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ABSTRACT
We give a deterministic algorithm for approximately count-
ing satisfying assignments of a degree-d polynomial thresh-
old function (PTF). Given a degree-d input polynomial p(x)
over Rn and a parameter ε > 0, our algorithm approxi-
mates Prx∼{−1,1}n [p(x) ≥ 0] to within an additive ±ε in

time Od,ε(1) · poly(nd). (Since it is NP-hard to determine
whether the above probability is nonzero, any sort of efficient
multiplicative approximation is almost certainly impossible
even for randomized algorithms.) Note that the running
time of our algorithm (as a function of nd, the number of
coefficients of a degree-d PTF) is a fixed polynomial. The
fastest previous algorithm for this problem [Kan12b], based
on constructions of unconditional pseudorandom generators

for degree-d PTFs, runs in time nOd,c(1)·ε−c

for all c > 0.
The key novel technical contributions of this work are

• A new multivariate central limit theorem, proved us-
ing tools from Malliavin calculus and Stein’s Method.
This new CLT shows that any collection of Gaussian
polynomials with small eigenvalues must have a joint
distribution which is very close to a multidimensional
Gaussian distribution.

• A new decomposition of low-degree multilinear poly-
nomials over Gaussian inputs. Roughly speaking we
show that (up to some small error) any such polyno-
mial can be decomposed into a bounded number of
multilinear polynomials all of which have extremely
small eigenvalues.
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We use these new ingredients to give a deterministic al-
gorithm for a Gaussian-space version of the approximate
counting problem, and then employ standard techniques for
working with low-degree PTFs (invariance principles and
regularity lemmas) to reduce the original approximate count-
ing problem over the Boolean hypercube to the Gaussian
version.

As an application of our result, we give the first determin-
istic fixed-parameter tractable algorithm for the following
moment approximation problem: given a degree-d polyno-
mial p(x1, . . . , xn) over {−1, 1}n, a positive integer k and an
error parameter ε, output a (1± ε)-multiplicatively accurate
estimate to Ex∼{−1,1}n [|p(x)|k]. Our algorithm runs in time

Od,ε,k(1) · poly(nd).

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on Discrete Structures

General Terms
Theory

Keywords
Polynomial Threshold Function; Approximate Counting; De-
randomization

1. INTRODUCTION
For decades a major research goal in computational com-

plexity has been to understand the computational power
of randomization – and perhaps to show that randomness
does not actually augment the abilities of polynomial-time
algorithms. Towards this end, an important research goal
within unconditional derandomization has been the devel-
opment of deterministic approximate counting algorithms.
This line of research started with the work of Ajtai and
Wigderson [AW85], who gave a sub-exponential time de-
terministic algorithm to approximately count the number
of satisfying assignments of a constant-depth circuit. Since
this early work many other classes of Boolean functions have
been studied from this perspective, including DNF formulas,
low-degree GF [2] polynomials, linear threshold functions,
and degree-2 polynomial threshold functions [LVW93, LV96,
Tre04, GMR13, Vio09, GKM+11, DDS13a, DDS13b].

In this paper we study the problem of deterministic ap-
proximate counting for degree-d polynomial threshold func-



tions (PTFs). A degree-d PTF is a Boolean function f :
{−1, 1}n → {−1, 1} defined by f(x) = sign(p(x)) where
p : {−1, 1}n → R is a degree-d polynomial. In the special
case where d = 1, degree-d PTFs are often referred to as lin-
ear threshold functions (LTFs). While LTFs and low-degree
PTFs have been researched for decades (see e.g. [MK61,
MTT61, MP68, Mur71, GHR92, Orp92, H̊as94, Pod09] and
many other works), they have recently been the focus of
renewed research attention in fields such as concrete com-
plexity theory [She08, She09, DHK+10, Kan10, Kan12c,
Kan12a, KRS12], computational learning theory [KKMS08,
SSSS11, DOSW11, DDFS12], voting theory [APL07, DDS12]
and others.

Our main result. The main contribution of this paper is
to give a fixed polynomial time deterministic approximate
counting algorithm for degree-d PTFs. We prove the follow-
ing theorem:

Theorem 1. There is a deterministic algorithm A with
the following properties: Let A be given as input a degree-d
polynomial p over {−1, 1}n and an accuracy parameter ε >
0. Algorithm A runs in time Od,ε(1) · poly(nd) and outputs
a value ṽ ∈ [0, 1] such that

∣∣ṽ −Prx∈{−1,1}n [p(x) ≥ 0]
∣∣ ≤ ε.

Note that the above result guarantees an additive approx-
imation to the desired probability. While additive approx-
imation is not as strong as multiplicative approximation,
one should recall that the problem of determining whether
Prx∈{−1,1}n [p(x) ≥ 0] is nonzero is well known to be NP-
hard, even for degree-2 polynomials and even if all noncon-
stant monomials in p are restricted to have coefficients from
{0, 1} (this can be shown via a simple reduction from Max-
Cut). Thus unless NP ⊆ RP no efficient algorithm, even
allowing randomness, can give any multiplicative approxi-
mation to Prx∼{−1,1}n [p(x) ≥ 0]. Given this, additive ap-
proximation is a natural goal.

Related work. Several previous works have given poly(nd)-
time deterministic approximate counting algorithms for DNF
formulas of width d (see e.g. [Tre04, LV96, GMR13] as well
as the approach of [AW85] augmented with the almost t-
wise independent distributions of [NN93], as discussed in
[Tre04]). Degree-d PTFs are of course a broad generaliza-
tion of width-d DNF formulas, and the algorithms for width-
d DNFs referenced above do not extend to degree-d PTFs.

The d = 1 case for degree-d PTFs (i.e. LTFs) is quali-
tatively different from d > 1. For d = 1 the satisfiability
problem is trivial, so one may reasonably hope for a multi-
plicatively (1±ε)-accurate deterministic approximate count-
ing algorithm. Indeed such an algorithm, running in fully
polynomial time poly(n, 1/ε), was given by Gopalan et al.
and Stefankovic et al. in [GKM+11]. For d ≥ 2, however,
as noted above additive approximation is the best one can
hope for, even for randomized algorithms. The only previ-
ous deterministic approximate counting results for degree-d
PTFs for general d follow from known constructions of un-
conditional pseudorandom generators (PRGs) for degree-d
PTFs. The first such construction was given by Meka and

Zuckerman [MZ10], whose PRG yielded an nOd(1)·poly(1/εd)-
time deterministic approximate counting algorithm. Fol-
lowup works by Kane [Kan11a, Kan11b, Kan12b] improved
the parameters of these PRGs, with the strongest construc-
tion from [Kan12b] (for PTFs over Gaussian inputs) giving

a nOd,c(1)·ε−c

-time algorithm. Thus these prior works do not
give a fixed polynomial-time algorithm.

For the special case of d = 2, in separate work [DDS13a]
the authors have given a deterministic algorithm for degree-
2 PTFs that runs in time poly(n, 2poly(1/ε)). In [DDS13b]
the authors extended the [DDS13a] result and gave an al-
gorithm that does deterministic approximate counting for
any O(1)-junta of degree-2 PTFs. As we explain in detail
in the rest of this introduction, much more sophisticated
techniques and analyses are required to obtain the results of
the current paper for general d. These include a new cen-
tral limit theorem in probability theory based on Malliavin
calculus and Stein’s method, and an intricate new decom-
position procedure that goes well beyond the decomposition
approaches employed in [DDS13a, DDS13b].

Our approach. The main step in proving Theorem 1 is
to give a deterministic approximate counting algorithm for
the standard Gaussian distribution N(0, 1)n over Rn rather
than the uniform distribution over {−1, 1}n. The key result
that gives us Theorem 1 is the following:

Theorem 2. There is a deterministic algorithm A with
the following properties: Let A be given as input a degree-
d polynomial p over Rn and an accuracy parameter ε > 0.
Algorithm A runs in time Od,ε(1) · poly(nd) and outputs a
value ṽ ∈ [0, 1] such that

∣∣ṽ −Prx∼N(0,1)n [p(x) ≥ 0]
∣∣ ≤ ε.

Theorem 1 follows from Theorem 2 using the invariance
principle of [MOO10] and the “regularity lemma” for poly-
nomial threshold functions from [DSTW10]. The arguments
that give Theorem 1 from Theorem 2 are essentially identi-
cal to the ones used in [DDS13a], so we omit them in this
extended abstract (see the full version). In the rest of this
introduction we describe the main ideas behind the proof of
Theorem 2; as explained below, there are two main contri-
butions.

First contribution: A new multivariate CLT. Our first
contribution is a new multidimensional central limit theorem
that we establish for r-tuples of degree-d Gaussian poly-
nomials, i.e. r-tuples (p1(x), . . . , pr(x)) where each pi is a
degree-d polynomial and x ∼ N(0, 1)n. This CLT states
that if each pi has “small eigenvalues” (as defined at the
start of Section 3), then the joint distribution converges to
the multidimensional Normal distribution G over Rr whose
mean and covariance match (p1, . . . , pr). The closeness here
is with respect to“test functions”that have globally bounded
second derivatives; see Theorem 7 for a detailed statement
of our CLT. In Section 5 we use tools from mollification to
go from the aforementioned kind of“closeness” to the kind of
closeness which is required to analyze polynomial threshold
functions.

Comparing with previous work, the degree-2 case [DDS13a]
required a CLT for a single degree-2 Gaussian polynomial.
The main technical ingredient of the [DDS13a] proof was
a result of Chatterjee [Cha09]. [DDS13b] established the
d = 2 case of our multidimensional CLT via a relatively
straightforward analysis (requiring just basic linear algebra)
of the central limit theorem from [NPR10]. We note that in
the d = 2 case it is clear what is the correct notion of the
eigenvalues of a degree-2 polynomial, namely the eigenval-
ues of the quadratic form. In contrast, it is far from clear
what is the correct notion of the eigenvalues of a degree-d



polynomial, especially since we require a notion that en-
ables both a CLT and a decomposition as described later.
(We note that the tensor eigenvalue definitions that are em-
ployed in [FW95, CS13, Lat06] do not appear to be suitable
for our purposes.) Based on discussions with experts [Lat13,
Nou13, Led13, Ole13], even the d = 2 version of our mul-
tidimensional CLT was not previously known, let alone the
far more general version of the CLT which we establish in
this work.

It is instructive to consider our CLT in the context of
a result of Latala [Lat06], which shows that (a somewhat
different notion of) tensor eigenvalues can be used to bound
the growth of moments of degree-d Gaussian polynomials.
However, the moment bounds that can be obtained from this
approach are too weak to establish asymptotic normality
[Lat13].

Like [DDS13b], in this paper we also use the central limit
theorem from [NPR10] as a starting point. However, our
subsequent analysis crucially relies on the fact that there
is a geometry-preserving isomorphism between the space of
symmetric tensors and multivariate Gaussian polynomials.
This allows us to view Gaussian polynomials in terms of the
associated tensors and greatly facilitates the use of language
and tools from tensor algebra. To establish our condition
for asymptotic normality, we make significant use of tensor
identities from Malliavin calculus which were developed in
the context of application to Stein’s method (see [NP09,
Nou12, NPR10]).

Second contribution: Decomposition. The second main
contribution of this paper is a novel decomposition that lets
us transform a multilinear degree-d Gaussian polynomial p
into a polynomial of the form h(A1, . . . , Ar), where (infor-
mally)

1. p and h(A1, . . . , Ar) are ε-close (meaning that E[p] =
E[h(A1, . . . , Ar)] and Var[p− h(A1, . . . , A− r)] ≤ ε);

2. For each polynomial Ai, all of its eigenvalues are ex-
tremely small (at most η for some very small η); and

3. r = r(ε, d, η) is independent of n and depends only on
the approximation parameter ε, the eigenvalue bound
η, and the degree d of p.

This decomposition is useful for the following reasons:
Property (1) ensures that the distributions of h(A1, . . . , Ar)
and p are close in cdf-distance, and thus to in order to do
approximate counting of Gaussian satisfying assignments for
p, it suffices to do approximate counting of Gaussian satis-
fying assignments for h(A1, . . . , Ar). Property (2) ensures
that we may apply our new CLT to the r-tuple of polynomi-
als A1, . . . , Ar, and thus we may approximately count sat-
isfying assignments to h(A1, . . . , Ar) ≥ 0 by approximating
the fraction of assignments that satisfy h(G1, . . . ,Gr) where
G = (G1, . . . ,Gr) is the multidimensional Normal distribu-
tion given by our CLT. Finally, by Property (3), approx-
imating Pr[h(G1, . . . ,Gr) ≥ 0] is a “constant-dimensional
problem” (independent of n) so it is straightforward for a
deterministic algorithm to approximate this probability in
time independent of n.

We note that there is a subtlety here which requires sig-
nificant effort to overcome. As we discuss in Remark 8, in
order for our CLT to give a nontrivial bound it must be
the case that the eigenvalue bound η is much smaller than

1/r. Mimicking decomposition approaches previously used
in literature [Ser07, MZ09, DSTW10] has the problem that
they will necessarily make r ≥ 1/η, thus rendering such de-
compositions useless for our purposes. (One exception is
the decomposition procedure from [Kan11a] where a similar
problem arises, but since the desired target conditions there
are different from ours, that work uses a different approach
to overcome the difficulty; we elaborate on this below.) In
our context, achieving a decomposition such that η � 1/r
requires ideas that go beyond those used in previous decom-
positions, and is responsible for the large “constant-factor”
overhead (captured by Od,ε(1)) in the overall running time
bound.

At a very high level our decomposition is reminiscent of
the regularity lemma for degree-d polynomials over {−1, 1}n
that was given in [DSTW10], in that both procedures break
a given degree-d input polynomial into a collection of “reg-
ular” polynomials, but as we now explain, this resemblance
is a superficial one as there are many significant differences.
First, in the [DSTW10] setting the given input polynomials
are over {−1, 1}n while here the polynomials are over Gaus-
sian space; this is a major distinction since the geometry of
Gaussian space plays a fundamental role in our proofs and
techniques. Second, the notion of “regularity” that is used is
quite different between the two works; in [DSTW10] a poly-
nomial is regular if all variable influences are small whereas
here a polynomial is “regular” if all its “tensor eigenvalues”
are small. (We subsequently refer to this new notion of reg-
ularity which is introduced and used in our work as eigen-
regularity.) Third, in [DSTW10] each “atomic step” of the
decomposition is simply to restrict an individual input vari-
able to +1 or −1, whereas in this paper the atomic “decom-
position step” now involves an eigenvalue computation (to
identify two lower-degree polynomials whose product is non-
trivially correlated with the polynomial being decomposed).
Finally, the [DSTW10] decomposition produces a decision
tree over input variables with restricted polynomials at the
leaves, whereas in this paper we produce a single degree-d
polynomial h(A1, . . . , Ar) as the output of our decomposi-
tion.

Our decomposition has some elements that are reminis-
cent of a decomposition procedure described in [Kan11a].
Kane’s procedure, like ours, breaks a degree-d polynomial
into a sum of product of lower degree polynomials. How-
ever, there are significant differences between the proce-
dures. Roughly speaking, Kane’s decomposition starts with
a polynomial p and is aimed at upper bounding the higher
moments of the resulting constituent polynomials, whereas
our decomposition is aimed at upper bounding the eigen-
regularity (magnitude of the largest eigenvalues) of the con-
stituent polynomials. To make sure that the number r of
constituent polynomials compares favorably with the mo-
ment bounds, Kane divides these polynomials into several
classes such that the number of polynomials in any class
compares favorably with the moment bounds in that class
(and some desired relation holds between the number of
polynomials in the different classes). Instead, in our decom-
position procedure, we want r to compare favorably with
the eigenvalue bound η; given this requirement, it does not
seem possible to mimic Kane’s approach of splitting the con-
stituent polynomials into several classes. Instead, through
a rather elaborate decomposition procedure, we show that
while it may not be possible to split the original polynomial



p in a way so that r compares favorably with η, it is always
possible to (efficiently) find a polynomial p̃ such that p − p̃
has small variance, and p̃ can be decomposed so that the
number of constituent polynomials compare favorably with
the eigenregularity parameter.

We note that it is possible for the polynomial p − p̃ to
have small variance but relatively huge moments. Thus our
decomposition procedure is not effective for the approach in
[Kan11a] which is based on bounding moments. However,
because p− p̃ has small variance, the distributions of p and
p̃ are indeed close in cdf distance, which suffices for our pur-
poses. Thus our decomposition procedure should be viewed
as incomparable to that of [Kan11a].

We also remark that our decomposition is significantly
more involved than the decompositions used in [DDS13a,
DDS13b]. To see how this additional complexity arises, note
that both these papers need to decompose either a single
degree-2 Gaussian polynomial or a set of such polynomials;
for simplicity assume we are dealing with a single degree-2
polynomial p. Then the [DDS13a] decomposition procedure
splits p into a sum of products of linear functions plus a
degree-2 polynomial which has small eigenvalues. Crucially,
since a linear function of Gaussians is itself a Gaussian, this
permits a change of basis in which these linear functions may
be viewed as the new variables. By “restricting” these new
variables, one is essentially left with a single degree-2 poly-
nomial with a small eigenvalue. In contrast, if p has degree
d greater than 2, then the [DDS13a] decomposition will split
p into a sum of products of pairs of lower degree Gaussian
polynomials plus a polynomial which has small eigenvalues.
However, if d > 2 then some or all of the new constituent
lower degree polynomials may have degree greater than 1.
Since a polynomial of degree d > 1 cannot itself be viewed
as a Gaussian, this precludes the possibility of “restricting”
this polynomial as was done in [DDS13a]. Thus, one has to
resort to an iterative decomposition, which introduces addi-
tional complications some of which were discussed above.

Organization. Because of space constraints proofs are
omitted in this extended abstract (see the full version for
all proofs). In Section 2 we show that it is sufficient to
give an algorithm for deterministic approximate counting of
degree-d polynomials in the special case where all the poly-
nomials are multilinear. In Section 3 we state our new CLT
for k-tuples of degree-d Gaussian polynomials with “small
eigenvalues.” In Section 4 we describe our decomposition
procedure that can be used to decompose a degree-d mul-
tilinear polynomial over Gaussian inputs into an essentially
equivalent polynomial that has a highly structured “special
form.” In Section 5 we show how the CLT from Section
3 can be combined with the highly structured polynomial
from Section 4 to prove Theorem 2. We close in Section 6
by briefly describing how Theorem 1 can be applied to give
the first deterministic fixed-parameter tractable algorithm
for the problem of approximating the k-th absolute moment
of a degree-d polynomial over {−1, 1}n.

2. DEALING WITH NON-MULTILINEAR
POLYNOMIALS

The decomposition procedure that we use relies heavily on
the fact that the input polynomials pi are multilinear. To
handle general (non-multilinear) degree-d polynomials, the
first step of our algorithm is to transform them to (essen-

tially) equivalent multilinear degree-d polynomials. This is
accomplished by a simple procedure whose performance is
described below. Note that given Theorem 3, in subsequent
sections we can (and do) assume that the polynomial p given
as input in Theorem 2 is multilinear.

Theorem 3. There is a deterministic procedure with the
following properties: The algorithm takes as input a (not
necessarily multilinear) variance-1 degree-d polynomial p over
Rn and an accuracy parameter δ > 0. It runs in time
Od,δ(1) · poly(nd) and outputs a multilinear degree-d poly-

nomial q over Rn
′
, with n′ ≤ Od,δ(1) · n, such that∣∣∣Prx∼N(0,1)n [p(x) ≥ 0]−Prx∼N(0,1)n

′ [q(x) ≥ 0]
∣∣∣ ≤ O(δ).

3. A MULTIDIMENSIONAL CLT FOR LOW-
DEGREE GAUSSIAN POLYNOMIALS

Our goal in this section is to prove a CLT (Theorem 7
below) which says, roughly, the following: Let F1, . . . , Fr
be eigenregular low-degree Gaussian polynomials over Rn
(here the meaning of “eigenregular” is that the polynomial
has “small eigenvalues”; more on this below). Then the dis-
tribution of (F1, . . . , Fr) is close — as measured by test func-
tions with absolutely bounded second derivatives — to the
r-dimensional Normal distribution with matching mean and
covariance.

To make this statement more precise, let us begin by ex-
plaining what exactly is meant by the eigenvalues of a poly-
nomial – this is clear enough for a quadratic polynomial, but
not so clear for degrees 3 and higher.

Eigenvalues of tensors and polynomials. Let H denote
the Hilbert space Rn, and let H�p denote the space of sym-
metric p-tensors over H. (See the full version for detailed
background on tensors.) We begin by defining the largest
eigenvalue of a symmetric tensor.

Definition 4. For any p ≥ 2 and g ∈ H�p, define λmax(g),
the largest-magnitude eigenvalue of g, as follows. Consider
a partition of [p] into S and S = [p] \ S where both S and S

are non-empty.We define λS,S(g) = sup
x∈HS ,y∈HS

〈g,x⊗y〉
‖x‖F ·‖y‖F

and λmax(g) = maxS,S 6=∅ λS,S(g). (Here ‖x‖F denotes the

Frobenius norm of x.) For p ∈ {0, 1} and g ∈ H�p we say
that λmax(g) = 0.

Let Wq (referred to as the q-th Wiener chaos) denote the
linear subspace of polynomials spanned by the Hermite poly-
nomials of degree exactly q over Rn. Fix a Gaussian polyno-
mial F of degree d and recall that F admits a unique Wiener
chaos decomposition F =

∑d
q=0 Iq(fq); here fq ∈ H�q and is

the natural tensor associated with the projection of F onto
Wq. Thus Iq(·) maps the tensor fq ∈ H�q to a polynomial
in Wq. (While the precise definition of Iq is not required
for the rest of this extended abstract, the curious reader is
encouraged to consult Section 2 of the full version for addi-
tional details.)

The following definition plays a crucial role in the rest of
the paper.

Definition 5. We define the largest-magnitude eigen-
value of F to be λmax(F ) = max{λmax(f2), . . . , λmax(fd)}.
We say that F is ε-eigenregular if λmax(F )√

Var[F ]
≤ ε, and we

sometimes refer to λmax(F )√
Var[F ]

as the eigenregularity of F .



Remark 6. If F is a polynomial of degree at most 1 then
we say that the polynomial F is 0-eigenregular (and hence
ε-eigenregular for every ε > 0).

Now we can give a precise statement of our new CLT:

Theorem 7. Fix d ≥ 2 and let F = (F1, . . . , Fr) be Gaus-
sian polynomials over Rn, each of degree at most d, such
that for each i we have E[Fi] = 0, Var[Fi] ≤ 1 and Fi is
ε-eigenregular. Let C denote the covariance matrix of F , so
C(i, j) = Cov(Fi, Fj) = Ex∼N(0,1)n [Fi(x)Fj(x)]. Let G be
a mean-zero r-dimensional Gaussian random variable with
covariance matrix C. Then for any α : Rr → R, α ∈ C2 such
that all second derivatives of α are at most ‖α′′‖∞ < ∞,

we have |E[α(F1, . . . , Fr)]−E[α(G)]| < 2O(d log d) · r2 ·
√
ε ·

‖α′′‖∞.

The proof of Theorem 7 is somewhat involved, using Malli-
avin calculus in the context of Stein’s method; it builds
on recent work by Nourdin, Peccati and Réveillac [NP09,
Nou12, NPR10]. We give the proof in the full version.

Remark 8. It is clear from the statement of Theorem 7
that in order for the theorem to yield a meaningful bound, it
must be the case that the number of polynomials r is small
compared to 1/

√
ε. Looking ahead, in our eventual applica-

tion of Theorem 7, the r polynomials F1, . . . , Fr will be ob-
tained by applying the decomposition procedure described in
Section 4 to the original degree-d input polynomial. Thus
it will be crucially important for our decomposition proce-
dure to decompose the original polynomial into r polynomi-
als all of which are extremely eigenregular, in particular ε-
eigenregular for a value ε � 1/r2. Significant work will be
required in Section 4 to surmount this challenge.

4. DECOMPOSING K-TUPLES OF MULTI-
LINEAR DEGREE-D GAUSSIAN POLY-
NOMIALS

In this section we prove our main decomposition result
for k-tuples of multilinear Gaussian polynomials, Theorem
9. We begin by giving a precise statement of the result, fol-
lowed by a discussion of how the result fits into our broader
context.

Theorem 9. Fix d ≥ 2 and fix any non-increasing com-
putable function β : [1,∞) → (0, 1) that satisfies β(x) ≤
1/x. There is a procedure Regularize-Polyβ with the fol-
lowing properties. The procedure takes as input a degree-d
multilinear Gaussian polynomial p with Var[p] = 1 and a
parameter τ > 0. It runs in poly(nd) · Od,τ (1) time and
outputs two collections of polynomials

{hq}q=0,...,d and {Aq,`}q=0,...,d,`=1,...,mq .

Write p(x) as
∑d
q=0 cqpq(x) where pq ∈ Wq for all q and

Var[pq] = 1 for 1 ≤ q ≤ d. For 0 ≤ q ≤ d and x ∈
Rn, let p̃q(x) = cqhq(Aq,1(x), . . . , Aq,mq (x)) and let p̃(x) =∑d
q=0 p̃q(x). The following conditions hold:

1. For each q ∈ {0, . . . , d} the polynomial p̃q belongs to
Wq. Moreover, for q ∈ {1, . . . , d}, each polynomial
Aq,` belongs to Wj for some 1 ≤ j ≤ d and has
Var[Aq,`] = 1.

2. We have∣∣Prx∼N(0,1)n [p(x) ≥ 0]−Prx∼N(0,1)n [p̃(x) ≥ 0]
∣∣ ≤ O(τ),

and moreover Varx∼N(0,1)n [p(x)− p̃(x)] ≤ (τ/d)3d.

3. Each polynomial hq is a multilinear polynomial in its
mq arguments. Moreover, there exist functions Nβ(d, τ)
and Mβ(d, τ) such that if Coeff(hq) denotes the sum
of the absolute values of the coefficients of hq, then∑d
q=1 Coeff(hq) ≤ Mβ(d, τ) and the number of argu-

ments to all hq’s,
∑d
q=1 mq, is at most Nβ(d, τ). Also,

the degree of the polynomial hq (for all 1 ≤ q ≤ d) is
upper bounded by d.

4. For all q, `, Aq,`(x) is β(Num + Coeff)-eigenregular,

where Num =
∑d
q=1 mq and Coeff =

∑d
q=1 Coeff(hq).

Discussion. Intuitively, Condition (2) means that it will
be sufficient to do deterministic approximate counting for
the polynomial p̃ rather than the original polynomial p.
Condition (4) ensures that the eigenregularity of each poly-
nomial Aq,` compares favorably both with the number of
polynomials produced and with the size of the coefficients
in the “outer” polynomials hq. As discussed earlier, hav-
ing the eigenregularity be small relative to the number of
polynomials is crucial since it is required in order for our
CLT, Theorem 7, to yield a good bound. We need to deal
with the size of the coefficients for technical reasons – as
we will see in Section 5, we will apply our CLT where its
“test function”α is a smooth approximator to the 0/1-valued
function which, on input {Aj,`}j,`, outputs 1 if and only if

sign
(∑d

q=0 hq(Aq,1, . . . , Aq,mq )
)

= 1. Our CLT’s quantita-

tive bound depends on the second derivative of α, and to
bound this we need coefficient size bounds on the hq poly-
nomials.

We build up to Theorem 9 in a sequence of incremental
stages. In Section 4.1 we begin by describing how to decom-
pose a single element of a given Wiener chaos. Because of
our requirement that the number of polynomials produced in
the decomposition must be very small relative to the eigen-
regularity that is achieved — see Remark 8 — even this is
a non-trivial task, requiring two “layers” of decomposition
and an approach that goes well beyond the decomposition
techniques in previous work [DDS13a, DDS13b]. In Section
4.2 we extend this and describe how to simultaneously de-
compose a k-tuple of elements of the same Wiener chaos.
(See the beginning of Section 4.2 for an explanation of why
we need to be able to simultaneously decompose many poly-
nomials at once.) In Section 4.3 we describe how to handle
a k(d+1)-tuple of elements where there are k elements from
each of the d + 1 Wiener chaoses W0, . . . ,Wd. In the full
version, we show how the decomposition of Section 4.3 yields
Theorem 9.

4.1 Decomposing a single multilinear element
of the q-th Wiener chaos

Our first algorithmic primitive is the procedure Split-
One-Wiener. (Here and subsequently the suffix “-One-
Wiener” indicates that the procedure applies only to one
element Iq(f) belonging to one level of the Wiener chaos.)
This procedure either certifies that its input polynomial (an



element Iq(f) of the q-th Wiener chaos) is eigenregular, or
else it “splits off” a product P ·Q from its input polynomial
and expresses Iq(f) as c · P ·Q+R for some c ∈ R.

Lemma 10. Fix any q ≥ 2. There is a deterministic
procedure Split-One-Wiener which takes as input a poly-
nomial Iq(f) ∈ Hq that has Var[Iq(f)] = 1 and a pa-
rameter η > 0. Split-One-Wiener runs in deterministic
poly(nq, 1/η) time and has the following guarantee:

• If λmax(f) < η, then Split-One-Wiener stops and
returns “eigenregular”.

• Otherwise, if λmax(f) ≥ η, then Split-One-Wiener
outputs a quadruple (P,Q,R, c) with the following prop-
erties:

1. P = Iq1(g1) ∈ Wq1 and Q = Iq2(g2) ∈ Wq2

where q1 + q2 = q, q1, q2 > 0, and Var[Iq1(g1)] =
Var[Iq2(g2)] = 1.

2. The tensors g1 ∈ H�q1 and g2 ∈ H�q2 are sup-
ported on disjoint sets S, T ⊂ [n].

3. P ·Q ∈ Wq and Var[P ·Q] = 1, and all of P,Q,R
are multilinear.

4. The value c
def
= E[Iq(f) · P ·Q] satisfies c ≥ η/2q.

5. R ∈ Wq and Iq(f) = cP ·Q+R and E[P ·Q ·R] =
0.

6. Var(R) = 1− c2.

Building on the algorithmic primitive Split-One-Wiener,
we now describe a procedure Decompose-One-Wiener
which works by iteratively executing Split-One-Wiener
on the “remainder” portion R that was “left over” from the
previous call to Split-One-Wiener. Intuitively, the overall
effect of this procedure is to break its input polynomial into
a sum of products of pairs of polynomials, plus a remainder
term which is either eigenregular or else has variance which
is negligibly small.

Lemma 11. Fix any q ≥ 2. There is a deterministic pro-
cedure Decompose-One-Wiener which takes as input a
polynomial Iq(f) ∈ Wq that has Var[Iq(f)] = 1 and pa-
rameters η and ε. The running time of Decompose-One-
Wiener is poly(nq, 1/η, log(1/ε)) and has the following
guarantee:

1. It outputs a set L of triples {(ci, Pi, Qi)}mi=1 and a poly-
nomial R such that Iq(f) =

∑m
i=1 ciPiQi +R.

2. For each i = 1, . . . ,m we have Pi ∈ Wqi,1 and Qi ∈
Wqi,2 with qi,1, qi,2 > 0 and qi,1 + qi,2 = q. Moreover
Var[Pi] = Var[Qi] = Var[Pi ·Qi] = 1 for all i ∈ [m],
R ∈ Wq, all Pi, Qi and R are multilinear, and Pi and
Qi are defined over disjoint sets of variables.

3. m ≤ O((4q/η2) log(1/ε)) and
∑m
j=1 c

2
j ≤ (2q/η)4(m−1).

4. Either R is η-eigenregular, in which case Decompose-
One-Wiener returns “eigenregular remainder”, or else
Var[R] ≤ ε, in which case Decompose-One-Wiener
returns “small remainder”.

5. E[(
∑m
j=1 cjPj ·Qj) ·R] = 0. As a consequence, we have

Var[
∑m
j=1 cjPj ·Qj ] + Var[R] = 1.

We note that the guarantees of the Decompose-One-
Wiener procedure bear some resemblance to the decom-
position that is used in [DDS13a] for degree-2 Gaussian
polynomials. However, in our current context of working
with degree-d polynomials, Decompose-One-Wiener is
not good enough, for the following reason: Suppose that
Decompose-One-Wiener returns “eigenregular remainder”
and outputs a decomposition of Iq(f) as

∑m
i=1 ciPiQi + R.

While the polynomial R is η-eigenregular, it is entirely pos-
sible that the number of polynomials Pi, Qi in the decom-
position (i.e. 2m) may be as large as Ω( 1

η2
log(1/ε)). We

would like to apply our CLT to conclude that the joint dis-
tribution of R and the polynomials obtained from the sub-
sequent decomposition of P1, Q1, . . . , Pm, Qm is close to a
normal distribution, but since the number 2m of polynomi-
als is already too large when compared to the inverse of the
eigenregularity parameter, we cannot use our CLT (recall
Remark 8). 1

We surmount this difficulty by using Decompose-One-
Wiener as a tool within an improved “two-level” decompo-
sition procedure which we present and analyze below. This
improved decomposition procedure has a stronger guarantee
than Decompose-One-Wiener in the following sense: it
breaks its input polynomial into a sum of products of pairs
of polynomials plus two remainder terms Rreg (for“eigenreg-
ular”) and Rneg (for “negligible”). The Rneg remainder term
is guaranteed to have negligibly small variance, and the Rreg

remainder term is guaranteed to either be zero or else to be
extremely eigenregular – in particular, for an appropriate
setting of the input parameters, its eigenregularity is much
“stronger” than the number of pairs of polynomials that are
produced in the decomposition. We term this improved de-
composition procedure Regularize-One-Wiener because
of this extremely strong eigenregularity guarantee.

Before giving the formal statement, we note that intu-
itively this procedure will be useful because it “guarantees
that we make progress” for the following reason: We can
always erase the small-variance Rneg term at the cost of a
small and affordable error, and the degree-q Rreg remain-
der term is so eigenregular that it will not pose an obstacle
to our ultimate goal of applying the CLT. Thus we have
reduced the original polynomial to a sum of pairwise prod-
ucts of lower-degree polynomials, which can each be tack-
led inductively using similar methods (more precisely, using
the generalization of procedure Regularize-One-Wiener
to simultaneously decompose multiple polynomials which we
describe in the next subsection).

Theorem 12. Fix any q ≥ 2. There is a determinis-
tic procedure Regularize-One-Wiener which takes as in-
put a polynomial Iq(f) such that Var[Iq(f)] = 1 and in-
put parameters η0 = 1 ≥ η1 ≥ . . . ≥ ηK and ε, where
K = O(1/ε · log(1/ε)). Regularize-One-Wiener runs in
poly(nq, 1/ηK , 1/ε) time and has the following guarantee:

1Note that the reason this problem did not arise in the
degree-2 polynomial decompositions of [DDS13a] is because
each polynomial Pi, Qi obtained from Decompose-One-
Wiener in that setting must have degree 1 (the only way to
break the number 2 into a sum of non-negative integers is as
1+1). Degree-1 polynomials may be viewed as having “per-
fect eigenregularity” (note that any degree-1 polynomial in
Gaussian variables is itself distributed precisely as a Gaus-
sian) and so having any number of such degree-1 polynomials
did not pose a problem in [DDS13a].



1. Define M(i) = O(4q)

η2i
log(1/ε). The Regularize-One-

Wiener procedure outputs a value 1 ≤ ` ≤ k, a set

L = {(ai,j , Pi,j , Qi,j)}i=1,...,`,j=1,...,M(i)

of triples, and a pair of polynomials Rreg, Rneg such

that Iq(f) =
∑`
i=1

∑M(i)
j=1 ai,jPi,j ·Qi,j +Rreg +Rneg.

2. For each i, j we have Pi,j ∈ Wqi,j,1 and Qi,j ∈ Wqi,j,2

with qi,j,1, qi,j,2 > 0 and qi,j,1+qi,j,2 = q and Var[Pi,j ] =
Var[Qi,j ] = Var[Pi,j · Qi,j ] = 1; moreover, Pi,j and
Qi,j are over disjoint sets of variables. In addition,
Rreg, Rneg ∈ Wq and all of Pi,j , Qi,j , Rreg, Rneg are
multilinear.

3. The polynomial Rneg satisfies Var[Rneg] ≤ ε and the
polynomial Rreg is η`+1-eigenregular, where we define
ηK+1 = 0.

4. For 1 ≤ i ≤ ` we have
∑M(i)
j=1 (ai,j)

2 ≤ (2q/ηi)
4(M(i)−1).

We stress that it is crucially important that condition 3
provides η`+1-eigenregularity rather than η`-eigenregularity.

4.2 Decomposing a k-tuple of multilinear ele-
ments of the q-th Wiener chaos

In this section we generalize the Regularize-One-Wiener
procedure to simultaneously decompose multiple polynomi-
als that all belong to Wq. Even though our ultimate goal
is to decompose a single degree-d Gaussian polynomial, we
require a procedure that is capable of handling many poly-
nomials because even decomposing a single degree-d polyno-
mial using Regularize-One-Wiener will give rise to many
lower-degree polynomials which all need to be decomposed
in turn.

A natural approach to decompose r polynomials Iq(f1), . . . ,
Iq(fr) ∈ Wq is simply to run Regularize-One-Wiener
r separate times. However, this simpleminded approach
could well result in different values `1, . . . , `r being obtained
from the r calls, and hence in different levels of eigenreg-
ularity for the r “remainder” polynomials R1,reg, . . . , Rr,reg

that are constructed. This is a problem because some of
the calls may yield a relatively large eigenregularity param-
eter, while other calls may generate very many polynomials
(and a much smaller eigenregularity parameter). Since the
CLT can only take advantage of the largest eigenregularity
parameter, the key advantage of Regularize-One-Wiener
— that the number of polynomials it produces compares fa-
vorably with the eigenregularity of these polynomials — is
lost.

We get around this difficulty by means of a procedure
called MultiRegularize-One-Wiener. It takes as input
an r-tuple of polynomials (Iq(f1), . . . , Iq(fr)) (that all be-
long to one fixed Wiener chaos) and input parameters η0 =
1 ≥ η1 ≥ . . . ≥ ηK and ε. Crucially, it guarantees that
the overall number of polynomials that are produced from
all the r decompositions compares favorably with the over-
all eigenregularity parameter that is obtained. Intuitively,
MultiRegularize-One-Wiener augments the procedure
Regularize-One-Wiener procedure with ideas from the
decomposition procedure for k-tuples of degree-2 polynomi-
als that was given in [DDS13b] (and which in turn built on
ideas from [GOWZ10]).

Theorem 13. There is a procedure MultiRegularize-
One-Wiener (for any q ≥ 2) which takes as input an r-
tuple of polynomials (Iq(f1), . . . , Iq(fr)) such that for all i,
Var[Iq(fi)] = 1 and input parameters η0 = 1 ≥ η1 ≥ . . . ≥
ηK and ε, where K = O(r/ε · log(1/ε)). MultiRegularize-
One-Wiener runs in poly(nq, 1/ηK , r/ε) time and has the
following guarantee:

1. Define M(i) = O( 4q

η2i
log(1/ε)). MultiRegularize-

One-Wiener outputs an index t with 0 ≤ t ≤ K and
for each s ∈ [r] a set Ls of triples, defined as, Ls =
{(as,i,j , Ps,i,j , Qs,i,j)}i=1,...,t,j=1,...,M(i) and a pair of
polynomials Rs,reg, Rs,neg, such that

Iq(fs) =

t∑
i=1

M(i)∑
j=1

as,i,jPs,i,j ·Qs,i,j+as,reg·Rs,reg+Rs,neg.

2. For each s, i, j we have Ps,i,j ∈ Wqs,i,j,1 and Qs,i,j ∈
Wqs,i,j,2 with qs,i,j,1, qs,i,j,2 > 0 and qs,i,j,1+qs,i,j,2 = q
and Var[Ps,i,j ] = Var[Qs,i,j ] = Var[Ps,i,j ·Qs,i,j ] = 1.
Similarly we have Rs,reg, Rs,neg ∈ Wq, and Var[Rs,reg] =
1. Moreover Ps,i,j and Qs,i,j are over disjoint sets of
variables, and all of Ps,i,j , Qs,i,j , Rs,reg and Rs,neg are
multilinear.

3. For each s we have that Var[Rs,neg] ≤ ε and that as,reg·
Rs,reg is ηt+1-eigenregular, where we define ηK+1 = 0.

4. For 1 ≤ s ≤ r and 1 ≤ i ≤ t we have
∑M(i)
j=1 (as,i,j)

2 ≤
(2q/ηi)

4(M(i)−1).

4.3 Beyond the homogeneous case: handling
multiple levels of Wiener chaos

In this subsection we sketch our most involved decomposi-
tion procedure, MultiRegularize-Many-Wieners, for de-
composing a k(d + 1)-tuple consisting of k elements from
the j-th Wiener chaos for each j = 0, . . . , d. We begin with
an informal description of how the decomposition procedure
works. Let p1, . . . , pk be k degree-d multilinear Gaussian
polynomials. Each pi has a unique expansion in terms of
symmetric q-tensors fi,q ∈ H�q as pi =

∑d
q=0 pi,q, where

pi,q = Iq(fi,q). For 2 ≤ q ≤ d− 1 let OLDq denote the set
of polynomials {Iq(fi,q)}i=1,...,k.

The high-level idea of the decomposition is to“work down-
ward” from higher to lower levels of the Wiener chaos in suc-
cessive stages, at each stage using MultiRegularize-One-
Wiener to simultaneously decompose all of the polynomials
at the current level. By carefully choosing the eigenregular-
ity parameters at each stage we can ensure that at the end
of the decomposition we are left with a collection of “not too
many”polynomials (corresponding to the Ai,j,`’s of Theorem
9) all of which are highly eigenregular.

In a bit more detail, in the first stage we simultaneously
decompose the k degree-d polynomials Id(f1,d), . . . , Id(fk,d)
using the MultiRegularize-One-Wiener algorithm with
parameters 1 = η0 � · · · � ηK and ε. This generates
k polynomials in Wd that are each ηt+1-eigenregular, for
some 1 ≤ t ≤ K, where K ≤ Ok,d,ε(1); intuitively, these
should be thought of as “extremely eigenregular” polynomi-
als. Let REG denote this set of polynomials (they will not
be used again in the decomposition). It also generates, for
each 1 ≤ q ≤ d − 1, “not too many” (at most Ok,d,ε,ηt(1))



new polynomials in Wq; let NEWq denote this set of poly-
nomials. The key qualitative point is that the size of each
NEWq depends on ηt while the eigenregularity of the poly-
nomials in REG is ηt+1. Thus if ηt+1 is much less than
ηt, the number of newly introduced polynomials compares
favorably with the eigenregularity bound ηt+1.

We have thus “dealt with the degree-d part of the input”
since the only remaining degree-d polynomials are in REG
and are extremely regular. Next, we recursively apply the
above approach to handle the lower-degree part, including
both the original lower-degree components from OLDq and
the new lower-degree polynomials from NEWq that were in-
troduced in dealing with the degree-d part. The crux of the
analysis is to argue that there is a suitable choice of param-
eters at each stage that allows this procedure to be carried
out “all the way down,” so that the total number of polyno-
mials that are ever produced in the analysis is far smaller
than 1/η, where η is the largest eigenregularity of any of
the final polynomials. It turns out to be difficult to argue
this formally using the “top-down” view on the decomposi-
tion procedure that we have adopted above. Instead, in the
detailed proof proof which we give in the full version, we
take a “bottom-up” view of the decomposition procedure:
we first show that it can be successfully carried out for low-
degree polynomials, and use this fact to show that it can be
successfully carried out for higher-degree polynomials.

Theorem 14. Fix d ≥ 2 and fix any non-increasing com-
putable function β : [1,∞) → (0, 1) that satisfies β(x) ≤
1/x. The procedure MultiRegularize-Many-Wienersd,β
defined below has the following properties. The procedure
takes as input the following:

• It is given k lists of d + 1 multilinear Gaussian poly-
nomials; the s-th list is ps,0, . . . , ps,d where ps,q ∈ Wq

and Var[ps,q] = 1 for 1 ≤ q ≤ d.

• It also takes as input a parameter τ > 0.

The procedure runs in poly(nd) · Ok,d,τ (1) time and out-
puts, for each input polynomial ps,q, a polynomial Out(ps,q)
and a collection of polynomials Inner defined to be Inner =
{In(ps,q)`}`=1,...,num(ps,q); here num(ps,q) is the number of
arguments of the polynomial Out(ps,q). (“Out” stands for
“outer” and “In” stands for “inner”.)

For s = 1, . . . , k, 0 ≤ q ≤ d and x ∈ Rn, let

p̃s,q(x) = Out(ps,q)
(
In(ps,q)1(x), . . . , In(ps,q)num(ps,q)(x)

)
(1)

(Intuitively, each p̃s,q is a polynomial that has been de-
composed into constituent sub-polynomials from Inner; p̃s,q
is meant to be a good approximator for ps,q. The following
conditions make this precise.)

The following conditions hold:

1. For each s ∈ [k], 0 ≤ q ≤ d the polynomial p̃s,q(x)
belongs to the q-th Wiener chaos Wq. Additionally,
each polynomial In(ps,q)` with q ≥ 1 lies in Wj for
some 1 ≤ j ≤ d and has Var[In(ps,q)`] = 1.

2. For each s ∈ [k], 0 ≤ q ≤ d, we have Var[ps,q − p̃s,q] ≤
τ.

3. Each polynomial Out(ps,q) is a multilinear polynomial
in its num(ps,q) arguments. Moreover,there exists N =

Nβ(k, d, τ) and M = Mβ(k, d, τ) such that if Coeff(ps,q)
denotes the sum of the absolute values of the coeffi-
cients of Out(ps,q), then

∑
s,q Coeff(ps,q) ≤ M and∑

s,q num(ps,q) ≤ N .

4. Further, let Num =
∑
s=1,...,k,q=0,...,d num(ps,q) and

Coeff =
∑
s=1,...,k,q=0,...,d Coeff(ps,q). Then, each poly-

nomial In(ps,q)` is β(Num + Coeff)-eigenregular.

5. PROOF OF THEOREM 2
In this section we combine the tools developed in the pre-

vious sections to prove Theorem 2. We do this in two main
steps. First we use the CLT from Section 3 and the de-
composition procedure from Section 4 to reduce the origi-
nal problem (of ε-approximately counting satisfying assign-
ments of a degree-d PTF under N(0, 1)n) to the problem of
ε-approximating an expectation EG∼N(0r,Σ)[g̃c(G)], where
N(0r,Σ) is a mean-0 r-dimensional Gaussian with covari-
ance matrix Σ, and g̃c : Rr → [0, 1] is a particular explic-
itly specified function. The key points here are that the
value of r, the description length (bit complexity) of g̃c, and
the bit complexity of each entry of the covariance matrix
Σ are all Od,ε(1) (completely independent of n). Next, we
describe how an Od,ε(1)-time deterministic algorithm can
ε-approximate the desired expectation EG∼N(0r,Σ)[g̃c(G)].
Theorem 2 follows directly from Theorems 15 and 16 which
we state below.

Theorem 15. There is an Od,ε(1) · poly(nd)-time deter-
ministic algorithm with the following performance guaran-
tee: Given as input a degree-d real polynomial p(x1, . . . , xn)
and a parameter ε > 0, it outputs an integer r, a matrix
of covariances Σ ∈ Rr×r (whose diagonal entries are all 1),
and a description of a function g̃c : Rr → [0, 1], such that∣∣Prx∼N(0,1)n [p(x) ≥ 0]−EG∼N(0r,Σ)[g̃c(G)]

∣∣ ≤ O(ε). More-
over r is Od,ε(1), the description length of g̃c is Od,ε(1) bits,
and each entry of Σ is a rational number whose numerator
and denominator are both integers of magnitude Od,ε(1).

Theorem 16. There is a deterministic Od,ε(1)-time al-
gorithm which, given as input the output r,Σ, g̃c of Theorem
15 and ε > 0, outputs a value ν such that∣∣ν −E(G1,...,Gr)∼N(0r,Σ)[g̃c(G1, . . . , Gr)]

∣∣ ≤ ε.
6. APPLICATION: A DETERMINISTIC FPT

FOR APPROXIMATING ABSOLUTE MO-
MENTS

Consider the following computational problem, which we
call Absolute-Moment: Given a degree-d polynomial p(x)
and an integer parameter k ≥ 1, compute the value

Ex∈{−1,1}n [|p(x)|k]

of the k-th absolute moment of p. It is clear that the raw
moment E[p(x)k] can be computed in roughly nk time by
expanding out the polynomial p(x)k, performing multilinear
reduction, and outputting the constant term. Since the k-th
raw moment equals the k-th absolute moment for even k,
this gives an nk time algorithm for Absolute-Moment for
even k. However, as shown in [DDS13a], even for d = 2 the
Absolute-Moment problem is #P-hard for any odd k ≥ 1,
and thus it is natural to seek approximation algorithms.



Using the hypercontractive inequality [Bon70, Bec75] it is
not difficult to show that the obvious randomized algorithm
(draw uniform points from {−1, 1}n and use them to em-
pirically estimate Ex∈{−1,1}n [|p(x)|k]) with high probability
gives a (1±ε)-accurate estimate of the k-th absolute moment
of p in in poly(nd, 2dk log k, 1/ε) time. In this section we ob-
serve that Theorem 1 yields a deterministic fixed-parameter-
tractable (1± ε)-multiplicative approximation algorithm for
Absolute-Moment:

Theorem 17. There is a deterministic algorithm which,
given any degree-d polynomial p(x1, . . . , xn) over {−1, 1}n,
any integer k ≥ 1, and any ε > 0, runs in Od,k,ε(1) ·
poly(nd) time and outputs a value v that multiplicatively
(1± ε)-approximates the k-th absolute moment: v ∈ [(1− ε)·
Ex∈{−1,1}n [|p(x)|k], (1 + ε)· Ex∈{−1,1}n [|p(x)|k]].
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second-order Poincaré inequalities. Probability
Theory and Related Fields, 143:1–40, 2009.

[CS13] D. Cartwright and B. Sturmfels. The number
of eigenvalues of a tensor. Linear algebra and
its applications, 432(2):942–952, 2013.

[DDFS12] A. De, I. Diakonikolas, V. Feldman, and
R. Servedio. Near-optimal solutions for the
Chow Parameters Problem and low-weight
approximation of halfspaces. In Proc. 44th
ACM Symposium on Theory of Computing
(STOC), pages 729–746, 2012.

[DDS12] Anindya De, Ilias Diakonikolas, and Rocco A.
Servedio. The inverse shapley value problem.
In ICALP (1), pages 266–277, 2012.

[DDS13a] A. De, I. Diakonikolas, and R. Servedio.
Deterministic approximate counting for
degree-2 polynomial threshold functions.
manuscript, 2013.

[DDS13b] A. De, I. Diakonikolas, and R. Servedio.
Deterministic approximate counting for juntas
of degree-2 polynomial threshold functions.
manuscript, 2013.

[DHK+10] Ilias Diakonikolas, Prahladh Harsha, Adam
Klivans, Raghu Meka, Prasad Raghavendra,
Rocco A. Servedio, and Li-Yang Tan. Bounding
the average sensitivity and noise sensitivity of
polynomial threshold functions. In STOC,
pages 533–542, 2010.

[DOSW11] I. Diakonikolas, R. O’Donnell, R. Servedio, and
Y. Wu. Hardness results for agnostically
learning low-degree polynomial threshold
functions. In SODA, pages 1590–1606, 2011.

[DSTW10] I. Diakonikolas, R. Servedio, L.-Y. Tan, and
A. Wan. A regularity lemma, and low-weight
approximators, for low-degree polynomial
threshold functions. In CCC, pages 211–222,
2010.

[FW95] J. Friedman and A. Wigderson. On the Second
Eigenvalue of Hypergraphs. Combinatorica,
15(1):43–65, 1995.

[GHR92] M. Goldmann, J. H̊astad, and A. Razborov.
Majority gates vs. general weighted threshold
gates. Computational Complexity, 2:277–300,
1992.

[GKM+11] Parikshit Gopalan, Adam Klivans, Raghu
Meka, Daniel Stefankovic, Santosh Vempala,
and Eric Vigoda. An fptas for #knapsack and
related counting problems. In FOCS, pages
817–826, 2011.

[GMR13] P. Gopalan, R. Meka, and O. Reingold. DNF
sparsification and a faster deterministic
counting algorithm. Computational Complexity,
22(2):275–310, 2013.

[GOWZ10] P. Gopalan, R. O’Donnell, Y. Wu, and
D. Zuckerman. Fooling functions of halfspaces
under product distributions. In IEEE Conf. on
Computational Complexity (CCC), pages
223–234, 2010.

[H̊as94] J. H̊astad. On the size of weights for threshold
gates. SIAM Journal on Discrete Mathematics,
7(3):484–492, 1994.

[Kan10] D.M. Kane. The Gaussian surface area and
noise sensitivity of degree-d polynomial
threshold functions. In CCC, pages 205–210,
2010.

[Kan11a] Daniel M. Kane. k-independent gaussians fool
polynomial threshold functions. In IEEE
Conference on Computational Complexity,
pages 252–261, 2011.

[Kan11b] Daniel M. Kane. A small prg for polynomial
threshold functions of gaussians. In FOCS,
pages 257–266, 2011.

[Kan12a] Daniel M. Kane. The correct exponent for the
gotsman-linial conjecture. CoRR,
abs/1210.1283, 2012.

[Kan12b] Daniel M. Kane. A pseudorandom generator
for polynomial threshold functions of gaussian
with subpolynomial seed length. CoRR,
abs/1210.1280, 2012.

[Kan12c] Daniel M. Kane. A structure theorem for
poorly anticoncentrated gaussian chaoses and
applications to the study of polynomial
threshold functions. In FOCS, pages 91–100,
2012.



[KKMS08] A. Kalai, A. Klivans, Y. Mansour, and
R. Servedio. Agnostically learning halfspaces.
SIAM Journal on Computing, 37(6):1777–1805,
2008.

[KRS12] Zohar Shay Karnin, Yuval Rabani, and Amir
Shpilka. Explicit dimension reduction and its
applications. SIAM J. Comput., 41(1):219–249,
2012.

[Lat06] R. Latala. Estimates of moments and tails of
gaussian chaoses. Annals of Probability,
34(6):2315–2331, 2006.

[Lat13] R. Latala. Personal communication, 2013.

[Led13] M. Ledoux. Personal communication, 2013.

[LV96] M. Luby and B. Velickovic. On deterministic
approximation of DNF. Algorithmica,
16(4/5):415–433, 1996.

[LVW93] Michael Luby, Boban Velickovic, and Avi
Wigderson. Deterministic approximate
counting of depth-2 circuits. In Proceedings of
the 2nd ISTCS, pages 18–24, 1993.

[MK61] J. Myhill and W. Kautz. On the size of weights
required for linear-input switching functions.
IRE Trans. on Electronic Computers,
EC10(2):288–290, 1961.

[MOO10] E. Mossel, R. O’Donnell, and K. K.
Oleszkiewicz. Noise stability of functions with
low influences: Invariance and optimality.
Annals of Mathematics, 171:295–341, 2010.

[MP68] M. Minsky and S. Papert. Perceptrons: an
introduction to computational geometry. MIT
Press, Cambridge, MA, 1968.

[MTT61] S. Muroga, I. Toda, and S. Takasu. Theory of
majority switching elements. J. Franklin
Institute, 271:376–418, 1961.

[Mur71] S. Muroga. Threshold logic and its applications.
Wiley-Interscience, New York, 1971.

[MZ09] R. Meka and D. Zuckerman. Pseudorandom
Generators for Polynomial Threshold
Functions. Available at
http://arxiv.org/abs/0910.4122, 2009.

[MZ10] Raghu Meka and David Zuckerman.
Pseudorandom generators for polynomial
threshold functions. In STOC, pages 427–436,
2010.

[NN93] J. Naor and M. Naor. Small-bias probability
spaces: efficient constructions and applications.
SIAM J. on Comput., 22(4):838–856, 1993.
Earlier version in STOC’90.

[Nou12] I. Nourdin. Lectures on gaussian
approximations with malliavin calculus.
Technical Report
http://arxiv.org/abs/1203.4147v3, 28 June
2012.

[Nou13] I. Nourdin. Personal communication, 2013.

[NP09] I. Nourdin and G. Peccati. Stein’s method
meets malliavin calculus: a short survey with
new estimates. Technical Report
http://arxiv.org/abs/0906.4419v2, 17 Sep 2009.

[NPR10] I. Nourdin, G. Peccati, and A. Réveillac.
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