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Abstra
t. We des
ribe a new boosting algorithm whi
h generates only

smooth distributions whi
h do not assign too mu
h weight to any single

example. We show that this new boosting algorithm 
an be used to 
on-

stru
t eÆ
ient PAC learning algorithms whi
h tolerate relatively high

rates of mali
ious noise. In parti
ular, we use the new smooth boost-

ing algorithm to 
onstru
t mali
ious noise tolerant versions of the PAC-

model p-norm linear threshold learning algorithms des
ribed in [23℄. The

bounds on sample 
omplexity and mali
ious noise toleran
e of these new

PAC algorithms 
losely 
orrespond to known bounds for the online p-

norm algorithms of Grove, Littlestone and S
huurmans [14℄ and Gentile

and Littlestone [13℄. As spe
ial 
ases of our new algorithms we obtain

linear threshold learning algorithms whi
h mat
h the sample 
omplexity

and mali
ious noise toleran
e of the online Per
eptron and Winnow algo-

rithms. Our analysis reveals an interesting 
onne
tion between boosting

and noise toleran
e in the PAC setting.

1 Introdu
tion

Any realisti
 model of learning from examples must address the issue of noisy

data. In 1985 Valiant introdu
ed the notion of PAC learning in the presen
e

of mali
ious noise. This is a worst-
ase model of errors in whi
h some fra
tion

of the labeled examples given to a learning algorithm may be 
orrupted by an

adversary who 
an modify both example points and labels in an arbitrary fashion

(a detailed des
ription of the model is given in Se
tion 3). The frequen
y of su
h


orrupted examples is known as the mali
ious noise rate.

Learning in the presen
e of mali
ious noise is in general quite diÆ
ult. Kearns

and Li [16℄ have shown that for many 
on
ept 
lasses it is impossible to learn to

a

ura
y � if the mali
ious noise rate ex
eeds

�

1+�

: In fa
t, for many interesting


on
ept 
lasses (su
h as the 
lass of linear threshold fun
tions), the best eÆ
ient

algorithms known 
an only tolerate mali
ious noise rates signi�
antly lower than

this general upper bound. Despite these diÆ
ulties, the importan
e of being able

to 
ope with noisy data has led many resear
hers to study PAC learning in the

presen
e of mali
ious noise (see e.g. [1{3, 6, 7, 20℄).

In this paper we give a new smooth boosting algorithm whi
h 
an be used

to transform a mali
ious noise tolerant weak learning algorithm into a PAC



algorithm whi
h learns su

essfully in the presen
e of mali
ious noise. We use

this smooth boosting algorithm to 
onstru
t a family of PAC algorithms for

learning linear threshold fun
tions in the presen
e of mali
ious noise. These new

algorithms mat
h the sample 
omplexity and noise toleran
e of the online p-

norm algorithms of Grove, Littlestone and S
huurmans [14℄ and Gentile and

Littlestone [13℄, whi
h in
lude as spe
ial 
ases the well-known Per
eptron and

Winnow algorithms.

1.1 Smooth Boosting and Learning with Mali
ious Noise

Our basi
 approa
h is quite simple, as illustrated by the following example.

Consider a learning s
enario in whi
h we have a weak learning algorithm L

whi
h takes as input a �nite sample S of m labeled examples. Algorithm L is

known to have some toleran
e to mali
ious noise; spe
i�
ally, L is guaranteed to

generate a hypothesis with nonnegligible advantage provided that the frequen
y

of noisy examples in its sample is at most 10%: We would like to learn to high

a

ura
y in the presen
e of mali
ious noise at a rate of 1%.

The obvious approa
h in this setting is to use a boosting algorithm, whi
h

will generate some sequen
e of distributions D

1

;D

2

; : : : over S: This approa
h


an fail, though, if the boosting algorithm generates distributions whi
h are very

skewed from the uniform distribution on S; if distribution D

i

assigns weights as

large as

20

m

to individual points in S; for instan
e, then the frequen
y of noisy

examples for L in stage i 
ould be as high as 20%: What we need instead is a

smooth boosting algorithm whi
h only 
onstru
ts distributions D

i

over S whi
h

never assign weight greater than

10

m

to any single example. By using su
h a

smooth booster we are assured that the weak learner will fun
tion su

essfully

at ea
h stage, so the overall boosting pro
ess will work 
orre
tly.

While the setting des
ribed above is arti�
ial, we note that indire
t empiri
al

eviden
e has been given supporting the smooth boosting approa
h for noisy

settings. It is well known [8, 21℄ that 
ommonly used boosting algorithms su
h as

AdaBoost [11℄ 
an perform poorly on noisy data. Dietteri
h [8℄ has suggested that

this poor performan
e is due to AdaBoost's tenden
y to generate very skewed

distributions whi
h put a great deal of weight on a few noisy examples. This

overweighting of noisy examples 
annot o

ur under a smooth boosting regimen.

In Se
tion 2 we give a new boosting algorithm, SmoothBoost, whi
h is guar-

anteed to generate only smooth distributions as des
ribed above. We show in

Se
tion 5 that the distributions generated by SmoothBoost are optimally smooth.

SmoothBoost is not the �rst boosting algorithm whi
h attempts to avoid

the skewed distributions of AdaBoost; algorithms with similar smoothness guar-

antees have been given by Domingo and Watanabe [9℄ and Impagliazzo [15℄.

Freund [10℄ has also des
ribed a boosting algorithm whi
h uses a more moderate

weighting s
heme than AdaBoost. In Se
tion 2.3 we show that our SmoothBoost

algorithm has several other desirable properties, su
h as 
onstru
ting a large

margin �nal hypothesis, whi
h are essential for the noisy linear threshold learn-

ing appli
ation of Se
tion 3. We dis
uss the relationship between SmoothBoost

and the algorithms of [9, 10, 15℄ in Se
tion 2.4.



1.2 Learning Linear Threshold Fun
tions with Mali
ious Noise

We use the SmoothBoost algorithm in Se
tion 3 to 
onstru
t a family of PAC-

model mali
ious noise tolerant algorithms for learning linear threshold fun
tions.

A similar family was 
onstru
ted by Servedio in [23℄ using AdaBoost instead of

SmoothBoost as the boosting 
omponent. It was shown in [23℄ that for linearly

separable data these PAC model algorithms have sample 
omplexity bounds

whi
h are essentially identi
al to those of the online p-norm linear threshold

learning algorithms of Grove, Littlestone and S
huurmans [14℄, whi
h in
lude as

spe
ial 
ases (p = 2 and p =1) the well-studied online Per
eptron and Winnow

algorithms.

Gentile and Littlestone [13℄ have given mistake bounds for the online p-norm

algorithms when run on examples whi
h are not linearly separable, thus gener-

alizing previous bounds on noise toleran
e for Per
eptron [12℄ and Winnow [19℄.

A signi�
ant drawba
k of the AdaBoost-based PAC-model p-norm algorithms of

[23℄ is that they do not appear to su

eed in the presen
e of mali
ious noise.

We show in Se
tion 4 that for all values 2 � p � 1; our new PAC algorithms

whi
h use SmoothBoost mat
h both the sample 
omplexity and the mali
ious

noise toleran
e of the online p-norm algorithms. Our 
onstru
tion thus provides

mali
ious noise tolerant PAC analogues of Per
eptron and Winnow (and many

other algorithms as well).

2 Smooth Boosting

In this se
tion we des
ribe a new boosting algorithm, SmoothBoost, whi
h has

several useful properties. SmoothBoost only 
onstru
ts smooth distributions

whi
h do not put too mu
h weight on any single example; it 
an be used to

generate a large margin �nal hypothesis; and it 
an be used with a weak learn-

ing algorithm whi
h outputs real-valued hypotheses. All of these properties are

essential for the noisy linear threshold learning problem we address in Se
tion 3.

2.1 Preliminaries

We �x some terminology from [15℄ �rst. A measure on a �nite set is a fun
tion

M : S ! [0; 1℄: We write jM j to denote

P

x2S

M(x): Given a measure M; there

is a natural indu
ed distribution D

M

de�ned by D

M

(x) = M(x)=jM j: This

de�nition yields

Observation 1 L

1

(D

M

) �

1

jM j

:

Let D be a distribution over a set S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i of labeled ex-

amples with ea
h y

j

2 f�1; 1g and let h be a real-valued fun
tion whi
h maps

fx

1

; : : : ; x

m

g into [�1; 1℄: If

1

2

P

m

j=1

D(j)jh(x

j

) � y

j

j �

1

2

� 
 then we say that

the advantage of h under D is 
: We say that an algorithm whi
h takes S and D

as input and outputs an h whi
h has advantage at least 
 > 0 is a weak learning

algorithm (this is somewhat less general than the notion of weak learning whi
h



Input: parameters 0 < � < 1; 0 � � � 
 <

1

2

sample S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i where ea
h y

i

2 f�1; 1g

weak learner WL whi
h takes input (S;D

t

) and outputs

h

t

: fx

1

; : : : ; x

m

g ! [�1; 1℄

Output: hypothesis h(x) = sign(f(x))

1. forall j = 1; : : : ;m set M

1

(j) = 1

2. forall j = 1; : : : ;m set N

0

(j) = 0

3. set t = 1

4. until jM

t

j=m < � do

5. forall j = 1; : : : ;m set D

t

(j) =M

t

(j)=jM

t

j

6. run WL(S;D

t

) to get h

t

su
h that

1

2

P

m

j=1

D

t

(j)jh

t

(x

j

)� y

j

j �

1

2

� 


7. forall j = 1; : : : ;m set N

t

(j) = N

t�1

(j) + y

j

h

t

(x

j

)� �

8. forall j = 1; : : : ;m set M

t+1

(j) =

�

1 if N

t

(j) < 0

(1� 
)

N

t

(j)=2

if N

t

(j) � 0

9. set t = t+ 1

10. set T = t� 1

11. return h = sign(f(x)) where f(x) =

1

T

P

T

i=1

h

i

(x)

Fig. 1. The SmoothBoost algorithm.

was originally introdu
ed by Kearns and Valiant in [17℄ but is suÆ
ient for our

purposes). Finally, let g(x) = sign(f(x)) where f : X ! [�1; 1℄ is a real-valued

fun
tion. We say that the margin of g on a labeled example hx; yi 2 X�f�1; 1g

is yf(x); intuitively, this is the amount by whi
h g predi
ts y 
orre
tly. Note

that the margin of g on hx; yi is nonnegative if and only if g predi
ts y 
orre
tly.

2.2 The SmoothBoost Algorithm

The SmoothBoost algorithm is given in Figure 1. The parameter � is the desired

error rate of the �nal hypothesis, the parameter 
 is the guaranteed advantage of

the hypotheses returned by the weak learner, and � is the desired margin of the

�nal hypothesis. SmoothBoost runs the weak learning algorithm several times on

a sequen
e of 
arefully 
onstru
ted distributions and outputs a thresholded sum

of the hypotheses thus generated. The quantity N

t

(j) in line 7 may be viewed

as the 
umulative amount by whi
h the hypotheses h

1

; : : : ; h

t

beat the desired

margin � on the labeled example hx

j

; y

j

i: The measureM

t+1

assigns more weight

to examples where N

t

is small and less weight to examples where N

t

is large,

thus for
ing the weak learner to fo
us in stage t+1 on examples where previous

hypotheses have done poorly. Note that sin
e any measure maps into [0; 1℄ there

is a stri
t bound on the amount of weight whi
h 
an be assigned to any example.



2.3 Proof of Corre
tness

Several useful properties of the SmoothBoost algorithm are easy to verify. The

algorithm is 
alled SmoothBoost be
ause ea
h distribution it 
onstru
ts is guar-

anteed to be \smooth," i.e. no single point re
eives too mu
h weight:

Lemma 1. Ea
h D

t

de�ned in step 5 of SmoothBoost has L

1

(D

t

) �

1

�m

:

Proof. Follows dire
tly from Observation 1 and the 
ondition in line 4. ut

Another useful property is that the �nal hypothesis h has margin at least �

on all but a � fra
tion of the points in S :

Theorem 1. If SmoothBoost terminates then f satis�es

jfj : y

j

f(x

j

)��gj

m

< �:

Proof. Sin
e N

T

(j) = T (y

j

f(x

j

)� �); if y

j

f(x

j

) � � then N

T

(j) � 0 and hen
e

M

T+1

(j) = 1: Consequently we have

jfj : y

j

f(x

j

) � �gj

m

�

P

m

j=1

M

T+1

(j)

m

=

jM

T+1

j

m

< �

by the 
ondition in line 4. ut

Note that sin
e � � 0 Theorem 1 implies that the �nal SmoothBoost hypoth-

esis is 
orre
t on all but a � fra
tion of S:

Finally we must show that the algorithm terminates in a reasonable amount

of time. The following theorem bounds the number of times that SmoothBoost

will exe
ute its main loop:

Theorem 2. If ea
h hypothesis h

t

returned by WL in line 6 has advantage at

least 
 under D

t

(i.e. satis�es the 
ondition of line 6) and � is set to




2+


; then

SmoothBoost terminates with T <

2

�


2

p

1�


:

As will be evident from the proof, slightly di�erent bounds on T 
an be

established by 
hoosing di�erent values of � in the range [0; 
℄: We take � =




2+


in the theorem above both to obtain a margin of 
(
) and to obtain a 
lean

bound in the theorem. Theorem 2 follows from the bounds established in the

following two lemmas:

Lemma 2.

P

m

j=1

P

T

t=1

M

t

(j)y

j

h

t

(x

j

) � 2


P

T

t=1

jM

t

j:

Lemma 3. If � =




2+


; then

P

m

j=1

P

T

t=1

M

t

(j)y

j

h

t

(x

j

) <

2m




p

1�


+


P

T

t=1

jM

t

j:

Combining these bounds we obtain

2m




p

1�


> 


P

T

t=1

jM

t

j � 
�mT where the

last inequality is be
ause jM

t

j � �m for t = 1; : : : ; T:

Proof of Lemma 2: Sin
e h

t

(x

j

) 2 [�1; 1℄ and y

j

2 f�1; 1g; we have y

j

h

t

(x

j

) =

1� jh

t

(x

j

)� y

j

j; and thus

m

X

j=1

D

t

(j)y

j

h

t

(x

j

) =

m

X

j=1

D

t

(j)(1� jh

t

(x

j

)� y

j

j) � 2
:



This implies that

m

X

j=1

T

X

t=1

M

t

(j)y

j

h

t

(x

j

) =

T

X

t=1

jM

t

j

m

X

j=1

D

t

(j)y

j

h

t

(x

j

) �

T

X

t=1

2
jM

t

j:

ut

The proof of Lemma 3 is given in Appendix A.

2.4 Comparison with Other Boosting Algorithms

The SmoothBoost algorithm was inspired by an algorithm given by Impagliazzo

in the 
ontext of hard-
ore set 
onstru
tions in 
omplexity theory [15℄. Klivans

and Servedio [18℄ observed that Impagliazzo's algorithm 
an be reinterpreted as a

boosting algorithm whi
h generates distributions D

t

whi
h, like the distributions

generated by SmoothBoost, satisfy L

1

(D

t

) �

1

�m

: However, our SmoothBoost

algorithm di�ers from Impagliazzo's algorithm in several important ways. The

algorithm in [15℄ uses additive rather than multipli
ative updates forM

t

(j), and

the bound on T whi
h is given for the algorithm in [15℄ is O(

1

�

2




2

) whi
h is worse

than our bound by essentially a fa
tor of

1

�

: Another important di�eren
e is that

the algorithm in [15℄ has no � parameter and does not appear to output a large

margin �nal hypothesis. Finally, the analysis in [15℄ only 
overs the 
ase where

the weak hypotheses are binary-valued rather than real-valued.

Freund and S
hapire's well-known boosting algorithm AdaBoost is some-

what faster than SmoothBoost, requiring only T = O(

log(1=�)




2

) stages [11℄. Like

SmoothBoost, AdaBoost 
an be used with real-valued weak hypotheses and 
an

be used to output a large margin �nal hypothesis [22℄. However, AdaBoost is not

guaranteed to generate only smooth distributions, and thus does not appear to

be useful in a mali
ious noise 
ontext.

Freund has re
ently introdu
ed and studied a sophisti
ated boosting al-

gorithm 
alled BrownBoost [10℄ whi
h uses a gentler weighting s
heme than

AdaBoost. Freund suggests that BrownBoost should be well suited for deal-

ing with noisy data; however it is not 
lear from the analysis in [10℄ whether

BrownBoost-generated distributions satisfy a smoothness property su
h as the

L

1

(D

t

) �

1

�m

property of SmoothBoost, or whether BrownBoost 
an be used

to generate a large margin �nal hypothesis. We note that the BrownBoost algo-

rithm is mu
h more 
ompli
ated to run than SmoothBoost, as it involves solving

a di�erential equation at ea
h stage of boosting.

SmoothBoost is perhaps most similar to the modi�ed AdaBoost algorithm

MadaBoost whi
h was re
ently de�ned and analyzed by Domingo and Watan-

abe [9℄. Like SmoothBoost, MadaBoost uses multipli
ative updates on weights

and never allows weights to ex
eed 1 in value. Domingo and Watanabe proved

that MadaBoost takes at most T �

2

�


2

stages, whi
h is quite similar to our

bound in Theorem 2. (If we set � = 0 in SmoothBoost, a slight modi�
ation

of the proof of Theorem 2 gives a bound of roughly

4

3�


2

; whi
h improves the

Madaboost bound by a 
onstant fa
tor.) However, the analysis for MadaBoost



given in [9℄ only 
overs only the 
ase of binary-valued weak hypotheses, and

does not establish that MadaBoost generates a large margin �nal hypothesis. We

also note that our proof te
hnique of simultaneously upper and lower bounding

P

m

j=1

P

T

t=1

M

t

(j)y

j

h

t

(x

j

) is di�erent from the approa
h used in [9℄.

3 Learning Linear Threshold Fun
tions with Mali
ious

Noise

In this se
tion we show how the SmoothBoost algorithm 
an be used in 
on-

jun
tion with a simple noise tolerant weak learning algorithm to obtain a PAC

learning algorithm for learning linear threshold fun
tions with mali
ious noise.

3.1 Geometri
 Preliminaries

For x = (x

1

; : : : ; x

n

) 2 <

n

and p � 1 we write kxk

p

to denote the p-norm of x;

namely kxk

p

= (

P

n

i=1

jx

i

j

p

)

1=p

: The 1-norm of x is kxk

1

= max

i=1;:::;n

jx

i

j:

We write B

p

(R) to denote the p-norm ball of radius R; i.e. B

p

(R) = fx 2 <

n

:

kxk

p

� Rg:

For p; q � 1 the q-norm is dual to the p-norm if

1

p

+

1

q

= 1; so the 1-norm

and the 1-norm are dual to ea
h other and the 2-norm is dual to itself. For the

rest of the paper p and q always denote dual norms. The following fa
ts (see e.g.

[25℄ pp. 203-204) will be useful:

H�older Inequality: ju � vj � kuk

p

kvk

q

for all u; v 2 <

n

and 1 � p �1:

Minkowski Inequality: ku+vk

p

� kuk

p

+kvk

p

for all u; v 2 <

n

and 1 � p � 1:

Finally, re
all that a linear threshold fun
tion is a fun
tion f : <

n

! f�1; 1g

su
h that f(x) = sign(u � x) for some u 2 <

n

:

3.2 PAC Learning with Mali
ious Noise

Let EX

�

MAL

(u;D) be a mali
ious example ora
le with noise rate � that be-

haves as follows when invoked: with probability 1� � the ora
le returns a 
lean

example hx; sign(u � x)i where x is drawn from the probability distribution D

over B

p

(R): With probability �; though, EX

�

MAL

(u;D) returns a dirty example

hx; yi 2 B

p

(R)�f�1; 1g about whi
h nothing 
an be assumed. Su
h a mali
ious

example hx; yi may be 
hosen by a 
omputationally unbounded adversary whi
h

has 
omplete knowledge of u; D; and the state of the learning algorithm when

the ora
le is invoked.

The goal of a learning algorithm in this model is to 
onstru
t an approxi-

mation to the target 
on
ept sign(u � x): More formally, we say that a Boolean

fun
tion h : <

n

! f�1; 1g is an �-approximator for u under D if Pr

x
2D

[h(x) 6=

sign(u � x)℄ � �: The learning algorithm is given an a

ura
y parameter � and a


on�den
e parameter Æ; has a

ess to EX

�

MAL

(u;D); and must output a hypoth-

esis h whi
h, with probability at least 1 � Æ; is an �-approximator for u under



D: The sample 
omplexity of a learning algorithm in this model is the number

of times it queries the mali
ious example ora
le.

(A slightly stronger model of PAC learning with mali
ious noise has also

been proposed [1, 6℄. In this model �rst a 
lean sample of the desired size is

drawn from a noise-free ora
le; then ea
h point in the sample is independently

sele
ted with probability �; then an adversary repla
es ea
h sele
ted point with

a dirty example of its 
hoi
e; and �nally the 
orrupted sample is provided to

the learning algorithm. This model is stronger than the original mali
ious noise

model sin
e ea
h dirty example is 
hosen by the adversary with full knowledge

of the entire sample. All of our results also hold in this stronger model.)

A �nal note: like the Per
eptron algorithm, the learning algorithms whi
h we


onsider will require that the quantity u �x be bounded away from zero (at least

most of the time). We thus say that a distribution D is �-good for u if ju �xj � �

for all x whi
h have nonzero probability under D; and we restri
t our attention

to learning under �-good distributions. (Of 
ourse, dirty examples drawn from

EX

�

MAL

(u;D) need not satisfy ju � xj � �:)

3.3 A Noise Tolerant Weak Learning Algorithm

As shown in Figure 2, our weak learning algorithm for linear threshold fun
tions,


alled WLA, takes as input a data set S and a distribution D over S: The algorithm


omputes the ve
tor z whi
h is the average lo
ation of the (label-normalized)

points in S under D; transforms z to obtain a ve
tor w; and predi
ts using the

linear fun
tional de�ned by w: As motivation for the algorithm, note that if

every example pair hx; yi satis�es y = sign(u � x) for some u; then ea
h point yx

would lie on the same side of the hyperplane de�ned by u as u itself, and hen
e

the average ve
tor z de�ned in Step 1 of the algorithm intuitively should point

in roughly the same dire
tion as u:

In [23℄ it is shown that the WLA algorithm is a weak learning algorithm for

linear threshold fun
tions in a noise-free setting. The following theorem shows

that if a small fra
tion of the examples in S are a�e
ted by mali
ious noise, WLA

will still generates a hypothesis with nonnegligible advantage provided that the

input distribution D is suÆ
iently smooth.

Theorem 3. Fix 2 � p � 1 and let S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i be a set of

labeled examples with ea
h x

j

2 B

p

(R): Let D be a distribution over S su
h that

L

1

(D) �

1

�m

: Suppose that � > 0 and u 2 <

n

are su
h that � � Rkuk

q

and at

most �

0

m examples in S do not satisfy y

j

(u � x

j

) � �; where �

0

�

��

4Rkuk

q

: Then

WLA(p; S;D) returns a hypothesis h : B

p

(R) ! [�1; 1℄ whi
h has advantage at

least

�

4Rkuk

q

under D:

Proof: By H�older's inequality, for any x 2 B

p

(R) we have

jh(x)j =

jw � xj

kwk

q

R

�

kwk

q

kxk

p

kwk

q

R

� 1;

and thus h indeed maps B

p

(R) into [�1; 1℄:



Input: parameter p � 2

sample S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i where ea
h y

i

2 f�1; 1g

distribution D over S

upper bound R on kxk

p

Output: hypothesis h(x)

1. set z =

P

m

j=1

D(j)y

j

x

j

2. for all i = 1; : : : ; n set w

i

= sign(z

i

)jz

i

j

p�1

3. return hypothesis h(x) � v � x where v =

w

kwk

q

R

Fig. 2. The p-norm weak learning algorithm WLA.

Now we show that h has the desired advantage. Sin
e h

t

(x

j

) 2 [�1; 1℄ and

y

j

2 f�1; 1g; we have jh(x

j

)� y

j

j = 1� y

j

h(x

j

); so

1

2

m

X

j=1

D(j)jh(x

j

)�y

j

j =

1

2

m

X

j=1

D(j)(1�y

j

h(x

j

)) =

1

2

�

 

P

m

j=1

D(j)y

j

(w � x

j

)

2kwk

q

R

!

:

To prove the theorem it thus suÆ
es to show that

P

m

j=1

D(j)y

j

(w�x

j

)

kwk

q

�

�

2kuk

q

: The

numerator of the left side is w �

�

P

m

j=1

D(j)y

j

x

j

�

= w � z =

P

n

i=1

jz

i

j

p

= kzk

p

p

:

Using the fa
t that (p� 1)q = p; the denominator is

kwk

q

=

 

n

X

i=1

�

jz

i

j

p�1

�

q

!

1=q

=

 

n

X

i=1

jz

i

j

p

!

1=q

= kzk

p=q

p

:

We 
an therefore rewrite the left side as kzk

p

p

=kzk

p=q

p

= kzk

p

; and thus our goal

is to show that kzk

p

�

�

2kuk

q

: By H�older's inequality it suÆ
es to show that

z � u �

�

2

; whi
h we now prove.

Let S

1

= fhx

j

; y

j

i 2 S : y

j

(u � x

j

) � �g and let S

2

= S n S

1

: The de�nition

of S

1

immediately yields

P

j2S

1

D(j)y

j

(u � x

j

) � D(S

1

)�: Moreover, sin
e ea
h

kx

j

k

p

� R; by H�older's inequality we have y

j

(u �x

j

) � �kx

j

k

p

� kuk

q

� �Rkuk

q

for ea
h hx

j

; y

j

i 2 S

2

: Sin
e ea
h example in S

2

has weight at most

1

�m

under

D; we have D(S

2

) �

�

0

�

; and hen
e

z � u =

m

X

j=1

D(j)y

j

(u � x

j

) =

X

j2S

1

D(j)y

j

(u � x

j

) +

X

j2S

2

D(j)y

j

(u � x

j

)

� D(S

1

)� �D(S

2

)Rkuk

q

�

�

1�

�

0

�

�

� �

�

0

Rkuk

q

�

�

3�

4

�

�

4

=

�

2

;



where the inequality (1�

�

0

�

) �

3

4

follows from the bound on �

0

and the fa
t that

� � Rkuk

q

: ut

3.4 Putting it All Together

The algorithm for learning sign(u � x) with respe
t to a �-good distribution D

over B

p

(R) is as follows:

{ Draw from EX

�

MAL

(u;D) a sample S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i of m labeled

examples.

{ Run SmoothBoost on S with parameters � =

�

4

; 
 =

�

4Rkuk

q

; � =




2+


using

WLA as the weak learning algorithm.

We now determine 
onstraints on the sample size m and the mali
ious noise rate

� under whi
h this is a su

essful and eÆ
ient learning algorithm.

We �rst note that sin
e D is �-good for u; we have that � � Rkuk

q

: Further-

more, sin
e � =

�

4

; Lemma 1 implies that ea
h distribution D

t

whi
h is given to

WLA by SmoothBoost has L

1

(D

t

) �

4

�m

: Let S

C

� S be the 
lean examples and

S

D

= S n S

C

the dirty examples in S: If � �

��

32Rkuk

q

and m �

96Rkuk

q

��

log

2

Æ

;

then a simple Cherno� bound implies that with probability at least 1 �

Æ

2

we

have jS

D

j �

��

16Rkuk

q

m: Thus, we 
an apply Theorem 3 with �

0

=

��

16Rkuk

q

; so

ea
h weak hypothesis h

t

(x) = v

t

� x generated by WLA has advantage

�

4Rkuk

q

under D

t

: Consequently, by Theorems 1 and 2, SmoothBoost eÆ
iently outputs

a �nal hypothesis h(x) = signf(x) whi
h has margin less than � on at most

an

�

4

fra
tion of S: Sin
e jS

C

j is easily seen to be at least

m

2

; we have that the

margin of h is less than � on at most an

�

2

fra
tion of S

C

: This means that we


an apply powerful methods from the theory of data-dependent stru
tural risk

minimization [5, 24℄ to bound the error of h under D:

Re
all that the �nal SmoothBoost hypothesis is h(x) = sign(f(x)) where

f(x) = v � x is a 
onvex 
ombination of hypotheses h

t

(x) = v

t

� x: Sin
e ea
h

ve
tor v

t

satis�es kv

t

k

q

�

1

R

; by Minkowski's inequality we have that kvk

q

�

1

R

as well. The following theorem is proved in [23℄:

Theorem 4. Fix any value 2 � p � 1 and let F be the 
lass of fun
tions

fx 7! v �x : kvk

q

�

1

R

; x 2 B

p

(R)g: Then fat

F

(�) �

2 log 4n

�

2

; where fat

F

(�) is the

fat-shattering dimension of F at s
ale � as de�ned in, e.g., [4, 5, 24℄.

The following theorem is from [5℄:

Theorem 5. Let F be a 
olle
tion of real-valued fun
tions over some domain

X; let D be a distribution over X � f�1; 1g; let S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i be

a sequen
e of labeled examples drawn from D; and let h(x) = sign(f(x)) for

some f 2 F : If h has margin less than � on at most k examples in S; then with

probability at least 1� Æ we have that Pr

hx;yi2D

[h(x) 6= y℄ is at most

k

m

+

r

2

m

(d ln(34e=m) log(578m) + ln(4=Æ)); (1)

where d = fat

F

(�=16):



We have that h has margin less than � on at most an

�

2

fra
tion of the 
lean

examples S

C

; so we may take k=m to be

�

2

in the above theorem. Now if we

apply Theorem 4 and solve for m the inequality obtained by setting (1) to be at

most �; we obtain

Theorem 6. Fix 2 � p � 1 and let D be a distribution over B

p

(R) whi
h is

�-good for u: The algorithm des
ribed above uses m =

~

O

�

�

Rkuk

q

��

�

2

�

examples

and outputs an �-approximator for u under D with probability 1�Æ in the presen
e

of mali
ious noise at a rate � = 


�

� �

�

Rkuk

q

�

:

4 Comparison with Online Algorithms

The bounds given by Theorem 6 on sample 
omplexity and mali
ious noise tol-

eran
e of our algorithms based on SmoothBoost are remarkably similar to the

bounds whi
h 
an be obtained through a natural PAC 
onversion of the online

p-norm algorithms introdu
ed by Grove, Littlestone and S
huurmans [14℄ and

studied by Gentile and Littlestone [13℄. Grove, Littlestone and S
huurmans (The-

orem 6.1) proved that the online p-norm algorithmmakes at mostO

�

�

Rkuk

q

�

�

2

�

mistakes on linearly separable data. Subsequently Gentile and Littlestone [13℄

extended the analysis from [14℄ and 
onsidered a setting in whi
h the examples

are not linearly separable. Their analysis (Theorem 6) shows that if an exam-

ple sequen
e 
ontaining K mali
ious errors is provided to the online p-norm

algorithm, then the algorithm will make at most

O

 

�

Rkuk

q

�

�

2

+K �

Rkuk

q

�

!

mistakes. To obtain PAC-model bounds on the online p-norm algorithms in the

presen
e of mali
ious noise, we use the following theorem due to Auer and Cesa-

Bian
hi [3℄ (Theorem 6.2):

Theorem 7. Fix a hypothesis 
lass H of Vapnik-Chervonenkis dimension d: Let

A be an online learning algorithm with the following properties: (1) A only uses

hypotheses whi
h belong to H; (2) if A is given a noise-free example sequen
e then

A makes at most m

0

mistakes, and (3) if A is given an example sequen
e with K

mali
ious errors then A makes at most m

0

+BK mistakes. Then there is a PAC

algorithm A

0

whi
h learns to a

ura
y � and 
on�den
e Æ; uses

~

O(

B

2

�

2

+

m

0

�

+

d

�

)

examples, and 
an tolerate a mali
ious noise rate � =

�

2B

:

Applying this theorem, we �nd that these PAC 
onversions of the online p-

norm algorithms have sample 
omplexity and mali
ious noise toleran
e bounds

whi
h are essentially identi
al to the bounds given for our SmoothBoost-based

algorithm.



5 SmoothBoost is Optimally Smooth

It is evident from the proof of Theorem 6 that the smoothness of the distribu-

tions generated by SmoothBoost relates dire
tly to the level of mali
ious noise

whi
h our linear threshold learning algorithm 
an tolerate. On the other hand,

as mentioned in Se
tion 1, Kearns and Li have shown that for a broad range

of 
on
ept 
lasses no algorithm 
an learn to a

ura
y � in the presen
e of ma-

li
ious noise at a rate � >

�

1+�

: Using the Kearns-Li upper bound on mali
ious

noise toleran
e, we prove in this se
tion that SmoothBoost is optimal up to 
on-

stant fa
tors in terms of the smoothness of the distributions whi
h it generates.

This demonstrates an interesting 
onne
tion between bounds on noise-tolerant

learning and bounds on boosting algorithms.

Re
all that if SmoothBoost is run on a set of m examples with input parame-

ters �; 
; �; then ea
h distribution D

t

whi
h SmoothBoost 
onstru
ts will satisfy

L

1

(D

t

) �

1

�m

: The proof is by 
ontradi
tion; so suppose that there exists a

boosting algorithm 
alled SuperSmoothBoost whi
h is similar to SmoothBoost

but whi
h has an even stronger guarantee on its distributions. More pre
isely

we suppose that SuperSmoothBoost takes as input parameters �; 
 and a la-

beled sample S of size m; has a

ess to a weak learning algorithm WL, generates

a sequen
e D

1

;D

2

; : : : of distributions over S; and outputs a Boolean-valued

�nal hypothesis h: As in Se
tion 2.3, we suppose that if the weak learning algo-

rithm WL always returns a hypothesis h

t

whi
h has advantage 
 under D

t

; then

SuperSmoothBoostwill eventually halt and the �nal hypothesis h will agree with

at least a 1 � � fra
tion of the labeled examples in S: Finally, we suppose that

ea
h distribution D

t

is guaranteed to satisfy L

1

(D

t

) �

1

64�m

:

Consider the following severely restri
ted linear threshold learning problem:

the domain is f�1; 1g

2

� <

2

; so any distribution D 
an assign weight only to

these four points. Moreover, we only allow two possibilities for the target 
on
ept

sign(u � x): the ve
tor u is either (1; 0) or (0; 1): The four points in f�1; 1g

2

are


lassi�ed in all four possible ways by these two 
on
epts, and hen
e the 
on
ept


lass 
onsisting of these two 
on
epts is a distin
t 
on
ept 
lass as de�ned by

Kearns and Li [16℄. It is 
lear that every example belongs to B

1

(1) (i.e. R = 1),

that kuk

1

= 1; and that any distribution D over f�1; 1g

2

is 1-good for u (i.e.

� = 1).

Consider the following algorithm for this restri
ted learning problem:

{ Draw from EX

�

MAL

(u;D) a sample S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i of m labeled

examples.

{ Run SuperSmoothBoost on S with parameters � =

�

4

; 
 =

�

4Rkuk

q

=

1

4

using

WLA with p =1 as the weak learning algorithm.

Suppose that the mali
ious noise rate � is 2�: As in Se
tion 3.4, a Cherno�

bound shows that form = O(

1

�

log

1

Æ

); with probability at least 1�

Æ

2

we have that

the sample S 
ontains at most 4�m dirty examples. By the SuperSmoothBoost

smoothness property and our 
hoi
e of �; we have that L

1

(D

t

) �

1

16�m

: Theorem

3 now implies that ea
h WLA hypothesis h

t

has advantage at least

�

4Rkuk

q

=

1

4



with respe
t to D

t

: As in Se
tion 3.4, we have that with probability at least 1�

Æ

2

the �nal hypothesis h output by SuperSmoothBoost disagrees with at most an

�

2

fra
tion of the 
lean examples S

C

:

Sin
e the domain is �nite (in fa
t of size four) we 
an bound generaliza-

tion error dire
tly. A simple Cherno� bound argument shows that if m is suf-

�
iently large, then with probability at least 1 � Æ the hypothesis h will be an

�-approximator for sign(u � x) under D: However, Kearns and Li have shown

(Theorem 1 of [16℄) that no learning algorithm for a distin
t 
on
ept 
lass 
an

learn to a

ura
y � with probability 1 � Æ in the presen
e of mali
ious noise at

rate � �

�

1+�

: This 
ontradi
tion proves that the SuperSmoothBoost algorithm


annot exist, and hen
e the distributions generated by SmoothBoost are optimal

up to 
onstant fa
tors.

6 Con
lusions and Further Work

One goal for future work is to improve the SmoothBoost algorithm given in Se
-

tion 2. As noted in Se
tion 5, the smoothness of the generated distributions is

already essentially optimal; however it may be possible to improve other aspe
ts

of the algorithm su
h as the number of stages of boosting whi
h are required.

Is there an algorithm whi
h mat
hes the smoothness of SmoothBoost but, like

AdaBoost, runs for only O(

log(1=�)




2

) stages? Another possible improvement would

be to eliminate the � (margin) parameter of SmoothBoost; a version of the algo-

rithm whi
h automati
ally 
hooses an appropriate margin parameter would be

useful in pra
ti
al situations.
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Fig. 3. A plot of

^

N with T = 4: Note that

^

N is pie
ewise linear with joins at integer

values of t: A possible pairing of segments mat
hes [e

2

; e

3

℄ with [e

5

; e

6

℄ and [e

3

; e

4

℄ with

[e

4

; e

5

℄; leaving [e

0

; e

1

℄; [e

1

; e

2

℄ and [e

6

; e

7

℄ unpaired. In this example

^

N is in
reasing on

ea
h unpaired segment.

A Proof of Lemma 3

By the de�nition of N

t

(j); we have

m

X

j=1

T

X

t=1

M

t

(j)y

j

h

t

(x

j

) =

m

X

j=1

T

X

t=1

M

t

(j)(N

t

(j)�N

t�1

(j) + �)

= �

T

X

t=1

jM

t

j+

T

X

t=1

m

X

j=1

M

t

(j)(N

t

(j)�N

t�1

(j)): (2)

It thus suÆ
es to show that if � =




2+


; then for ea
h j = 1; : : : ;m we have

T

X

t=1

M

t

(j)(N

t

(j)�N

t�1

(j)) <

2




p

1� 


+ (
 � �)

T

X

t=1

M

t

(j) (3)

sin
e summing this inequality over j = 1; : : : ;m and substituting into (2) proves

the lemma. Fix any j 2 f1; : : : ;mg; for ease of notation we write N

t

and M

t

in

pla
e of N

t

(j) and M

t

(j) for the rest of the proof.

If N

t

= N

t�1

for some integer t then the term M

t

(N

t

�N

t�1

) 
ontributes 0

to the sum in (3), so without loss of generality we assume that N

t

6= N

t�1

for all

integers t: We extend the sequen
e (N

0

; N

1

; : : : ; N

T

) to a 
ontinuous pie
ewise

linear fun
tion

^

N on [0; T ℄ in the obvious way, i.e. for t an integer and � 2 [0; 1℄

we have

^

N(t+ �) = N

t

+ �(N

t+1

�N

t

): Let

E = fe 2 [0; T ℄ :

^

N(e) = N

t

for some integer t = 0; 1; : : : ; Tg:



The set E is �nite so we have 0 = e

0

< e

1

� � � < e

r

= T with E = fe

0

; : : : ; e

r

g

(see Figure 3). Sin
e for ea
h integer t � 1 the interval (t � 1; t℄ must 
ontain

some e

i

, we 
an reexpress the sum

P

T

t=1

M

t

(N

t

�N

t�1

) as

r

X

i=1

M

de

i

e

�

^

N(e

i

)�

^

N(e

i�1

)

�

: (4)

We say that two segments [e

a�1

; e

a

℄ and [e

b�1

; e

b

℄ mat
h if

^

N(e

a�1

) =

^

N(e

b

)

and

^

N(e

b�1

) =

^

N(e

a

): For example, in Figure 3 the segment [e

2

; e

3

℄ mat
hes

[e

5

; e

6

℄ but does not mat
h [e

6

; e

7

℄. We pair up mat
hing segments until no more

pairs 
an be formed. Note that if any unpaired segments remain, it must be the


ase that either

^

N is in
reasing on ea
h unpaired segment (if N

T

> 0) or

^

N is

de
reasing on ea
h unpaired segment (if N

T

< 0). Now we separate the sum (4)

into two pie
es, i.e.

P

r

i=1

M

de

i

e

(

^

N(e

i

)�

^

N(e

i�1

)) = P +U; where P is the sum

over all paired segments and U is the sum over all unpaired segments. We will

show that P < (
 � �)

P

T

t=1

M

t

and U <

2




p

1�


, thus proving the lemma.

First we bound P . Let [e

a�1

; e

a

℄ and [e

b�1

; e

b

℄ be a pair of mat
hing segments

where

^

N is in
reasing on [e

a�1

; e

a

℄ and de
reasing on [e

b�1

; e

b

℄: The 
ontribution

of these two segments to P is

M

de

a

e

�

^

N(e

a

)�

^

N(e

a�1

)

�

+M

de

b

e

�

^

N(e

b

)�

^

N(e

b�1

)

�

= (M

de

a

e

�M

de

b

e

)

�

^

N(e

a

)�

^

N(e

a�1

)

�

: (5)

Sin
e ea
h segment [e

a�1

; e

a

℄ is 
ontained in [t� 1; t℄ for some integer t; we have

that de

a

e � 1 � e

a�1

< e

a

� de

a

e: The linearity of

^

N on [de

a

e � 1; de

a

e℄ implies

that

N

de

a

e�1

�

^

N(e

a�1

) <

^

N(e

a

) � N

de

a

e

� N

de

a

e�1

+ 1� � (6)

where the last inequality is be
ause y

j

h

t

(x

j

) � 1 in line 7 of SmoothBoost.

Similarly, we have that de

b

e � 1 � e

b�1

< e

b

� de

b

e; and hen
e

N

de

b

e�1

�

^

N(e

b�1

) >

^

N(e

b

) � N

de

b

e

� N

de

b

e�1

� 1� �: (7)

Sin
e

^

N(e

a

) =

^

N(e

b�1

) inequalities (6) and (7) imply thatN

de

a

e�1

� N

de

b

e�1

�2:

The de�nition of M now implies that M

de

b

e

� (1 � 
)M

de

a

e

: Sin
e

^

N(e

a

) �

^

N(e

a�1

) > 0; we thus have that (5) is at most


M

de

a

e

�

^

N(e

a

)�

^

N(e

a�1

)

�

� 
(1� �)M

de

a

e

(e

a

� e

a�1

) (8)

where the inequality follows from (6) and the linearity of

^

N on [e

a�1

; e

a

℄: Sin
e

^

N(e

a

)�

^

N(e

a�1

) =

^

N(e

b�1

)�

^

N(e

b

); we similarly have that (5) is at most


M

de

a

e

�

^

N(e

b�1

)�

^

N(e

b

)

�

�




1� 


M

de

b

e

�

^

N(e

b�1

)�

^

N(e

b

)

�

�




1� 


(1 + �)M

de

b

e

(e

b�1

� e

b

): (9)



Using the fa
t that � =




2+


and some algebra, inequalities (8) and (9) imply

that (5) is at most


(1 + 
)

2 + 


�

M

de

a

e

(e

a

� e

a�1

) +M

de

b

e

(e

b�1

� e

b

)

�

: (10)

If we sum (10) over all pairs of mat
hing segments the resulting quantity is an

upper bound on P: In this sum, for ea
h value of t = 1; : : : ; T; the 
oeÆ
ient of

M

t

will be at most


(1+
)

2+


= 
 � �: (This bound on the 
oeÆ
ient of M

t

holds

be
ause for ea
h t; the total length of all paired segments in [t� 1; t℄ is at most

1). Consequently we have P < (
 � �)

P

T

t=1

M

t

as desired.

Now we show that U; the sum over unpaired segments, is at most

2




p

1�


: If

^

N is de
reasing on ea
h unpaired segment then 
learly U < 0; so we suppose

that

^

N is in
reasing on ea
h unpaired segment. Let [e




1

�1

; e




1

℄; : : : ; [e




d

�1

; e




d

℄

be all the unpaired segments. As in Figure 2 it must be the 
ase that the intervals

[

^

N(e




i

�1

);

^

N(e




i

)) are all disjoint and their union is [0; N

T

): By the de�nition of

M; we have U =

P

d

i=1

(1� 
)

(N

de




i

e�1

)=2

�

^

N(e




i

)�

^

N(e




i

�1

)

�

: As in the bound

for P; we have

N

de




i

e�1

�

^

N(e




i

�1

) <

^

N(e




i

) � N

de




i

e

� N

de




i

e�1

+ 1� � < N

de




i

e�1

+ 1

and hen
e

U �

d

X

i=1

(1� 
)

(

^

N(e




i

)�1)=2

�

^

N(e




i

)�

^

N(e




i

�1

)

�

= (1� 
)

�1=2

d

X

i=1

(1� 
)

^

N(e




i

)=2

�

^

N(e




i

)�

^

N(e




i

�1

)

�

:

Sin
e

^

N is in
reasing, for ea
h i we have

(1� 
)

^

N(e




i

)=2

�

^

N(e




i

)�

^

N(e




i

�1

)

�

<

Z

^

N(e




i

)

z=

^

N(e




i

�1

)

(1� 
)

z=2

dz:

Sin
e the disjoint intervals [

^

N(e




i

�1

);

^

N(e




i

)) 
over [0; N

T

) we thus have

U < (1� 
)

�1=2

Z

N

T

z=0

(1� 
)

z=2

dz

< (1� 
)

�1=2

Z

1

z=0

(1� 
)

z=2

dz

=

�2

p

1� 
 ln(1� 
)

<

2




p

1� 


for 0 < 
 < 1=2:

(Lemma 3)


