
Learning Unions of ω(1)-Dimensional Rectangles

Alp Atıcı1 and Rocco A. Servedio?

Columbia University, New York, NY, USA
{atici@math,rocco@cs}.columbia.edu

Abstract. We consider the problem of learning unions of rectangles over
the domain [b]n, in the uniform distribution membership query learning
setting, where both b and n are “large”. We obtain poly(n, log b)-time
algorithms for the following classes:
– poly(n log b)-Majority of O(log(n log b)

log log(n log b)
)-dimensional rectangles.

– Union of poly(log(n log b)) O(log2(n log b)

(log log(n log b) log log log(n log b))2
)-dimensional

rectangles.
– poly(n log b)-Majority of poly(n log b)-Or of disjoint O(log(n log b)

log log(n log b)
)-

dimensional rectangles.
Our main algorithmic tool is an extension of Jackson’s boosting- and
Fourier-based Harmonic Sieve algorithm [12] to the domain [b]n, building
on work of Akavia et al. [1]. Other ingredients used to obtain the results
stated above are techniques from exact learning [3] and ideas from re-
cent work on learning augmented AC

0 circuits [13] and on representing
Boolean functions as thresholds of parities [15].

1 Introduction

Motivation. The learnability of Boolean valued functions defined over the do-
main [b]n = {0, 1, . . . , b−1}n has long elicited interest in computational learning
theory literature. In particular, much research has been done on learning various
classes of “unions of rectangles” over [b]n (see e.g. [3, 5, 6, 9, 12, 18]), where a
rectangle is a conjunction of properties of the form “the value of attribute xi

lies in the range [αi, βi]”. One motivation for studying these classes is that they
are a natural analogue of classes of DNF (Disjunctive Normal Form) formulae
over {0, 1}n; for instance, it is easy to see that in the case b = 2 any union of s
rectangles is simply a DNF with s terms.

Since the description length of a point x ∈ [b]n is n log b bits, a natural
goal in learning functions over [b]n is to obtain algorithms which run in time
poly(n log b). Throughout the paper we refer to such algorithms with poly(n log b)
runtime as efficient algorithms. In this paper we give efficient algorithms which
can learn several interesting classes of unions of rectangles over [b]n in the model
of uniform distribution learning with membership queries.

Previous results. In a breakthrough result a decade ago, Jackson [12] gave the
Harmonic Sieve (HS) algorithm and proved that it can learn any s-term DNF

formula over n Boolean variables in poly(n, s) time. In fact, Jackson showed

? Supported in part by NSF award CCF-0347282 and NSF award CCF-0523664.

that the algorithm can learn any s-way majority of parities in poly(n, s) time;
this is a richer set of functions which includes all s-term DNF formulae. The HS

algorithm works by boosting a Fourier-based weak learning algorithm, which is
a modified version of an earlier algorithm due to Kushilevitz and Mansour [17].

In [12] Jackson also described an extension of the HS algorithm to the domain
[b]n. His main result for [b]n is an algorithm that can learn any union of s
rectangles over [b]n in poly(sb log log b, n) time; note that this runtime is poly(n, s)
if and only if b is Θ(1) (and the runtime is clearly exponential in b for any s).

There has also been substantial work on learning various classes of unions of
rectangles over [b]n in the more demanding model of exact learning from mem-
bership and equivalence queries. Some of the subclasses of unions of rectangles
which have been considered in this setting are

The dimension of each rectangle is O(1): Beimel and Kushilevitz [3] give
an algorithm learning any union of s O(1)-dimensional rectangles over [b]n

in poly(n, s, log b) time steps, using equivalence queries only.
The number of rectangles is limited: In [3] an algorithm is also given which

exactly learns any union of O(log n) many rectangles in poly(n, log b) time
using membership and equivalence queries. Earlier, Maass and Warmuth
[18] gave an algorithm which uses only equivalence queries and can learn
any union of O(1) rectangles in poly(n, log b) time.

The rectangles are disjoint: If no input x ∈ [b]n belongs to more than one
rectangle, then [3] can learn a union of s such rectangles in poly(n, s, log b)
time with membership and equivalence queries.

Our techniques and results. Because efficient learnability is established for
union of O(log n) arbitrary dimensional rectangles by [3] in a more demand-
ing model, we are interested in achieving positive results when the number of
rectangles is strictly larger. Therefore all the cases we study involve at least
poly(log(n log b)) and sometimes as many as poly(n log b) rectangles.

We start by describing a new variant of the Harmonic Sieve algorithm for
learning functions defined over [b]n; we call this new algorithm the General-
ized Harmonic Sieve, or GHS. The key difference between GHS and Jackson’s
algorithm for [b]n is that whereas Jackson’s algorithm used a weak learning al-
gorithm whose runtime is poly(b), the GHS algorithm uses a poly(log b) time
weak learning algorithm described in recent work of Akavia et al. [1].

We then apply GHS to learn various classes of functions defined in terms of
“b-literals” (see Section 2 for a precise definition; roughly speaking a b-literal is
like a 1-dimensional rectangle). We first show the following result:

Theorem 1. The concept class of s-Majority of r-Parity of b-literals where

s = poly(n log b), r = O(log(n log b)
log log(n log b)) is efficiently learnable using GHS.

Learning this class has immediate applications for our goal of “learning
unions of rectangles”; in particular, it follows that

Theorem 2. The concept class of s-Majority of r-rectangles where s = poly(n log b),

r = O(log(n log b)
log log(n log b)) is efficiently learnable using GHS.

This clearly implies efficient learnability for unions (as opposed to majorities)
of s such rectangles as well.

We then employ a technique of restricting the domain [b]n to a much smaller
set and adaptively expanding this set as required. This approach was used in
the exact learning framework by Beimel and Kushilevitz [3]; by an appropriate
modification we adapt the underlying idea to the uniform distribution member-
ship query framework. Using this approach in conjunction with GHS we obtain
almost a quadratic improvement in the dimension of the rectangles if the number
of terms is guaranteed to be small:

Theorem 3. The concept class of unions of s = poly(log(n log b)) many r-

rectangles where r = O(log2(n log b)
(log log(n log b) log log log(n log b))2) is efficiently learnable via

Algorithm 2 (see Section 5).

Finally we consider the case of disjoint rectangles (also studied by [3] as
mentioned above), and improve the depth of our circuits by 1 provided that the
rectangles connected to the same Or gate are disjoint:

Corollary 1. The concept class of s-Majority of t-Or of disjoint r-rectangles

where s, t = poly(n log b), r = O(log(n log b)
log log(n log b)) is efficiently learnable under GHS.

Organization. In Section 3 we describe the Generalized Harmonic Sieve al-
gorithm GHS which will be our main tool for learning unions of rectangles. In
Section 4 we show that s-Majority of r-Parity of b-literals is efficiently learn-
able using GHS for suitable r, s; this concept class turns out to be quite useful for
learning unions of rectangles. In Section 5 we improve over the results of Section
4 slightly if the number of terms is small, by adaptively selecting a small subset
of [b] in each dimension which is sufficient for learning, and invoke GHS over
the restricted domain. In Section 6 we explore the consequences of the results in
Sections 4 and 5 for the ultimate goal of learning unions of rectangles.

2 Preliminaries

The learning model. We are interested in Boolean functions defined over the
domain [b]n, where [b] = {0, 1, . . . , b−1}. We view Boolean functions as mapping
into {−1, 1} where −1 is associated with True and 1 with False.

A concept class C is a collection of classes (sets) of Boolean functions {Cn,b : n >
0, b > 1} such that if f ∈ Cn,b then f : [b]n → {−1, 1}. Throughout this paper
we view both n and b as asymptotic parameters, and our goal is to exhibit algo-
rithms that learn various classes Cn,b in poly(n, log b) time. We now describe the
uniform distribution membership query learning model that we will consider.

A membership oracle MEM(f) is an oracle which, when queried with input
x, outputs the label f(x) assigned by the target f to the input. Let f ∈ Cn,b be
an unknown member of the concept class and let A be a randomized learning
algorithm which takes as input accuracy and confidence parameters ε, δ and can
invoke MEM(f). We say that A learns C under the uniform distribution on [b]n

provided that given any 0 < ε, δ < 1 and access to MEM(f), with probability at

least 1 − δ A outputs an ε-approximating hypothesis h : [b]n → {−1, 1} (which
need not belong to C) such that Prx∈[b]n [f(x) = h(x)] ≥ 1 − ε.

We are interested in computationally efficient learning algorithms. We say
that A learns C efficiently if for any target concept f ∈ Cn,b,

– A runs for at most poly(n, log b, 1/ε, log 1/δ) steps;
– Any hypothesis h that A produces can be evaluated on any x ∈ [b]n in at

most poly(n, log b, 1/ε, log 1/δ) time steps.

The functions we study. The reader might wonder which classes of Boolean
valued functions over [b]n are interesting. In this article we study classes of
functions that are defined in terms of “b-literals”; these include rectangles and
unions of rectangles over [b]n as well as other richer classes. As described below,
b-literals are a natural extension of Boolean literals to the domain [b]n.

Definition 1. A function ` : [b] → {−1, 1} is a basic b-literal if for some σ ∈
{−1, 1} and some α ≤ β with α, β ∈ [b] we have `(x) = σ if α ≤ x ≤ β, and
`(x) = −σ otherwise. A function ` : [b] → {−1, 1} is a b-literal if there exists a
basic b-literal `′ and some fixed z ∈ [b], gcd(z, b) = 1 such that for all x ∈ [b] we
have `(x) = `′(xz).

Basic b-literals are the most natural extension of Boolean literals to the do-
main [b]n. General b-literals (not necessarily basic) were previously studied in [1]
and are also quite natural; for example, if b is odd then the least significant bit
function lsb(x) : [b] → {−1, 1} (defined by lsb(x) = −1 iff x is even) is a b-literal.

Definition 2. A function f : [b]n → {−1, 1} is a k-rectangle if it is an And

of k basic b-literals `1, . . . , `k over k distinct variables xi1 , . . . , xik
. If f is a k-

rectangle for some k then we may simply say that f is a rectangle. A union of
s rectangles R1, . . . , Rs is a function of the form f(x) = Or

s
i=1Ri(x).

The class of unions of s rectangles over [b]n is a natural generalization of the class
of s-term DNF over {0, 1}n. Similarly Majority of Parity of basic b-literals
generalizes the class of Majority of Parity of Boolean literals, a class which
has been the subject of much research (see e.g. [12, 4, 15]).

If G is a logic gate with potentially unbounded fan-in (e.g. Majority, Par-

ity, And, etc.) we write “s-G” to indicate that the fan-in of G is restricted
to be at most s. Thus, for example, an “s-Majority of r-Parity of b-literals”
is a Majority of at most s functions g1, . . . , gs, each of which is a Parity of
at most r many b-literals. We will further assume that any two b-literals which
are inputs to the same gate depend on different variables. This is a natural re-
striction to impose in light of our ultimate goal of learning unions of rectangles.
Although our results hold without this assumption, it provides simplicity in the
presentation.

The Fourier transform. We will make use of the Fourier expansion of complex
valued functions over [b]n.

Consider f, g : [b]n → C endowed with the inner product 〈f, g〉 = E[fg] and

induced norm ‖f‖ =
√

〈f, f〉. Let ωb = e
2πi

b and for each α = (α1, . . . , αn) ∈ [b]n,

let χα : [b]n → C be defined as χα(x) = ωα1x1+···+αnxn

b . Let B denote the set of
functions B = {χα : α ∈ [b]n}. It is easy to verify the following properties:

– For each α = (α1, . . . , αn) ∈ [b]n, we have ‖χα‖ = 1.

– Elements in B are orthogonal: For α, β ∈ [b]n, we have 〈χα, χβ〉 =

{
1 if α = β
0 if α 6= β

.

– B constitutes an orthonormal basis for all functions {f : [b]n → C} considered
as a vector space over C, so every f : [b]n → C can be expressed uniquely as

f(x) =
∑

α f̂(α)χα(x).

The values {f̂(α) : α ∈ [b]n} are called the Fourier coefficients or the Fourier
transform of f . As is well known, Parseval’s Identity relates the values of the
coefficients to the values of the function:

Lemma 1 (Parseval’s Identity).
∑

α |f̂(α)|2 = E[|f |2] for any f : [b]n → C.

We write L1(f) to denote
∑

α |f̂(α)|.
Additional tools: weak hypotheses and boosting. Let f : [b]n → {−1, 1}
and D be a probability distribution over [b]n. A function g : [b]n → R is said to
be a weak hypothesis for f with advantage γ under D if ED[fg] ≥ γ.

The first boosting algorithm was described by Schapire [19] in 1990; since
then boosting has been intensively studied (see [8] for an overview). The basic
idea is that by combining a sequence of weak hypotheses h1, h2, . . . (the i-th of
which has advantage γ with respect to a carefully chosen distribution Di) it is
possible to obtain a high accuracy final hypothesis h which satisfies Pr[h(x) =
f(x)] ≥ 1−ε. The following theorem gives a precise statement of the performance
guarantees of a particular boosting algorithm, which we call Algorithm B, due
to Freund. Many similar statements are now known about a range of different
boosting algorithms but this is sufficient for our purposes.

Theorem 4 (Boosting Algorithm [7]). Suppose that Algorithm B is given:

– 0 < ε, δ < 1, and membership query access MEM(f) to f : [b]n → {−1, 1};
– access to an algorithm WL which has the following property: given a value δ ′

and access to MEM(f) and to EX(f,D) (the latter is an example oracle which
generates random examples from [b]n drawn with respect to distribution D), it
constructs a weak hypothesis for f with advantage γ under D with probability
at least 1 − δ′ in time polynomial in n, log b, log(1/δ′).

Then Algorithm B behaves as follows:

– It runs for S = O(log(1/ε)/γ2) stages and runs in total time polynomial in
n, log b, ε−1, γ−1, log(δ−1).

– At each stage 1 ≤ j ≤ S it constructs a distribution Dj such that L∞(Dj) <
poly(ε−1)/bn, and simulates EX(f,Dj) for WL in stage j. Moreover, there

is a “pseudo-distribution” D̃j satisfying D̃j(x) = cDj(x) for all x (where

c ∈ [1/2, 3/2] is some fixed value) such that D̃j(x) can be computed in time
polynomial in n log b for each x ∈ [b]n.

– It outputs a final hypothesis h = sign(h1+h2+. . .+hS) which ε-approximates
f under the uniform distribution with probability 1− δ; here hj is the output
of WL at stage j invoked with simulated access to EX(f,Dj).

We will sometimes informally refer to distributions D which satisfy the bound

L∞(D) < poly(ε−1)
bn as smooth distributions.

In order to use boosting, it must be the case that there exists a suitable weak
hypothesis with advantage γ. The “discriminator lemma” of Hajnal et al. [10]
can often be used to assert that the desired weak hypothesis exists:

Lemma 2 (The Discriminator Lemma [10]). Let H be a class of ±1-valued
functions over [b]n and let f : [b]n → {−1, 1} be expressible as f = Majority(h1,
. . . , hs) where each hi ∈ H and h1(x) + . . . + hs(x) 6= 0 for all x. Then for any
distribution D over [b]n there is some hi such that |ED[fhi]| ≥ 1/s.

3 The Generalized Harmonic Sieve Algorithm

In this section our goal is to describe a variant of Jackson’s Harmonic Sieve
Algorithm and show that under suitable conditions it can efficiently learn cer-
tain functions f : [b]n → {−1, 1}. As mentioned earlier, our aim is to attain
poly(log b) runtime dependence on b and consequently obtain efficient algorithms
as described in Section 2. This goal precludes using Jackson’s original Harmonic
Sieve variant for [b]n since the runtime of his weak learner depends polynomially
rather than polylogarithmically on b (see [12, Lemma 15]).

As we describe below, this poly(log b) runtime can be achieved by modifying
the Harmonic Sieve over [b]n to use a weak learner due to Akavia et al. [1]
which is more efficient than Jackson’s weak learner. We shall call the resulting
algorithm “The Generalized Harmonic Sieve” algorithm, or GHS for short.

Recall that in the Harmonic Sieve over the Boolean domain {−1, 1}n, the
weak hypotheses used are simply the Fourier basis elements over {−1, 1}n, which
correspond to the Boolean-valued parity functions. For [b]n, we will use the real
component of the complex-valued Fourier basis elements {χα, α ∈ [b]n} as our
weak hypotheses.

The following theorem of Akavia et al. [1, Theorem 5] will play a crucial role
towards construction of the GHS algorithm.

Theorem 5 (See [1]). There is a learning algorithm that, given membership
query access to f : [b]n → C, 0 < γ and 0 < δ < 1, outputs a list L of indices such

that with probability at least 1− δ, we have {α : |f̂(α)| > γ} ⊆ L and |f̂(β)| ≥ γ
2

for every β ∈ L. The running time of the algorithm is polynomial in n, log b,
‖f‖∞, γ−1, log(δ−1).

Lemma 3 (Construction of the weak hypothesis). Given

– Membership query access MEM(f) to f : [b]n → {−1, 1};
– A smooth distribution D; more precisely, access to an algorithm computing

D̃(x) in time polynomial in n, log b for each x ∈ [b]n. Here D̃ is a “pseudo-
distribution” for D as in Theorem 4, i.e. there is a value c ∈ [1/2, 3/2] such

that D̃(x) = cD(x) for all x.

– A value 0 < γ < 1/2 such that there exists a Fourier basis element χβ

satisfying |ED[fχβ]| > γ.

There is an algorithm that outputs a weak hypothesis for f with advantage γ/2
under D with probability 1−δ and runs in time polynomial in n, log b, ε−1, γ−1,
log(δ−1).

Proof. Let f∗(x) = bnD̃(x)f(x). Observe that

– Since D is smooth, ‖f∗‖∞ < poly(ε−1).
– For any α ∈ [b]n, f̂∗(α) = E[f∗χα] = 1

bn

∑
x∈[b]n bnD̃(x)f(x)χα(x) = ED[cfχα].

Therefore one can invoke the algorithm of Theorem 5 over f∗(x) by simulat-
ing MEM(f∗) via MEM(f), each time with poly(n, log b) time overhead, and
obtain a list L of indices as in Theorem 5. It is easy to see that the algo-
rithm runs in the desired time bound and outputs a nonempty list L. Let β be
any element of L. Because f̂∗(β) = E[bnD̃(x)f(x)χβ(x)], one can approximate
ED[fχβ]
|ED[fχβ]| = f̂∗(β)

|f̂∗(β)| = eiθ using uniformly drawn random examples. Let eiθ′
be

the approximation thus obtained. Note that by assumption we have:

– |f̂∗(β)| > cγ.
– For random x ∈ [b]n, the random variable (bnD̃(x)f(x)χβ(x)) always takes

a value whose magnitude is O(poly(ε−1)) in absolute value.

Using a straightforward Chernoff bound argument, this implies that |θ − θ′| can
be made smaller than any constant using poly(n, log b, ε−1) time and random
examples.

Now note that we have

ED[fχβ] = eiθ|ED[fχβ]| ⇒ ED[feiθχβ] = |ED[fχβ]| > γ.

Therefore for a sufficiently small value of |θ − θ′|, we have

ED[f<{eiθ′χβ}] = <{ED[feiθ′χβ]} = <{ei(θ−θ′) ED[feiθχβ]︸ ︷︷ ︸
real valued and > γ

} ≥ γ/2.

We conclude that <{eiθ′χβ} constitutes a weak hypothesis for f with advan-
tage γ/2 under D with high probability. ut
Rephrasing the statement of Lemma 3, now we know: As long as for any function
f in the concept class it is guaranteed that under any smooth distribution D

there is a Fourier basis element χβ that has nonnegligible correlation with f (i.e.
|ED[fχα]| > γ), then it is possible to efficiently identify and use such a Fourier
basis element to construct a weak hypothesis.

Now as in Jackson’s original Harmonic Sieve, one can invoke Algorithm B
from Theorem 4: At stage j, we have a distribution Dj over [b]n for which
L∞(Dj) < poly(ε−1)/bn. Thus one can pass the values of Dj to the algorithm
in Lemma 3 and use this algorithm as WL in Algorithm B to obtain the weak
hypothesis at each stage. Repeating this idea for every stage and combining the
weak hypotheses generated for all the stages as described by Theorem 4, we have
the GHS algorithm:

Corollary 2 (The Generalized Harmonic Sieve). Let C be a concept class.
Suppose that for any concept f ∈ Cn,b and any distribution D over [b]n with
L∞(D) < poly(ε−1)/bn there exists a Fourier basis element χα such that |ED[fχα]|
≥ γ. Then C can be learned in time poly(n, log b, ε−1, γ−1).

4 Learning Majority of Parity using GHS

In this section we identify classes of functions which can be learned efficiently
using the GHS algorithm and prove Theorem 1.

To prove Theorem 1, we show that for any concept f ∈ C and under any
smooth distribution there must be some Fourier basis element which has high
correlation with f ; this is the essential step which lets us apply the Generalized
Harmonic Sieve. We prove this in Section 4.2. In Section 4.3 we give an alternate
argument which yields a Theorem 1 analogue but with a slightly different bound

on r, namely r = O(log(n log b)
log log b).

4.1 Setting the stage

For ease of notation we will write abs(α) to denote min{α, b − α}. We will use
the following simple lemma from [1]:

Lemma 4 (See [1]). For all 0 ≤ ` ≤ b, we have |∑`−1
y=0 ωαy

b | < b/abs(α).

Corollary 3. Let f : [b] → {−1, 1} be a basic b-literal. Then if α = 0, |f̂(α)| < 1,

while if α 6= 0, |f̂(α)| < O(1
abs(α)).

Proof. The first inequality follows immediately from Lemma 1 (Parseval’s Iden-

tity) because f is ±1-valued. For the latter, note that |f̂(α)| = |E[fχα]| =

1

b

∣∣∣∣∣
∑

x∈f−1(1)

χα(x) − ∑
x∈f−1(−1)

χα(x)

∣∣∣∣∣ ≤
1

b

∣∣∣∣∣
∑

x∈f−1(1)

χα(x)

∣∣∣∣∣+
1

b

∣∣∣∣∣
∑

x∈f−1(−1)

χα(x)

∣∣∣∣∣

where the inequality is simply the triangle inequality. It is easy to see that each

of the sums on the RHS above equals 1
b |ωαc

b | |∑`−1
y=0 ωαy

b | = 1
b |
∑`−1

y=0 ωαy
b | for

some suitable c and ` ≤ b, and hence by Lemma 4 each sum is O(1
abs(α)). This

gives the desired result. ut

The following easy lemma is useful for relating the Fourier transform of a
b-literal to the corresponding basic b-literal:

Lemma 5. For f, g : [b] → C such that g(x) = f(xz) where gcd(z, b) = 1, we

have ĝ(α) = f̂(αz−1).

Proof.

ĝ(α) = Ex[g(x)χα(x)] = Ex[f(xz)χα(x)] = Exz−1 [f(x)χα(xz−1)]

= Exz−1 [f(x)χαz−1(x)] = Ex[f(x)χαz−1(x)] = f̂(αz−1). ut

A natural way to approximate a b-literal is by truncating its Fourier repre-
sentation. We make the following definition:

Definition 3. Let k be a positive integer. For f : [b] → {−1, 1} a basic b-literal,

the k-restriction of f is f̃ : [b] → C, f̃(x) =
∑

abs(α)≤k f̂(α)χα(x). More gen-

erally, for f : [b] → {−1, 1} a b-literal (so f(x) = f ′(xz) where f ′ is a basic

b-literal) the k-restriction of f is f̃ : [b] → C, f̃(x) =
∑

abs(αz−1)≤k f̂(α)χα(x) =
∑

abs(β)≤k f̂ ′(β)χβ(x).

4.2 There exist highly correlated Fourier basis elements for
functions in C under smooth distributions

In this section we show that given any f ∈ C and any smooth distribution D,
some Fourier basis element must have high correlation with f . We begin by
bounding the error of the k-restriction of a basic b-literal:

Lemma 6. For f : [b] → {−1, 1} a b-literal and f̃ the k-restriction of f , we have

E[|f − f̃ |2] = O(1/k).

Proof. Without loss of generality assume f to be a basic b-literal. By an imme-
diate application of Lemma 1 (Parseval’s Identity) we obtain:

E[|f − f̃ |2] =
∑

abs(α)>k

|f̂(α)|2 =︸︷︷︸
by Corollary 3

∑
α>k

O(1)/α2 = O(1/k). ut

Now suppose that f is an r-Parity of b-literals f1, . . . , fr. Since Parity

corresponds to multiplication over the domain {−1, 1}, this means that f =∏r
i=1 fi. It is natural to approximate f by the product of the k-restrictions∏r
i=1 f̃i. The following lemma bounds the error of this approximation:

Lemma 7. For i = 1, . . . , r, let fi : [b] → {−1, 1} be a b-literal and let f̃i be its k-

restriction. Then E[|f1(x1)f2(x2) . . . fr(xr)− f̃1(x1)f̃2(x2) . . . f̃r(xr)|] < (O(1))r

√
k

.

Proof. First note that by the nonnegativity of variance and Lemma 6, we have
that for each i = 1, . . . , r:

Exi
[|fi(xi) − f̃i(xi)|] ≤

√
Exi

[|fi(xi) − f̃i(xi)|2] = O(1/
√

k).

Therefore we also have for each i = 1, . . . , r:

Exi
[|f̃i(xi)|] < Exi

[|f̃i(xi) − fi(xi)|]︸ ︷︷ ︸
<O(1√

k
)

+Exi
[|fi(xi)|]︸ ︷︷ ︸
=1

= O(1).

For any (x1, . . . , xr) we can bound the difference in the lemma as follows:

|f1(x1) . . . fr(xr)− f̃1(x1) . . . f̃r(xr)| ≤
|f1(x1) . . . fr(xr)− f1(x1) . . . fr−1(xr−1)f̃r(xr)|+
|f1(x1) . . . fr−1(xr−1)f̃r(xr)− f̃1(x1) . . . f̃r(xr)| ≤
|fr(xr)− f̃r(xr)|+ |f̃r(xr)||f1(x1) . . . fr−1(xr−1)− f̃1(x1) . . . f̃r−1(xr−1)|

Therefore the expectation in question is at most:

Exr [|fr(xr)− f̃r(xr)|]
| {z }

=O(1/
√

k)

+Exr [|f̃r(xr)|]
| {z }

=O(1)

·E(x1,...,xr−1)[|f1(x1) . . . fr−1(xr−1)− f̃1(x1) . . . f̃r−1(xr−1)|].

We can repeat this argument successively until the base case Ex1
[|f1(x1) −

f̃1(x1)|] ≤ O(1√
k
) is reached. Thus for some K,L = 0(1), we have

E(x1,...,xr)∈[b]r [|f1(x1) . . . fr(xr)− f̃1(x1) . . . f̃r(xr)|] ≤
K + KL + KL2 + . . . + KLr−1

√
k

= K
Lr − 1

(L− 1)
√

k

from which the lemma follows. ut

Now we are ready for the main theorem asserting the existence (under suit-
able conditions) of a highly correlated Fourier basis element. The basic approach
of the following proof is reminiscent of the main technical lemma from [13].

Theorem 6. Let τ be a parameter to be specified later and C be the concept
class consisting of s-Majority of r-Parity of b-literals where s = poly(τ)

and r = O(log(τ)
log log(τ)). Then for any f ∈ Cn,b and any distribution D over [b]n

with L∞(D) = poly(τ)/bn, there exists a Fourier basis element χα such that
|ED[fχα]| > Ω(1/poly(τ)).

Proof. Assume f is a Majority of h1, . . . , hs each of which is a r-Parity of
b-literals. Then Lemma 2 implies that there exists hi such that |ED[fhi]| ≥ 1/s.
Let hi be Parity of the b-literals `1, . . . , `r.

Since s and bn · L∞(D) are both at most poly(τ) and r = O(log(τ)
log log(τ)),

Lemma 7 implies that there are absolute constants C1, C2 such that if we consider
the k-restrictions ˜̀

1, . . . , ˜̀
r of `1, . . . , `r for k = C1 · τC2 , we will have E[|hi −∏r

j=1
˜̀
j |] ≤ 1/(2sbnL∞(D)) where the expectation on the left hand side is with

respect to the uniform distribution on [b]n. This in turn implies that ED[|hi −∏r
j=1

˜̀
j |] ≤ 1/2s. Let us write h′ to denote

∏r
j=1

˜̀
j . We then have

|ED[fh′]| ≥ |ED[fhi]| − |ED[f(hi − h′)]| ≥ |ED[fhi]| − ED[|f(hi − h′)|]
= |ED[fhi]| − ED[|hi − h′|] ≥ 1/s − 1/2s = 1/2s.

Now observe that we additionally have

|ED[fh′]| = |ED[f
∑
α

ĥ′(α)χα]| = |∑
α

ĥ′(α)ED[fχα]| ≤ L1(h
′)max

α
|ED[fχα]|

Moreover, for each j = 1, . . . , r we have the following (where we write `′j to
denote the basic b-literal associated with the b-literal `j):

L1(˜̀j) =
∑

abs(α)≤k

|̂̀′j(α)| =︸︷︷︸
by Corollary 3

1 +
k∑

α=1
O(1)/α = O(log k).

Therefore, for some absolute constant c > 0 we have L1(h
′) ≤

∏r
j=1 L1(l̃j) ≤

(c log k)r, where the first inequality holds since the L1 norm of a product is at
most the product of the L1 norms. Combining inequalities, we obtain

max
α

|ED[fχα]| ≥ 1/(2s(c log k)r) = Ω(1/poly(τ))

which is the desired result. ut

Since we are interested in algorithms with runtime poly(n, log b, ε−1), setting
τ = nε−1 log b in Theorem 6 and combining its result with Corollary 2, gives rise
to Theorem 1.

4.3 The second approach

A different analysis, similar to that which Jackson uses in the proof of [12, Fact
14], gives us an alternate bound to Theorem 6:

Lemma 8. Let C be the concept class consisting of s-Majority of r-Parity

of b-literals. Then for any f ∈ Cn,b and any distribution D over [b]n, there exists
a Fourier basis element χα such that |ED[fχα]| = Ω(1/s(log b)

r
).

Proof. Assume f is a Majority of h1, . . . , hs each of which is a r-Parity of
b-literals. Then Lemma 2 implies that there exists hi such that |ED[fhi]| ≥ 1/s.
Let hi be Parity of the b-literals `1, . . . , `r. Now observe:

1/s ≤ |ED[fhi]| = |ED[fhi]| = |∑
α

ĥi(α)ED[fχα]| ≤ L1(hi)max
α

|ED[fχα]|

Also note that for j = 1, . . . , r we have the following (where as before we write
`′j to denote the basic b-literal associated with the b-literal `j):

L1(`j) =︸︷︷︸
by Lemma 5

∑
α
| ˆ̀j(α)| =︸︷︷︸

by Corollary 3

1 +
b−1∑
α=1

O(1)/α = O(log b).

Therefore for some constant c > 0 we have L1(hi) ≤
∏r

j=1 L1(`j) = O((log b)r),

from which we obtain maxα |ED[fχα]| = Ω(1/s(log b)
r
). ut

Combining this result with that of Corollary 2 we obtain the following result:

Theorem 7. The concept class C consisting of s-Majority of r-Parity of
b-literals can be learned in time poly(s, n, (log b)r) using the GHS algorithm.

As an immediate corollary we obtain the following close analogue of Theorem 1:

Theorem 8. The concept class C consisting of s-Majority of r-Parity of b-

literals where s = poly(n log b), r = O(log(n log b)
log log b) is efficiently learnable using

the GHS algorithm.

5 Locating sensitive elements and learning with GHS on a
restricted grid

In this section we consider an extension of the GHS algorithm which lets us
achieve slightly better bounds when we are dealing only with basic b-literals.
Following an idea from [3], the new algorithm works by identifying a subset of
“sensitive” elements from [b] for each of the n dimensions.

Definition 4 (See [3]). A value σ ∈ [b] is called i-sensitive with respect to
f : [b]n → {−1, 1} if there exist values c1, c2, . . . , ci−1, ci+1, . . . , cn ∈ [b] such that
f(c1, . . . , ci−1, σ − 1, ci+1, . . . , cn) 6= f(c1, . . . , ci−1, σ, ci+1, . . . , cn). A value σ is
called sensitive with respect to f if σ is i-sensitive for some i. If there is no
i-sensitive value with respect to f , we say index i is trivial.

The main idea is to run GHS over a restricted subset of the original domain
[b]n, which is the grid formed by the sensitive values and a few more additional
values, and therefore lower the algorithm’s complexity.

Definition 5. A grid in [b]n is a set S = L1×L2×· · ·×Ln with 0 ∈ Li ⊆ [b] for
each i. We refer to the elements of S as corners. The region covered by a corner
(x1, . . . , xn) ∈ S is defined to be the set {(y1, . . . , yn) ∈ [b]n : ∀i, xi ≤ yi < dxie}
where dxie denotes the smallest value in Li which is larger than xi (by convention
dxie := b if no such value exists). The area covered by the corner (x1, . . . , xn) ∈ S

is therefore defined to be
∏n

i=1(dxie − xi). A refinement of S is a grid in [b]n of
the form L′

1 × L′
2 × · · · × L′

n where each Li ⊆ L′
i.

Lemma 9. Let S be a grid L1 × L2 × · · · × Ln in [b]n such that each |Li| ≤ `.
Let IS denote the set of indices for which Li 6= {0}. If |IS| ≤ κ, then S admits
a refinement S′ = L′

1 × L′
2 × · · · × L′

n such that

1. All of the sets L′
i which contain more than one element have the same number

of elements: Lmax, which is at most ` + Cκ`, where C = b
κ` · 1

bb/4κ`c ≥ 4.

2. Given a list of the sets L1, . . . , Ln as input, a list of the sets L′
1, . . . , L

′
n can

be generated by an algorithm with a running time of O(nκ` log b).
3. L′

i = {0} whenever Li = {0}.
4. Any ε fraction of the corners in S′ cover a combined area of at most 2εbn.

Proof. Consider Algorithm 1 which, given S = L1 ×L2 × · · · ×Ln, generates S′.
The purpose of the code between lines 18–22 is to make every L′

i 6= {0}
contain equal number of elements. Therefore the algorithm keeps track of the
number of elements in the largest L′

i in a variable called Lmax and eventually
adds more (arbitrary) elements to those L′

i 6= {0} which have fewer elements.
It is clear that the algorithm satisfies Property 3 above.
Now consider the state of Algorithm 1 at line 18. Let i be such that |L′

i| =
Lmax. Clearly L′

i includes the elements in Li which are at most ` many. Moreover
every new element added to L′

i in the loop spanning lines 8-12 covers a section of
[b] of width τ , and thus b/τ = Cκ` elements can be added. Thus Lmax ≤ `+Cκ`.
At the end of the algorithm every L′

i contains either 1 element (which is {0}) or
Lmax elements. This gives us Property 1. Note that C ≥ 4 by construction.

Algorithm 1 Computing a refinement of the grid S with the desired properties.

1: Lmax ← 0.
2: for all 1 ≤ i ≤ n do

3: if Li = {0} then

4: L′
i ← {0}.

5: else

6: Consider Li = {xi
0, x

i
1 . . . , xi

`−1}, where xi
0 < xi

1 < · · · < xi
`−1 (Also let xi

` = b).
7: Set L′

i ← Li and τ ← bb/4κ`c.
8: for all r = 0, . . . , `− 1 do

9: if |xi
r+1 − xi

r| > τ then

10: L′
i ← L′

i ∪ {xi
r + τ, xi

r + 2τ, . . .} (up to and including the largest xi
r + j · τ

which is less than xi
r+1)

11: end if

12: end for

13: if |L′
i| > Lmax then

14: Lmax ← |L′
i|.

15: end if

16: end if

17: end for

18: for all 1 ≤ i ≤ n with |L′
i| > 1 do

19: while (|L′
i| < Lmax) do

20: L′
i ← L′

i ∪ {an arbitrary element from [b]}.
21: end while

22: end for

23: S
′ ← L′

1 × L′
2 × · · · × L′

n.

It is easy to verify that it satisfies Property 2 as well (the log b factor in the
runtime is present because the algorithm works with (log b)-bit integers).

Property 1 and the bound |IS| ≤ κ together give that the number of corners
in S is at most (` + Cκ`)κ. It is easy to see from the algorithm that the area
covered by each corner in S′ is at most bn

(Cκ`)κ (again using the bound on |IS|).
Therefore any ε fraction of the corners in S′ cover an area of at most:

ε(` + Cκ`)κ × bn

(Cκ`)κ
= ε(1 +

1

Cκ
)
κ

× bn <︸︷︷︸
C≥4

e1/3εbn < 2εbn.

This gives Property 4. ut
The following lemma is easy and useful; similar statements are given in [3].

Note that the lemma critically relies on the b-literals being basic.

Lemma 10. Let f : [b]n → {−1, 1} be expressed as an s-Majority of Parity

of basic b-literals. Then for each index 1 ≤ i ≤ n, there are at most 2s i-sensitive
values with respect to f .

Proof. A literal ` on variable xi induces two i-sensitive values. The lemma follows
directly from our assumption (see Section 2) that for each variable xi, each of
the s Parity gates has no more than one incoming literal which depends on
xi. ut

Algorithm 2 An improved algorithm for learning Majority of Parity of
basic b-literals.
1: L1 ← {0}, L2 ← {0}, . . . , Ln ← {0}.
2: loop

3: S← L1 × L2 × · · · × Ln.
4: S

′ ← the output of refinement algorithm with input S.
5: One can express S

′ = L′
1 × L′

2 × · · · × L′
n. If Li 6= {0} then L′

i =
{xi

0, x
i
1 . . . , xi

(Lmax−1)}. Let xi
0 < xi

1 < · · · < xi
t−1 and let τi : ZLmax

→ L′
i

be the translation function such that τi(j) = xi
j . If Li = L′

i = {0} then τi is the
function simply mapping 0 to 0.

6: Invoke GHS over f |S′ with accuracy ε/8. This is done by simulating
MEM(f |S′(x1, . . . , xn)) with MEM(f(τ1(x1), τ2(x2), . . . , τn(xn))). Let the output
of the algorithm be g.

7: Let h be a hypothesis function over [b]n such that h(x1, . . . , xn) =
g(τ−1

1 (bx1c), . . . , τ−1
n (bxnc)) (bxic denotes largest value in L′

i less than or equal
to xi).

8: if h ε-approximates f then

9: Output h and terminate.
10: end if

11: Perform random membership queries until an element (x1, . . . , xn) ∈ [b]n is found
such that f(bx1c, . . . , bxnc) 6= f(x1, . . . , xn).

12: Find an index 1 ≤ i ≤ n such that f(bx1c, . . . , bxi−1c, xi, . . . , xn) 6=
f(bx1c, . . . , bxi−1c, bxic, xi+1, . . . , xn). This requires O(log n) membership
queries using binary search.

13: Find a value σ such that bxic + 1 ≤ σ ≤ xi and f(bx1c, . . . , bxi−1c, σ −
1, xi+1, . . . , xn) 6= f(bx1c, . . . , bxi−1c, σ, xi+1, . . . , xn). This requires O(log b)
membership queries using binary search.

14: Li ← Li ∪ {σ}.
15: end loop

Algorithm 2 is our extension of the GHS algorithm. It essentially works by re-
peatedly running GHS on the target function f but restricted to a small (relative
to [b]n) grid. To upper bound the number of steps in each of these invocations
we will be referring to the result of Theorem 8. After each execution of GHS, the
hypothesis defined over the grid is extended to [b]n in a natural way and is tested
for ε-accuracy. If h is not ε-accurate, then a point where h is incorrect is used to
identify a new sensitive value and this value is used to refine the grid for the next
iteration. The bound on the number of sensitive values from Lemma 10 lets us
bound the number of iterations. Our theorem about Algorithm 2’s performance
is the following:

Theorem 9. Let concept class C consist of s-Majority of r-Parity of basic
b-literals such that s = poly(n log b) and each f ∈ Cn,b has at most κ(n, b) non-
trivial indices and at most `(n, b) i-sensitive values for each i = 1, . . . , n. Then

C is efficiently learnable if r = O(log(n log b)
log log κ`).

Proof. We assume b = ω(κ`) without loss of generality. Otherwise one immedi-
ately obtains the result with a direct application of GHS through Theorem 8.

We clearly have κ ≤ n and ` ≤ 2s. By Lemma 10 there are at most
κ` = O(ns) sensitive values. We will show that the algorithm finds a new sensi-
tive value at each iteration and terminates before all sensitive values are found.
Therefore the number of iterations will be upper bounded by O(ns). We will
also show that each iteration runs in poly(n, log b, ε−1) steps. This will establish
the desired result.

Let’s first establish that step 6 takes at most poly(n, log b, ε−1) steps. To
observe this it is sufficient to combine the following facts:

– Due to the construction of Algorithm 1 for every non-trivial index i of f ,
L′

i has fixed cardinality = Lmax. Therefore GHS could be invoked over the
restriction of f onto the grid, f |S′ , without any trouble.

– If f is s-Majority of r-Parity of basic b-literals, then the function obtained
by restricting it onto the grid: f |S′ could be expressed as t-Majority of u-
Parity of basic L-literals where t ≤ s, u ≤ r and L ≤ O(κ`) (due to the 1st

property of the refinement).
– Running GHS over a grid with alphabet size O(κ`) in each non-trivial in-

dex takes poly(n, log b, ε−1) time if the dimension of the rectangles are r =

O(log(n log b)
log log κ`) due to Theorem 8. The key idea here is that running GHS over

this κ`-size alphabet lets us replace the “b” in Theorem 8 with “κ`”.

To check whether if h ε-approximates f at step 8, we may draw O(1/ε) ·
log(1/δ) uniform random examples and use the membership oracle to empirically
estimate h’s accuracy on these examples. Standard bounds on sampling show
that if the true error rate of h is less than (say) ε/2, then the empirical error
rate on such a sample will be less than ε with probability 1 − δ. Observe that
if all the sensitive values are recovered by the algorithm, h will ε-approximate
f with high probability. Indeed, since g (ε/8)-approximates f |S′ , Property 4 of
the refinement guarantees that misclassifying the function at ε/8 fraction of the
corners could at most incur an overall error of 2ε/8 = ε/4. This is because when
all the sensitive elements are recovered, for every corner in S′, h either agrees
with f or disagrees with f in the entire region covered by that corner. Thus h
will be an ε/4 approximator to f with high probability. This establishes that the
algorithm must terminate within O(ns) iterations of the outer loop.

Locating another sensitive value occurs at steps 11, 12 and 13. Note that h
is not an ε-approximator to f because the algorithm moved beyond step 8. Even
if we were to correct all the mistakes in g this would alter at most ε/8 fraction
of the corners in the grid S′ and therefore ε/4 fraction of the values in h – again
due to the 4th property of the refinement and the way h is generated. Therefore
for at least 3ε/4 fraction of the domain we ought to have f(bx1c, . . . , bxnc) 6=
f(x1, . . . , xn) where bxic denotes largest value in L′

i less than or equal to xi.
Thus the algorithm requires at most O(1/ε) random queries to find such an
input in step 11.

Thus we have observed that steps 6, 8, 11, 12, 13 take at most poly(n, log b, ε−1)
steps. Therefore each iteration of Algorithm 2 runs in poly(n, log b, ε−1) steps as
claimed.

We note that we have been somewhat cavalier in our treatment of the failure
probabilities for various events (such as the possibility of getting an inaccurate

estimate of h’s error rate in step 9, or not finding a suitable element (x1, . . . , xn)
soon enough in step 11). A standard analysis shows that all these failure prob-
abilities can be made suitably small so that the overall failure probability is at
most δ within the claimed runtime. ut

6 Applications to learning unions of rectangles

In this section we apply the results we have obtained in Sections 4 and 5 to
obtain results on learning unions of rectangles and related classes.

6.1 Learning majorities and unions of many low-dimensional
rectangles

The following lemma will let us apply our algorithm for learning Majority of
Parity of b-literals to learn Majority of And of b-literals:

Lemma 11. Let f : {−1, 1}n → {−1, 1} be expressible as an s-Majority of
r-And of Boolean literals. Then f is also expressible as a O(ns2)-Majority of
r-Parity of Boolean literals.

We note that Krause and Pudlák gave a related but slightly weaker bound in
[16]; they used a probabilistic argument to show that any s-Majority of And

of Boolean literals can be expressed as an O(n2s4)-Majority of Parity. Our
boosting-based argument below closely follows that of [12, Corollary 13].

Proof of Lemma 11: Let f be the Majority of h1, . . . , hs where each hi is
an And gate of fan-in r. By Lemma 2, given any distribution D there is some
And function hj such that |ED[fhj]| ≥ 1/s. It is not hard to show that the
L1-norm of any And function is at most 4 (see, e.g., [17, Lemma 5.1] for a
somewhat more general result), so we have L1(hj) ≤ 4. Now the argument from
the proof of Lemma 8 shows that there must be some parity function χa such
that |ED[fχa]| ≥ 1/4s, where the variables in χa are a subset of the variables in
hj – and thus χa is a parity of at most r literals. Consequently, we can apply the
boosting algorithm of [7] stated in Theorem 4, choosing the weak hypothesis to
be a Parity with fan-in at most r at each stage of boosting, and be assured that
each weak hypothesis has advantage at least 1/4s at every stage of boosting. If
we boost to accuracy ε = 1

2n+1 , then the resulting final hypothesis will have zero

error with respect to f and will be a Majority of O(log(1/ε)/s2) = O(ns2)
many r-Parity functions. Note that while this argument does not lead to a
computationally efficient construction of the desired Majority of r-Parity, it
does establish its existence, which is all we need. ut

Note that clearly any union (Or) of s many r-rectangles can be expressed
as an O(s)-Majority of r-rectangles as well.

Theorem 1 and Lemma 11 together give us Theorem 2. (In fact, these re-
sults give us learnability of s-Majority of r-And of b-literals which need not
necessarily be basic.)

6.2 Learning unions of fewer rectangles of higher dimension

We now show that the number of rectangles s and the dimension bound r of
each rectangle can be traded off against each other in Theorem 2 to a limited
extent. We state the results below for the case s = poly(log(n log b)), but one
could obtain analogous results for a range of different choices of s.

We require the following lemma:

Lemma 12. Any s-term r-DNF can be expressed as an rO(
√

r log s)-Majority

of O(
√

r log s)-Parity of Boolean literals.

Proof. [15, Corollary 13] states that any s-term r-DNF can be expressed as an

rO(
√

r log s)-Majority of O(
√

r log s)-Ands. By considering the Fourier represen-
tation of an And, it is clear that each t-And in the Majority can be replaced
by at most 2O(t) many t-Paritys, corresponding to the parities in the Fourier
representation of the And. This gives the lemma. ut

Now we can prove Theorem 3, which gives us roughly a quadratic improve-
ment in the dimension r of rectangles over Theorem 2 when s = poly(log(n log b)).

Proof of Theorem 3: First note that by Lemma 10, any function in Cn,b can
have at most κ = O(rs) = poly(log(n log b)) non-trivial indices, and at most
` = O(s) = poly(log(n log b)) many i-sensitive values for all i = 1, . . . , n. Now
use Lemma 12 to express any function in Cn,b as an s′-Majority of r′-Parity

of basic b-literals where s′ = rO(
√

r log s) = poly(n log b) and r′ = O(
√

r log s) =

O(log(n log b)
log log log(n log b)). Finally, apply Theorem 9 to obtain the desired result. ut
Note that it is possible to obtain a similar result for learning poly(log(n log b))

union of O(log2(n log b)
(log log(n log b))4)-And of b-literals if one were to invoke Theorem 1.

6.3 Learning majorities of unions of disjoint rectangles

A set {R1, . . . , Rs} of rectangles is said to be disjoint if every input x ∈ [b]n

satisfies at most one of the rectangles. Learning unions of disjoint rectangles over
[b]n was studied by [3], and is a natural analogue over [b]n of learning “disjoint
DNF” which has been well studied in the Boolean domain (see e.g. [14, 2]).

We observe that when disjoint rectangles are considered Theorem 2 extends
to the concept class of majority of unions of disjoint rectangles; enabling us to
improve the depth of our circuits by 1. This extension relies on the easily verified
fact that if f1, . . . , ft are functions from [b]n to {−1, 1}n such that each x satisfies
at most one fi, then the function Or(f1, . . . , ft) satisfies L1(Or(f1, . . . , ft)) =
O(L1(f1)+· · ·+L1(f(t))). This fact lets us apply the argument behind Theorem 6
without modification, and we obtain Corollary 1. Note that only the rectangles
connected to the same Or gate must be disjoint in order to invoke Corollary 1.

6.4 Conclusions and future work

For future work, besides the obvious goals of strengthening our positive results,
we feel that it would be interesting to explore the limitations of current tech-
niques for learning unions of rectangles over [b]n. At this point we cannot rule

out the possibility that the Generalized Harmonic Sieve algorithm is in fact a
poly(n, s, log b)-time algorithm for learning unions of s arbitrary rectangles over
[b]n. Can evidence for or against this possibility be given? For example, can one
show that the representational power of the hypotheses which the Generalized
Harmonic Sieve algorithm produces (when run for poly(n, s, log b) many stages)
is – or is not – sufficient to express high-accuracy approximators to arbitrary
unions of s rectangles over [b]n?

References

[1] A. Akavia, S. Goldwasser, S. Safra, Proving Hard Core Predicates Using List

Decoding, Proc. 44th FOCS: 146–156 (2003).
[2] H. Aizenstein, A. Blum, R. Khardon, E. Kushilevitz, L. Pitt, D. Roth, On Learning

Read-k Satisfy-j DNF, SIAM Journal on Computing, 27(6): 1515–1530 (1998).
[3] A. Beimel, E. Kushilevitz, Learning Boxes in High Dimension, Algorithmica,

22(1/2): 76–90 (1998).
[4] J. Bruck. Harmonic analysis of polynomial threshold functions, SIAM Journal on

Discrete Mathematics, 3(2): 168–177 (1990).
[5] Z. Chen and S. Homer, The Bounded Injury Priority Method and The Learnability

of Unions of Rectangles, Annals of Pure and Applied Logic, 77(2): 143–168 (1996).
[6] Z. Chen and W. Maass, On-line Learning of Rectangles and Unions of Rectangles,

Machine Learning, 17(2/3): 23–50 (1994).
[7] Y. Freund, Boosting a Weak Learning Algorithm by Majority, Proceedings of the

3rd Annual Workshop on Computational Learning Theory, 202–216 (1990).
[8] Y. Freund and R. Schapire. A short introduction to boosting, Journal of the

Japanese Society for Artificial Intelligence, 14(5): 771-780 (1999).
[9] P. W. Goldberg, S. A. Goldman, H. D. Mathias, Learning Unions of Boxes with

Membership and Equivalence Queries, Proceedings of the 7th Annual ACM Con-
ference on Computational Learning Theory: 198 – 207 (1994).

[10] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, G. Turan, Threshold Circuits of

Bounded Depth, J. Comp. & Syst. Sci. 46: 129–154 (1993).
[11] J. H̊astad, Computational Limitations for Small Depth Circuits, MIT Press, Cam-

bridge, MA (1986).
[12] J. C. Jackson, An Efficient Membership-Query Algorithm for Learning DNF with

Respect to the Uniform Distribution, J. Comp. & Syst. Sci. 55(3): 414–440 (1997).
[13] J. C. Jackson, A. R. Klivans, R. A. Servedio, Learnability Beyond AC

0, Proceed-
ings of the 34th Symposium on Theory of Computing (STOC): 776–784 (2002).

[14] R. Khardon. On Using the Fourier Transform to Learn Disjoint DNF, Information
Processing Letters,49(5): 219–222 (1994).

[15] A. R. Klivans, R. A. Servedio, Learning DNF in Time 2Õ(n1/3), Proceedings of
the 33rd Symposium on Theory of Computing (STOC): 258–265 (2001).

[16] M. Krause and P. Pudlák, Computing Boolean Functions by Polynomials and

Threshold Circuits, Computational Complexity 7(4): 346–370 (1998).
[17] E. Kushilevitz and Y. Mansour, Learning Decision Trees using the Fourier Spec-

trum, SIAM Journal on Computing 22(6): 1331-1348 (1993).
[18] W. Maass and M. K. Warmuth, Efficient Learning with Virtual Threshold Gates,

Information and Computation, 141(1): 66–83 (1998).
[19] R. E. Schapire, The Strength of Weak Learnability, Machine Learning 5: 197–227

(1990).

