Smooth Boosting and Learning with Malicious
Noise

Rocco A. Servedio

Division of Engineering and Applied Sciences, Harvard University
Cambridge, MA 02138

rocco@deas.harvard.edu

Abstract. We describe a new boosting algorithm which generates only
smooth distributions which do not assign too much weight to any single
example. We show that this new boosting algorithm can be used to con-
struct efficient PAC learning algorithms which tolerate relatively high
rates of malicious noise. In particular, we use the new smooth boost-
ing algorithm to construct malicious noise tolerant versions of the PAC-
model p-norm linear threshold learning algorithms described in [23]. The
bounds on sample complexity and malicious noise tolerance of these new
PAC algorithms closely correspond to known bounds for the online p-
norm algorithms of Grove, Littlestone and Schuurmans [14] and Gentile
and Littlestone [13]. As special cases of our new algorithms we obtain
linear threshold learning algorithms which match the sample complexity
and malicious noise tolerance of the online Perceptron and Winnow algo-
rithms. Our analysis reveals an interesting connection between boosting
and noise tolerance in the PAC setting.

1 Introduction

Any realistic model of learning from examples must address the issue of noisy
data. In 1985 Valiant introduced the notion of PAC learning in the presence
of malicious noise. This is a worst-case model of errors in which some fraction
of the labeled examples given to a learning algorithm may be corrupted by an
adversary who can modify both example points and labels in an arbitrary fashion
(a detailed description of the model is given in Section 3). The frequency of such
corrupted examples is known as the malicious noise rate.

Learning in the presence of malicious noise is in general quite difficult. Kearns
and Li [16] have shown that for many concept classes it is impossible to learn to
accuracy e if the malicious noise rate exceeds lj_e. In fact, for many interesting
concept classes (such as the class of linear threshold functions), the best efficient
algorithms known can only tolerate malicious noise rates significantly lower than
this general upper bound. Despite these difficulties, the importance of being able
to cope with noisy data has led many researchers to study PAC learning in the
presence of malicious noise (see e.g. [1-3,6,7,20]).

In this paper we give a new smooth boosting algorithm which can be used
to transform a malicious noise tolerant weak learning algorithm into a PAC

algorithm which learns successfully in the presence of malicious noise. We use
this smooth boosting algorithm to construct a family of PAC algorithms for
learning linear threshold functions in the presence of malicious noise. These new
algorithms match the sample complexity and noise tolerance of the online p-
norm algorithms of Grove, Littlestone and Schuurmans [14] and Gentile and
Littlestone [13], which include as special cases the well-known Perceptron and
Winnow algorithms.

1.1 Smooth Boosting and Learning with Malicious Noise

Our basic approach is quite simple, as illustrated by the following example.
Consider a learning scenario in which we have a weak learning algorithm L
which takes as input a finite sample S of m labeled examples. Algorithm L is
known to have some tolerance to malicious noise; specifically, L is guaranteed to
generate a hypothesis with nonnegligible advantage provided that the frequency
of noisy examples in its sample is at most 10%. We would like to learn to high
accuracy in the presence of malicious noise at a rate of 1%.

The obvious approach in this setting is to use a boosting algorithm, which
will generate some sequence of distributions Dy,Da,... over S. This approach
can fail, though, if the boosting algorithm generates distributions which are very
skewed from the uniform distribution on S; if distribution D; assigns weights as
large as % to individual points in S, for instance, then the frequency of noisy
examples for L in stage i could be as high as 20%. What we need instead is a
smooth boosting algorithm which only constructs distributions D; over S which
never assign weight greater than % to any single example. By using such a
smooth booster we are assured that the weak learner will function successfully
at each stage, so the overall boosting process will work correctly.

While the setting described above is artificial, we note that indirect empirical
evidence has been given supporting the smooth boosting approach for noisy
settings. It is well known [8, 21] that commonly used boosting algorithms such as
AdaBoost [11] can perform poorly on noisy data. Dietterich [8] has suggested that
this poor performance is due to AdaBoost’s tendency to generate very skewed
distributions which put a great deal of weight on a few noisy examples. This
overweighting of noisy examples cannot occur under a smooth boosting regimen.

In Section 2 we give a new boosting algorithm, SmoothBoost, which is guar-
anteed to generate only smooth distributions as described above. We show in
Section 5 that the distributions generated by SmoothBoost are optimally smooth.

SmoothBoost is not the first boosting algorithm which attempts to avoid
the skewed distributions of AdaBoost; algorithms with similar smoothness guar-
antees have been given by Domingo and Watanabe [9] and Impagliazzo [15].
Freund [10] has also described a boosting algorithm which uses a more moderate
weighting scheme than AdaBoost. In Section 2.3 we show that our SmoothBoost
algorithm has several other desirable properties, such as constructing a large
margin final hypothesis, which are essential for the noisy linear threshold learn-
ing application of Section 3. We discuss the relationship between SmoothBoost
and the algorithms of [9, 10, 15] in Section 2.4.

1.2 Learning Linear Threshold Functions with Malicious Noise

We use the SmoothBoost algorithm in Section 3 to construct a family of PAC-
model malicious noise tolerant algorithms for learning linear threshold functions.
A similar family was constructed by Servedio in [23] using AdaBoost instead of
SmoothBoost as the boosting component. It was shown in [23] that for linearly
separable data these PAC model algorithms have sample complexity bounds
which are essentially identical to those of the online p-norm linear threshold
learning algorithms of Grove, Littlestone and Schuurmans [14], which include as
special cases (p = 2 and p = 00) the well-studied online Perceptron and Winnow
algorithms.

Gentile and Littlestone [13] have given mistake bounds for the online p-norm
algorithms when run on examples which are not linearly separable, thus gener-
alizing previous bounds on noise tolerance for Perceptron [12] and Winnow [19].
A significant drawback of the AdaBoost-based PAC-model p-norm algorithms of
[23] is that they do not appear to succeed in the presence of malicious noise.
We show in Section 4 that for all values 2 < p < oo, our new PAC algorithms
which use SmoothBoost match both the sample complexity and the malicious
noise tolerance of the online p-norm algorithms. Our construction thus provides
malicious noise tolerant PAC analogues of Perceptron and Winnow (and many
other algorithms as well).

2 Smooth Boosting

In this section we describe a new boosting algorithm, SmoothBoost, which has
several useful properties. SmoothBoost only constructs smooth distributions
which do not put too much weight on any single example; it can be used to
generate a large margin final hypothesis; and it can be used with a weak learn-
ing algorithm which outputs real-valued hypotheses. All of these properties are
essential for the noisy linear threshold learning problem we address in Section 3.

2.1 Preliminaries

We fix some terminology from [15] first. A measure on a finite set is a function
M : S —[0,1]. We write |M] to denote) s M(z). Given a measure M, there
is a natural induced distribution Dps defined by Das(x) = M(z)/|M|. This
definition yields
Observation 1 L (D) < T

Let D be a distribution over a set S = (z*,41),..., (2™, yn) of labeled ex-
amples with each y; € {—1,1} and let i be a real-valued function which maps
{z',...,2™} into [=1,1). If $ 377, D(j)|h(27) —y;| < 5 —~ then we say that
the advantage of h under D is y. We say that an algorithm which takes S and D
as input and outputs an h which has advantage at least v > 0 is a weak learning
algorithm (this is somewhat less general than the notion of weak learning which

Input: parameters 0 <k <1,0<0<v< %
sample S = (z',y1),..., (™, ym) where each y; € {—1,1}
weak learner WL which takes input (S, D;) and outputs
he : {zt, ..., 2™} = [-1,1]

Output: hypothesis h(z) = sign(f(z))

1. forall j=1,...,mset M;(j) =1

2. forall j=1,...,mset No(j) =0

3. sett=1

4. until |M|/m < k do

5. forall j =1,...,m set Di(j) = M(j)/| M|

6. run WL(S, D;) to get h; such that %2;;1 Di(j)|he(2?) —y;| < 5 —~
7. forall j =1,...,m set Ni(j) = Ni—1(j) + yihe(2?) — 6

8. forall j =1,...,m set Mi+1(j) = { 21)N/ ﬁ_]]\\;i(é)) ;%

9. sett=1¢t+1

10. set T'=¢t—1
11. return h = sign(f(z)) where f(z) = 7 ZZ;I hi(z)

Fig. 1. The SmoothBoost algorithm.

was originally introduced by Kearns and Valiant in [17] but is sufficient for our
purposes). Finally, let g(z) = sign(f(z)) where f : X — [-1,1] is a real-valued
function. We say that the margin of g on a labeled example (z,y) € X x {—1,1}
is yf(z); intuitively, this is the amount by which ¢ predicts y correctly. Note
that the margin of g on (x,y) is nonnegative if and only if g predicts y correctly.

2.2 The SmoothBoost Algorithm

The SmoothBoost algorithm is given in Figure 1. The parameter « is the desired
error rate of the final hypothesis, the parameter 7y is the guaranteed advantage of
the hypotheses returned by the weak learner, and 6 is the desired margin of the
final hypothesis. SmoothBoost runs the weak learning algorithm several times on
a sequence of carefully constructed distributions and outputs a thresholded sum
of the hypotheses thus generated. The quantity N:(j) in line 7 may be viewed
as the cumulative amount by which the hypotheses hi,..., h; beat the desired
margin 6 on the labeled example (27, y;). The measure M;; assigns more weight
to examples where NV, is small and less weight to examples where N; is large,
thus forcing the weak learner to focus in stage ¢t + 1 on examples where previous
hypotheses have done poorly. Note that since any measure maps into [0, 1] there
is a strict bound on the amount of weight which can be assigned to any example.

2.3 Proof of Correctness

Several useful properties of the SmoothBoost algorithm are easy to verify. The
algorithm is called SmoothBoost because each distribution it constructs is guar-
anteed to be “smooth,” i.e. no single point receives too much weight:

Lemma 1. Fach D; defined in step 5 of SmoothBoost has Lo (D;) < —

Proof. Follows directly from Observation 1 and the condition in line 4. O

Another useful property is that the final hypothesis h has margin at least 6
on all but a & fraction of the points in S :

Theorem 1. If SmoothBoost terminates then f satisfies LERETFCRIST Iy

m

Proof. Since Nr(j) = T'(y; f(27) —0), if y; f(27) < 6 then Nr(j) < 0 and hence
Mr41(j) = 1. Consequently we have

i wif(@9) <O _ Zjoa Mreald) _ | M| _

m m m

by the condition in line 4. O

Note that since # > 0 Theorem 1 implies that the final SmoothBoost hypoth-
esis is correct on all but a x fraction of S.

Finally we must show that the algorithm terminates in a reasonable amount
of time. The following theorem bounds the number of times that SmoothBoost
will execute its main loop:

Theorem 2. If each hypothesis h; returned by WL in line 6 has advantage at

least v under Dy (i.e. satisfies the condition of line 6) and 6 is set to F’ then
. . 2

SmoothBoost terminates with T < PRyt

As will be evident from the proof, slightly different bounds on T can be
established by choosing different values of 6 in the range [0, 7]. We take § = m
in the theorem above both to obtain a margin of 2(y) and to obtain a clean
bound in the theorem. Theorem 2 follows from the bounds established in the

following two lemmas:
Lemma 2. 7%, S5y Me(i)yshe(e?) > 27 3, [Mil-

Lemma 3. ff9—m;then23 1Zt L Mi()yjhe(a?) < \/_+'72t 1 | Ml

Combining these bounds we obtain 7\%”_—7 > 'thT:l | M| > vemT where the
last inequality is because |M;| > km fort =1,...,T.

Proof of Lemma 2: Since hy(2?) € [—1,1] and y; € {—1,1}, we have y;h(27) =
1 — |he(27) — y;|, and thus

ZDt)yl ((z7) ZDt)(1 - |ht($j) —y;l) = 2.

This implies that

T m T

m T
ZZM,: y]ht l’J) Z|Mt ZDt y]ht iEJ Z |Mt

j=1t=1 t=1 j=1 t=1
The proof of Lemma 3 is given in Appendix A.

2.4 Comparison with Other Boosting Algorithms

The SmoothBoost algorithm was inspired by an algorithm given by Impagliazzo
in the context of hard-core set constructions in complexity theory [15]. Klivans
and Servedio [18] observed that Impagliazzo’s algorithm can be reinterpreted as a
boosting algorithm which generates distributions D; which, like the distributions
generated by SmoothBoost, satisfy L., (D;) < # However, our SmoothBoost
algorithm differs from Impagliazzo’s algorithm in several important ways. The
algorithm in [15] uses additive rather than multiplicative updates for M;(j), and
the bound on T" which is given for the algorithm in [15] is O(K%Z) which is worse

than our bound by essentially a factor of % Another important difference is that
the algorithm in [15] has no # parameter and does not appear to output a large
margin final hypothesis. Finally, the analysis in [15] only covers the case where
the weak hypotheses are binary-valued rather than real-valued.

Freund and Schapire’s well-known boosting algorithm AdaBoost is some-
what faster than SmoothBoost, requiring only 7' = O(logg#) stages [11]. Like
SmoothBoost, AdaBoost can be used with real-valued weak hypotheses and can
be used to output a large margin final hypothesis [22]. However, AdaBoost is not
guaranteed to generate only smooth distributions, and thus does not appear to
be useful in a malicious noise context.

Freund has recently introduced and studied a sophisticated boosting al-
gorithm called BrownBoost [10] which uses a gentler weighting scheme than
AdaBoost. Freund suggests that BrownBoost should be well suited for deal-
ing with noisy data; however it is not clear from the analysis in [10] whether
BrownBoost-generated distributions satisfy a smoothness property such as the
Lo (Dy) < # property of SmoothBoost, or whether BrownBoost can be used
to generate a large margin final hypothesis. We note that the BrownBoost algo-
rithm is much more complicated to run than SmoothBoost, as it involves solving
a differential equation at each stage of boosting.

SmoothBoost is perhaps most similar to the modified AdaBoost algorithm
MadaBoost which was recently defined and analyzed by Domingo and Watan-
abe [9]. Like SmoothBoost, MadaBoost uses multiplicative updates on weights
and never allows weights to exceed 1 in value. Domingo and Watanabe proved
that MadaBoost takes at most 7' < K%Z stages, which is quite similar to our
bound in Theorem 2. (If we set § = 0 in SmoothBoost, a slight modification
of the proof of Theorem 2 gives a bound of roughly ﬁ, which improves the
Madaboost bound by a constant factor.) However, the analysis for MadaBoost

given in [9] only covers only the case of binary-valued weak hypotheses, and
does not establish that MadaBoost generates a large margin final hypothesis. We

also note that our proof technique of simultaneously upper and lower bounding
Z;nzl 25:1 M (j)yjhe(2?) is different from the approach used in [9)].

3 Learning Linear Threshold Functions with Malicious
Noise

In this section we show how the SmoothBoost algorithm can be used in con-
junction with a simple noise tolerant weak learning algorithm to obtain a PAC
learning algorithm for learning linear threshold functions with malicious noise.

3.1 Geometric Preliminaries

For 7 = (z1,...,2,) € R™ and p > 1 we write ||Z||, to denote the p-norm of 7,
namely |[z|l, = 5, |xi|p)1/p. The oo-norm of T is ||Z||cc = max=1,.._p |T;i|-
We write Bp(R) to denote the p-norm ball of radius R, i.e. Bo(R) = {T € R":
Izl < R}

For p,q > 1 the g-norm is dual to the p-norm if £ + L1 = 1; so the 1-norm
and the oo-norm are dual to each other and the 2-norm is dual to itself. For the

rest of the paper p and ¢ always denote dual norms. The following facts (see e.g.
[25] pp. 203-204) will be useful:

Holder Inequality: [@- 7] < ||[@ll,||7||, for all @,7 € ™ and 1 < p < 0.
Minkowski Inequality: ||[a+7||, < ||@||,+|7||, forallw,7 € R* and 1 < p < 0.

Finally, recall that a linear threshold function is a function f : R* — {-1,1}
such that f(Z) = sign(u - T) for some w € R".

3.2 PAC Learning with Malicious Noise

Let EX], ,; (@, D) be a malicious example oracle with noise rate 1 that be-
haves as follows when invoked: with probability 1 — 5 the oracle returns a clean
example (T, sign(w - T)) where T is drawn from the probability distribution D
over B, (R). With probability n, though, EX}, ,; (@, D) returns a dirty example
(T,y) € Bp(R) x {—1,1} about which nothing can be assumed. Such a malicious
example (Z,y) may be chosen by a computationally unbounded adversary which
has complete knowledge of @, D, and the state of the learning algorithm when
the oracle is invoked.

The goal of a learning algorithm in this model is to construct an approxi-
mation to the target concept sign(u - T). More formally, we say that a Boolean
function h : R™ — {—1,1} is an e-approzimator for @ under D if Przep[h(T) #
sign(u - T)] < €. The learning algorithm is given an accuracy parameter € and a
confidence parameter d, has access to EX}, 4, (@, D), and must output a hypoth-
esis A which, with probability at least 1 — §, is an e-approximator for @ under

D. The sample complexity of a learning algorithm in this model is the number
of times it queries the malicious example oracle.

(A slightly stronger model of PAC learning with malicious noise has also
been proposed [1,6]. In this model first a clean sample of the desired size is
drawn from a noise-free oracle; then each point in the sample is independently
selected with probability #; then an adversary replaces each selected point with
a dirty example of its choice; and finally the corrupted sample is provided to
the learning algorithm. This model is stronger than the original malicious noise
model since each dirty example is chosen by the adversary with full knowledge
of the entire sample. All of our results also hold in this stronger model.)

A final note: like the Perceptron algorithm, the learning algorithms which we
consider will require that the quantity @-Z be bounded away from zero (at least
most of the time). We thus say that a distribution D is £-good for wif |[u-T| > &
for all T which have nonzero probability under D, and we restrict our attention
to learning under &-good distributions. (Of course, dirty examples drawn from
EX}, 4, (@, D) need not satisfy |u-z| > &.)

3.3 A Noise Tolerant Weak Learning Algorithm

As shown in Figure 2, our weak learning algorithm for linear threshold functions,
called WLA, takes as input a data set S and a distribution D over S. The algorithm
computes the vector z which is the average location of the (label-normalized)
points in .S under D, transforms Z to obtain a vector w, and predicts using the
linear functional defined by w. As motivation for the algorithm, note that if
every example pair (Z,y) satisfies y = sign(u - Z) for some @, then each point yZ
would lie on the same side of the hyperplane defined by @ as @ itself, and hence
the average vector Z defined in Step 1 of the algorithm intuitively should point
in roughly the same direction as @.

In [23] it is shown that the WLA algorithm is a weak learning algorithm for
linear threshold functions in a noise-free setting. The following theorem shows
that if a small fraction of the examples in S are affected by malicious noise, WLA
will still generates a hypothesis with nonnegligible advantage provided that the
input distribution D is sufficiently smooth.

Theorem 3. Fiz 2 < p < oo and let S = (T, y1),..., (@™, ym) be a set of
labeled examples with each T € Bp(R). Let D be a distribution over S such that
Loo(D) < L. Suppose that £ > 0 and w € R" are such that £ < R|[ull, and at
most 'm examples in S do not satisfy y;(@-7’) > &, where ' < ﬁ. Then
WLA(p, S, D) returns a hypothesis h : Bp(R) — [—1,1] which has advantage at
least m under D.

Proof: By Holder’s inequality, for any T € B,(R) we have

e elldE
h@)| = 27 @@y
S T N T

and thus h indeed maps Bp(R) into [—1,1].

Input: parameter p > 2
sample S = (Z',y1), ..., (T™,ym) where each y; € {—1,1}
distribution D over S
upper bound R on ||Z||,

Output: hypothesis h(T)

1. setz= Z;’;l D(5)y; @’

2. foralli=1,...,nset w; = sign(z;)|z|P~*

w
lwllq R

3. return hypothesis h(Z) =7 - T where 7 =

Fig. 2. The p-norm weak learning algorithm WLA.

Now we show that % has the desired advantage. Since h;(7’) € [—1,1] and
y; € {—1,1}, we have |h(7T?) —y;| =1 —y;h(T’), so

o1 D)y (@ - 7
DMyl = 5 ZD J(1=ysh)):%‘GF 2”(;)””12)>'

<
Il
A

N =

. " D)y (W)
To prove the theorem it thus suffices to show that Z’—l il ’
q

£
2 3T, The
numerator of the left side is w - (Z;nzl D(j)yjfj) =w-Z=),|ul” =z
Using the fact that (p — 1)¢g = p, the denominator is

n 1/!] n 1/!]
[wlly = (Z (|Zi|p_1)q> = (Z |Zi|p> = ||zl
i=1 i=1

We can therefore rewrite the left side as ||z||p/||z||p/q = ||z]|p, and thus our goal

is to show that ||Z]|, > . By Holder’s inequality it suffices to show that

= ZIIUH
zZu> 3 § , which we now prove.

Let 51 ={(@,y;) € S:yj(m-77) > ¢} and let Sy = S\ S;. The definition
of S1 immediately yields ;s D(j)y;(@-z’) > D(S51)€. Moreover, since each
Iz7]|, < R, by Holder’s inequality we have y;(u-z7) > —||z7||, - ||ull, > —R|[all,
for each (z7,y;) € S 2. Since each example in Sy has weight at most # under
D, we have D(S2) < L, and hence

|

|

I
NE

DG)y;@-7) = > D@Gy;@-7)+ Y D(j)y;(@-7)

J=1 JjES1 JES
D($1)¢ - D(Sa)Rfll, > (- "_> ¢ W Rl
K K
. 3_f_§_§,
— 4 4 2

where the inequality (1— %’) > 3 follows from the bound on 7’ and the fact that
¢ < R[ully- 0

3.4 Putting it All Together

The algorithm for learning sign(w - T) with respect to a &-good distribution D
over By(R) is as follows:
— Draw from EX7}, ,, (@, D) a sample S = (T',y1),...,(T™, ym) of m labeled

examples.
— Run SmoothBoost on S with parameters kK = §, v = —5 =1 using

4R|[ullq 2+y

WLA as the weak learning algorithm.

We now determine constraints on the sample size m and the malicious noise rate
n under which this is a successful and efficient learning algorithm.

We first note that since D is &-good for uw, we have that ¢ < R||u|q. Further-
more, since kK = 7, Lemma 1 implies that each distribution D; which is given to
WLA by SmoothBoost has L (D;) < -+ Let S¢ C S be the clean examples and

_ ; ; 3 96 R||u]| 2
Sp = S\ S¢ the dirty examples in S. If n < 32RE|W and m > T‘llog 55
then a simple Chernoff bound implies that with probability at least 1 — % we
£
have |SD| S MI;IW

each weak hypothesis h;(T) = ¥’ - T generated by WLA has advantage 4_RII§W

m. Thus, we can apply Theorem 3 with ' = ﬁ; SO

under D;. Consequently, by Theorems 1 and 2, SmoothBoost efficiently outputs
a final hypothesis h(Z) = signf(z) which has margin less than # on at most
an § fraction of S. Since |S¢| is easily seen to be at least %, we have that the
margin of A is less than 6 on at most an § fraction of S¢. This means that we
can apply powerful methods from the theory of data-dependent structural risk
minimization [5,24] to bound the error of A under D.

Recall that the final SmoothBoost hypothesis is h(Z) = sign(f(Z)) where
f(T) = v -7 is a convex combination of hypotheses h;(Z) = o’ - . Since each
vector v’ satisfies |[o*||, < 4, by Minkowski’s inequality we have that |[7]l, < &
as well. The following theorem is proved in [23]:

Theorem 4. Fiz any value 2 < p < oo and let F be the class of functions
{T—7-7:|v)|, < 4,7 € By(R)}. Then faty(p) < %524—”, where fatr(p) is the
fat-shattering dimension of F at scale p as defined in, e.g., [4, 5, 24].

The following theorem is from [5]:

Theorem 5. Let F be a collection of real-valued functions over some domain
X, let D be a distribution over X x {—1,1}, let S = (T, y1),...,(@T™, ym) be
a sequence of labeled examples drawn from D, and let h(T) = sign(f(z)) for
some f € F. If h has margin less than 0 on at most k ezamples in S, then with
probability at least 1 — & we have that Pr(z ,\ep|h(T) # y] is at most

% + \/ %(dln(34e/m) log(578m) + In(4/4)), (1)

where d = fatF(6/16).

We have that h has margin less than 6 on at most an § fraction of the clean

examples Sc, so we may take k/m to be § in the above theorem. Now if we

apply Theorem 4 and solve for m the inequality obtained by setting (1) to be at
most €, we obtain

Theorem 6. Fiz 2 < p < 0o and let D be a distribution over Bp(R) which is
. N2
&-good for w. The algorithm described above uses m = O (%)) examples

and outputs an e-approximator for w under D with probability 1—0 in the presence

of malicious noise at a rate n = {2 (e- RH%H) .
q

4 Comparison with Online Algorithms

The bounds given by Theorem 6 on sample complexity and malicious noise tol-
erance of our algorithms based on SmoothBoost are remarkably similar to the
bounds which can be obtained through a natural PAC conversion of the online
p-norm algorithms introduced by Grove, Littlestone and Schuurmans [14] and
studied by Gentile and Littlestone [13]. Grove, Littlestone and Schuurmans (The-

— 2
orem 6.1) proved that the online p-norm algorithm makes at most O <(%)

mistakes on linearly separable data. Subsequently Gentile and Littlestone [13]
extended the analysis from [14] and considered a setting in which the examples
are not linearly separable. Their analysis (Theorem 6) shows that if an exam-
ple sequence containing K malicious errors is provided to the online p-norm
algorithm, then the algorithm will make at most

— 2 —
o ((Rugnq) K R”g'“)

mistakes. To obtain PAC-model bounds on the online p-norm algorithms in the
presence of malicious noise, we use the following theorem due to Auer and Cesa-
Bianchi [3] (Theorem 6.2):

Theorem 7. Fiz a hypothesis class H of Vapnik-Chervonenkis dimension d. Let
A be an online learning algorithm with the following properties: (1) A only uses
hypotheses which belong to H, (2) if A is given a noise-free example sequence then
A makes at most mq mistakes, and (3) if A is given an example sequence with K
malicious errors then A makes at most mg+ BK mistakes. Then there is a PAC
algorithm A’ which learns to accuracy € and confidence 0, uses O(’f—; + 0+ %)
examples, and can tolerate a malicious noise rate = 55.

Applying this theorem, we find that these PAC conversions of the online p-
norm algorithms have sample complexity and malicious noise tolerance bounds
which are essentially identical to the bounds given for our SmoothBoost-based
algorithm.

5 SmoothBoost is Optimally Smooth

It is evident from the proof of Theorem 6 that the smoothness of the distribu-
tions generated by SmoothBoost relates directly to the level of malicious noise
which our linear threshold learning algorithm can tolerate. On the other hand,
as mentioned in Section 1, Kearns and Li have shown that for a broad range
of concept classes no algorithm can learn to accuracy e in the presence of ma-
licious noise at a rate 7 > 1f. Using the Kearns-Li upper bound on malicious
noise tolerance, we prove in this section that SmoothBoost is optimal up to con-
stant factors in terms of the smoothness of the distributions which it generates.
This demonstrates an interesting connection between bounds on noise-tolerant
learning and bounds on boosting algorithms.

Recall that if SmoothBoost is run on a set of m examples with input parame-
ters k, 7,6, then each distribution D; which SmoothBoost constructs will satisfy
Lo (D) < ﬁ The proof is by contradiction; so suppose that there exists a
boosting algorithm called SuperSmoothBoost which is similar to SmoothBoost
but which has an even stronger guarantee on its distributions. More precisely
we suppose that SuperSmoothBoost takes as input parameters ,7 and a la-
beled sample S of size m, has access to a weak learning algorithm WL, generates
a sequence Di,Ds,... of distributions over S, and outputs a Boolean-valued
final hypothesis h. As in Section 2.3, we suppose that if the weak learning algo-
rithm WL always returns a hypothesis h; which has advantage v under D;, then
SuperSmoothBoost will eventually halt and the final hypothesis h will agree with
at least a 1 — k fraction of the labeled examples in S. Finally, we suppose that
each distribution D; is guaranteed to satisfy L., (D;) < ﬁ.

Consider the following severely restricted linear threshold learning problem:
the domain is {—1,1}? C R?, so any distribution D can assign weight only to
these four points. Moreover, we only allow two possibilities for the target concept
sign(u - T): the vector @ is either (1,0) or (0,1). The four points in {—1,1}? are
classified in all four possible ways by these two concepts, and hence the concept
class consisting of these two concepts is a distinct concept class as defined by
Kearns and Li [16]. It is clear that every example belongs to B (1) (i.e. R = 1),
that [[u]l; = 1, and that any distribution D over {—1,1}? is 1-good for u (i.e.
&E=1).

Consider the following algorithm for this restricted learning problem:

— Draw from EX},,; (@, D) a sample S = (F',y1),..., (™, ym) of m labeled
examples.

— Run SuperSmoothBoost on S with parameters k = ¢, v =
WLA with p = co as the weak learning algorithm.

€ 1 4
iRl — 1 W8

Suppose that the malicious noise rate n is 2¢. As in Section 3.4, a Chernoff
bound shows that for m = O(% log %), with probability at least 1—% we have that
the sample S contains at most 4em dirty examples. By the SuperSmoothBoost

smoothness property and our choice of k, we have that Lo, (D;) < ﬁ. Theorem
1

3 now implies that each WLA hypothesis h; has advantage at least ﬁ =7
q

with respect to D;. As in Section 3.4, we have that with probability at least 1— %
the final hypothesis h output by SuperSmoothBoost disagrees with at most an
5 fraction of the clean examples Sc.

Since the domain is finite (in fact of size four) we can bound generaliza-
tion error directly. A simple Chernoff bound argument shows that if m is suf-
ficiently large, then with probability at least 1 — ¢ the hypothesis h will be an
e-approximator for sign(w -) under D. However, Kearns and Li have shown
(Theorem 1 of [16]) that no learning algorithm for a distinct concept class can
learn to accuracy € with probability 1 — ¢ in the presence of malicious noise at
rate 1 > 5. This contradiction proves that the SuperSmoothBoost algorithm
cannot exist, and hence the distributions generated by SmoothBoost are optimal
up to constant factors.

6 Conclusions and Further Work

One goal for future work is to improve the SmoothBoost algorithm given in Sec-
tion 2. As noted in Section 5, the smoothness of the generated distributions is
already essentially optimal; however it may be possible to improve other aspects
of the algorithm such as the number of stages of boosting which are required.
Is there an algorithm which matches the smoothness of SmoothBoost but, like
AdaBoost, runs for only O(log(w#) stages? Another possible improvement would
be to eliminate the # (margin) parameter of SmoothBoost; a version of the algo-
rithm which automatically chooses an appropriate margin parameter would be
useful in practical situations.

7 Acknowledgements

We thank Avrim Blum for a helpful discussion concerning the malicious noise
tolerance of the Perceptron algorithm. We also thank Les Valiant for suggesting
that the techniques in this paper could be used to prove a lower bound on the
smoothness of an arbitrary boosting algorithm.

References

1. J. Aslam and S. Decatur. Specification and simulation of statistical query algo-
rithms for efficiency and noise tolerance, J. Comput. Syst. Sci. 56 (1998), 191-208.

2. P. Auer. Learning nested differences in the presence of malicious noise, Theoretical
Computer Science 185(1) (1997), 159-175.

3. P. Auer and N. Cesa-Bianchi. On-line learning with malicious noise and the closure
algorithm, Ann. Math. and Artif. Intel. 23 (1998), 83-99.

4. P. Bartlett, P. Long and R. Williamson. Fat-shattering and the learnability of
real-valued functions, J. Comput. Syst. Sci., 52(3) (1996), 434-452.

5. P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector
machines and other pattern classifiers, in B. Scholkopf, C.J.C. Burges, and A.J.
Smola, eds, Advances in Kernel Methods — Support Vector Learning, (1999), 43-54.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

N. Cesa-Bianchi, E. Dichterman, P. Fischer, E. Shamir and H.U. Simon. Sample-
efficient strategies for learning in the presence of noise, J. ACM 46(5) (1999),
684-719.

S. Decatur. Statistical queries and faulty PAC oracles, in “Proc. Sixth Work. on
Comp. Learning Theory” (1993), 262-268.

T.G. Dietterich. An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization. Machine Learn-
ing, 40(2) (2000), 139-158.

C. Domingo and O. Watanabe. MadaBoost: a modification of AdaBoost. in “Proc.
13th Conf. on Comp. Learning Theory” (2000), 180-189.

Y. Freund. An adaptive version of the boost by majority algorithm, in “Proc.
Twelfth Conf. on Comp. Learning Theory” (1999), 102-113.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting, J. Comput. Syst. Sci. 55(1) (1997), 119-139.

Y. Freund and R. Schapire. Large margin classification using the perceptron algo-
rithm, in “Proc. 11th Conf. Comp. Learning Theory” (1998), 209-217.

C. Gentile and N. Littlestone. The robustness of the p-norm algorithms, in “Proc.
12th Ann. Conf. on Comp. Learning Theory” (1999), 1-11.

A. Grove, N. Littlestone and D. Schuurmans. General convergence results for lin-
ear discriminant updates, in “Proc. 10th Ann. Conf. on Comp. Learning Theory”
(1997), 171-183.

R. Impagliazzo. Hard-core distributions for somewhat hard problems, in “Proc.
36th Symp. on Found. of Comp. Sci.” (1995), 538-545.

M. Kearns and M. Li. Learning in the presence of malicious errors, SIAM J. Com-
put. 22(4) (1993), 807-837.

M. Kearns, L. Valiant. Cryptographic limitations on learning boolean formulae and
finite automata, J. ACM 41(1) (1994), 67-95. Also “Proc. 21st Symp. on Theor.
of Comp.” (1989), 433-444.

A. Klivans and R. Servedio. Boosting and hard-core sets, in “Proc. 40th Ann.
Symp. on Found. of Comp. Sci.” (1999), 624-633.

N. Littlestone. Redundant noisy attributes, attribute errors, and linear-threshold
learning using winnow, in “Proc. Fourth Workshop on Computational Learning
Theory,” (1991), 147-156.

Y. Mansour and M. Parnas. Learning conjunctions with noise under product dis-
tributions, Inf. Proc. Let. 68(4) (1998), 189-196.

R.E. Schapire. Theoretical views of boosting, in “Proc. 10th Int. Conf. on Algo-
rithmic Learning Theory” (1999), 12-24.

R. Schapire, Y. Freund, P. Bartlett and W.S. Lee. Boosting the margin: a new
explanation for the effectiveness of voting methods, Annals of Statistics 26(5)
(1998), 1651-1686.

R. Servedio. PAC analogues of perceptron and winnow via boosting the margin,
in “Proc. 13th Conf. on Comp. Learning Theory,” 2000.

J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson and M. Anthony. Structural risk
minimization over data-dependent hierarchies, IEEE Trans. Inf. Theory, 44(5)
(1998), 1926-1940.

A. Taylor and W. Mann. Advanced Calculus, Wiley & Sons, 1972.

L.G. Valiant. Learning disjunctions of conjunctions, in “Proc. 9th Internat. Joint
Conf. on Artif. Intel.” (1985), 560-566.

N(t)

h g T I T I

0 1 2 3 4 t

Fig. 3. A plot of N with 7' = 4. Note that NN is piecewise linear with joins at integer
values of ¢. A possible pairing of segments matches [e2, e3] with [e5, es] and [es3, e4] with
[e4, e5], leaving [eo, e1], [e1, e2] and [eq, 7] unpaired. In this example N is increasing on
each unpaired segment.

A Proof of Lemma 3

By the definition of N.(j), we have

j=1t=1 j=1t=1
T T m
=0 M|+ > M()(Ne(f) = Neea (). (2)
t=1 t=1 j=1
It thus suffices to show that if § = ;- + , then for each 7 = 1,...,m we have

T
ZMt Nl >><#+w—0>2mm ®

since summing this inequality over j = 1,...,m and substituting into (2) proves
the lemma. Fix any j € {1,...,m}; for ease of notation we write Ny and M; in
place of N¢(j) and M;(j) for the rest of the proof.

If N = N;_; for some integer ¢ then the term M;(N; — N;_;) contributes 0
to the sum in (3), so without loss of generality we assume that Ny # Ny_; for all
integers t. We extend the sequence (No, N1,...,Ny) to a continuous piecewise
linear function N on [0,T] in the obvious way, i.e. for ¢ an integer and e € [0, 1]
we have N(t + €) = Ny + e(Nep1 — Ny). Let

E={ec0,T]: N(e) = N, for some integer t = 0,1,...,T}.

The set E is finite so we have 0 = ey < e1--+ < e, = T with E = {eg,...,e,}
(see Figure 3). Since for each integer ¢ > 1 the interval (¢ — 1,¢] must contain

some e;, we can reexpress the sum Zthl M;y(Ny — Ny—1) as
T
> Mo (N(ei) = Nein)) - (4)
i=1

We say that two segments [e,_1,€e,] and [ey_1,ep] match if N(ea,l) = N(eb)
and N(ep—1) = N(eq). For example, in Figure 3 the segment [e, es] matches
[e5, es] but does not match [eg, e7]. We pair up matching segments until no more
pairs can be formed. Note that if any unpaired segments remain, it must be the
case that either N is increasing on each unpaired segment (if Np > 0) or N is
decreasing on each unpaired segment (if Np < 0). Now we separate the sum (4)
into two pieces, i.e. Y ;_; M. (N(e;) — N(ei—1)) = P+ U, where P is the sum
over all paired segments and U is the sum over all unpaired segments. We will
show that P < (y —6) Z;‘r’zl M; and U < W%’ thus proving the lemma.

First we bound P. Let [e,—1,€,] and [ep_1, €] be a pair of matching segments
where N is increasing on [e,_1, e,] and decreasing on [ep_1, ep]. The contribution
of these two segments to P is

Mie,) (N(ea) = N(eamt)) + Moy (N (es) = Nier-))
= (Mre,1 — Mpe,)) (N(ea) - N(eafl)) : (5)

Since each segment [e,—1, €,] is contained in [t — 1,¢] for some integer ¢, we have
that [e,] =1 < eq—1 < eq < [eg]. The linearity of N on [[eq] — 1, [eq]] implies
that

N(ea]—l < N(eafl) < N(ea) < N[ea] < N(ea]—l +1-96 (6)

where the last inequality is because y;hi(2?) < 1 in line 7 of SmoothBoost.
Similarly, we have that [e;] —1 < ep—1 < ey < [ep], and hence

Nieyj—1 > N(ep—1) > N(ep) > Nyey) = Npeyjo1 — 1 6. (7)
Since N(ea) = N(eb_l) inequalities (6) and (7) imply that Ny, 1-1 > Npe,1-1—2.
The definition of M now implies that Mr.,7 > (1 —)M, 7. Since Neg) —

A~

N(eq—1) > 0, we thus have that (5) is at most

A~

YMrey (Nea) = Nea 1)) <7(1=8)Mpeyy(ea —ea 1) ®)

where the inequality follows from (6) and the linearity of N on [e, 1,eq]. Since

A~ A ~

N(ey) — N(ea 1) = N(ep_1) — N(ep), we similarly have that (5) is at most
A~ A ")/ A~ A~
1M1e,t (Ner) = N(er)) < 72 Mrey (N(ev) = Niew))

< ﬁu +0)Mpo, (€51 — e). (9)

Using the fact that § = 37— and some algebra, inequalities (8) and (9) imply
that (5) is at most

7) (M[ea] (ea — €a,1) + M(eb] (eb,1 — 61,)) . (10)

If we sum (10) over all pairs of matching segments the resulting quantity is an
upper bound on P. In this sum, for each value of t = 1,..., T, the coefficient of
M, will be at most ”(;Tt?) = v — 6. (This bound on the coefficient of M; holds
because for each t, the total length of all paired segments in [t — 1,¢] is at most
1). Consequently we have P < (y —6) Zthl M; as desired.

- . 2
Now we show that U, the sum over unpaired segments, is at most i If

N is decreasing on each unpaired segment then clearly U < 0, so we suppose
that NN is increasing on each unpaired segment. Let [ec,_1,¢€c,],- - -, [€eye1, €cy]
be all the unpaired segments. As in Figure 2 it must be the case that the intervals
[N(ee,—1), N(ec,)) are all disjoint and their union is [0, N7). By the definition of

M, we have U = Z?Zl(l - 7)(NFECZ-1*1)/2 (N(eci) - N(Cci—1)) . As in the bound
for P, we have

Nre,,1-1 < N(ee—1) < Nee,) < Nre.,1 < Npeej-1+1 =0 < Np -1 +1

and hence

d
U <1 —y) N0/ (N(ey,) = Niee, 1))
i=1

d

= (=) Y1 = N2 (Bew) = Ree 1))

i=1
Since N is increasing, for each ¢ we have

- . N N(eci)
(1 _ V)N(Eci)ﬂ (N(Cci) _ N(eci—l)) < / (1 _ 7)z/2d2.

2=N(ec;-1)

Since the disjoint intervals [N (e, 1), N(ec,)) cover [0, Ny) we thus have

Nt
U< (1ony) V2 / (1 -)2dz

=0

<oy / (1—~)/dz
z=0

-2 2
= < for 0 <y < 1/2.
V1—7In(l-7) YV1—7

(Lemma 3) W

