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Abstract—We give a “regularity lemma” for degree-d poly-
nomial threshold functions (PTFs) over the Boolean cube
{−1, 1}n. Roughly speaking, this result shows that every
degree-d PTF can be decomposed into a constant number
of subfunctions such that almost all of the subfunctions are
close to being regular PTFs. Here a “regular” PTF is a
PTF sign(p(x)) where the influence of each variable on the
polynomial p(x) is a small fraction of the total influence of p.

As an application of this regularity lemma, we prove that
for any constants d ≥ 1, ε > 0, every degree-d PTF over n
variables can be approximated to accuracy ε by a constant-
degree PTF that has integer weights of total magnitude O(nd).
This weight bound is shown to be optimal up to logarithmic
factors.

Keywords-regularity lemma; polynomial threshold function;
Boolean function

I. INTRODUCTION

A polynomial threshold function (henceforth PTF) is
a Boolean function f : {−1, 1}n → {−1, 1}, f(x) =
sign(p(x)), where p : {−1, 1}n → R is a polynomial with
real coefficients. If p has degree d, we say that f is a degree-
d PTF. Low-degree PTFs are a natural generalization of
linear threshold functions (the case d = 1) and hence are of
significant interest in complexity theory, see e.g. [ABFR94],
[Bru90], [OS03b], [OS03a], [DRST09], [GL94], [HKM09],
[MZ09], [Sak93], [She09] and many other works.

The influence of coordinate i on a function g :
{−1, 1}n → R measures the extent to which xi affects the
output of g. More precisely, we have Infi(g) =

∑
S3i ĝ(S)2,

where
∑

S⊆[n] ĝ(S)χS(x) is the Fourier expansion of g.
The total influence of g is the sum of all n coordinate
influences, Inf(g) =

∑n
i=1 Infi(g). See [O’D07a], [KS06]

for background on influences.
We say that a polynomial p : {−1, 1}n → R is “τ -

regular” if the influence of each coordinate on p is at most
a τ fraction of p’s total influence (see Section II for a
more detailed definition). A PTF f is said to be τ -regular
if f = sign(p), where p is τ -regular. Roughly speaking,
regular polynomials and PTFs are useful because they inherit
some nice properties of PTFs and polynomials over Gaussian
(rather than Boolean) inputs; this intuition can be made
precise using the “invariance principle” of Mossel et al.

[MOO05]. This point of view has been useful in the d = 1
case for constructing pseudorandom generators [DGJ+09],
low-weight approximators [Ser07], [DS09], and other results
for LTFs [OS08], [MORS09].

A. Our results

A regularity lemma for degree-d PTFs: A number
of useful results in different areas, loosely referred to as
“regularity lemmas,” show that for various types of com-
binatorial objects an arbitrary object can be approximately
decomposed into a constant number of “pseudorandom”
sub-objects. The best-known example of such a result is
Szemerédi’s classical regularity lemma for graphs [Sze78],
which (roughly) says that any graph can be decomposed
into a constant number of subsets such that almost every
pair of subsets induces a “pseudorandom” bipartite graph.
Another example is Green’s recent regularity lemma for
Boolean functions [Gre05]. Results of this sort are useful
because different properties of interest are sometimes easier
to establish for pseudorandom objects, and via regularity
lemmas it may be possible to prove the corresponding
theorems for general objects. We note also that results of
this sort play an important part in the “structure versus
randomness” paradigm that has been prominent in recent
work in combinatorics and number theory, see e.g. [Tao07].

We prove a structural result about degree-d PTFs which
follows the above pattern; we thus refer to it as a “regularity
lemma for degree-d PTFs.” Our result says that any low-
degree PTF can be decomposed as a small depth decision
tree, most of whose leaves are close to regular PTFs:

Theorem 1. Let f(x) = sign(p(x)) be any degree-d PTF.
Fix any τ > 0. Then f is equivalent to a decision tree T ,
of depth

depth(d, τ) :=
1
τ
·
(
d log

1
τ

)O(d)

with variables at the internal nodes and a degree-d PTF
fρ = sign(pρ) at each leaf ρ, with the following property:
with probability at least 1−τ , a random path1 from the root

1A random path corresponds to the standard uniform random walk on
the tree.



reaches a leaf ρ such that fρ is τ -close to some τ -regular
degree-d PTF.

Regularity is a natural way to capture the notion of pseudo-
randomness for PTFs, and results of interest can be easier
to establish for regular PTFs than for arbitrary PTFs (this is
the case for our main application, constructing low-weight
approximators, as we describe below). Our regularity lemma
provides a general tool to reduce questions about arbitrary
PTFs to regular PTFs; it has already been used in this way
as an essential ingredient in the recent proof that bounded
independence fools all degree-2 PTFs [DKN09]. We note
that the recent construction of pseudorandom generators for
degree-d PTFs of [MZ09] also crucially uses a decomposi-
tion result which is very similar to our regularity lemma.

Application: Every low-degree PTF has a low-weight
approximator: [Ser07] showed that every linear threshold
function (LTF) over {−1, 1}n can be ε-approximated by an
LTF with integer weights w1, . . . , wn such that

∑
i w2

i =
n · 2Õ(1/ε2). (Here and throughout the paper we say that g
is an ε-approximator for f if f and g differ on at most ε2n

inputs from {−1, 1}n.) This result and the tools used in its
proof found several subsequent applications in complexity
theory and learning theory, see e.g. [DGJ+09], [OS08].

We apply our regularity lemma for degree-d PTFs to prove
an analogue of the [Ser07] result for low-degree polynomial
threshold functions. Our result implies that for any constants
d, ε, any degree-d PTF has an ε-approximating PTF of
constant degree and (integer) weight O(nd).

When we refer to the weight of a PTF f = sign(p(x)), we
assume that all the coefficients of p are integers; by “weight”
we mean the sum of the squares of p’s coefficients. We prove

Theorem 2. Let f(x) = sign(p(x)) be any degree-d
PTF. Fix any ε > 0. Then there is a polynomial q(x) of
degree D = (d/ε)O(d) and weight 2(d/ε)O(d) · nd such that
sign(q(x)) is ε-close to f .

A result on the existence of low-weight ε-approximators
for PTFs is implicit in the recent work [DRST09]. They
show that any degree-d PTF f has Fourier concentration∑

|S|>1/εO(d) f̂(S)2 ≤ ε, and this easily implies that f can
be ε-approximated by a PTF with integer weights. (Indeed,
recall that the learning algorithm of [LMN93] works by
constructing such a PTF as its hypothesis.) The above
Fourier concentration bound implies that there is a PTF of
degree 1/εO(d) and weight n1/εO(d)

which ε-approximates f .
In contrast, our Theorem 2 can give a weaker degree bound
(if d = 1/εω(1)), but always gives a much stronger weight
bound in terms of the dependence on n. We mention here
that Podolskii [Pod09] has shown that for every constant
d ≥ 2, there is a degree-d PTF for which any exact
representation requires weight nΩ(nd).

We also prove lower bounds showing that weight Ω̃(nd)
is required to ε-approximate degree-d PTFs for sufficiently

small constant ε; see Section III-C.

Techniques. An important ingredient in our proof of Theo-
rem 1 is a case analysis based on the “critical index” of a
degree-d polynomial (see Section II for a formal definition).
The critical index measures the first point (going through
the variables from most to least influential) at which the
influences “become small;” it is a natural generalization of
the definition of the “critical index” of a linear form [Ser07]
that has been useful in several subsequent works [OS08],
[DGJ+09], [DS09]. Roughly speaking we show that
• If the critical index of p is large, then a random re-

striction fixing few variables (the variables with largest
influence in p) causes sign(p) to become a close-to-
constant function with non-negligible probability; see
Section II-A. (Note that a constant function is trivially
a regular PTF.)

• If the critical index of p is positive but small, then
a random restriction as described above causes p to
become regular with non-negligible probability; see
Section II-B.

• If the critical index of p is zero, then p is already a
regular polynomial as desired.

Related Work. The results of Sections II-A and II-B
strengthen earlier results with a similar flavor in [DRST09].
Those earlier results had quantitative bounds that depended
on n in various ways: getting rid of this dependence is
essential for our low-weight approximator application and
for the application in [DKN09].

Simultaneously and independently of this work, Ben-
Eliezer et al. [BELY09], Harsha et al. [HKM09], and Meka
and Zuckerman [MZ09] have proved similar structural re-
sults for PTFs. In particular, [HKM09] give a result which is
very similar to Lemma 12, the main component in our proof
of Theorem 1. By applying the result from [HKM09], Meka
and Zuckerman [MZ09] give a result which is quite similar
to our Theorem 1. However, their definition of regularity is
somewhat different from ours, and as a consequence their
structural results and ours are quantitatively incomparable.
Ben-Eliezer et al. give a result of similar flavor as our
Theorem 1. They establish the existence of a decision tree
such that most leaves are τ -regular (as opposed to τ -close
to being τ -regular). The depth of their tree is exponential in
1/τ , which makes it quantitatively weaker for applications.

B. Preliminaries

We start by establishing some basic notation. We write [n]
to denote {1, 2, . . . , n} and [k, `] to denote {k, k+1, . . . , `}.
We write E[X] and Var[X] to denote expectation and
variance of a random variable X , where the underlying
distribution will be clear from the context. For x ∈ {−1, 1}n

and A ⊆ [n] we write xA to denote (xi)i∈A.
We consider functions f : {−1, 1}n → R (though

we often focus on Boolean-valued functions which map



to {−1, 1}), and we think of the inputs x to f as being
distributed according to the uniform probability distribution.
The set of such functions forms a 2n-dimensional inner prod-
uct space with inner product given by 〈f, g〉 = E[f(x)g(x)].
The set of functions (χS)S⊆[n] defined by χS(x) =

∏
i∈S xi

forms a complete orthonormal basis for this space. Given
a function f : {−1, 1}n → R we define its Fourier
coefficients by f̂(S) def= E[f(x)χS(x)], and we have that
f(x) =

∑
S f̂(S)χS(x). We refer to the maximum |S| over

all nonzero f̂(S) as the Fourier degree of f.
As an easy consequence of orthonormality we have

Plancherel’s identity 〈f, g〉 =
∑

S f̂(S)ĝ(S), which has as
a special case Parseval’s identity, E[f(x)2] =

∑
S f̂(S)2.

From this it follows that for every f : {−1, 1}n → {−1, 1}
we have

∑
S f̂(S)2 = 1. We recall the well-known fact

(see e.g. [KKL88]) that the total influence Inf(f) of any
Boolean function equals

∑
S f̂(S)2|S|. Note that, in this

setting, the expectation and the variance can be expressed
in terms of the Fourier coefficients of f by E[f ] = f̂(∅) and
Var[f ] =

∑
∅6=S⊆[n] f̂(S)2.

The influence of variable i on f is Infi(f) def=∑
S3i f̂(S)2, and the total influence of f is Inf(f) =∑n
i=1 Infi(f). For a function f : {−1, 1}n → R and q ≥ 1,

we denote by ‖f‖q its lq norm, i.e. ‖f‖q
def= Ex[|f(x)|q]1/q ,

where the intended distribution over x will always be
uniform over {−1, 1}n.

For Boolean functions f, g : {−1, 1}n → {−1, 1}
the distance between f and g, denoted dist(f, g), is the
Prx[f(x) 6= g(x)] where the probability is over uniform
x ∈ {−1, 1}n.

Our proofs will use various bounds from probability
theory, which we collect for easy reference in Appendices A
and B. We call the reader’s attention in particular to Theo-
rem 8; throughout the paper, C (which will be seen to play
an important role in our proofs) denotes C2

0 , where C0 is
the universal constant from that theorem.

II. MAIN RESULT: A REGULARITY LEMMA FOR
LOW-DEGREE PTFS

Let f : {−1, 1}n → {−1, 1} be a degree-d PTF. Fix a
representation f(x) = sign(p(x)), where p : {−1, 1}n → R
is a degree-d polynomial which (w.l.o.g.) we may take to
have Var[p] = 1. We assume w.l.o.g. that the variables are
ordered in such a way that Infi(p) ≥ Infi+1(p) for all i ∈
[n− 1].

We now define the notion of the τ -critical index of a
polynomial [DRST09] and state its basic properties.

Definition 1. Let p : {−1, 1}n → R and τ > 0. Assume the
variables are ordered such that Infj(p) ≥ Infj+1(p) for all
j ∈ [n−1]. The τ -critical index of p is the least i such that:

Infi+1(p) ≤ τ ·
n∑

j=i+1

Infj(p). (1)

If (1) does not hold for any i we say that the τ -critical
index of p is +∞. If p has τ -critical index 0, we say that p
is τ -regular.

Note that if p is a τ -regular polynomial then
maxi Infi(p) ≤ dτ since the total influence of p is at most
d. If f(x) = sign(p(x)), we say f is τ -regular when p is
τ -regular, and we take the τ -critical index of f to be that
of p. 2 The following lemma says that the total influence∑n

i=j+1 Infi(p) goes down geometrically as a function of j
prior to the critical index:

Lemma 1. Let p : {−1, 1}n → R and τ > 0. Let k be the
τ -critical index of p. For j ∈ [0, k] we have

n∑
i=j+1

Infi(p) ≤ (1− τ)j · Inf(p).

Proof: The lemma trivially holds for j = 0. In general,
since j is at most k, we have that Infj(p) ≥ τ ·

∑n
i=j Infi(p),

or equivalently
∑n

i=j+1 Infi(p) ≤ (1 − τ) ·
∑n

i=j Infi(p)
which yields the claimed bound.

We will use the fact that in expectation, the influence of
an unrestricted variable in a polynomial does not change
under random restrictions.

Lemma 2. Let p : {−1, 1}n → R. Consider a random
assignment ρ to the variables x1, . . . , xk and fix ` ∈ [k +
1, n]. Then Eρ[Inf`(pρ)] = Inf`(p).

To prove Lemma 2, we first recall an observation about
the expected value of Fourier coefficients under random
restrictions (see e.g. [LMN93]):

Fact 3. Let p : {−1, 1}n → R. Consider a random assign-
ment ρ to the variables x1, . . . , xk. Fix any S ⊆ [k + 1, n].
Then we have p̂ρ(S) =

∑
T⊆[k] p̂(S ∪ T )ρT and therefore

Eρ[p̂ρ(S)2] =
∑

T⊆[k] p̂(S ∪ T )2.

In words, the above fact says that all the Fourier weight
on sets of the form S ∪ {any subset of restricted variables}
“collapses” down onto S in expectation. Consequently, the
influence of an unrestricted variable does not change in ex-
pectation under random restrictions. We now prove Lemma
2:

Proof: We have

Eρ[Inf`(pρ)] = Eρ

[ ∑
`∈S⊆[k+1,n]

p̂ρ(S)2
]

=
∑

T⊆[k]

∑
`∈S⊆[k+1,n]

p̂(S ∪ T )2

=
∑

`∈U⊆[n]

p̂(U)2 = Inf`(p).

2Strictly speaking, τ -regularity is a property of a particular representation
and not of a PTF f , which could have many different representations. The
particular representation we are concerned with will always be clear from
context.



Notation: For S ⊆ [n], we write “ρ fixes S” to indicate
that ρ ∈ {−1, 1}|S| is a restriction mapping xS , i.e. each
coordinate in S, to either −1 or 1 and leaving coordinates
not in S unrestricted.

A. The large critical index case

The main result of this section is Lemma 4, which says
that if the critical index of f is large, then a noticeable
fraction of restrictions ρ of the high-influence variables cause
fρ to become close to a constant function.

Lemma 4. Let f : {−1, 1}n → {−1, 1} be a degree-d PTF
f = sign(p). Fix β > 0 and suppose that f has τ -critical
index at least K

def
= α/τ , where α = Ω(d log log(1/β) +

d log d). Then, for at least a 1/(2Cd) fraction of restrictions
ρ fixing [K], the function fρ is β-close to a constant function.

Proof. Partition the coordinates into a “head” part H
def= [K]

(the high-influence coordinates) and a “tail” part T = [n]\H .
We can write p(x) = p(xH , xT ) = p′(xH) + q(xH , xT ),
where p′(xH) is the truncation of p comprising only the
monomials all of whose variables are in H , i.e. p′(xH) =∑

S⊆H p̂(S)χS(xH).
Now consider a restriction ρ of H and the corresponding

polynomial pρ(xT ) = p(ρ, xT ). It is clear that the constant
term of this polynomial is exactly p′(ρ). To prove the lemma,
we will show that for at least a 1/(2Cd) fraction of all
ρ ∈ {−1, 1}K , the (restricted) degree-d PTF fρ(xT ) =
sign(pρ(xT )) satisfies PrxT

[fρ(xT ) 6= sign(p′(ρ))] ≤ β.
Let us define the notion of a good restriction:

Definition 2. A restriction ρ ∈ {−1, 1}K that fixes H is
called good iff the following two conditions are simulta-
neously satisfied: (i) |p′(ρ)| ≥ t∗

def
= 1/(2Cd), and (ii)

‖q(ρ, xT )‖2 ≤ t∗ ·
(
Θ(log(1/β)

)−d/2
.

Intuitively condition (i) says that the constant term p′(ρ) of
pρ has “large” magnitude, while condition (ii) says that the
polynomial q(ρ, xT ) has “small” l2-norm. We claim that if
ρ is a good restriction then the degree-d PTF fρ satisfies
PrxT

[fρ(xT ) 6= sign(p′(ρ))] ≤ β. To see this claim, note
that for any fixed ρ we have fρ(xT ) 6= sign(p′(ρ)) only
if |q(ρ, xT )| ≥ |p′(ρ)|, so to show this claim it suffices to
show that if ρ is a good restriction then PrxT

[|q(ρ, xT )| ≥
|p′(ρ)|] ≤ β. But for ρ a good restriction, by conditions (i)
and (ii) we have that PrxT

[|q(ρ, xT )| ≥ |p′(ρ)|] is at most

PrxT

[
|q(ρ, xT )| ≥ ‖q(ρ, xT )‖2 ·

(
Θ(log(1/β)

)d/2
]

which is at most β by the concentration bound (Theorem 7),
as desired. So the claim holds: if ρ is a good restriction then
fρ(xT ) is β-close to sign(p′(ρ)). Thus to prove Lemma 4
it remains to show that at least a 1/(2Cd) fraction of all
restrictions ρ to H are good.

We prove this in two steps. First we show (Lemma 5) that
the polynomial p′ is not too concentrated: with probability at
least 1/Cd over ρ, condition (i) of Definition 2 is satisfied.
We then show (Lemma 6) that the polynomial q is highly
concentrated: the probability (over ρ) that condition (ii) is
not satisfied is at most 1/(2Cd). Lemma 4 then follows by
a union bound.

Lemma 5. We have that Prρ

[
|p′(ρ)| ≥ t∗

]
≥ 1/Cd.

Proof: Using the fact that the critical index of p is large,
we will show that the polynomial p′ has large variance (close
to 1), and hence we can apply the anti-concentration bound
Theorem 8.

We start by establishing that Var[p′] lies in the range
[1/2, 1]. To see this, first recall that for g : {−1, 1}n → R
we have Var[g] =

∑
∅6=S⊆[n] ĝ

2(S). It is thus clear that
Var[p′] ≤ Var[p] = 1. To establish the lower bound we
use the property that the “tail” T has “very small” influence
in p, which is a consequence of the critical index of p being
large. More precisely, by Lemma 1

∑
i∈T Infi(p) is at most

(1− τ)K · Inf(p) = (1− τ)α/τ · Inf(p) ≤ d · e−α (2)

where the last inequality uses the fact that Inf(p) ≤ d.
Therefore, we have that Var[p′] equals

Var[p]−
∑

T∩S 6=∅
S⊆[n]

p̂(S)2 ≥ 1−
∑
i∈T

Infi(p) ≥ 1− de−α ≥ 1/2

where the first inequality uses the fact that Infi(p) =∑
i∈S⊆[n] p̂(S)2, the second follows from (2) and the third

from our choice of α. We have thus established that indeed
Var[p′] ∈ [1/2, 1].

At this point, we would like to apply Theorem 8 for p′.
Note however that E[p′] = E[p] = p̂(∅) which is not neces-
sarily zero. To address this minor technical point we apply
Theorem 8 twice: once for the polynomial p′′ = p′−p̂(∅) and
once for −p′′. (Clearly, E[p′′] = 0 and Var[p′′] = Var[p′] ∈
[1/2, 1].) We thus get that, independent of the value of p̂(∅),
we have Prρ[|p′(ρ)| > 2−1/2 · C−d] ≥ C−d, as desired.

Lemma 6. We have that Prρ

[
‖q(ρ, xT )‖2 > t∗ ·(

Θ(log(1/β)
)−d/2] ≤ 1/(2Cd).

Proof: To obtain the desired concentration bound
we must show that the degree-2d polynomial Q(ρ) =
‖q(ρ, xT )‖2

2 has “small” variance. The desired bound then
follows by an application of Theorem 7.

We thus begin by showing that ‖Q‖2 ≤ 3dde−α. To see
this, we first note that Q(ρ) =

∑
∅6=S⊆T p̂ρ(S)2. Hence

an application of the triangle inequality for norms and
hypercontractivity (Theorem 6) yields:

‖Q‖2 ≤
∑

∅6=S⊆T

‖p̂ρ(S)‖2
4 ≤ 3d ∑

∅6=S⊆T

‖p̂ρ(S)‖2
2.

We now proceed to bound the RHS term by term:



∑
∅6=S⊆T

‖p̂ρ(S)‖2
2 =

∑
∅6=S⊆T

Eρ[p̂ρ(S)2] = Eρ

[ ∑
∅6=S⊆T

p̂ρ(S)2
]

≤ Eρ

[
Inf(pρ)

]
= Eρ

[ ∑
i∈T

Infi(pρ)
]

=
∑
i∈T

Eρ

[
Infi(pρ)

]
=
∑
i∈T

Infi(p) ≤ de−α

where the first inequality uses the fact Inf(pρ) ≥∑
∅6=S⊆T p̂ρ(S)2, the final equality follows from Lemma 2,

and the last inequality is Equation (2). We have thus shown
that ‖Q‖2 ≤ 3dde−α.

We now upper bound Prρ[Q(ρ) > (t∗)2·Θ(log(1/β))−d].
Since ‖Q‖2 ≤ 3dde−α, Theorem 7 implies that for all t > ed

we have Prρ[Q(ρ) > t · 3dde−α] ≤ exp(−Ω(t1/d)). Taking
t to be Θ(dd lnd C) this upper bound is at most 1/(2Cd).
Our choice of the parameter α gives t · d3d · e−α ≤ (t∗)2 ·
Θ(log(1/β))−d. This completes the proof of Lemma 6, and
thus also the proof of Lemma 4.

B. The small critical index case

In this section we show that if the critical index of p is
“small”, then a random restriction of “few” variables causes
p to become regular with non-negligible probability. We do
this by showing that no matter what the critical index is,
a random restriction of all variables up to the τ -critical
index causes p to become τ ′-regular, for some τ ′ not too
much larger than τ , with probability at least 1/(2Cd). More
formally, we prove:

Lemma 7. Let p : {−1, 1}n → R be a degree-d polynomial
with τ -critical index k ∈ [n]. Let ρ be a random restriction
that fixes [k], and let τ ′ = (C ′ · d ln d · ln 1

τ )d · τ for some
suitably large absolute constant C ′. With probability at least
1/(2Cd) over the choice of ρ, the restricted polynomial pρ

is τ ′-regular.

Proof: We must show that with probability at least
1/(2Cd) over ρ the restricted polynomial pρ satisfies

Inf`(pρ)/
n∑

j=k+1

Infj(pρ) ≤ τ ′ (3)

for all ` ∈ [k + 1, n]. Note that before the restriction, we
have Inf`(p) ≤ τ ·

∑n
j=k+1 Infj(p) for all ` ∈ [k + 1, n]

because the τ -critical index of p is k.
Let us give an intuitive explanation of the proof. We first

show (Lemma 8) that with probability at least C−d the
denominator in (3) does not decrease under a random re-
striction. This is an anti-concentration statement that follows
easily from Theorem 8. We then show (Lemma 9) that with
probability at least 1−C−d/2 the numerator in (3) does not
increase by much under a random restriction, i.e. no variable
influence Inf`(pρ), ` ∈ [k + 1, n], becomes too large. Thus
both events occur (and pρ is τ ′-regular) with probability at
least C−d/2.

We note that while each individual influence Inf`(pρ) is
indeed concentrated around its expectation (see Claim 10),
we need a concentration statement for n−k such influences.
This might seem difficult to achieve since we require bounds
that are independent of n. We get around this difficulty
by a “bucketing” argument that exploits the fact (at many
different scales) that all but a few influences Inf`(p) must
be “very small.”

It remains to state and prove Lemmas 8 and 9. Consider
the event E def=

{
ρ ∈ {−1, 1}k |

∑n
`=k+1 Inf`(pρ) ≥∑n

`=k+1 Inf`(p)
}
. We first show:

Lemma 8. Prρ[E ] ≥ C−d.

Proof: It follows from Fact 3 and the Fourier ex-
pression of Inf`(pρ) that A(ρ) def=

∑n
`=k+1 Inf`(pρ) is a

degree-2d polynomial. By Lemma 2 we get that Eρ[A] =∑n
`=k+1 Inf`(p) > 0. Also observe that A(ρ) ≥ 0 for all

ρ ∈ {−1, 1}k. We may now apply Theorem 8 to the poly-
nomial A′ = A − Eρ[A], to get that Prρ[E ] = Pr[A′ ≥ 0]
is at least

Pr[A′ ≥ C−2d
0 · σ(A′)] > C−2d

0 = C−d.

We now turn to Lemma 9. Consider the event J def=
{
ρ ∈

{−1, 1}k | max`∈[k+1,n] Inf`(pρ) > τ ′
∑n

j=k+1 Infj(p)
}

.
We show:

Lemma 9. Prρ[J ] ≤ (1/2) · C−d.

The rest of this subsection consists of the proof of
Lemma 9. A useful intermediate claim is that the influences
of individual variables do not increase by a lot under a
random restriction:

Claim 10. Let p : {−1, 1}n → R be a degree-d poly-
nomial. Let ρ be a random restriction fixing [j]. Fix any
t > e2d and any ` ∈ [j + 1, n]. With probability at least
1− exp(−Ω(t1/d)) over ρ, we have Inf`(pρ) ≤ 3dtInf`(p).

Proof: The identity Inf`(pρ) =
∑

`∈S⊆[j+1,n] p̂ρ(S)2

and Fact 3 imply that Inf`(pρ) is a degree-2d polynomial in
ρ. Hence the claim follows from the concentration bound,
Theorem 7, assuming we can appropriately upper bound the
l2 norm of the polynomial Inf`(pρ). So to prove Claim 10
it suffices to show that

‖Inf`(pρ)‖2 ≤ 3dInf`(p). (4)

The proof of Equation (4) is similar to the argument
establishing that ‖Q‖2 ≤ 3dde−α in Section II-A. The
triangle inequality tells us that we may bound the l2-norm
of each squared-coefficient separately:

‖Inf`(pρ)‖2 ≤
∑

`∈S⊆[j+1,n]

‖p̂ρ(S)2‖2.

Since p̂ρ(S) is a degree-d polynomial, Theorem 6 yields that

‖p̂ρ(S)2‖2 = ‖p̂ρ(S)‖2
4 ≤ 3d‖p̂ρ(S)‖2

2,



hence

‖Inf`(pρ)‖2 ≤ 3d ∑
`∈S⊆[j+1,n]

‖p̂ρ(S)‖2
2 = 3dInf`(p),

where the last equality is a consequence of Fact 3. Thus
Equation (4) holds, and Claim 10 is proved.

Claim 10 says that for any given coordinate, the probabil-
ity that its influence after a random restriction increases by a
t factor decreases exponentially in t. Note that Claim 10 and
a naive union bound over all coordinates in [k+1, n] does not
suffice to prove Lemma 9. Instead, we proceed as follows:
We partition the coordinates in [k + 1, n] into “buckets”
according to their influence in the tail of p. In particular,
the i-th bucket (i ≥ 0) contains all variables ` ∈ [k + 1, n]
such that

Inf`(p)/
n∑

j=k+1

Infj(p) ∈ [τ/2i+1, τ/2i].

We analyze the effect of a random restriction ρ on the
variables of each bucket i separately and then conclude by
a union bound over all the buckets.

So fix a bucket i. Note that, by definition, the number
of variables in the i-th bucket is at most 2i+1/τ . We bound
from above the probability of the event B(i) that there exists
a variable ` in bucket i that violates the regularity constraint,
i.e. such that Inf`(pρ) > τ ′

∑n
`=k+1 Inf`(p). We will do this

by a combination of Claim 10 and a union bound over the
variables in the bucket. We will show:

Claim 11. We have that Prρ[B(i)] ≤ 2−(i+2) · C−d.

The above claim completes the proof of Lemma 9 by a
union bound across buckets. Indeed, assuming the claim,
the probability that any variable ` ∈ [k + 1, n] violates
the condition Inf`(pρ) ≤ τ ′

∑n
`=k+1 Inf`(p) is at most∑∞

i=0 Prρ[B(i)] ≤ C−d2−2
∑∞

i=0(1/2)i = (1/2) · C−d.
It thus remains to prove Claim 11. Fix a variable ` in

the i-th bucket. We apply Claim 10 selecting a value of
t = t̃

def= (ln Cd4i+2

τ )d. It is clear that t̃ ≤ c′d(d + i + ln 1
τ )d

for some absolute constant c′. As a consequence, there is an
absolute constant C ′ such that for every i,

t̃ ≤ 3−dC ′d2i(d ln d ln
1
τ

)d. (5)

(To see this, note that for i ≤ 10d ln d we have d+i+ln 1
τ <

11d ln d ln 1
τ , from which the claimed bound is easily seen

to hold. For i > 10d ln d, we use d + i + ln 1
τ < di ln 1

τ and
the fact that id < 2i for i > 10d ln d.)

Inequality (5) can be rewritten as 3d · t̃ · τ
2i ≤ τ ′. Hence,

our assumption on the range of Inf`(p) gives

3d · t̃ · Inf`(p) ≤ τ ′ ·
n∑

j=k+1

Infj(p).

Therefore, by Claim 10, the probability that coordinate `
violates the condition Inf`(pρ) ≤ τ ′

∑n
j=k+1 Infj(p) is at

most τ/(Cd4i+2) by our choice of t̃. Since bucket i contains
at most 2i+1/τ coordinates, Claim 11 follows by a union
bound. Hence Lemma 9, and thus Lemma 7, is proved.

C. Putting Everything Together: Proof of Theorem 1

The following lemma combines the results of the previous
two subsections:

Lemma 12. Let p : {−1, 1}n → R be a degree-d poly-
nomial and 0 < τ̃, β < 1/2. Fix α = Θ(d log log(1/β) +
d log d) and τ̃ ′ = τ̃ · (C ′d ln d ln(1/τ̃))d, where C ′ is a
universal constant. (We assume w.l.o.g. that the variables
are ordered s.t. Infi(p) ≥ Infi+1(p), i ∈ [n − 1].) One of
the following statements holds true:

1) The polynomial p is τ̃ -regular.
2) With probability at least 1/(2Cd) over a random

restriction ρ fixing the first α/τ̃ (most influential)
variables of p, the function sign(pρ) is β-close to a
constant function.

3) There exists a value k ≤ α/τ̃ , such that with prob-
ability at least 1/(2Cd) over a random restriction ρ
fixing the first k (most influential) variables of p, the
polynomial pρ is τ̃ ′-regular.

Proof of Theorem 1:
We begin by observing that any function f on {−1, 1}n

is equivalent to a decision tree where each internal node
of the tree is labeled by a variable, every root-to-leaf path
corresponds to a restriction ρ that fixes the variables as
they are set on the path, and every leaf is labeled with the
restricted subfunction fρ. Given an arbitrary degree-d PTF
f = sign(p), we will construct a decision tree T of the
form described in Theorem 1. It is clear that in any such
tree every leaf function fρ will be a degree-d PTF; we must
show that T has depth depth(d, τ) and that with probability
1 − τ over the choice of a random root-to-leaf path ρ, the
restricted subfunction fρ = sign(pρ) is τ -close to a τ -regular
degree-d PTF.

For a tree T computing f = sign(p), we denote by N(T )
its set of internal nodes and by L(T ) its set of leaves. We call
a leaf ρ ∈ L(T ) “good” if the corresponding function fρ is
τ -close to being τ -regular. We call a leaf “bad” otherwise.
Let GL(T ) and BL(T ) be the sets of “good” and “bad”
leaves in T respectively.

The basic approach for the proof is to invoke Lemma 12
repeatedly in a sequence of at most 2Cd ln(1/τ) stages. In
the first stage we apply Lemma 12 to f itself; this gives us an
initial decision tree. In the second stage we apply Lemma 12
to those restricted subfunctions fρ (corresponding to leaves
of the initial decision tree) that are still τ -far from being
τ -regular; this “grows” our initial decision tree. Subsequent
stages continue similarly; we will argue that after at most
2Cd ln(1/τ) stages, the resulting tree satisfies the required
properties for T . In every application of Lemma 12 the
parameters β and τ̃ ′ are both taken to be τ ; note that taking



τ̃ ′ to be τ sets the value of τ̃ in Lemma 12 to a value that
is less than τ .

We now provide the details. In the first stage, the initial
application of Lemma 12 results in a tree T1. This tree T1

may consist of a single leaf node that is τ̃ -regular (if f is
τ̃ -regular to begin with – in this case, since τ̃ < τ , we are
done), or a complete decision tree of depth α/τ̃ (if f had
large critical index), or a complete decision tree of depth
k < α/τ̃ (if f had small critical index). Note that in each
case the depth of T1 is at most α/τ̃ . Lemma 12 guarantees
that:

Prρ∈T1 [ρ ∈ BL(T1)] ≤ 1− 1/(2Cd),

where the probability is over a random root-to-leaf path ρ
in T1.

In the second stage, the “good” leaves ρ ∈ GL(T1) are left
untouched; they will be leaves in the final tree T . For each
“bad” leaf ρ ∈ BL(T1), we order the unrestricted variables
in decreasing order of their influence in the polynomial pρ,
and we apply Lemma 12 to fρ. This “grows” T1 at each bad
leaf by replacing each such leaf with a new decision tree;
we call the resulting overall decision tree T2.

A key observation is that the probability that a random
path from the root reaches a “bad” leaf is significantly
smaller in T2 than in T1; in particular

Prρ∈T2 [ρ ∈ BL(T2)] ≤ (1− 1/(2Cd))2.

We argue this as follows: Let ρ be any fixed “bad” leaf in
T1, i.e. ρ ∈ BL(T1). The function fρ is not τ̃ ′-regular and
consequently not τ̃ -regular. Thus, either statement (2) or (3)
of Lemma 12 must hold when the Lemma is applied to fρ.
The tree that replaces ρ in T0 has depth at most α/τ̃ , and
a random root-to-leaf path ρ1 in this tree reaches a “bad”
leaf with probability at most 1 − 1/(2Cd). So the overall
probability that a random root-to-leaf path in T2 reaches a
“bad” leaf is at most (1− 1/(2Cd))2.

Continuing in this fashion, in the i-th stage we replace
all the bad leaves of Ti−1 by decision trees according to
Lemma 12 and we obtain the tree Ti. An inductive argument
gives that Prρ∈Ti

[ρ ∈ BL(Ti)] ≤ (1− 1/(2Cd))i,which is
at most τ fori∗ def= 2Cd ln(1/τ).

The depth of the overall tree will be the maximum number
of stages (2Cd ln(1/τ)) times the maximum depth added
in each stage (at most α/τ̃ , since we always restrict at
most this many variables), which is at most (α/τ̃) · i∗.
Since β = τ , we get α = Θ(d log log(1/τ) + d log d).
Recalling that τ̃ ′ in Lemma 12 is set to τ , we see that
τ̃ = τ/

(
C ′d ln d ln(1/τ)

)O(d)
. By substitution we get that

the depth of the tree is upper bounded by dO(d) · (1/τ) ·
log(1/τ)O(d) which concludes the proof of Theorem 1.

III. EVERY DEGREE-d PTF HAS A LOW-WEIGHT
APPROXIMATOR

In this section we apply Theorem 1 to prove Theorem 2,
which we restate below:

Theorem 2 Let f(x) = sign(p(x)) be any degree-d PTF.
Fix any ε > 0 and let τ = (Θ(1) · ε/d)8d. Then there
is a polynomial q(x) of degree D = d + depth(d, τ) and
weight nd · 24depth(d,τ) · (d/ε)O(d), which is such that the
PTF sign(q(x)) is ε-close to f .

To prove Theorem 2, we first show that any sufficiently
regular degree-d PTF over n variables has a low-weight
approximator, of weight roughly nd. Theorem 1 asserts that
almost every leaf ρ of T is close to a regular PTF; at
each such leaf ρ we use the low-weight approximator of
the previous sentence to approximate the regular PTF, and
thus to approximate fρ. Finally, we combine all of these
low-weight polynomials to get an overall PTF of low weight
which is a good approximator for f. We give details below.

A. Low-weight approximators for regular PTFs

In this subsection we prove that every sufficiently regular
PTF has a low-weight approximator of degree d:

Lemma 13. Given ε > 0, let τ = (Θ(1) · ε/d)8d. Let
p : {−1, 1}n → R be a τ -regular degree-d polynomial
with Var[p] = 1. There exists a degree-d polynomial
q : {−1, 1}n → R of weight nd · (d/ε)O(d) such that
sign(q(x)) is an ε-approximator for sign(p(x)).

Proof: The polynomial q is obtained by rounding the
weights of p to an appropriate granularity, similar to the
regular case in [Ser07] for the d = 1 case. To show that this
works, we use the fact that regular PTFs have very good anti-
concentration. In particular we will use the following claim,
which is proved using the invariance principle [MOO05] and
Gaussian anti-concentration [CW01].

Claim 14. Let p : {−1, 1}n → R be a τ -regular degree-
d polynomial with Var[p] = 1. Then Prx[|p(x)| ≤ τ ] ≤
O(dτ1/8d).

Proof: We recall that, since Var[p] = 1 and p is of
degree d, it holds Inf(p) ≤ d. Thus, since p is τ -regular,
we have that maxi∈[n] Infi(p) ≤ dτ. An application of
the invariance principle (Theorem 10) in tandem with anti-
concentration in gaussian space (Theorem 9) yields

Prx[|p(x)| ≤ τ ] ≤ O(d · (dτ)1/8d) + PrG∼Nn [|p(G)| ≤ τ ]
≤ O(dτ1/8d) + O(dτ1/d) = O(dτ1/8d),

and the claim follows.

We turn to the detailed proof of Lemma 13. We first note
that if the constant coefficient p̂(∅) of P has magnitude
greater than (O(log(1/ε)))d/2, then Theorem 7 (applied to
p(x)− p̂(∅)) implies that sign(p(x)) agrees with sign(p̂(∅))



for at least a 1 − ε fraction of inputs x. So in this case
sign(p(x)) is ε-close to a constant function, and the con-
clusion of the Lemma certainly holds. Thus we henceforth
assume that |p̂(∅)| is at most (O(log(1/ε)))d/2.

Let
α = τ/(Kn · ln(4/ε))d/2

where K > 0 is an absolute constant (specified later). For
each S 6= ∅ let q̂(S) be the value obtained by rounding p̂(S)
to the nearest integer multiple of α, and let q̂(∅) equal p̂(∅).
This defines a degree-d polynomial q(x) =

∑
S q̂(S)χS(x).

It is easy to see that rescaling by α, all of the non-constant
coefficients of q(x)/α are integers. Since each coefficient
q̂(S) has magnitude at most twice that of p̂(S), we may
bound the sum of squares of coefficients of q(x)/α by

p̂(∅)2

α2
+

∑
S 6=∅ 4p̂(S)2

α2
≤ (O(log(1/ε)))d

α2
≤ nd ·(d/ε)O(d).

We now observe that the constant coefficient p̂(∅) of q(x)
can be rounded to an integer multiple of α without chang-
ing the value of sign(q(x)) for any input x. Doing this,
we obtain a polynomial q′(x)/α with all integer coeffi-
cients, weight nd · (d/ε)O(d), and which has sign(q′(x)) =
sign(q(x)) for all x.

In the rest of our analysis we shall consider the poly-
nomial q(x) (recall that the constant coefficient of q(x) is
precisely p̂(∅)). It remains to show that sign(q) is an ε-
approximator for sign(p). For each S 6= ∅ let ê(S) equal
p̂(S)− q̂(S). This defines a polynomial (with constant term
0) e(x) =

∑
S ê(S)xS , and we have q(x) + e(x) = p(x).

(The coefficients ê(S) are the “errors” induced by approxi-
mating p̂(S) by q̂(S).)

Recall that τ = (Θ(1) · ε/d)8d. For any input x, we have
that sign(q(x)) 6= sign(p(x)) only if either (i) |e(x)| ≥ τ,
or (ii) |p(x)| ≤ τ. Since each coefficient of e(x) satisfies
|ê(S)| ≤ α/2 ≤ τ

2(Kn·ln(4/ε))d/2 , the sum of squares of all
(at most nd) coefficients of e is at most∑
S

ê(S)2 ≤ τ2

4(K ln(4/ε))d
, and thus ‖e‖ ≤ τ

2(K ln(4/ε))d/2
.

Applying Theorem 7, we get that Prx[|e(x)| ≥ τ ] ≤ ε/2
(for a suitable absolute constant choice of K), so we have
upper bounded the probability of (i).

For (ii), we use the anti-concentration bound for reg-
ular polynomials, Claim 14. This directly gives us that
Prx[|p(x)| ≤ τ ] ≤ O(dτ1/8d) ≤ ε/2.

Thus the probability, over a random x, that either (1)
or (2) holds is at most ε. Consequently sign(q) is an ε-
approximator for sign(p), and Lemma 13 is proved.

B. Proof of Theorem 2

Let f = sign(p) be an arbitrary degree-d PTF over n
Boolean variables, and let ε > 0 be the desired approxima-
tion parameter. We invoke Theorem 1 with its “τ” parameter

set to τ = (Θ(1) · (ε/2)/d)8d (i.e. our choice of τ is
obtained by plugging in “ε/2” for ε in the first sentence
of Lemma 13). For each leaf ρ of the tree T as described
in Theorem 1 (we call these “good” leaves), let g(ρ) be a
τ -regular degree-d PTF that is τ -close to fρ. By Lemma 13,
for each such leaf ρ there is a degree-d polynomial of weight
nd · (d/ε)O(d), which we denote q(ρ), such that g(ρ) is ε/2-
close to sign(q(ρ)). For each of the other leaves in T (which
are reached by at most a τ fraction of all inputs to T – we
call these “bad” leaves), for which fρ is not τ -close to any
τ -regular degree-d PTF, let q(ρ) be the constant-1 function.

For each leaf ρ of depth r in T , let Pρ(x) be the unique
multilinear polynomial of degree r which outputs 2r iff x
reaches ρ and outputs 0 otherwise. (As an example, if ρ is
a leaf which is reached by the path “x3 = −1, x6 = 1,
x2 = 1” from the root in T , then Pρ(x) would be (1 −
x3)(1 + x6)(1 + x2).) Our final PTF is

g(x) = sign(Q(x)), where Q(x) =
∑
ρ

Pρ(x)q(ρ)(x).

It is easy to see that on any input x, the value Q(x) equals
2|ρx| · q(ρx)(x), where we write ρx to denote the leaf of T
that x reaches and |ρx| to denote the depth of that leaf. Thus
sign(Q(x)) equals sign(q(ρx)(x)) for each x, and from this
it follows that Prx[g(x) 6= f(x)] is at most τ +τ +ε/2 < ε.
Here the first τ is because a random input x may reach a
bad leaf with probability up to τ ; the second τ is because
for each good leaf ρ, the function g(ρ) is τ -close to fρ; and
the ε/2 is because sign(q(ρ)) is ε/2-close to g(ρ).

Since T has depth depth(d, τ), it is easy to see that Q
has degree at most depth(d, τ) + d. It is clear that the
coefficients of Q are all integers, so it remains only to bound
the sum of squares of these coefficients. Each polynomial
addend Pρ(x)q(ρ)(x) in the sum is easily seen to have sum
of squared coefficients

∑
S P̂ρq(ρ)(S)2 equal to

E[(Pρ · q(ρ))2] ≤
(
max

x
Pρ(x)2

)
·E[q(ρ)(x)2]

≤ 22depth(d,τ) · nd · (d/ε)O(d). (6)

Since T has depth depth(d, τ), the number of leaves ρ is at
most 2depth(d,τ), and hence for each S by Cauchy-Schwarz
we have

Q̂(S)2 =

(∑
ρ

P̂ρq(ρ)(S)

)2

≤ 2depth(d,τ) ·
∑
ρ

P̂ρq(ρ)(S)2.

(7)
This implies that the total weight of Q is∑
S

Q̂(S)2 ≤ 2depth(d,τ) ·
∑
ρ,S

P̂ρq(ρ)(S)2 (using (7))

≤ 22depth(d,τ) max
ρ

(∑
S

P̂ρq(ρ)(S)2
)

≤ 24depth(d,τ) · nd · (d/ε)O(d), (using (6))

and Theorem 2 is proved.



C. Degree-d PTFs require Ω̃(nd)-weight approximators

In this section we give two lower bounds on the weight
required to ε-approximate certain degree-d PTFs. (We use
the notation Ωd() below to indicate that the hidden constant
of the big-Omega depends on d.)

Theorem 3. For all sufficiently large n, there is a degree-
d n-variable PTF f(x) with the following property: Let
K(d) be any positive-valued function depending only on d.
Suppose that g(x) = sign(q(x)) is a degree-K(d) PTF with
integer coefficients q̂(S) such that dist(f, g) ≤ ε? where
ε? def

= C−d/2. Then the weight of q is Ωd(nd/ log n).

Theorem 4. For all sufficiently large n, there is a degree-d
n-variable PTF f(x) with the following property: Suppose
that g(x) = sign(q(x)) is any PTF (of any degree) with
integer coefficients q̂(S) such that dist(f, g) ≤ ε? where
ε? def

= C−d/2. Then the weight of q is Ωd(nd−1).

Viewing d and ε as constants, Theorem 3 implies that the
O(nd) weight bound of our ε-approximator from Theorem 2
(which has constant degree) is essentially optimal for any
constant-degree ε-approximator. Theorem 4 says that there
is only small room for improving our weight bound even if
arbitrary-degree PTFs are allowed as approximators.

Theorems 3 and 4 are both consequences of the following
theorem:

Theorem 5. There exists a set C = {f1, . . . , fM} of M =
2Ωd(nd) degree-d PTFs fi such that for any 1 ≤ i < j ≤ M ,
we have dist(fi, fj) ≥ C−d.

Proof of Theorems 3 and 4 assuming Theorem 5: First
we prove Theorem 3. We begin by claiming that there are

at most
(
3
(

n
≤K(d)

))A

many integer-weight PTFs of degree
K(d) and weight at most A. This is because any such PTF
can be obtained by making a sequence of A steps, where at
each step either −1, 0, or 1 is added to one of the

(
n

≤K(d)

)
many monomials of degree at most K(d). Each step can be
carried out in 3

(
n

≤K(d)

)
ways, giving the claimed bound.

By Theorem 5, there are M distinct degree-d PTFs
f1, . . . , fM any two of which are C−d-far from each
other. Consequently any Boolean function (in particular,
any weight-A degree-K(d) PTF g) can have dist(g, fi) ≤
C−d/2 for at most one fi. Since there are only(
3
(

n
≤K(d)

))A

many weight-A degree-K(d) PTFs, and(
3
(

n
≤K(d)

))A

is less than M for some A = Ωd(nd/ log n), it
follows that some fi must have distance at least C−d/2 from
every weight-A, degree-K(d) PTF. This gives Theorem 3.

The proof of Theorem 4 is nearly identical. We now use
the fact that there are at most (3 ·2n)A many integer-weight
PTFs of weight at most A (and any degree), and use the fact
that (3 · 2n)A is less than M for some A = Ωd(nd−1).

It remains to prove Theorem 5.
1) Proof of Theorem 5: The proof is by the proba-

bilistic method. We define the following distribution D
over n-variable degree-d polynomials. A draw of p(x) =∑

S⊂[n],|S|=d p̂(S)χS(x) from D is obtained in the follow-
ing way: each of the

(
n
d

)
coefficients p̂(S) is independently

and uniformly selected from {−1, 1}.
We will prove Theorem 5 using Lemma 15, which says

that it is extremely likely the polynomial c – the product of
two independent draws a and b from D – will have both
small bias and large variance.

Lemma 15. Let a(x) and b(x) be two degree-d polynomials
drawn independently from D, and let c(x) = a(x)b(x). Then
with probability at least 1− 2−Ωd(nd) we have:

1) |ĉ(∅)| ≤ 1
4C−d

(
n/2
d

)
, and

2) Var[c]
def
=
∑

|S|>0 ĉ(S)2 ≥ 1
12

(
n/2
d

)2
.

Suppose that Lemma 15 holds. Let a(x) and b(x) be
independent draws from D and let c(x) = a(x)b(x) which
satisfies the conclusions of the lemma. Then the constant
term ĉ(∅) is small compared with the variance of c(x). Let
us rescale so the variance is 1; i.e. define the polynomial

e(x) def=
c(x)

Var[c]1/2

so Var[e] = 1 and |ê(∅)| < C−d. We now apply Theorem 8
to the degree-2d polynomial q(x) = −e(x) + ê(∅), and
we see that with probability at least C−d (over a random
uniform draw of x) we have −e(x) + ê(∅) > C−d, and
hence Prx[sign(e(x)) < 0] > C−d.

We now observe that sign(e(x)) < 0 if and
only if sign(a(x)) 6= sign(b(x)), and consequently
Prx[sign(e(x)) < 0] is precisely dist(sign(a), sign(b)). We
thus have that for a(x), b(x) drawn from D as described
above, the probability that dist(sign(a), sign(b)) is less than
C−d is at most 2−αdnd

for some absolute constant αd > 0
(depending only on d).

Now let us consider M = 2(αd/2)nd

many independent
draws of polynomials a1, a2, . . . , aM from D. A union
bound over all the

(
M
2

)
< 2αdnd

pairs (i, j) with 1 ≤ i <
j ≤ M gives that with nonzero probability, every ai, aj pair
satisfies dist(sign(ai), sign(aj)) ≥ C−d. Thus there must be
some outcome for the polynomials a1, a2, . . . , aM such that
dist(sign(ai), sign(aj)) ≥ C−d for all 1 ≤ i < j ≤ M.
Setting fi = sign(ai) for this outcome, Theorem 5 is
proved.

It remains only for us to prove Lemma 15.
2) Proof of Lemma 15: Let us consider a(x) =∑
|S|=d â(S)χS(x) and b(x) =

∑
|S|=d b̂(S)χS(x) drawn

independently from D. We will show that the bias of the
polynomial c(x) = a(x)b(x) fails to satisfy the bound in
item 1 with probability 2−Ωd(nd). Then we show the variance



of c fails to satisfy item 2 with probability 2−Ωd(nd), and
the lemma follows from a union bound.

To bound the bias of c, we begin by noting that:

ĉ(∅) =
∑

S⊆[n]

â(S)̂b(S).

Each term â(S)̂b(S) in the summand is uniform, i.i.d
in {−1, 1}. Define the random variable XS = 1/2 −
(1/2)â(S)̂b(S). Then

∑
S⊆[n] XS is binomially distributed

and setting t = 1
4C−d( n

2d )d, we may apply the Chernoff
bound to obtain that Pr[ĉ(∅) < − 1

4C−d( n
2d )d] equals

Pr[X > E[X] + t] ≤ exp (−2
t2(
n
d

) ) = 2−Ωd(nd).

The same analysis gives a bound on the magnitude in the
negative direction. Since

(
n/2
d

)
≥ ( n

2d )d, this concludes the
analysis for the first item of the lemma.

Now we show that item 2 of the lemma also fails with
very small probability. The following terminology will be
useful. Let T ⊂ [n] be a subset of size exactly |T | = 2d (we
think of T as the set of variables defining some monomial
of degree 2d). For such a T we let first(T ) def= T ∩ [n/2]
and second(T ) def= T ∩ [n/2+1, n]. We say that such a T is
balanced if |first(T )| = |second(T )| = d. Note that there
are exactly

(
n/2
d

)2
many balanced subsets T .

We say that a subset U ⊂ [n], |U | = d is pure if U is
contained entirely in [n/2 + 1, n].

Let us consider a(x) =
∑

|S|=d â(S)χS(x) and b(x) =∑
|S|=d b̂(S)χS(x) drawn independently from D. Fix any

outcome for a (i.e. for the values of all
(
n
d

)
coefficients

â(S)), and fix any outcome for b̂(U) for every U which
is not pure. Thus the only “remaining randomness” is the
value (drawn uniformly from {−1, 1}}) for each of the(
n/2
d

)
coefficients b̂(U) for pure U. We will show that

with probability at least 1 − 2−Ωd(nd) over the remaining
randomness, at least 1

6

(
n/2
d

)2
of the

(
n/2
d

)2
many balanced

subsets T have ĉ(T ) 6= 0. Since each value ĉ(T ) which is
nonzero is at least 1 in magnitude, this suffices to prove the
lemma.

Consider any fixed pure subset U ⊂ [n], |U | = d (for
example U = {n−d+1, . . . , n}). Let T be a balanced subset
of n (so |T | = 2d) such that second(T ) equals U . (There
are precisely

(
n/2
d

)
balanced subsets T with this property;

let TU denote the collection of all
(
n/2
d

)
of them.) Consider

the value ĉ(T ): this is

ĉ(T ) =
∑

S⊆T,|S|=d

â(S)̂b(T − S).

The only “not-yet-fixed” part of the above expression is the
single coefficient b̂(U); everything else has been fixed. Since
the coefficient â(T −U) of b̂(U) is a nonzero integer, there

are two possible outcomes for the value of ĉ(T ), depending
on whether b̂(U) is set to +1 or -1. These two possible
values differ by 2; consequently, there is at most one possible
outcome of b̂(U) that will cause ĉ(T ) to be zero. (Note that
it may well be the case that no outcome for b̂(U) would
cause ĉ(T ) to become zero.)

Let us say that an outcome of b̂(U) is pernicious if it has
the following property: at most 1

3

(
n/2
d

)
of the

(
n/2
d

)
elements

T ∈ TU have ĉ(T ) take a nonzero value under that outcome
of b̂(U). (Equivalently, at least 2

3

(
n/2
d

)
of the

(
n/2
d

)
elements

T ∈ TU have ĉ(T ) become zero under that outcome of
b̂(U).) It may be the case that neither outcome in {−1, 1} for
b̂(U) is pernicious (e.g. if each outcome makes at least 95%
of the ĉ(T ) values come out nonzero). It cannot be the case
that both outcomes {−1, 1} for b̂(U) are pernicious (for if
there were two pernicious outcomes, this would mean that at
least 1

3 of the ĉ(T ) values evaluate to 0 under both outcomes
for b̂(U), but it is impossible for any ĉ(T ) to evaluate to 0
under two outcomes for b̂(U)). Consequently we have

Pr[the outcome of b̂(U) is pernicious] ≤ 1/2.

This is true independently for each of the
(
n/2
d

)
many

pure subsets U. As a result, a simple analysis gives that the
probability that at least 3/4 of the

(
n/2
d

)
pure subsets U

have a pernicious outcome is at most 2−Ωd(nd). Thus we
may assume that fewer than 3/4 of the

(
n/2
d

)
pure subsets

U have a pernicious outcome. So at least 1
4

(
n/2
d

)
of the pure

subsets U are non-pernicious. For each such non-pernicious
U , more than 1

3

(
n/2
d

)
of the

(
n/2
d

)
elements in TU have ĉ(T )

take a nonzero value. Consequently, at least 1
12

(
n/2
d

)2
many

balanced subsets T overall have ĉ(T ) 6= 0. This proves the
lemma.
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APPENDIX

A. Useful Probability Bounds for Section II
We first recall the following moment bound for low-

degree polynomials, which is equivalent to the well-known
hypercontractive inequality of [Bon70], [Gro75]:

Theorem 6. Let p : {−1, 1}n → R be a degree-d polyno-
mial and q > 2. Then

‖p‖q ≤ (q − 1)d/2‖p‖2.

The following concentration bound for low-degree poly-
nomials, a simple corollary of hypercontractivity, is well
known (see e.g. [O’D07b], [DFKO06], [AH09]):

Theorem 7. Let p : {−1, 1}n → R be a degree-d polyno-
mial. For any t > ed, we have

Prx[|p(x)| ≥ t‖p‖2] ≤ exp(−Ω(t2/d)).

We will also need the following weak anti-concentration
bound for low-degree polynomials over the cube:

Theorem 8 ( [DFKO06], [AH09]). There is a universal
constant C0 > 1 such that for any non-zero degree-d
polynomial p : {−1, 1}n → R with E[p] = 0, we have

Prx[p(x) > C−d
0 · ‖p‖2] > C−d

0 .

Throughout this paper, we let C = C2
0 , where C0 is the

universal constant from Theorem 8. Note that since C > C0,
Theorem 8 holds for C as well.

B. Useful Probability Bounds for Section III
We denote by Nn the standard n-dimensional Gaussian

distribution N (0, 1)n.
The following two facts will be useful in the proof of

Theorem 2, in particular in the analysis of the regular case.
The first fact is a powerful anti-concentration bound for
low-degree polynomials over independent Gaussian random
variables:

Theorem 9 ( [CW01]). Let p : Rn → R be a nonzero
degree-d polynomial. For all ε > 0 we have

PrG∼Nn [|p(G)| ≤ ε‖p‖2] ≤ O(dε1/d).

We note that the above bound is essentially tight, even for
multi-linear polynomials.

The second fact is a version of the invariance principle of
Mossel, O’Donnell and Oleszkiewicz, specifically Theorem
3.19 under hypothesis H4 in [MOO05]:

Theorem 10 ( [MOO05]). Let p(x) =∑
S⊆[n],|S|≤d p̂(S)χS(x) be a degree-d multilinear

polynomial with Var[p] = 1. Suppose each coordinate
i ∈ [n] has Infi(p) ≤ τ . Then,

sup
t∈R

|Prx[p(x) ≤ t]−PrG∼Nn [p(G) ≤ t]| ≤ O(dτ1/(8d)).


