algorithm LearnMonotone2 learns 2

O(

p

logn)

-term monotone DNF in

poly(n; log(1=Æ)) time.

5.4 Learning Small Constant-Depth Monotone Cir
uits on Few

Variables

Using Lemma 7 and an analysis similar to the above, we obtain

Theorem 5. Fix d � 1 and let C be the 
lass of depth d, size M 
ir
uits

whi
h 
ompute monotone fun
tions on r out of n variables. Under any produ
t

distribution D; for any �; Æ > 0; algorithm LearnMonotone2 learns 
lass C in

time polynomial in n; r

(� log

M

�

)

d

and log(1=Æ):

Corollary 5. Fix d � 1 and let C be the 
lass of depth d; size 2

O((logn)

1=(d+1)

)


ir
uits whi
h 
ompute monotone fun
tions on 2

O((logn)

1=(d+1)

)

variables. Then

for any 
onstant � and any 
onstant-bounded produ
t distribution D; algorithm

LearnMonotone2 learns 
lass C in poly(n; log(1=Æ)) time.

6 Open Questions

The positive results reported in this paper for 2

O(

p

logn)

-term DNF provide some

hope that it may be possible to obtain a polynomial time algorithm for learning

polynomial size monotone DNF under the uniform distribution from random

examples only. We note that in the non-monotone 
ase mu
h less is known;

in parti
ular, it would be a signi�
ant step forward to give a polynomial time

algorithm for learning arbitrary t(n)-term DNF under the uniform distribution,

from random examples only, for any t(n) = !(1):



7 A
knowledgements

We thank Les Valiant for his advi
e and enouragement.

Referen
es

1. M. Ajtai and Y. Gurevi
h. Monotone versus positive, J. ACM 34(4) (1987), 1004-

1015.

2. P. Beame. A swit
hing lemma primer. Te
h. report UW-CSE-95-07-01, University

of Washington, November 1994.

3. A. Beimel, F. Bergadano, N. Bshouty, E. Kushilevitz and S. Varri

hio. On the

appli
ationf of multipli
ity automata in learning, in \Pro
. 37th Ann. Symp. on

Foundations of Computer S
ien
e" (1996), 349-358.

4. A. Blum, M. Furst, J. Ja
kson, M. Kearns, Y. Mansour, and S. Rudi
h. Weakly

learning DNF and 
hara
terizing statisti
al query learning using Fourier analysis,

in \Pro
. 26th Ann. Symp. on Theory of Computing" (1994), 253-262.

5. R. Bahadur. A representation of the joint distribution of responses to n di
hoto-

mous items, in Herbert Solomon, ed., Studies in Item Analysis and Predi
tion, pp.

158-168, Stanford University Press, 1961.

6. M. Bellare. A te
hnique for upper bounding the spe
tral norm with appli
ations

to learning, in \Pro
. Fifth Ann. Workshop on Comp. Learning Theory" (1992),

62-70.

7. A. Blum and S. Rudi
h. Fast learning of k-term DNF formulas with queries, J.

Comp. Syst. S
i. 51(3) (1995), 367-373.

8. R. Boppana and M. Sipser. The 
omplexity of �nite fun
tions, in Handbook of

Theoreti
al Computer S
ien
e, vol. A, MIT Press, 1990.

9. N. Bshouty. Exa
t learning via the monotone theory. Information and Computation

123(1) (1995), 146-153.

10. N. Bshouty. Simple learning algorithms using divide and 
onquer, Information

Pro
essing Letters

11. N. Bshouty, J. Ja
kson, and C. Tamon. More eÆ
ient PAC-learning of DNF with

membership queries under the uniform distribution, in \Pro
. 12th Ann. Conf. on

Comp. Learning Theory" (1999), 286-295.

12. N. Bshouty and C. Tamon. On the Fourier spe
trum of monotone fun
tions, J.

ACM 43(4) (1996), 747-770.

13. M. Furst, J. Ja
kson, and S. Smith. Improved learning of AC

0

fun
tions, in \Pro
.

Fourth Ann. Workshop on Comp. Learning Theory" (1991), 317-325.

14. T. Hagerup and C. Rub. A guided tour to Cherno� bounds, Inf. Pro
. Lett. 33

(1989), 305-308.

15. T. Han
o
k. The 
omplexity of learning formulas and de
ision trees that have

restri
ted reads, Ph.D. thesis, Harvard University, TR-15-92 (1992).

16. T. Han
o
k and Y. Mansour. Learning monotone k-� DNF formulas on produ
t

distributions, in \Pro
. 4th Ann. Workshop on Comp. Learning Theory" (1991),

179-183.

17. J. H�astad. Computational Limitations for Small Depth Cir
uits. Ph.D. thesis, MIT

Press, 1986.

18. J. Ja
kson. An eÆ
ient membership-query algorithm for learning DNF with respe
t

to the uniform distribution, J. Comput. Syst. S
i. 55 (1997), 414-440.



19. J. Kahn, G. Kalai, and N. Linial. The in
uen
e of variables on Boolean fun
tions,

in \Pro
. 29th Ann. Symp. on Found. of Comp. S
i." (1988), 68-80.

20. M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of Boolean formulae,

in \Pro
. 19th Ann. ACM Symp. on Theory of Computing" (1987), 285-295.

21. M. Kearns, M. Li, and L. Valiant. Learning boolean formulas, J. ACM 41(6) (1994),

1298-1328.

22. R. Khardon. On using the Fourier transform to learn disjoint DNF, Information

Pro
essing Letters 49 (1994), 219-222.

23. A. Klivans and R. Servedio. Boosting and hard-
ore sets, in \Pro
. 40th Ann.

Symp. on Found. of Comp. S
i." (1999), 624-633.

24. L. Ku
era, A. Mar
hetti-Spa

amela and M. Protassi. On learning monotone DNF

formulae under uniform distributions, Inf. and Comput. 110 (1994), 84-95.

25. E. Kushilevitz. A simple algorithm for learing O(log n)-term DNF. Information

Pro
essing Letters 61(6) (1997), 289-292.

26. N. Linial, Y. Mansour and N. Nisan. Constant depth 
ir
uits, Fourier transform

and learnability, J. ACM 40(3) (1993), 607-620.

27. Y. Mansour. An O(n

log log n

) learning algorithm for DNF under the uniform dis-

tribution, J. Comput. Syst. S
i. 50 (1995), 543-550.

28. E. Okol'nishnikova. On the in
uen
e of negations on the 
omplexity of a realization

of monotone Boolean fun
tions by formulas of bounded depth, Metody Diskret.

Analiz. 38 (1982), 74-80 (in Russian).

29. Y. Sakai and A. Maruoka. Learning monotone log-term DNF formulas under the

uniform distribution, Theory Comput. Systems 33 (2000), 17-33. A preliminary

version appeared in \Pro
. Seventh Conf. on Comp. Learning Theory" (1994),

165-172.

30. L. G. Valiant. A theory of the learnable, Comm. ACM 27(11) (1984), 1134-1142.

31. K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial

time, in \Pro
. 3rd Ann. Workshop on Comp. Learning Theory" (1990), 314-326.

32. K. Verbeurgt. Learning sub-
lasses of monotone DNF on the uniform distribution,

in \Pro
. 9th Conf. on Algorithmi
 Learning Theory" (1998), 385-399.


