On Learning Embedded Midbit Functions

Rocco A. Servedio!

Division of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138 USA
rocco@deas.harvard.edu
http://wuw.cs.harvard.edu/ rocco

Abstract. A midbit function on ¢ binary inputs z1,...,z, outputs the
middle bit in the binary representation of z; + --- + z;. We consider
the problem of PAC learning embedded midbit functions, where the set
S C {z1,...,zn} of relevant variables on which the midbit depends is
unknown to the learner.

To motivate this problem, we first show that a polynomial time learning
algorithm for the class of embedded midbit functions would immediately
yield a fairly efficient (quasipolynomial time) PAC learning algorithm
for the entire complexity class ACC. We then give two different subex-
ponential learning algorithms, each of which learns embedded midbit
functions under any probability distribution in V718 ™ time. Finally,
we give a polynomial time algorithm for learning embedded midbit func-
tions under the uniform distribution.

1 Introduction

A central goal of computational learning theory is to understand the computa-
tional complexity of learning various classes of Boolean functions. While much
research has been devoted to learning syntactic classes such as decision trees,
DNF formulas, and constant depth circuits, researchers have also considered var-
ious “semantically defined” classes as well. A natural and important class of this
sort is the class of embedded symmetric functions which was studied by Blum et
al. [5]. (Recall that a Boolean function is symmetric if its value depends only on
the number of input bits which are set to 1.) An embedded symmetric function
is a Boolean function which depends only on some subset of its input variables
and is a symmetric function on this subset, i.e., it is a symmetric function whose
domain is “embedded” in a larger domain containing irrelevant variables.

In this paper we give a detailed PAC learning analysis of an interesting and
natural family of embedded symmetric functions, namely the embedded mid-
bit functions. An embedded midbit function is defined by a subset iy,...,45 of
variables from {1,...,n}. The value of this embedded midbit function on an
input z € {0,1}" is the value of the middle bit in the binary representation of
Zi; + Ty + -+ + x;,. As described below, we show that the class of embedded
midbit functions has many interesting properties from a PAC learning perspec-
tive.

2 Rocco A. Servedio

1.1 Our Results

We first give a hardness result (Theorem 2) for learning embedded midbit func-
tions in the standard PAC model of learning from random examples drawn from
an arbitrary probability distribution. Using Green et al.’s characterization of the
complexity class ACC [9], we show that if there is a PAC learning algorithm for
the class of embedded midbit functions which runs in polynomial time (or even
quasipolynomial time), then the class ACC of constant-depth, polynomial-size
circuits of unbounded fanin AND/OR/MOD,,, gates can also be PAC learned in
quasipolynomial time. This would be a major breakthrough since, as described
in Section 3, the fastest PAC learning algorithms to date for even very restricted
subclasses of ACC require much more than quasipolynomial time. Our hard-
ness result strengthens an earlier hardness result of Blum et al. for embedded
symmetric functions, and establishes an interesting connection between learning
the “semantic” class of embedded midbit functions and learning rich syntactic
classes.

While Theorem 2 implies that it may be difficult to learn embedded midbit
functions efficiently under an arbitrary distribution, this does not mean that
PAC learning algorithms for embedded midbit functions must require exponen-
tial time. In Section 4 we give two different subexponential time PAC learning
algorithms, each of which can learn embedded midbit functions over n variables
in time nOWn),

Finally, by means of a careful analysis of the correlation of single variables
and pairs of variables with embedded midbit functions, we show in Section 5 that
embedded midbit functions can be learned in polynomial time under the uniform
distribution. Embedded midbit functions thus give a simple and natural concept
class which seems to exhibit a large gap between the complexity of learning in
the uniform distribution PAC model and the general (arbitrary distribution)
PAC model.

2 Preliminaries

Throughout this paper S denotes a subset of the variables {z1,...,z,} and s
denotes |S|. All logarithms are base 2.

Definition 1. For S #) the embedded midbit function Mg : {0,1}" — {0,1} is
defined as Mg(x) = the value of the |log(s)/2]-th bit in the binary representation
of Y g xi, where we consider the least significant bit to be the 0-th bit. (We
take My(z) to be identically 0.) The class Cpiq of embedded midbit functions is
Cmia = {Ms}scias,...an}-

We write Cgypm to denote the class of all embedded symmetric functions on
{0,1}" as described in Section 1; note that Cpig C Csym.

Definition 2. Given an embedded midbit function Ms(z), let fs : {0,1,...,5} —
{0,1} be the unique function such that Ms(x) = fs(3°gx:) for all x € {0,1}".
We say that fs is the basis function of Mg(z) and we refer to the (s + 1)-bit
string fs(0)fs(1)... fs(s) as the pattern of fs.

On Learning Embedded Midbit Functions 3

If f, is the basis function for Mg then the pattern for f, is a concatenation of
strings of the form 0%(8)1%(s) where k(s) = 211°8(s)/2] and the concatenation is
truncated to be of length precisely s+ 1. It is easy to see that \/s/2 < k(s) < +/s.

A function f is quasipolynomial if f(n) = 2(l°8 Y We write [a mod b] to
denote the unique real number r € [0,b) such that a = kb+r for some integer k.

2.1 The learning model

We work in the standard Probably Approximately Correct (PAC) learning model
[17] and the uniform distribution variant of the PAC model. Let C be a class
of Boolean functions over {0,1}". In the PAC model, a learning algorithm has
access to a random example oracle EX(c, D) which when invoked in one time
step provides a labeled example (z, c(z)) € {0,1}"x {0, 1} where z is drawn from
the distribution D over {0,1}". An algorithm A is a PAC learning algorithm for
class C if the following holds: for all ¢ € C and all distributions D over {0,1}",
if A is given as input €,0 > 0 and A is given access to EX (¢, D), then with
probability at least 1 — ¢ the output of A is a hypothesis h : {0,1}" — {0,1}
such that Pryeple(z) # h(z)] < e. (Strictly speaking, the output of A is some
particular representation of h such as a Boolean circuit.) Algorithm A is said to
run in time ¢ if (i) the worst case running time of A (over all choices of ¢ € C
and all distributions D) is at most ¢, and (ii) for every output h of A and all
z € {0,1}", h(z) can be evaluated in time ¢.

If A satisfies the above definition only for some fixed distribution D (such
as the uniform distribution on {0,1}"), then we say that A is a PAC learning
algorithm for C' under distribution D.

3 Hardness of Learning Embedded Midbit Functions

In this section we show that learning embedded midbit functions is almost as
difficult as learning a rich syntactic class which contains decision trees, DNF
formulas, and constant depth circuits.

3.1 Background: Hardness of Learning C,ym

We first describe a result of Blum et al. which gives some evidence that the
broader class Csym of embedded symmetric functions may be hard to PAC learn
in polynomial time. Let Cj,, denote the class of Boolean functions on n bits
which have at most logn relevant variables. Note that like Cjyyy,, the class Ciog
has the property that learning is no more difficult than finding relevant variables
— in either case, once the set of relevant variables has been identified, learning
is simply a matter of observing and filling in at most n “table entries” which
define the function (these entries are the bits of the pattern for a function from
Csym, and are the values of the function on all 2'9g 7 inputs for a function from
Clog)-

4 Rocco A. Servedio

Building on this intuition, Blum et al. gave a polynomial time prediction-
preserving reduction from Cj,g to Cgym, thus showing that if Cyp, can be PAC
learned in polynomial time then Cj,, can also be PAC learned in polynomial
time. Since no polynomial time learning algorithm is yet known for Cj,g, this
gives some evidence that C,,,, may not be learnable in polynomial time.

3.2 Hardness of Learning C,,;q

The class ACC was introduced by Barrington [2] and since been studied by
many researchers, e.g. [1,3,4,9,12,18,19]. ACC consists of languages recognized
by a family of constant-depth polynomial-size circuits with NOT gates and un-
bounded fanin AND, OR and MOD,,, gates, where m is fixed for each circuit fam-
ily. In the context of learning theory ACC is quite an expressive class, containing
as it does polynomial size decision trees, polynomial size DNF formulas, and the
well-studied class AC? of constant-depth polynomial-size AND/OR/NOT cir-
cuits.

Building on work of Beigel and Tarui [4], Green et al. [9] have given the
following characterization of ACC :

Theorem 1. For each L € ACC there is a depth-2 circuit which recognizes
LN{0,1}" and has the following structure: the top-level gate computes a midbit

function of its inputs, and the bottom level consists of 2(1°8 m°" AND gates each
of fanin (logn)°W,

Using this characterization we obtain the following hardness result for learn-
ing Crnid :

Theorem 2. If Cpiq can be PAC learned in polynomial (or even quasipolyno-
mial) time, then ACC can be PAC learned in quasipolynomial time.

Proof. Let f : {0,1}" — {0,1} be the target ACC function. Let g(n) = 2(os™)"”
be an upper bound on the number of AND gates on the bottom level of the
Green et al. representation for f, and let £(n) = (logn)°(") be an upper bound
on the fanin of each bottom level AND gate. Given an instance z € {0,1}"
we generate a new instance z’ € {0,1}™ where m = 20108™°" by listing
g(n) copies of each AND of at most £(n) variables from z1,...,2,. Theorem
1 implies that there is an embedded midbit function f’ on m bits such that
f(z) = f'(z") for all z € {0,1}". By assumption we can PAC learn this function
£ in 2008 m)°® — 9logm)®™ time g5 the theorem is proved.

We note that while our reduction only establishes quasipolynomial time learn-
ability for ACC' from learnability of C),;4, whereas the Blum reduction would
establish polynomial time learnability of Cj,g, the class ACC is likely to be much
harder to learn than Cj, . While Cj,, can be PAC learned in n'°8™ time by doing
an exhaustive search for the set of log n relevant variables, no learning algorithm
for ACC is known which runs in subexponential time. In fact, no such algorithm

On Learning Embedded Midbit Functions 5

is known even for the subclass of polynomial-size, depth 3 AND/OR/NOT cir-
cuits; to date the most expressive subclass of ACC which is known to be PAC
learnable in subexponential time is the class of polynomial-size AND/OR/NOT
circuits of depth 2, which has recently been shown by Klivans and Servedio [11]

to be PAC learnable in time 20(n'/?)

4 Learning embedded midbit functions in n®Vv™ time

The results of Section 3 suggest that the class of embedded midbit functions may
not be PAC learnable in quasipolynomial time. However, we will show that it
is possible to learn this class substantially faster than a naive exponential time
algorithm. In this section we describe two different algorithms each of which
PAC learns Cy,iq in time n@(Vn)

4.1 An algorithm based on learning linear threshold functions

Our first approach is a variant of an algorithm given by Blum et al. in section
5.2 of [5].

Definition 3. Let f: {0,1}" — {0,1} be a Boolean function and p(z1,...,zy)
a real-valued polynomial. We say that p(x) sign-represents f(x) if for all x €
{0,1}", p(z) > 0 iff f(z) = 1.

Claim. Let Mg be an embedded midbit function. Then there is a polynomial
ps(z1,---,T,) of degree O(y/n) which sign-represents Mg(z).

Proof. Let fs be the basis function for Mg. Since k(s) = 2(+/s), the number of
“flip” positions in the pattern of f; where fs(7) # fs(i + 1) is O(y/s). Since the
pattern for fs has O(y/s) flips, there is some polynomial P(X) of degree O(+/s)
which is nonnegative on precisely those ¢ € {0,1,...,s} which have f;(i) = 1.
This implies that ps(z1,...,2n) = P(D_g ;) sign-represents Mg(x). Since the
degree of ps is O(1/s) and s < n the claim is proved.

Consider the expanded feature space consisting of all monotone conjunctions
of at most O(y/n) variables. (Note that this feature space contains ZZO:(I/E)i =
nP" features.) Claim 4.1 implies that Ms(z) is equivalent to some linear
threshold function over this space. Thus we can use known polynomial time
PAC learning algorithms for linear threshold functions [6] over this expanded
feature space to learn embedded midbit functions in n®V?) time.

We note that one can show that the sign-representing polynomial ps(z1, ..., z,)
described in Claim 4.1 can be taken without loss of generality to have integer
coefficients of total magnitude n®(V™)_ This implies that simple algorithms such
as Winnow or Perceptron can be used to learn in n°(V™ time (instead of the
more sophisticated algorithm of [6] which is based on polynomial time linear pro-
gramming). We also note that in [13] Minsky and Papert used a symmetrization
technique to give a lower bound on the degree of any polynomial which sign-
represents the parity function. The same technique can be used to show that the
O(y/n) degree bound of Claim 4.1 is optimal for embedded midbit functions.

6 Rocco A. Servedio

4.2 An algorithm based on learning parities

We have seen that any embedded midbit function is equivalent to some linear
threshold function over the feature space of all O(y/n)-size monotone conjunc-
tions. We now show that any embedded midbit function is equivalent to some
parity over this feature space as well.

Lemma 1. Letr,{ > 0. Then (,) is even if and only if
[r mod 271] € {0,1,...,2¢ — 1}.

Proof. By induction on £. The base case £ = 0 is trivial; we suppose that the
claim holds for £ =0,...,7—1 for some ¢ > 1. For the induction step we use the
fact (Exercise 5.61 of [8]) that

(L) = (LL;%J) ([Eniiif]) (mod p)

for all primes p and all r,m > 0. Taking p = 2 and m = 2¢, since i > 1 we have

r\ _ [lr/2]\ ([r mod 2]\ _ [|r/2]
(1) = (572) (42 = (572)
By the induction hypothesis this is 0 if and only if [|7/2] mod 2¢] € {0,1,...,2¢71 -

1}, which holds if and only if [r mod 2i*!] € {0,1,...,2¢ — 1}.

Claim. Let Mg be an embedded midbit function. Then Mg(z) is equivalent to
some parity of monotone conjunctions each of which contains at most O(y/n)
variables.

Proof. Let @ denote the parity function. We have

Ms(z) = 0 <= [log(s)/2|-th bit of > z;is 0
S

= lz x; mod 2U°g(s)/2J+1] € {0,1,. __’2L103(8)/2J -1}
s

= (gt) = (507) s even

9llo&(s)/2] k(s)
= @ (A x> —o.
ACS, A|=k(s) \icA

The third step is by Lemma 1 and the last step is because for any z exactly

(zk:(ss)z’) of the conjunctions {A;c4 i} acs, aj=k(s) take value 1. Since k(s) =

O(y/n) the claim is proved.

As in the discussion following Claim 4.1, Claim 4.2 implies that we can use
known PAC learning algorithms for parity [7, 10] over an expanded feature space
to learn embedded midbit functions in n®V™) time.

On Learning Embedded Midbit Functions 7

5 A polynomial time algorithm for learning embedded
midbits under uniform

In [5] Blum et al. posed as an open problem the question of whether embedded
symmetric concepts can be learned under the uniform distribution in polyno-
mial time. In this section, we show that embedded midbit functions can be PAC
learned under the uniform distribution in polynomial time. This is in strong con-
trast to the results of Section 3 which indicate that embedded midbit functions
probably cannot be PAC learned (in even quasipolynomial time) under arbitrary
probability distributions.
Throughout this section we let ¢(s) denote Lﬁj

5.1 First approach: testing single variables

To learn Mg it is sufficient to identify the set S C {z1,...,z,} of relevant
variables. A natural first approach is to test the correlation of each individual
variable with Mg(z); clearly variables not in S will have zero correlation, and
one might hope that variables in S will have nonzero correlation. However this
hope is incorrect as shown by Lemma 3 below.

For 1 < i < n define p; = Pr{Mgs(z) = 1|z; = 1] — Pr[Mg(z) = 1]. The
following fact is easily verified:

Fact 3 Ifi ¢ S then p; = 0.

Lemma 2. Ifi € S then

t(s) _
p= g 0 (ool 0

=1

Proof. Since the distribution on examples is uniform over {0, 1}", the probability
that exactly £ of the s relevant variables are 1 is exactly (})/2°. Hence we have

pi=2sl,1 > (;:D_% 2 (Z)

Lf.(£)=1 L:f.(£)=1

Using the identity (3)

ner = ((2D)-(3Y)

fs ([):1

(-1 + (°,') we find that

Cancelling terms where possible we obtain (1).

Lemma 3. There are embedded midbit functions Mg(x) with S a proper subset
of {z1,...,2n} such that p; =0 for oll 1 <i < n.

8 Rocco A. Servedio

Proof. By Fact 3 for i ¢ S we have p; = 0. Suppose that t(s) is even and
t(s)k(s) =1 = s — 1 — (k(s) — 1). Then the expression for p; given in (1) is

exactly O since the positive and negative binomial coefficients i(({k?;)l—l) and

q:((t(s)—li_ll)k(s)—l) cancel each other out (e.g. take s = 27,k(s) = 4,t(s) = 6).

Thus the correlation of individual variables with Mg (z) need not provide
information about membership in S. However, we will show that by testing
correlations of pairs of variables with Mg(x) we can efficiently determine whether
or not a given variable belongs to S.

5.2 Second approach: testing pairs of variables

For 1 < i,j < mn,i # jlet p;; = Pr[Mg(z) = 1|z; = z; = 1] — Pr[Mg(z) =
1|z; = 1]. Similar to Fact 3 we have:

Fact 4 Ifi ¢ S then p;; = 0.

Lemma 4. Ifi€ S and j € S then

1 &, s-2
_ -1
=1
Proof. We have
1 §—2 1 s—1
Pii= g3 2 (5—2) =P (5—1)'

e.(0)=1 e.(0)=1

Rearranging the sum as in Lemma 2 proves the lemma.

Our algorithm is based on the fact (Theorem 5 below) that quantities (1)
and (2) cannot both be extremely close to 0.

Theorem 5. Let k be even and \/s/2 < k < +/s. Let

_i _ -1 S—]. _ 1 . —1 8—2
A=52.(1 (Ek—l) and B =55 Z(D" —2)

I3

Then max{|A|,|B|} > 10(1)0s‘

The proof of Theorem 5 is somewhat involved and is deferred to Section 5.3.

With Theorem 5 in hand we can prove our main positive learning result for
Cmid-

Theorem 6. The class of embedded midbit functions is learnable under the uni-
form distribution in polynomial time.

On Learning Embedded Midbit Functions 9

Input: variable z; € {z1,...,zs}
Output: either “x; € S” or “x; ¢ S” correct with probability 1 — %

let T be a sample of m = poly(n, log 1) labeled examples (x, Ms(z))
let p; be an empirical estimate of p; obtained from T
for all j € {1,...,n} — {3}
let p;,; be an empirical estimate of p; ; obtained from T'
if |pi| > 5555 OF |Pi.i| > 5p05, for some j € {1,...,n} — {i}
then output “ € §”
else output “; ¢ S”

NS e R W

Fig. 1. An algorithm to determine whether z; is relevant for Mg(x).

Proof. Since there are fewer than n® midbit functions Mg(z) which have s < 3
we can test each of these for consistency with a polynomial size random sample
in polynomial time, and thus we can learn in polynomial time if s < 3. We
henceforth assume that s > 4 and thus that k(s) > 2 is even.

We show that the algorithm in Figure 1 correctly determines whether or not
z; € S with probability 1 — %. By running this algorithm n times on variables
Z1,---,ZT, we can identify the set S and thus learn Mg correctly with probability
1-0.

Case 1: z; ¢ S. In this case by Facts 3 and 4 we have p; = p; ; = 0. Hence for
a suitably chosen value of m = poly(n, log(%)) each of the n empirical estimates
i, Pi,j will satisfy |ps| < 5505= and |pi,j| < 355> with probability 1 — Eég. Thus
in this case the algorithm outputs “z; ¢ S” with probability at least 1 — %.

Case 2: z; € S. Since s > 4 there is some z; # z; such that z; € S.
Lemmas 2 and 4 and Theorem 5 imply that the true value of at least one of
pil, |pi,j| will be at least 1565z > Toag- As before, for a suitably chosen value
of m = poly(n, log(%)), each of the n empirical estimates p;, p; ; will differ from
its true value by less than 55i— with probability 1 — 2. Thus in this case the

algorithm outputs “z; € S” with probability at least 1 — %.

5.3 Proof of Theorem 5

The following lemma gives a useful expression for sums in the form of (1) and

2).

Lemma 5. Letr,j, k > 0 with k even. Then

S0 () -

J4

10 Rocco A. Servedio

Proof. We reexpress the left side as

; (4(2’6) +T(k - J‘)> - ; <E(2k3 - j)' (4)

The following well known identity (see e.g. [15,16]) is due to Ramus [14]:

S (a") i (o) o ()

Applying this identity to (4) we obtain

2k r . 2k T .
1 b (r—2k+2§)r br (r + 2j)tm
ﬁ (l:E . (2 COS ﬁ) COS (T) — E (2 COS ﬁ) COS (T

=1

Since even terms cancel out in the two sums above, we obtain

- (zzzk (2 g_k) (0‘ *;g’“)) , (5)

Consider the term of this sum obtained when ¢ = 2k — h for some odd value h:

(2 o (2k2—kh)7r)r o ((r + 2j)2(ik - h)w)

— (—1)rHrt29) (2 cos ;_7:) " cos ((r + 2;'36(—h)7r>

_ hm\" (r +2j)hw
= <2cos ﬁ) cos <T>

This equals the term obtained when ¢ = h. Since k = 2m is even we have that
(5) equals the right side of (3).

The following two technical lemmas will help us analyze the right hand side
of equation (3). No attempt has been made to optimize constants in the bounds.

Lemma 6. Let r,k be such that k > 4 is even and k2 — 2 < r < 4k%> — 1. Then
(i) for £=1,3,...,k — 3 we have 0 < (cos (£+2)”) < (cos ££)" /16,
(i) (cos &) > ois.

2

Proof. By considering the Taylor series of cosz one can show that 1 — & <
cosz <1— w3—2 for all z € [0, T].

Part (i): since 0 < £F < (E2)m Z, we have
cos (+2)m = cos il cos il si il si T
= — — —sin — sin —
2k 2k k 2k k

On Learning Embedded Midbit Functions 11

(+2)m\" 2\ [tx\’
A < - -
(COS 2k 1 3k2 €08 2k

and hence

fm(ﬁ—k)

1 o\’
SE- (cosﬂ> .

Here the third inequality uses (1 — 1) < e™! and the fourth inequality uses

k>4
Part (ii): we have

64
This is an increasing function of k so for k > 4 the value is at least <1 - %) >

L
200"

Lemma 7. For all real x and all odd £ > 3, we have | cos({z)| < £| cos z|.

Proof. Fix £ > 3. Let y = § — x so {| cosz| = {|siny| and

| cos(£x)| = |cos %r cos(ly) — sin %r sin(ﬁy)‘

= [sin(¢y)|

(note that we have used the fact that £ is odd). Thus we must show that
|sin(fy)| < #|siny|. This is clearly true if |siny| > }; otherwise we may suppose
that 0 < y < sin™* % (the other cases are entirely similar) so 0 < fy < Z. Now
sin(ly) < £siny follows from the concavity of siny on [0, 7] and the fact that
the derivative of siny is 1 at y = 0.

Using these tools we can now prove Theorem 5.

Theorem 5 Let k be even and \/s/2 < k < \/s. Let
_ 1 -1 85— 1 _ 1 1 85—2
A=5 ;(1 (zk - 1) and B =55 ;(V" =)

Then max{|A|,|B|} > 10(1JOS'

12 Rocco A. Servedio

Proof. By Lemma 5 we have

a="! (EZZk (g_g) (<s Z;)m)) (6)

and

B= %1 (ZZLE,kl (cos 2—7,;)32 cos (%)) . (7

First the easy case: if k = 2then4 < s < 15and A = S} (cos T)*~! cos (% ,

B = St(cos T)"2 cos (%) Since either ‘cos (%)‘ or ‘cos <%)
must be @ we have max{|A|,|B|} > 2—%1+—1 which is easily seen to be at least

1
mf0r4§8§15

Now suppose k > 4. For £ =3,...,k — 1 we have

e\t ((s+1)r (cos)" (s+ 1)tn
(COS ﬂ) COS (2%) ‘ S a1 + |COS (T)

L (1)5*1 (s+)m
a=1 (cos o cos o

where the first inequality is by repeated application of part (i) of Lemma 6 and
the second is by Lemma, 7. We thus have

(o) o (et 1tn
5 2% 2%
V4 s

<

£=35,....k—1

< X

£=3,5,....k—1

s—1 +1 — ¢
(cos;—k) cos((s % M)‘ZF
(cos ;—k)#l cos ((s _;kl)ﬁ) .

Thus the £ =1 term in the sum (6) dominates the sum and we have
13 1

w51 (s+m
i85 (oo gp) " eos (U]

13 (s+ 1)
> .
‘COS< 2k)‘

<

|4]

vV

|
W
o
S
=)
=

On Learning Embedded Midbit Functions 13

by part (ii) of Lemma 6. An identical analysis for B shows that

13 (s+2)m
B|>-—>_. BT
1812 3500% ‘COS(2%)‘

as well.
We now observe that
(s+1m (s+2)7 T T .
> S~) =sin—.
max{|cos T R Gy } > cos (2 4k) sin

Using Taylor series this is easily seen to be at least g. Hence we have

13 1 1
ALIBIY 2 g o > e >
max{| |7| |} = 3600k S8k > 1000k2 — 1000s

and the theorem is proved.

6 Acknowledgement

This research was supported by NSF Grant CCR-98-77049 and by an NSF Math-
ematical Sciences Postdoctoral Research Fellowship.

References

1. E. Allender and U. Hertrampf. Depth reduction for circuits of unbounded fan-in.
Information and Computation, 112(2):217-238, 1994.

2. D. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC'. Journal of Computer and System Sciences,
38(1):150-164, 1989.

3. D. Barrington and D. Therien. Finite monoids and the fine structure of NC*. J.
ACM, 35(4):941-952, 1988.

4. R. Beigel and J. Tarui. On ACC. Computational Complezity, 4:350-366, 1994.

5. A.Blum, P. Chalasani, and J. Jackson. On learning embedded symmetric concepts.
In Proceedings of the Sizth Annual Conference on Computational Learning Theory,
pages 337-346, 1993.

6. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929-965, 1989.

7. P. Fischer and H.U. Simon. On learning ring-sum expansions. SIAM Journal on
Computing, 21(1):181-192, 1992.

8. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-
Wesley, Reading, MA, 1994.

9. F. Green, J. Kobler, K. Regan, T. Schwentick, and J. Toran. The power of the
middle bit of a #P function. Journal of Computer and System Sciences, 50(3):456—
467, 1998.

10. D. Helmbold, R. Sloan, and M. Warmuth. Learning integer lattices. STAM Journal
on Computing, 21(2):240-266., 1992.

11. A. Klivans and R. Servedio. Learning DNF in time 200!%) 1 Proceedings of the
Thirty-Third Annual Symposium on Theory of Computing, pages 258—265, 2001.

14

12.

13.
14.
15.
16.
17.

18.

19.

Rocco A. Servedio

P. McKenzie and D. Therien. Automata theory meets circuit complexity. In Pro-
ceedings of the International Colloquium on Automata, Languages and Program-
ming, pages 589-602, 1989.

M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry.
MIT Press, Cambridge, MA, 1968.

C. Ramus. Solution générale d'un probleme d’analyse combinatoire. J. Reine
Agnew. Math., 11:353-355, 1834.

J. Riordan. An Introduction to Combinatorial Analysis. Wiley, New York, 1958.
J. Riordan. Combinatorial Identities. Wiley, New York, 1968.

L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-
1142, 1984.

A. Yao. Separating the polynomial time hierarchy by oracles. In Proceedings of
the Twenty-Sizth Annual Symposium on Foundations of Computer Science, pages
1-10, 1985.

A. Yao. On ACC and threshold circuits. In Proceedings of the Thirty-First Annual
Symposium on Foundations of Computer Science, pages 619-627, 1990.

