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Abstract. We consider quantum versions of two well-studied models of learning Boolean func-
tions: Angluin’s model of exact learning from membership queries and Valiant’s Probably Approxi-
mately Correct (PAC) model of learning from random examples. For each of these two learning mod-
els we establish a polynomial relationship between the number of quantum versus classical queries re-
quired for learning. These results contrast known results which show that testing black-box functions
for various properties, as opposed to learning, can require exponentially more classical queries than
quantum queries. We also show that under a widely held computational hardness assumption (the
intractability of factoring Blum integers) there is a class of Boolean functions which is polynomial-
time learnable in the quantum version but not the classical version of each learning model. For the
model of exact learning from membership queries, we establish a stronger separation by showing that
if any one-way function exists, then there is a class of functions which is polynomial-time learnable
in the quantum setting but not in the classical setting. Thus, while quantum and classical learning
are equally powerful from an information theory perspective, the models are different when viewed
from a computational complexity perspective.
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1. Introduction.

1.1. Motivation. In recent years many researchers have investigated the power
of quantum computers which can query a black-box oracle for an unknown function
[1, 5, 6, 9, 14, 10, 11, 15, 17, 20, 21, 24, 40, 46]. The broad goal of research in this
area is to understand the relationship between the number of quantum versus classical
oracle queries which are required to answer various questions about the function
computed by the oracle. For example, a well-known result due to Deutsch and Jozsa
[17] shows that exponentially fewer queries are required in the quantum model in
order to determine with certainty whether a black-box oracle computes a constant
Boolean function or a function which is balanced between outputs 0 and 1. More
recently, several researchers have studied the number of quantum oracle queries which
are required to determine whether the function computed by a black-box oracle is
identically zero [5, 6, 9, 15, 24, 46].

A natural question which arises in this framework is the following: what is the
relationship between the number of quantum versus classical oracle queries which are
required in order to exactly identify the function computed by a black-box oracle? Here
the goal is not to determine whether a black-box function satisfies some particular
property such as ever taking a nonzero value, but rather to precisely identify an
unknown black-box function from some restricted class of possible functions. The
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classical version of this problem has been well studied in the computational learning
theory literature [2, 12, 22, 26, 27] and is known as the problem of exact learning from
membership queries. The question stated above can thus be rephrased as follows:
what is the relationship between the number of quantum versus classical membership
queries which are required for exact learning? We answer this question in this paper.

In addition to the model of exact learning from membership queries, we also
consider a quantum version of Valiant’s widely studied PAC learning model which
was introduced by Bshouty and Jackson [13]. While a learning algorithm in the
classical PAC model has access to labeled examples drawn from some fixed probability
distribution, a learning algorithm in the quantum PAC model has access to some fixed
quantum superposition of labeled examples. Bshouty and Jackson gave a polynomial-
time algorithm for a particular learning problem in the quantum PAC model, but did
not address the general relationship between the number of quantum versus classical
examples which are required for PAC learning. We answer this question as well.

1.2. Our results. We show that in an information-theoretic sense, quantum
and classical learning are equivalent up to polynomial factors: for both the model
of exact learning from membership queries and the PAC model, there is no learning
problem which can be solved using significantly fewer quantum queries than classical
queries. More precisely, our first main theorem is the following:

Theorem 1.1. Let C be any class of Boolean functions over {0, 1}n and let D
and Q be such that C is exact learnable from D classical membership queries or from
Q quantum membership queries. Then D = O(nQ3).

Our second main theorem is an analogous result for quantum versus classical PAC
learnability:

Theorem 1.2. Let C be any class of Boolean functions over {0, 1}n and let D
and Q be such that C is PAC learnable from D classical examples or from Q quantum
examples. Then D = O(nQ).

These results draw on lower bound techniques from both quantum computation
and computational learning theory [2, 5, 6, 8, 12, 26]. A detailed description of the
relationship between our results and previous work on quantum versus classical black-
box query complexity is given in Section 3.4.

Theorems 1.1 and 1.2 are information-theoretic rather than computational in na-
ture; they show that for any learning problem, if there is a quantum learning algorithm
which uses polynomially many examples then there must also exist a classical learning
algorithm which uses polynomially many examples. However, Theorems 1.1 and 1.2
do not imply that every polynomial time quantum learning algorithm must have a
polynomial time classical analogue. In fact, we show that a separation exists between
efficient quantum learnability and efficient clasical learnability. Under a widely held
computational hardness assumption for classical computation (the hardness of factor-
ing Blum integers), we observe that for each of the two learning models considered in
this paper there is a concept class which is polynomial-time learnable in the quantum
version but not in the classical version of the model.

For the model of exact learning from membership queries we give an even stronger
separation between efficient quantum and classical learnability. Our third main the-
orem is:

Theorem 1.3. If any one-way function exists, then there is a concept class C
which is polynomial-time exact learnable from quantum membership queries but is not
polynomial-time exact learnable from classical membership queries.
This result establishes a robust separation between efficient quantum and classical
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learnability. Even if a polynomial-time classical factoring algorithm were to be discov-
ered, the separation would hold as long as any one-way function exists (a universally
held belief in public-key cryptography). As discussed in Section 9, our results prove
the existence of a quantum oracle algorithm which defeats a general cryptographic
construction secure in the classical setting. More precisely, given any one-way func-
tion we construct a family of pseudorandom functions which are classically secure but
can be distinguished from truly random functions (and in fact exactly identified) by
an algorithm which can make quantum oracle queries. To our knowledge, this is the
first break of a generic cryptographic construction (not based on a specific assumption
such as factoring) in a quantum setting.

The main cryptographic tool underlying Theorem 1.3 is a new construction of
pseudorandom functions which are invariant under an XOR mask (see Section 7).
As described in Section 8.1, each concept c ∈ C combines these new pseudorandom
functions with pseudorandom permutations in a particular way. Roughly speaking,
the XOR mask invariance of the new pseudorandom functions ensures that a quantum
algorithm due to Simon [40] can be used to extract some information about the
structure of the target concept and thus make progress towards learning. On the other
hand, the pseudorandomness ensures that no probabilistic polynomial-time learning
algorithm can extract any useful information, and thus no such algorithm can learn
successfully.

1.3. Organization. We set notation, define the exact learning model and the
PAC learning model, and describe the quantum computation framework in Section
2. We prove the relationship between quantum and classical exact learning from
membership queries (Theorem 1.1) in Section 3, and we prove the relationship between
quantum and classical PAC learning (Theorem 1.2) in Section 4. In Section 5 we
observe that if factoring Blum integers is classically hard, then in each of these two
learning models there is a concept class which is quantum learnable in polynomial time
but not classically learnable in polynomial time. We prove Theorem 1.3 in Sections 6
through 8.

2. Preliminaries. For α, β ∈ {0, 1} we write α⊕β to denote the exclusive-or
α + β (mod 2). Similarly for x, y ∈ {0, 1}n we write x⊕y to denote the n-bit string
which is the bitwise XOR of x and y. We write x · y to denote the inner product
x1y1 + · · · + xnyn (mod 2), and we write |x| to denote the length of string x.

We use script capital letters to denote probability distributions over sets of func-
tions; in particular Fn denotes the uniform distribution over all 2n2n

functions from
{0, 1}n to {0, 1}n. If S is a finite set we write Prs∈S to denote a uniform choice of s
from S.

We write M(s) to indicate that algorithm M is given string s as input and Mg

to indicate that M has access to an oracle for the function g. If M is a probabilistic
polynomial-time (henceforth abbreviated p.p.t.) algorithm which has access to an
oracle g : {0, 1}`1 → {0, 1}`2 , then the running time of Mg is bounded by p(`1 + `2)
for some polynomial p.

A concept c over {0, 1}n is a Boolean function over the domain {0, 1}n, or equiv-
alently a concept can be viewed as a subset {x ∈ {0, 1}n : c(x) = 1} of {0, 1}n. A
concept class C = ∪n≥1Cn is a collection of concepts, where Cn = {c ∈ C : c is a
concept over {0, 1}n}. For example, Cn might be the family of all Boolean formulae
over n variables which are of size at most n2. We say that a pair 〈x, c(x)〉 is a labeled
example of the concept c.
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While many different learning models have been proposed, most models follow
the same basic paradigm: a learning algorithm for a concept class C typically has
access to some kind of oracle which provides examples that are labeled according to
a fixed but unknown target concept c ∈ C, and the goal of the learning algorithm
is to infer (in some sense) the target concept c. The two learning models which we
discuss in this paper, the model of exact learning from membership queries and the
PAC model, make this rough notion precise in different ways.

2.1. Classical Exact Learning from Membership Queries. The model of
exact learning from membership queries was introduced by Angluin [2] and has since
been widely studied [2, 12, 22, 26, 27]. In this model the learning algorithm has access
to a membership oracle MQc where c ∈ Cn is the unknown target concept. When
given an input string x ∈ {0, 1}n, in one time step the oracle MQc returns the bit
c(x); such an invocation is known as a membership query since the oracle’s answer
tells whether or not x ∈ c (viewing c as a subset of {0, 1}n). The goal of the learning
algorithm is to construct a hypothesis h : {0, 1}n → {0, 1} which is logically equivalent
to c, i.e. h(x) = c(x) for all x ∈ {0, 1}n. Formally, we say that an algorithm A is
an exact learning algorithm for C using membership queries if for all n ≥ 1, for all
c ∈ Cn, if A is given n and access to MQc, then with probability at least 2/3 (over
the internal randomness of A) algorithm A outputs a Boolean circuit h such that
h(x) = c(x) for all x ∈ {0, 1}n. The sample complexity T (n) of a learning algorithm
A for C is the maximum number of calls to MQc which A ever makes for any c ∈ Cn.

2.2. Classical PAC Learning. The PAC (Probably Approximately Correct)
model of concept learning was introduced by Valiant in [41] and has since been exten-
sively studied [4, 29]. In this model the learning algorithm has access to an example
oracle EX(c,D) where c ∈ Cn is the unknown target concept and D is an unknown
distribution over {0, 1}n. The oracle EX(c,D) takes no inputs; when invoked, in one
time step it returns a labeled example 〈x, c(x)〉 where x ∈ {0, 1}n is randomly selected
according to the distribution D. The goal of the learning algorithm is to generate a
hypothesis h : {0, 1}n → {0, 1} which is an ε-approximator for c under D, i.e. a
hypothesis h such that Prx∈D[h(x) 6= c(x)] ≤ ε. An algorithm A is a PAC learning
algorithm for C if the following condition holds: for all n ≥ 1 and 0 < ε, δ < 1,
for all c ∈ Cn, for all distributions D over {0, 1}n, if A is given n, ε, δ and access to
EX(c,D), then with probability at least 1− δ algorithm A outputs a circuit h which
is an ε-approximator for c under D. The sample complexity T (n, ε, δ) of a learning
algorithm A for C is the maximum number of calls to EX(c,D) which A ever makes
for any concept c ∈ Cn and any distribution D over {0, 1}n.

2.3. Quantum Computation. Detailed descriptions of the quantum compu-
tation model can be found in [7, 16, 31, 45]; here we outline only the basics using
the terminology of quantum networks as presented in [5]. A quantum network N is
a quantum circuit (over some standard basis augmented with one oracle gate) which
acts on an m-bit quantum register; the computational basis states of this register are
the 2m binary strings of length m. A quantum network can be viewed as a sequence
of unitary transformations

U0, O1, U1, O2, . . . , UT−1, OT , UT ,

where each Ui is an arbitrary unitary transformation on m qubits and each Oi is
a unitary transformation which corresponds to an oracle call.1 Such a network is

1Since there is only one kind of oracle gate, each Oi is the same transformation.
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said to have query complexity T. At every stage in the execution of the network, the
current state of the register can be represented as a superposition

∑

z∈{0,1}m αz|z〉
where the αz are complex numbers which satisfy

∑

z∈{0,1}m ‖αz‖2 = 1. If this state is

measured, then with probability ‖αz‖2 the string z ∈ {0, 1}m is observed and the state
collapses down to |z〉. After the final transformation UT takes place, a measurement
is performed on some subset of the bits in the register and the observed value (a
classical bit string) is the output of the computation.

Several points deserve mention here. First, since the information which our quan-
tum network uses for its computation comes from the oracle calls, we may stipulate
that the initial state of the quantum register is |0m〉. Second, as described above each
Ui can be an arbitrarily complicated unitary transformation (as long as it does not
contain any oracle calls) which may require a large quantum circuit to implement.
This is of small concern since we are chiefly interested in query complexity and not
circuit size. Third, as defined above our quantum networks can make only one mea-
surement at the very end of the computation; this is an inessential restriction since
any algorithm which uses intermediate measurements can be modified to an algorithm
which makes only one final measurement. Finally, we have not specified just how the
oracle calls Oi work; we address this point separately in Sections 3.1 and 4.1 for each
type of oracle.

If |φ〉 =
∑

z αz|z〉 and |ψ〉 =
∑

z βz|z〉 are two superpositions of basis states,
then the Euclidean distance betweeen |φ〉 and |ψ〉 is ||φ〉 − |ψ〉| = (

∑

z |αz − βz|2)1/2.
The total variation distance between two distributions D1 and D2 is defined to be
∑

x |D1(x) − D2(x)|. The following fact (Lemma 3.2.6 of [7]), which relates the Eu-
clidean distance between two superpositions and the total variation distance between
the distributions induced by measuring the two superpositions, will be useful:

Fact 1. Let |φ〉 and |ψ〉 be two unit-length superpositions which represent possible
states of a quantum register. If the Euclidean distance ||φ〉 − |ψ〉| is at most ε, then
performing the same observation on |φ〉 and |ψ〉 induces distributions Dφ and Dψ

which have total variation distance at most 4ε.

3. Exact Learning from Quantum Membership Queries.

3.1. Quantum Membership Queries. A quantum membership oracle QMQc

is the natural quantum generalization of a classical membership oracle MQc: on in-
put a superposition of query strings, the oracle QMQc generates the corresponding
superposition of example labels. More formally, a QMQc gate maps the basis state
|x, b〉 (where x ∈ {0, 1}n and b ∈ {0, 1}) to the state |x, b⊕c(x)〉. If N is a quantum
network which has QMQc gates as its oracle gates, then each Oi is the unitary trans-
formation which maps |x, b, y〉 (where x ∈ {0, 1}n, b ∈ {0, 1} and y ∈ {0, 1}m−n−1) to
|x, b⊕c(x), y〉.2 Our QMQc oracle is identical to the well-studied notion of a quantum
black-box oracle for c [5, 6, 7, 9, 10, 11, 15, 17, 24, 46].

A quantum exact learning algorithm for C is a family N1,N2, . . . , of quantum
networks where each network Nn has a fixed architecture independent of the choice
of c ∈ Cn, with the following property: for all n ≥ 1, for all c ∈ Cn, if Nn’s oracle
gates are instantiated as QMQc gates, then with probability at least 2/3 the network
Nn outputs a representation of a (classical) Boolean circuit h : {0, 1}n → {0, 1} such
that h(x) = c(x) for all x ∈ {0, 1}n. The quantum sample complexity of a quantum
exact learning algorithm for C is T (n), where T (n) is the query complexity of Nn.

2Note that each Oi only affects the first n + 1 bits of a basis state. This is without loss of
generality since the transformations Uj can “permute bits” of the network.
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3.2. Lower Bounds on Classical and Quantum Exact Learning. Two
different lower bounds are known for the number of classical membership queries
which are required to exact learn any concept class. In this section we prove two
analogous lower bounds on the number of quantum membership queries required to
exact learn any concept class. Throughout this section for ease of notation we omit
the subscript n and write C for Cn.

A Lower Bound Based on Similarity of Concepts. Consider a set of concepts
which are all “similar” in the sense that for every input almost all concepts in the
set agree. Known results in learning theory state that such a concept class must
require a large number of membership queries for exact learning. More formally, let
C ′ ⊆ C be any subset of C. For a ∈ {0, 1}n and b ∈ {0, 1} let C ′

〈a,b〉 denote the set

of those concepts in C ′ which assign label b to example a, i.e. C ′
〈a,b〉 = {c ∈ C ′ :

c(a) = b}. Let γC′

〈a,b〉 = |C ′
〈a,b〉|/|C ′| be the fraction of such concepts in C ′, and let

γC′

a = min{γC′

〈a,0〉, γ
C′

〈a,1〉}; thus γC′

a is the minimum fraction of concepts in C ′ which can

be eliminated by querying MQc on the string a. Let γC′

= max{γC′

a : a ∈ {0, 1}n}.
Finally, let γ̂C be the minimum of γC′

across all C ′ ⊆ C such that |C ′| ≥ 2. Thus

γ̂C = min
C′⊆C,|C′|≥2

max
a∈{0,1}n

min
b∈{0,1}

|C ′
〈a,b〉|
|C ′| .

Intuitively, the inner min corresponds to the fact that the oracle may provide a worst-
case response to any query; the max corresponds to the fact that the learning algo-
rithm gets to choose the “best” query point a; and the outer min corresponds to the
fact that the learner must succeed no matter what subset C ′ of C the target concept
is drawn from. Thus γ̂C is small if there is a large set C ′ of concepts which are all
very similar in that any query eliminates only a few concepts from C ′. If this is the
case then many membership queries should be required to learn C; formally, we have
the following lemma which is a variant of Fact 2 from [12]:

Lemma 3.1. Any (classical) exact learning algorithm for C must have sample
complexity Ω( 1

γ̂C ).

Proof. Let C ′ ⊆ C, |C ′| ≥ 2 be such that γC′

= γ̂C . Consider the following
adversarial strategy for answering queries: given the query string a, answer the bit b
which maximizes γC′

〈a,b〉. This strategy ensures that each response eliminates at most a

γC′

a ≤ γC′

= γ̂C fraction of the concepts in C ′. After 1
2γ̂C −1 membership queries, fewer

than half of the concepts in C ′ have been eliminated, so at least two concepts have
not yet been eliminated. Consequently, it is impossible for A to output a hypothesis
which is equivalent to the correct concept with probability greater than 1/2.

We now develop some tools which will enable us to prove a quantum version
of Lemma 3.1. Let C ′ ⊆ C, |C ′| ≥ 2 be such that γC′

= γ̂C and let c1, . . . , c|C′|
be a listing of the concepts in C ′. Let the typical concept for C ′ be the function
ĉ : {0, 1}n → {0, 1} defined as follows: for all a ∈ {0, 1}n, ĉ(a) is the bit b such that
|C ′

〈a,b〉| ≥ |C ′|/2 (ties are broken arbitrarily; note that a tie occurs only if γ̂C = 1/2).

The typical concept ĉ need not belong to C ′ or even to C. The difference matrix D is
the |C ′| × 2n zero/one matrix where rows are indexed by concepts in C ′, columns are
indexed by strings in {0, 1}n, and Di,x = 1 iff ci(x) 6= ĉ(x). By our choice of C ′ and
the definition of γ̂C , each column of D has at most |C ′| · γ̂C ones, so the L1 matrix
norm of D is ‖D‖1 ≤ |C ′| · γ̂C .
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Our quantum lower bound proof uses ideas which were first introduced by Bennett
et al. [6]. Let N be a fixed quantum network architecture and let U0, O1, . . . , UT−1,
OT , UT be the corresponding sequence of transformations. For 1 ≤ t ≤ T let |φc

t〉
be the state of the quantum register after the transformations up through Ut−1 have
been performed (we refer to this stage of the computation as time t) if the oracle gate
is QMQc. As in [6], for x ∈ {0, 1}n let qx(|φc

t〉), the query magnitude of string x at
time t with respect to c, be the sum of the squared magnitudes in |φc

t〉 of the basis
states which are querying QMQc on string x at time t; so if |φc

t〉 =
∑

z∈{0,1}m αz|z〉,
then

qx(|φc
t〉) =

∑

w∈{0,1}m−n

‖αxw‖2.

The quantity qx(|φc
t〉) can be viewed as the amount of amplitude which the net-

work N invests in the query string x to QMQc at time t. Intuitively, the final outcome
of N ’s computation cannot depend very much on the oracle’s responses to queries
which have little amplitude invested in them. Bennett et al. formalized this intuition
in the following theorem ([6], Theorem 3.3):

Theorem 3.2. Let |φc
t〉 be defined as above. Let F ⊆ {0, . . . , T − 1} × {0, 1}n be

a set of time-string pairs such that
∑

(t,x)∈F qx(|φc
t〉) ≤ ε2

T . Now suppose the answer

to each query instance (t, x) ∈ F is modified to some arbitrary fixed bit at,x (these

answers need not be consistent with any oracle). Let |φ̃c
t〉 be the state of the quantum

register at time t if the oracle responses are modified as stated above. Then ||φc
T 〉 −

|φ̃c
T 〉| ≤ ε.

The following lemma, which is an extension of Corollary 3.4 from [6], shows
that no quantum learning algorithm which makes few QMQ queries can effectively
distinguish many concepts in C ′ from the typical concept ĉ.

Lemma 3.3. Fix any quantum network architecture N which has query complexity
T. For all ε > 0 there is a set S ⊆ C ′ of cardinality at most T 2|C ′|γ̂C/ε2 such that
for all c ∈ C ′ \ S, we have ||φĉ

T 〉 − |φc
T 〉| ≤ ε.

Proof. Since ||φĉ
t〉| = 1 for t = 0, 1, . . . , T −1, we have

∑T−1
t=0

∑

x∈{0,1}n qx(|φĉ
t〉) =

T. Let q(|φĉ
t〉) ∈ <2n

be the 2n-dimensional vector which has entries indexed by
strings x ∈ {0, 1}n and which has qx(|φĉ

t〉) as its x-th entry. Note that the L1 norm
‖q(|φĉ

t〉)‖1 is 1 for all t = 0, . . . , T − 1. For any ci ∈ C ′ let qci
(|φĉ

t〉) be defined
as

∑

x:ci(x) 6=ĉ(x) qx(|φĉ
t〉). The quantity qci

(|φĉ
t〉) can be viewed as the total query

magnitude with respect to ĉ at time t of those strings which distinguish ci from
ĉ. Note that Dq(|φĉ

t〉) ∈ <|C′| is an |C ′|-dimensional vector whose i-th element is
precisely

∑

x:ci(x) 6=ĉ(x) qx(|φĉ
t〉) = qci

(|φĉ
t〉). Since ‖D‖1 ≤ |C ′| · γ̂C and ‖q(|φĉ

t〉)‖1 = 1,

by the basic property of matrix norms we have that ‖Dq(|φĉ
t〉)‖1 ≤ |C ′| · γ̂C , i.e.

∑

ci∈C′ qci
(|φĉ

t〉) ≤ |C ′| · γ̂C . Hence

T−1
∑

t=0

∑

ci∈C′

qci
(|φĉ

t〉) ≤ T |C ′| · γ̂C .

If we let S = {ci ∈ C ′ :
∑T−1

t=0 qci
(|φĉ

t〉) ≥ ε2

T }, by Markov’s inequality we have

|S| ≤ T 2|C ′|γ̂C/ε2. Finally, if c /∈ S then
∑T−1

t=0 qc(|φĉ
t〉) ≤ ε2

T . Theorem 3.2 then
implies that ||φĉ

T 〉 − |φc
T 〉| ≤ ε.

Now we can prove our quantum version of Lemma 3.1.
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Theorem 3.4. Any quantum exact learning algorithm for C must have sample

complexity Ω

(

(

1
γ̂C

)1/2
)

.

Proof. Suppose that N is a quantum exact learning algorithm for C which makes

at most T = 1
64 ·

(

1
γ̂C

)1/2

quantum membership queries. If we take ε = 1
32 , then

Lemma 3.3 implies that there is a set S ⊂ C ′ of cardinality at most |C′|
4 such that for

all c ∈ C ′ \ S we have ||φc
T 〉 − |φĉ

T 〉| ≤ 1
32 . Let c1, c2 be any two concepts in C ′ \ S.

By Fact 1, the probability that N outputs a circuit equivalent to c1 can differ by at
most 1

8 if N ’s oracle gates are QMQĉ as opposed to QMQc1
, and likewise for QMQĉ

versus QMQc2
. It follows that the probability that N outputs a circuit equivalent to

c1 can differ by at most 1
4 if N ’s oracle gates are QMQc1

as opposed to QMQc2
, but

this contradicts the assumption that N is a quantum exact learning algorithm for C.

Well known results [9, 24] show that O(
√

N) queries are sufficient to search a
quantum database of N unordered items for a desired item. These upper bounds can
easily be used to show that Theorem 3.4 is tight up to constant factors.

A Lower Bound Based on Concept Class Size. A second reason why a concept
class can require many membership queries is its size. Angluin [2] has given the
following simple bound, incomparable to the bound of Lemma 3.1, on the number of
classical membership queries required for exact learning:

Lemma 3.5. Any classical exact learning algorithm for C must have sample
complexity Ω(log |C|).

Proof. Consider the following adversarial strategy for answering queries: if C ′ ⊆ C
is the set of concepts which have not yet been eliminated by previous responses to
queries, then given the query string a, answer the bit b such that γC′

〈a,b〉 ≥ 1
2 . Under

this strategy, after log |C|−1 membership queries at least two possible target concepts
will remain.

In this section we prove a variant of this lemma for the quantum model. Our
proof uses ideas from [5] so we introduce some of their notation. Let N = 2n. For
each concept c ∈ C, let Xc = (Xc

0 , . . . ,Xc
N−1) ∈ {0, 1}N be a vector which represents

c as an N -tuple, i.e. Xc
i = c(xi) where xi ∈ {0, 1}n is the binary representation of

i. From this perspective we may identify C with a subset of {0, 1}N , and we may
view a QMQc gate as a black-box oracle for Xc which maps basis state |xi, b, y〉 to
|xi, b⊕Xc

i , y〉.
Using ideas from [20, 21], Beals et al. have proved the following useful lemma,

which relates the query complexity of a quantum network to the degree of a certain
polynomial ([5], Lemma 4.2):

Lemma 3.6. Let N be a quantum network that makes T queries to a black-box X,
and let B ⊆ {0, 1}m be a set of basis states. Then there exists a real-valued multilinear
polynomial PB(X) of degree at most 2T which equals the probability that observing the
final state of the network with black-box X yields a state from B.

We use Lemma 3.6 to prove the following quantum lower bound based on concept
class size. (Ronald de Wolf has observed that this lower bound can also be obtained
from the results of [19].)

Theorem 3.7. Any exact quantum learning algorithm for C must have sample

complexity Ω
(

log |C|
n

)

.

Proof. Let N be a quantum network which learns C and has query complexity
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T. For all c ∈ C we have the following: if N ’s oracle gates are QMQc gates, then
with probability at least 2/3 the output of N is a representation of a Boolean circuit
h which computes c. Let c1, . . . , c|C| be all of the concepts in C, and let X1, . . . ,X |C|

be the corresponding vectors in {0, 1}N . For all i = 1, . . . , |C| let Bi ⊆ {0, 1}m be the
collection of those basis states which are such that if the final observation performed
by N yields a state from Bi, then the output of N is a representation of a Boolean
circuit which computes ci. Clearly for i 6= j the sets Bi and Bj are disjoint. By
Lemma 3.6, for each i = 1, . . . , |C| there is a real-valued multilinear polynomial Pi of
degree at most 2T such that for all j = 1, . . . , |C|, the value of Pi(X

j) is precisely the
probability that the final observation on N yields a representation of a circuit which
computes ci, provided that the oracle gates are QMQcj

gates. The polynomials Pi

thus have the following properties:
1. Pi(X

i) ≥ 2/3 for all i = 1, . . . , |C|;
2. For any j = 1, . . . , |C|, we have

∑

i6=j Pi(X
j) ≤ 1/3 (since the total probabil-

ity across all possible observations is 1).

Let N0 =
∑2T

i=0

(

N
i

)

. For any X = (X0, . . . ,XN−1) ∈ {0, 1}N let X̃ ∈ {0, 1}N0 be
the column vector which has a coordinate for each monic multilinear monomial over
X0, . . . ,XN−1 of degree at most 2T. Thus, for example, if N = 4 and 2T = 2 we have
X = (X0,X1,X2,X3) and

X̃t = (1,X0,X1,X2,X3,X0X1,X0X2,

X0X3,X1X2,X1X3,X2X3).

If V is a column vector in <N0 , then V tX̃ corresponds to the degree-2T polynomial
whose coefficients are given by the entries of V. For i = 1, . . . , |C| let Vi ∈ <N0 be the
column vector which corresponds to the coefficients of the polynomial Pi. Let M be
the |C| × N0 matrix whose i-th row is V t

i ; note that multiplication by M defines a
linear transformation from <N0 to <|C|. Since V t

i X̃j is precisely Pi(X
j), the product

MX̃j is a column vector in <|C| which has Pi(X
j) as its i-th coordinate.

Now let L be the |C|×|C| matrix whose j-th column is the vector MX̃j . A square
matrix A is said to be diagonally dominant if |aii| >

∑

j 6=i |aij | for all i. Properties (1)
and (2) above imply that the transpose of L is diagonally dominant. It is well known
that any diagonally dominant matrix must be of full rank (see e.g. [32]). Since L is
full rank and each column of L is in the image of M, it follows that the image under
M of <N0 is all of <|C|, and hence N0 ≥ |C|. Finally, since N0 =

∑2T
i=0

(

N
i

)

≤ N2T ,

we have T ≥ log |C|
2 log N = log |C|

2n , which proves the theorem.
The lower bound of Theorem 3.7 is nearly tight as witnessed by the following

example: let C be the collection of all 2n parity functions over {0, 1}n, so each function
in C is defined by a string a ∈ {0, 1}n and ca(x) = a ·x. The quantum algorithm which
solves the well-known Deutsch-Jozsa problem [17] can be used to exactly identify a
and thus learn the target concept with probability 1 from a single query. It follows
that the factor of n in the denominator of Theorem 3.7 cannot be replaced by any
function g(n) = o(n).

3.3. Quantum and Classical Exact Learning are Equivalent. We have
seen two different reasons why exact learning a concept class can require a large
number of classical membership queries: the class may contain many similar concepts
(i.e. γ̂C is small), or the class may contain very many concepts (i.e. log |C| is large).
The following lemma, which is a variant of Theorem 3.1 from [26], shows that these
are the only reasons why many membership queries may be required:
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Lemma 3.8. There is an exact learning algorithm for C which has sample com-
plexity O((log |C|)/γ̂C).

Proof. Consider the following learning algorithm A: at each stage in its execution,
if C ′ is the set of concepts in C which have not yet been eliminated by previous
responses to queries, algorithm A’s next query string is the string a ∈ {0, 1}n which
maximizes γC′

a . By following this strategy, each query response received from the
oracle must eliminate at least a γC′

fraction of the set C ′, so with each query the
size of the set of possible target concepts is multiplied by a factor which is at most
1 − γC′ ≤ 1 − γ̂C . Consequently, after O((log |C|)/γ̂C) queries, only a single concept
will not have been eliminated; this concept must be the target concept, so A can
output a hypothesis h which is equivalent to c.

Combining Theorem 3.4, Theorem 3.7 and Lemma 3.8 we obtain the following
relationship between the quantum and classical sample complexity of exact learning:

Theorem 1.1 Let C be any concept class over {0, 1}n and let D and Q be such
that C is exact learnable from D classical membership queries or from Q quantum
membership queries. Then D = O(nQ3).

We note that a QMQc oracle can clearly be used to simulate an MQc oracle, so
Q ≤ D as well.

3.4. Discussion. Theorem 1.1 provides an interesting contrast to several known
results for black-box quantum computation. Let F denote the set of all 22n

functions
from {0, 1}n to {0, 1}. Beals et al. [5] have shown that if f : F → {0, 1} is any total
function (i.e. f(c) is defined for every possible concept c over {0, 1}n), then the query
complexity of any quantum network which computes f is polynomially related to the
number of classical black-box queries required to compute f. Their result is interesting
because it is well known [7, 11, 17, 40] that for certain concept classes C ⊂ F and
partial functions f : C → {0, 1}, the quantum black-box query complexity of f can
be exponentially smaller than the classical black-box query complexity.

Our Theorem 1.1 provides a sort of dual to the results of Beals et al.: their bound
on query complexity holds only for the fixed concept class F but for any function
f : F → {0, 1}, while our bound holds for any concept class C ⊆ F but only for
the fixed problem of exact learning. In general, the problem of computing a function
f : C → {0, 1} from black-box queries can be viewed as an easier version of the
corresponding exact learning problem: instead of having to figure out only one bit of
information about the unknown concept c (the value of f), for the learning problem the
algorithm must identify c exactly. Theorem 1.1 shows that for this more demanding
problem, unlike the results in [7, 11, 17, 40] there is no way of restricting the concept
class C so that learning becomes substantially easier in the quantum setting than in
the classical setting.

4. PAC Learning from a Quantum Example Oracle.

4.1. The Quantum Example Oracle. Bshouty and Jackson [13] have intro-
duced a natural quantum generalization of the standard PAC-model example oracle.
While a standard PAC example oracle EX(c,D) generates each example 〈x, c(x)〉
with probability D(x), where D is a distribution over {0, 1}n, a quantum PAC exam-
ple oracle QEX(c,D) generates a superposition of all labeled examples, where each
labeled example 〈x, c(x)〉 appears in the superposition with amplitude proportional to
the square root of D(x). More formally, a QEX(c,D) gate maps the initial basis state
|0n, 0〉 to the state

∑

x∈{0,1}n

√

D(x)|x, c(x)〉. (We leave the action of a QEX(c,D)
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gate undefined on other basis states, and stipulate that any quantum network which
includes T QEX(c,D) gates must have all T gates at the “bottom of the circuit,”
i.e. no gate may occur on any wire between the inputs and any QEX(c,D) gate.) A
quantum network with T QEX(c,D) gates is said to be a QEX network with query
complexity T.

A quantum PAC learning algorithm for C is a family {N(n,ε,δ) : n ≥ 1, 0 < ε, δ <
1} of QEX networks with the following property: for all n ≥ 1 and 0 < ε, δ < 1,
for all c ∈ Cn, for all distributions D over {0, 1}n, if the network N(n,ε,δ) has all its
oracle gates instantiated as QEX(c,D) gates, then with probability at least 1− δ the
network N(n,ε,δ) outputs a representation of a circuit h which is an ε-approximator to
c under D. The quantum sample complexity T (n, ε, δ) of a quantum PAC algorithm is
the query complexity of N(n,ε,δ).

4.2. Lower Bounds on Classical and Quantum PAC Learning. Through-
out this section for ease of notation we omit the subscript n and write C for Cn. We
view each concept c ∈ C as a subset of {0, 1}n. For S ⊆ {0, 1}n, we write ΠC(S) to
denote {c∩S : c ∈ C}, so |ΠC(S)| is the number of different “dichotomies” which the
concepts in C induce on the points in S. A subset S ⊆ {0, 1}n is said to be shattered
by C if |ΠC(S)| = 2|S|, i.e. if C induces every possible dichotomy on the points in
S. The Vapnik-Chervonenkis dimension of C, VC-DIM(C), is the size of the largest
subset S ⊆ {0, 1}n which is shattered by C.

Well known results in computational learning theory show that the Vapnik-
Chervonenkis dimension of a concept class C characterizes the number of calls to
EX(c,D) which are information-theoretically necessary and sufficient to PAC learn
C. For the lower bound, the following theorem is a slight simplification of a result due
to Blumer et al. ([8], Theorem 2.1.ii.b):

Theorem 4.1. Let C be any concept class and d = VC-DIM(C). Then any
(classical) PAC learning algorithm for C must have sample complexity Ω(d).

Proof sketch. The idea behind Theorem 4.1 is to consider the distribution D
which is uniform over some shattered set S of size d and assigns zero weight to points
outside of S. Any learning algorithm which makes only d/2 calls to EX(c,D) will
have no information about the value of c on at least d/2 points in S; moreover, since
the set S is shattered by C, any labeling is possible for these unseen points. Since the
error of any hypothesis h under D is the fraction of points in S where h and the target
concept disagree, a simple analysis shows that no learning algorithm which perform
only d/2 calls to EX(c,D) can have high probability (e.g. 1− δ = 2/3) of generating
a low-error hypothesis (e.g. ε = 1/10).

We now give a quantum analogue of the classical lower bound given by Theorem
4.1:

Theorem 4.2. Let C be any concept class and d = VC-DIM(C). Then any
quantum PAC learning algorithm for C must have quantum sample complexity Ω( d

n ).
Proof. Let S = {x1, . . . , xd} be a set which is shattered by C and let D be the

distribution which is uniform on S and assigns zero weight to points outside S. If
h : {0, 1}n → {0, 1} is a Boolean function on {0, 1}n, we say that the relative distance
of h and c on S is the fraction of points in S on which h and c disagree. We will prove
the following result which is stronger than Theorem 4.2: Let N be a quantum network
with QMQ gates such that for all c ∈ C, if N ’s oracle gates are QMQc gates, then
with probability at least 2/3 the output of N is a hypothesis h such that the relative
distance of h and c on S is at most 1/10. We will show that such a network N must
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have query complexity at least d
12n . Since any QEX network with query complexity T

can be simulated by a QMQ network with query complexity T, taking ε = 1/10 and
δ = 1/3 will prove Theorem 4.2.

The argument is a modification of the proof of Theorem 3.7 using ideas from
error correcting codes. Let N be a quantum network with query complexity T which
satisfies the following condition: for all c ∈ C, if N ’s oracle gates are QMQc gates,
then with probability at least 2/3 the output of N is a representation of a Boolean
circuit h such that the relative distance of h and c on S is at most 1/10. By the
well-known Gilbert-Varshamov bound from coding theory (see, e.g., Theorem 5.1.7 of
[42]), there exists a set s1, . . . , sA of d-bit strings such that for all i 6= j the strings si

and sj differ in at least d/4 bit positions, where

A ≥ 2d

∑d/4−1
i=0

(

d
i

)
≥ 2d

∑d/4
i=0

(

d
i

)
≥ 2d(1−H(1/4)) > 2d/6.

(Here H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function.) For each
i = 1, . . . , A let ci ∈ C be a concept such that the d-bit string ci(x

1) · · · ci(x
d) is si

(such a concept ci must exist since the set S is shattered by C).
For i = 1, . . . , A let Bi ⊆ {0, 1}m be the collection of those basis states which are

such that if the final observation performed by N yields a state from Bi, then the
output of N is a hypothesis h such that h and ci have relative distance at most 1/10
on S. Since each pair of concepts ci, cj has relative distance at least 1/4 on S, the sets
Bi and Bj are disjoint for all i 6= j.

As in Section 3.2 let N = 2n and let Xj = (Xj
0 , . . . ,Xj

N−1) ∈ {0, 1}n where Xj

is the N -tuple representation of the concept cj . By Lemma 3.6, for each i = 1, . . . , A
there is a real-valued multilinear polynomial Pi of degree at most 2T such that for all
j = 1, . . . , A, the value of Pi(X

j) is precisely the probability that the final observation
on N yields a state from Bi provided that the oracle gates are QMQcj

gates. Since, by
assumption, if ci is the target concept then with probability at least 2/3 N generates
a hypothesis which has relative distance at most 1/10 from ci on S, the polynomials
Pi have the following properties:

1. Pi(X
i) ≥ 2/3 for all i = 1, . . . , A;

2. For any j = 1, . . . , A we have that
∑

i6=j Pi(X
j) ≤ 1/3 (since the Bi’s are

disjoint and the total probability across all observations is 1).
Let N0 and X̃ be defined as in the proof of Theorem 3.7. For i = 1, . . . , A let

Vi ∈ <N0 be the column vector which corresponds to the coefficients of the polynomial
Pi, so V t

i X̃ = Pi(X). Let M be the A×N0 matrix whose i-th row is the vector V t
i , so

multiplication by M is a linear transformation from <N0 to <A. The product MX̃j

is a column vector in <A which has Pi(X) as its i-th coordinate.
Now let L be the A × A matrix whose j-th column is the vector MX̃j . As in

Theorem 3.7 we have that the transpose of L is diagonally dominant, so L is of full

rank and hence N0 ≥ A. Since A ≥ 2d/6 we thus have that T ≥ d/6
2 log2 N = d

12n , and

the theorem is proved.
Since the class of parity functions over {0, 1}n has VC-dimension n, as in Theorem

3.7 the n in the denominator of Theorem 4.2 cannot be replaced by any function
g(n) = o(n).

4.3. Quantum and Classical PAC Learning are Equivalent. A well-known
theorem due to Blumer et al. (Theorem 3.2.1.ii.a of [8]) shows that VC-DIM(C) also
upper bounds the number of EX(c,D) calls required for (classical) PAC learning:
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Theorem 4.3. Let C be any concept class and d = VC-DIM(C). There is a clas-
sical PAC learning algorithm for C which has sample complexity O( 1

ε log 1
δ + d

ε log 1
ε ).

The proof of Theorem 4.3 is quite complex so we do not attempt to sketch it.
As in Section 3.3, this upper bound along with our lower bound from Theorem 4.2
together yield:

Theorem 1.2 Let C be any concept class over {0, 1}n and let D and Q be such that
C is PAC learnable from D classical examples or from Q quantum examples. Then
D = O(nQ).

We note that a QEX(c,D) oracle can be used to simulate the corresponding EX(c,D)
oracle by immediately performing an observation on the QEX gate’s outputs3 (such
an observation yields each example 〈x, c(x)〉 with probability D(x)), and thus Q ≤ D.

5. Quantum versus Classical Efficient Learnability. We have shown that
from an information-theoretic perspective, up to polynomial factors quantum learning
is no more powerful than classical learning. However, we now observe that the appa-
rant computational advantages of the quantum model yield efficient quantum learning
algorithms which seem to have no efficient classical counterparts.

A Blum integer is an integer N = pq where p 6= q are `-bit primes each congru-
ent to 3 modulo 4. It is widely believed that there is no polynomial-time classical
algorithm which can successfully factor a randomly selected Blum integer with non-
negligible success probability.

Kearns and Valiant [28] have constructed a concept class C whose PAC learnability
is closely related to the problem of factoring Blum integers. In their construction each
concept c ∈ C is uniquely defined by some Blum integer N. Furthermore, c has the
property that if c(x) = 1 then the prefix of x is the binary representation of N.
Kearns and Valiant prove that if there is a polynomial time PAC learning algorithm
for C, then there is a polynomial time algorithm which factors Blum integers. Thus,
assuming that factoring Blum integers is a computationally hard problem for classical
computation, the Kearns-Valiant concept class C is not efficiently PAC learnable.

On the other hand, in a celebrated result Shor [39] has exhibited a poly(n) size
quantum network which can factor any n-bit integer with high success probability.
Since each positive example of a concept c ∈ C reveals the Blum integer N which
defines c, using Shor’s algorithm it is easy to obtain an efficient quantum PAC learning
algorithm for the Kearns-Valiant concept class. We thus have

Observation 2. If there is no polynomial-time classical algorithm for factor-
ing Blum integers, then there is a concept class C which is efficiently quantum PAC
learnable but not efficiently classically PAC learnable.

The hardness results of Kearns and Valiant were later extended by Angluin and
Kharitonov [3]. Using a public-key encryption system which is secure against chosen-
cyphertext attack (based on the assumption that factoring Blum integers is com-
putationally hard for polynomial-time algorithms), they constructed a concept class
C which cannot be learned by any polynomial-time learning algorithm which makes
membership queries. As with the Kearns-Valiant concept class, though, using Shor’s
quantum factoring algorithm it is possible to construct an efficient quantum exact
learning algorithm for this concept class. Thus, for the exact learning model as well,
we have:

3As noted in Section 2.3, intermediate observations during a computation can always be simulated
by a single observation at the end of the computation.
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Observation 3. If there is no polynomial-time classical algorithm for factoring
Blum integers, then there is a concept class C which is efficiently quantum exact
learnable from membership queries but not efficiently classically exact learnable from
membership queries.

In the next sections we prove Theorem 1.3 which establishes a stronger compu-
tational separation between the quantum and classical models of exact learning from
membership queries than is implied by Observation 3. The proof involves Simon’s
quantum oracle algorithm, which we briefly describe in the next section.

6. Simon’s Algorithm. Let f : {0, 1}n → {0, 1}n be a function and let 0n 6=
s ∈ {0, 1}n. We say that f is two-to-one with XOR mask s if for all y 6= x, f(x) =
f(y) ⇐⇒ y = x⊕s. More generally, f is invariant under XOR mask with s if
f(x) = f(x⊕s) for all x ∈ {0, 1}n (note that such a function need not be two-to-one).

Simon [40] has given a simple quantum algorithm which takes oracle access to a
function f : {0, 1}n → {0, 1}n, runs in poly(n) time, and behaves as follows:

1. If f is a permutation on {0, 1}n, the algorithm outputs an n-bit string y which
is uniformly distributed over {0, 1}n.

2. If f is two-to-one with XOR mask s, the algorithm outputs an n-bit string y
which is uniformly distributed over the 2n−1 strings such that y · s = 0.

3. If f is invariant under XOR mask with s, the algorithm outputs some n-bit
string y which satisfies y · s = 0.

Simon showed that by running this procedure O(n) times a quantum algorithm
can distinguish between Case 1 (f is a permutation) and Case 3 (f is invariant under
some XOR mask) with high probability. In Case 1 after O(n) repetitions the strings
obtained will with probability 1 − 2−O(n) contain a basis for the vector space (Z2)

n

(here we are viewing n-bit strings as vectors over Z2), while in Case 3 the strings
obtained cannot contain such a basis since each string must lie in the subspace {y :
y · s = 0}. Simon also observed that in Case 2 (f is two-to-one with XOR mask s) the
algorithm can be used to efficiently identify s with high probability. This is because
after O(n) repetitions, with high probability s will be the unique nonzero vector whose
dot product with each y is 0; this vector can be found by solving the linear system
defined by the y’s.

Simon also analyzed the success probability of classical oracle algorithms for this
problem. His analysis establishes the following theorem:

Theorem 6.1. Let 0n 6= s ∈ {0, 1}n be chosen uniformly and let f : {0, 1}n →
{0, 1}n be an oracle chosen uniformly from the set of all functions which are two-to-one
with XOR mask s. Then (i) there is a polynomial-time quantum oracle algorithm which
identifies s with high probability; (ii) any p.p.t. classical oracle algorithm identifies s
with probability 1/2Ω(n).

This surprising ability of quantum oracle algorithms to efficiently find s is highly
suggestive in the context of our search for a learning problem which separates efficient
classical and quantum computation. Indeed, Simon’s algorithm will play a crucial role
in establishing that the concept class which we construct in Section 8 is learnable in
poly(n) time by a quantum algorithm. Recall that in our learning scenario, though,
the goal is to exactly identify the unknown target function, not just to identify the
string s. Since 2Ω(n) bits are required to specify a randomly chosen function f which
is two-to-one with XOR mask s, no algorithm (classical or quantum) can output a
description of f in poly(n) time, much less learn f in poly(n) time. Thus it will not do
to use truly random functions for our learning problem; instead we use pseudorandom
functions as described in the next section.
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7. Pseudorandomness. A pseudorandom function family [23] is a collection of
functions {fs : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ with the following two properties:

• (efficient evaluation) there is a deterministic algorithm which, given an n-bit
seed s and an n-bit input x, runs in time poly(n) and outputs fs(x);

• (pseudorandomness) for all polynomials Q, all p.p.t. oracle algorithms M,
and all sufficiently large n, we have that

∣

∣

∣

∣

Pr
F∈Fn

[MF outputs 1] − Pr
s∈{0,1}n

[Mfs outputs 1]

∣

∣

∣

∣

<
1

Q(n)
.

Intuitively, the pseudorandomess property ensures that in any p.p.t. computation
which uses a truly random function, a randomly chosen pseudorandom function may
be used instead without affecting the outcome in a noticeable way. Well known results
[23, 25] imply that pseudorandom function families exist if and only if any one-way
function exists.

A pseudorandom permutation family is a pseudorandom function family with the
added property that each function fs : {0, 1}|s| → {0, 1}|s| is a permutation. Luby
and Rackoff [30] gave the first construction of a pseudorandom permutation family
from any pseudorandom function family. In their construction each permutation
fs : {0, 1}n → {0, 1}n has a seed s of length |s| = 3n/2 rather than n as in our
definition above. Subsequent constructions [33, 34, 35] of pseudorandom permutation
families {fs : {0, 1}n → {0, 1}n} use n-bit seeds and hence match our definition
exactly. (Our definition of pseudorandomness could easily be extended to allow seed
lengths other than n. For our construction in Section 8 it will be convenient to have
n-bit seeds.)

7.1. Pseudorandom Functions Invariant under XOR Mask. Our main
cryptographic result, stated below, is proved in Appendix A:

Theorem 7.1. If any one-way function exists, then there is a pseudorandom
function family {gs : {0, 1}|s| → {0, 1}|s|} such that gs(x) = gs(x⊕s) for all |x| = |s|.

A first approach to constructing such a family is as follows: given any pseudoran-
dom function family {fs}, let {gs} be defined by

gs(x)
def
= fs(x)⊕fs(x⊕s).(7.1)

This simple construction ensures that each function gs is invariant under XOR mask
with s, but the family {gs} need not be pseudorandom just because {fs} is pseudo-

random. Indeed, if {hs} is similarly defined by hs(x)
def
= gs(x)⊕gs(x⊕s), then {hs} is

not pseudorandom since

hs(x) = (fs(x)⊕fs(x⊕s))⊕(fs(x⊕s)⊕fs(x⊕s⊕s)) = 0n.

While this example shows that (1) does not always preserve pseudorandomness,
it leaves open the possibility that (1) may preserve pseudorandomness for certain
function families {fs}. In Appendix A we show that if {fs} is a pseudorandom
function family which is constructed from any one-way function in a particular way,
then the family {gs} defined by (1) is indeed pseudorandom.

It may at first appear that the pseudorandom function family {gs} given by
Theorem 7.1 immediately yields a concept class which separates efficient quantum
learning from efficient classical learning. The pseudorandomness of {gs} ensures that
no p.p.t. algorithm can learn successfully; on the other hand, if Simon’s quantum
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algorithm is given oracle access to a function which is two-to-one with XOR mask
s, then it can efficiently find s with high probability. Hence it may seem that given
access to gs Simon’s quantum algorithm can efficiently identify the seed s and thus
learn the target concept.

The flaw in this argument is that each function gs from Theorem 7.1, while
invariant under XOR mask with s, need not be two-to-one. Indeed gs could con-
ceivably be invariant under XOR mask with, say,

√
n linearly independent strings

s = s1, s2, . . . , s
√

n. Such a set of strings spans a 2
√

n-element subspace of {0, 1}n;
even if Simon’s algorithm could identify this subspace, it would not indicate which
element of the subspace is the true seed s. Hence a more sophisticated construction
is required.

8. Proof of Theorem 1.

8.1. The Concept Class C. We describe concepts over {0, 1}m where m =
n+2 log n+1. Each concept in Cm is defined by an (n+1)-tuple (y, s1, . . . , sn) where
y = y1 . . . yn ∈ {0, 1}n and each si ∈ {0, 1}n \ {0n}, so Cm contains 2n(2n − 1)n

distinct concepts. For brevity we write s̃ to stand for s1, . . . , sn below.
Roughly speaking, each concept in Cm comprises n pseudorandom functions; as

explained below the string y acts as a “password” and the strings s1, . . . , sn are the
seeds to the pseudorandom functions. Each concept c ∈ Cm takes m-bit strings
as inputs; we view such an m-bit input as a 4-tuple (b, x, i, j) where b ∈ {0, 1},
x ∈ {0, 1}n, and i, j ∈ {0, 1}log n each represent a number in the range {1, 2, . . . , n}.

Let {h0
s : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ be a pseudorandom permutation family

and let {h1
s : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ be the pseudorandom function family from

Theorem 7.1, so h1
s(x) = h1

s(x⊕s). The concept cy,s̃ is defined as follows on input
(b, x, i, j) :

• If b = 0: A query (0, x, i, j) is called a function query. The value of
cy,s̃(0, x, i, j) is hyi

si (x)j , i.e. the j-th bit of the n-bit string hyi

si (x). Thus
the bit yi determines whether the i-th pseudorandom function used is a per-
mutation or is invariant under XOR mask with si.

• If b = 1: A query (1, x, i, j) is called a seed query. The value of cy,s̃(1, x, i, j)
is 0 if x 6= y and is si

j (the j-th bit of the i-th seed si) if x = y.
The intuition behind our construction is simple: in order to learn the target con-
cept successfully a learning algorithm must identify each seed string s1, . . . , sn. These
strings can be identified by making seed queries (1, y, i, j), but in order to make the
correct seed queries the learning algorithm must know y. Since each bit yi corresponds
to whether an oracle is a permutation or is XOR-mask invariant, a quantum algorithm
can determine each yi and thus can learn successfully. However, no p.p.t. algorithm
can distinguish between these two types of oracles (since in either case the oracle is
pseudorandom and hence is indistinguishable from a truly random function), so no
p.p.t. algorithm can learn y.

8.2. A Quantum Algorithm Which Learns C in Polynomial Time. The
main result of this section is the following:

Theorem 8.1. The concept class C described above is polynomial-time learnable
from quantum membership queries.

Proof. Let cy,s̃ ∈ Cm be the target concept. Each function hyi

si is a permutation iff
yi = 0 and is XOR-mask invariant iff yi = 1 (this is why we do not allow si = 0n in the
definition of the concept class). Using quantum membership queries, a poly(n)-time
quantum algorithm can run Simon’s procedure n times, once for each function hyi

si ,
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and thus determine each bit yi with high probability. (One detail which arises here
is that Simon’s algorithm uses an oracle {0, 1}n → {0, 1}n whereas in our learning
setting the oracle outputs one bit at a time. This is not a problem since it is possible
to simulate any call to Simon’s oracle by making n sequential calls, bit by bit, to our
oracle.) Given the string y = y1 . . . yn, the algorithm can then make n2 queries on
inputs (1, y, i, j) for 1 ≤ i, j ≤ n to learn each of the n strings s1, . . . , sn. Once y and
s1, . . . , sn are known it is straightforward to output a circuit for cy,s̃.

8.3. No Classical Algorithm Learns C in Polynomial Time. The main
result of this section is the following:

Theorem 8.2. C is not polynomial-time learnable from classical membership
queries.

Let C ′
m ⊃ Cm, |C ′

m| = 2n2+n be the concept class C ′
m = {cy,s̃ : y, s1, . . . , sn ∈

{0, 1}n}; thus C ′
m includes concepts in which si may be 0n. The following lemma

states that it is hard to learn a target concept chosen uniformly from C ′
m :

Lemma 8.3. For all polynomials Q, all p.p.t. learning algorithms A, and all
sufficiently large n,

Pr
cy,s̃∈C′

m

[Acy,s̃ outputs a hypothesis h ≡ cy,s̃] <
1

Q(n)
.

To see that Lemma 8.3 implies Theorem 8.2, we note that the uniform distribution
over C ′

m and the uniform distribution over Cm are nearly identical (the two distri-
butions have total variation distance O(n/2n)). Lemma 8.3 thus has the following
analogue for Cm which clearly implies Theorem 8.2:

Lemma 8.4. For all polynomials Q, all p.p.t. learning algorithms A, and all
sufficiently large n,

Pr
cy,s̃∈Cm

[Acy,s̃ outputs a hypothesis h ≡ cy,s̃] <
1

Q(n)
.

The proof of Lemma 8.3 proceeds as follows: we say that a learning algorithm A
hits y if at some point during its execution A makes a seed query (1, y, i, j), and we
say that A misses y if A does not hit y. We have that

Pr
cy,s̃∈C′

m

[Acy,s̃ outputs h ≡ cy,s̃] = Pr[Acy,s̃ outputs h ≡ cy,s̃ & Acy,s̃ hits y] +

Pr[Acy,s̃ outputs h ≡ cy,s̃ & Acy,s̃ misses y]

≤ Pr[Acy,s̃ hits y] +

Pr[Acy,s̃ outputs h ≡ cy,s̃ | Acy,s̃ misses y].

Lemma 8.3 thus follows from the following two lemmas:
Lemma 8.5. For all polynomials Q, all p.p.t. learning algorithms A, and all

sufficiently large n,

Pr
cy,s̃∈C′

m

[Acy,s̃ hits y] <
1

Q(n)
.

Lemma 8.6. For all polynomials Q, all p.p.t. learning algorithms A, and all
sufficiently large n,

Pr
cy,s̃∈C′

m

[Acy,s̃ outputs h ≡ cy,s̃ | Acy,s̃ misses y] <
1

Q(n)
.
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8.3.1. Proof of Lemma 8.5.. The idea of the proof is as follows: before hitting
y for the first time algorithm A gets 0 as the answer to each seed query, so A might
as well be querying a modified oracle which answers 0 to every seed query. We show
that no p.p.t. algorithm which has access to such an oracle can output y with inverse
polynomial success probability (intuitively this is because such an oracle consists
entirely of pseudorandom functions and hence can provide no information to any
p.p.t. algorithm), and thus A’s probability of hitting y must be less than 1/poly(n)
as well.

More formally, let A be any p.p.t. learning algorithm. Without loss of generality
we may suppose that A always makes exactly q(n) seed queries during its execution
for some polynomial q. Let X1, . . . ,Xq(n) be the sequence of strings in {0, 1}n on
which Acy,s̃ makes its seed queries, i.e. Acy,s̃ uses (1,Xt, it, jt) as its t-th seed query.
Each Xt is a random variable over the probability space defined by the uniform choice
of cy,s̃ ∈ C ′

m and any internal randomness of algorithm A.
For each cy,s̃ ∈ C ′

m let c̃y,s̃ : {0, 1}m → {0, 1} be a modified version of cy,s̃ which
answers 0 to all seed queries, i.e. c̃y,s̃(b, x, i, j) is cy,s̃(b, x, i, j) if b = 0 and is 0 if
b = 1. Consider the following algorithm B which takes access to an oracle for c̃y,s̃ and
outputs an n-bit string. B executes algorithm Ac̃y,s̃ (note that the oracle used is c̃y,s̃

rather than cy,s̃), then chooses a uniform random value 1 ≤ t ≤ q(n) and outputs X̃t,

the string on which Ac̃y,s̃ made its t-th seed query. Like the Xts, each X̃t is a random
variable over the probability space defined by a uniform choice of cy,s̃ ∈ C ′

m and any
internal randomness of A.

The following two lemmas together imply Lemma 8.5:
Lemma 8.7. 2q(n)2 · Prcy,s̃∈C′

m
[Bc̃y,s̃ outputs y] ≥ Prcy,s̃∈C′

m
[Acy,s̃ hits y].

Lemma 8.8. For all polynomials Q and all sufficiently large n, we have

∣

∣

∣

∣

Pr
cy,s̃∈C′

m

[Bc̃y,s̃ outputs y] − 1

2n

∣

∣

∣

∣

<
1

Q(n)

Proof of Lemma 8.7. We have that

q(n)
∑

t=1

Pr[Xt = y & Xτ 6= y for τ < t] ≤
q(n)
∑

t=1

Pr[Xt = y | Xτ 6= y for τ < t].

Since the left side of this inequality is exactly Prcy,s̃∈C′

m
[Acy,s̃ hits y], for some value

1 ≤ t0 ≤ q(n) we have

Pr[Xt0 = y | Xτ 6= y for τ < t0] ≥ Pr[Acy,s̃ hits y]/q(n).(8.1)

Since the distribution of responses to function queries which A makes prior to its
first seed query is the same regardless of whether the oracle is cy,s̃ or c̃y,s̃, it is clear that

the random variables X1 and X̃1 are identically distributed. An inductive argument
shows that for all t ≥ 1, the conditional random variables Xt | (Xτ 6= y for τ < t)
and X̃t | (X̃τ 6= y for τ < t) are identically distributed (in each case the conditioning
ensures that the distribution of responses to seed queries which A makes prior to its
t-th seed query is the same, i.e. all 0).

We consider two possible cases. If Prcy,s̃∈C′

m
[X̃τ 6= y for τ < t0] > 1/2, then

Pr
cy,s̃∈C′

m

[Bc̃y,s̃ outputs y] ≥ Pr[Bc̃y,s̃ chooses t0] · Pr[X̃t0= y & X̃τ 6= y for τ < t0]
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=
Pr[X̃t0= y | X̃τ 6= y for τ < t0] · Pr[X̃τ 6= y for τ < t0]

q(n)

> Pr[X̃t0= y | X̃τ 6= y for τ < t0]/2q(n)

= Pr[Xt0= y | Xτ 6= y for τ < t0]/2q(n)

≥ Pr[Acy,s̃ hits y]/2q(n)2. by (2)

Otherwise if Prcy,s̃∈C′

m
[X̃τ 6= y for τ < t0] ≤ 1/2, then

∑t0−1
t=1 Pr[X̃t = y] ≥ 1/2 and

hence Prcy,s̃∈C′

m
[Bc̃y,s̃ outputs y] is at least

t0−1
∑

t=1

Pr[Bc̃y,s̃ chooses t] · Pr[X̃t = y] ≥ 1

2q(n)
≥ Pr[Acy,s̃ hits y]

2q(n)2
.

Proof of Lemma 8.8. For z, ζ ∈ {0, 1}n let

pz
ζ = Pr

cy,s̃∈C′

m

[Bc̃y,s̃ outputs z | y = ζ].

For ` ∈ {1, . . . , n} let ζ||` denote ζ with the `-th bit flipped. Similarly, for S ⊆
{1, . . . , n} let ζ||S denote ζ with bits flipped in all positions corresponding to S.

Fix z, ζ ∈ {0, 1}n and ` ∈ {1, . . . , n} and consider the following algorithm Dz,ζ,`

which takes access to an oracle f : {0, 1}n → {0, 1}n and outputs a single bit: For
all i 6= ` algorithm Dz,ζ,` first chooses a random n-bit string si. Dz,ζ,` then runs
algorithm B, simulating the oracle for B as follows:

• queries (0, x, `, j) are answered with the bit f(x)j

• for i 6= ` queries (0, x, i, j) are answered with the bit hζi

si(x)j

• all queries (1, x, i, j) are answered with the bit 0.
Finally algorithm Dz,ζ,` outputs 1 if B’s output is z and outputs 0 otherwise.

It is easy to verify that for all z, ζ, ` we have

pz
ζ = Pr

s∈{0,1}n
[Dh

ζ`
s

z,ζ,` outputs 1]

and

pz
ζ||` = Pr

s∈{0,1}n
[Dh

1−ζ`
s

z,ζ,` outputs 1].

From the definition of pseudorandomness and the triangle inequality it follows that
|pz

ζ − pz
ζ||`| < 1

nQ(n) . Making |S| ≤ n applications of this inequality and using the

triangle inequality, we find that

|pz
ζ − pz

ζ||S | <
1

Q(n)
.

We thus have that |pz
ζ − pz

z| < 1
Q(n) for all z, ζ ∈ {0, 1}n. Since

∑

z∈{0,1}n pz
ζ = 1, we

have that
∣

∣

∣

∣

Pr
cy,s̃∈C′

m

[Bc̃y,s̃ outputs y] − 1

2n

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

2n





∑

z∈{0,1}n

pz
z



 − 1

2n

∣

∣

∣

∣

∣

∣

=
1

2n

∣

∣

∣

∣

∣

∣

∑

z∈{0,1}n

(pz
z − pz

ζ)

∣

∣

∣

∣

∣

∣

<
1

Q(n)
.
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8.3.2. Proof of Lemma 8.6.. The idea here is that conditioning on the event
that A misses y ensures that the only information which A has about y and s̃ comes
from querying oracles for the pseudorandom functions hyi

si . Since these pseudorandom
functions are indistinguishable from truly random functions, no p.p.t. algorithm can
learn successfully.

Formally, let A be any p.p.t. learning algorithm. Consider the following algorithm
B which takes access to an oracle hyn

sn : {0, 1}n → {0, 1}n and outputs a representation
of a function g : {0, 1}n → {0, 1}n. Algorithm B first chooses ŷ = y1 . . . yn−1 uniformly
from {0, 1}n−1 and chooses n − 1 strings s1, . . . , sn−1 each uniformly from {0, 1}n.
B then runs algorithm Ac̃y,s̃ (observe that B can simulate the oracle c̃y,s̃ since it
has access to an oracle for hyn

sn and knows yi, s
i for i 6= n) which generates some

hypothesis h. Finally B outputs the function g : {0, 1}n → {0, 1}n defined by g(x)
def
=

h(0, x, n, 1)h(0, x, n, 2) . . . h(0, x, n, n).
The following two lemmas together imply Lemma 8.6:
Lemma 8.9. For all sufficiently large n,

Pr
yn∈{0,1},sn∈{0,1}n

[Bhyn
sn outputs g ≡ hyn

sn ] > Pr
cy,s̃∈C′

m

[Acy,s̃ outputs h ≡ cy,s̃ |

Acy,s̃ misses y]/2.

Lemma 8.10. For all polynomials Q and all sufficiently large n, we have

Pr
yn∈{0,1},sn∈{0,1}n

[Bhyn
sn outputs g ≡ hyn

sn ] <
1

Q(n)
.

Proof of Lemma 8.9. It is easy to see that if Ac̃y,s̃ outputs a hypothesis which is
equivalent to cy,s̃, then g will be equivalent to hyn

sn . For sufficiently large n we thus

have that Pryn∈{0,1},sn∈{0,1}n [Bhyn
sn outputs g ≡ hyn

sn ] is at least

Pr
cy,s̃∈C′

m

[Ac̃y,s̃ outputs h ≡ cy,s̃] ≥ Pr[Ac̃y,s̃ outputs h ≡ cy,s̃ & Ac̃y,s̃ misses y]

= Pr[Ac̃y,s̃ outputs h ≡ cy,s̃ | Ac̃y,s̃ misses y] ·
Pr[Ac̃y,s̃ misses y]

> Pr[Ac̃y,s̃ outputs h ≡ cy,s̃ | Ac̃y,s̃ misses y]/2

where the last inequality follows from Lemma 8.5.
Let TRANS(Acy,s̃) (TRANS(Ac̃y,s̃) respectively) denote a complete transcript

of algorithm A’s execution on oracle cy,s̃ (c̃y,s̃ respectively). TRANS(Acy,s̃) and
TRANS(Ac̃y,s̃) are each random variables over the probability space defined by a uni-
form choice of cy,s̃ ∈ C ′

m and any internal randomness of algorithm A. An easy induc-
tion shows that the two conditional random variables TRANS(Ac̃y,s̃) | (Ac̃y,s̃ misses y)
and TRANS(Acy,s̃) | (Acy,s̃ misses y) are identically distributed. This implies that

Pr
cy,s̃∈C′

m

[Ac̃y,s̃ outputs h ≡ cy,s̃|Ac̃y,s̃ misses y] = Pr
cy,s̃∈C′

m

[Acy,s̃ outputs h ≡ cy,s̃|

Acy,s̃ misses y]

which combined with the inequality above proves the lemma.

Proof of Lemma 8.10. The following fact, which follows easily from the pseudoran-
domness of {h0} and {h1}, states that {hb

s}b∈{0,1},s∈{0,1}n is a pseudorandom function
family:
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Fact 4. For all polynomials Q, p.p.t. oracle algorithms A, and sufficiently large
n, we have

∣

∣

∣

∣

Pr
b∈{0,1},s∈{0,1}n

[Ahb
s outputs 1] − Pr

F∈Fn

[AF outputs 1]

∣

∣

∣

∣

<
1

Q(n)
.

Intuitively the pseudorandomness of {hb
s} should make it hard for Bhyn

sn to output
hyn

sn since clearly no p.p.t. algorithm, given oracle access to a truly random function
F, could output a function equivalent to F. Formally, we consider an algorithm D
which takes oracle access to a function f : {0, 1}n → {0, 1}n and outputs a single bit.
D runs Bf to obtain a function g and then selects a string z ∈ {0, 1}n which was not
used as an oracle query in the computation of Bf . D calls the oracle to obtain f(z),
evaluates g to obtain g(z), and ouputs 1 if the two values are equal and 0 otherwise.

Clearly Pr[Df outputs 1] ≥ Pr[Bf outputs g ≡ f ]. Since PrF∈Fn
[DF outputs 1] =

1/2n, using Fact 4 we find that

∣

∣

∣

∣

Pr
yn∈{0,1},sn∈{0,1}n

[Dhyn
sn outputs 1] − 1

2n

∣

∣

∣

∣

<
1

2Q(n)

and hence

Pr
yn∈{0,1},sn∈{0,1}n

[Bhyn
sn outputs g ≡ hyn

sn ] <
1

Q(n)
.

9. Breaking Classical Cryptography in a Quantum Setting. Our con-
structions highlight some interesting issues concerning the relation between quantum
oracle computation and classical cryptography. It is clear that a quantum algorithm,
given access to a quantum black-box oracle for an unknown function, can efficiently
distinguish between truly random functions and pseudorandom functions drawn from
the family {gs} of Theorem 7.1. Our construction of {gs} thus shows that crypto-
graphic constructions which are provably secure in the classical model can fail in a
quantum setting. We emphasize that this failure does not depend on the ability of
polynomial-time quantum algorithms to invert particular one-way functions such as
factoring; even if no quantum algorithm can efficiently invert the one-way function
used to construct {gs}, our results show that a polynomial-time quantum algorithm
can be a successful distinguisher. It would be interesting to obtain stronger construc-
tions of pseudorandom functions which are provably secure in the quantum oracle
framework.

10. Conclusion and Future Directions. While we have shown that quantum
and classical learning are information-theoretically equivalent up to polynomial fac-
tors, we have not attempted to obtain the tightest possible bounds relating the two
query complexities. In another direction, while we have shown the existence of con-
cept classes which separate efficient quantum and classical learning, many questions
remain about the relationship between efficient quantum and classical learnability
for natural concept classes studied in learning theory. It would be interesting to de-
velop efficient quantum learning algorithms for natural concept classes, such as the
polynomial-time quantum algorithm of Bshouty and Jackson [13] for learning DNF
formulae from uniform quantum examples.

11. Acknowledgements. We thank R. de Wolf for helpful comments and sug-
gestions and A. Klivans for stimulating discussions.
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Appendix A. Proof of Theorem 7.1.

We say that a polynomial-time deterministic algorithm G : {0, 1}n → {0, 1}2n is
a pseudorandom generator if for all polynomials Q, all p.p.t. algorithms A, and all
sufficiently large n,

∣

∣

∣

∣

Pr
z∈{0,1}n

[A(G(z)) outputs 1] − Pr
z∈{0,1}2n

[A(z) outputs 1]

∣

∣

∣

∣

<
1

Q(n)
.

Thus a pseudorandom generator is an efficient algorithm which converts an n-bit
random string into a 2n-bit string which “looks random” to any polynomial-time
algorithm. H̊astad et al. [25] have shown that pseudorandom generators exist if any
one-way function exists.

For G a pseudorandom generator and s ∈ {0, 1}n we write G0(s) to denote the
first n bits of G(s) and G1(s) to denote the last n bits of G(s). For x, s ∈ {0, 1}n let
fs : {0, 1}n → {0, 1}n be defined as

fs(x)
def
= Gxn

(Gxn−1
(· · · (Gx2

(Gx1
(s))) · · ·)).

In [23] it is shown that {fs} is a pseudorandom function family. We now show that

the family {gs} defined by gs(x)
def
= fs(x)⊕fs(x⊕s) is pseudorandom.

Let F ′
n be the following probability distribution over functions from {0, 1}n to

{0, 1}n: a function F ′ is drawn from F ′
n by drawing a random function F from

Fn, drawing a random string s ∈ {0, 1}n, and letting F ′ be the function defined as
F ′(x) = F (x)⊕F (x⊕s). Theorem 7.1 follows from the following two lemmas:
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Lemma A.1. For all polynomials Q, all p.p.t. oracle algorithms M, and all
sufficiently large n,

∣

∣

∣

∣

Pr
F∈Fn

[MF outputs 1] − Pr
F ′∈F ′

n

[MF ′

outputs 1]

∣

∣

∣

∣

<
1

Q(n)
.

Proof. Consider an execution of M with an oracle F ′ ∈ F ′
n defined by F ′(x) =

F (x)⊕F (x⊕s). Let S = {x1, . . . , xt} ⊂ {0, 1}n be the set of strings which M uses as
queries to F ′. We say that M finds s if xi = xj⊕s for some xi, xj ∈ S. If M does not
find s, then the distribution of answers which M receives from F ′ is identical to the
distribution which M would receive if it were querying a random function F ∈ Fn,
since in both cases each distinct query is answered with a uniformly distributed n-
bit string. Thus the left side of the inequality above is at most Pr[M finds s]. A
simple inductive argument given in the proof of Theorem 3.3 of [40] shows that this
probability is at most

∑t
k=1(k/(2n − (k − 2)(k − 1)/2)). Since M is polynomial-time,

t is at most poly(n) and the lemma follows.
Lemma A.2. For all polynomials Q, all p.p.t. oracle algorithms A, and all

sufficiently large n,
∣

∣

∣

∣

Pr
F ′∈F ′

n

[MF ′

outputs 1] − Pr
s∈{0,1}n

[Mgs outputs 1]

∣

∣

∣

∣

<
1

Q(n)
.

Proof. We require the following fact which is due to Yao [44]:
Fact 5. Let G be a pseudorandom generator, let q(n) and Q(n) be polynomials,

and let M∗ be a p.p.t. algorithm which takes as input q(n) strings each of length 2n
bits. Then for all sufficiently large n we have

|pG
n − pU

n | <
1

Q(n)
,

where pU
n is the probability that M∗ outputs 1 on input q(n) random strings in {0, 1}2n

and pG
n is the probability that M∗ outputs 1 on input q(n) strings each of which is ob-

tained by applying G to a random string from {0, 1}n. We prove Lemma A.2 by
contradiction; so suppose that there exists a p.p.t. oracle algorithm M and a polyno-
mial Q such that for infinitely many values of n,

∣

∣

∣

∣

Pr
F ′∈F ′

n

[MF ′

outputs 1] − Pr
s∈{0,1}n

[Mgs outputs 1]

∣

∣

∣

∣

≥ 1

Q(n)
.(A.1)

We will show that there is a p.p.t. algorithm M∗ which contradicts Fact 5.
As in the proof in [23] that {fs} is a pseudorandom function family, we use a so-

called “hybrid” argument. Consider the following algorithms Ai (i = 0, 1, . . . , n), each
of which defines a mapping from {0, 1}n to {0, 1}n and hence could conceivably be
used as an oracle to answer M ’s queries. Conceptually, each algorithm Ai contains a
full binary tree of depth n in which the root (at depth 0) is labeled with a random n-bit
string s; if i > 0 then each node at depth i is also labeled with an independently chosen
random n-bit string. Each node at depth j > i also has an n-bit label determined as
follows: if node v has label z then the left child of v has label G0(z) and the right child
of v has label G1(z). Each node in the tree has an address which is a binary string:
the root’s address is the empty string, and if a node has address α ∈ {0, 1}∗ then its
left child has address α0 and its right child has address α1 (so each leaf has a different
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n-bit string as its address). Let L(x) denote the label of the node whose address is x.
Algorithm Ai answers a query x ∈ {0, 1}n with the n-bit string L(x)⊕L(x⊕s).

(Note that algorithm Ai need not precompute any leaf labels. Instead, Ai can
run in poly(n) time at each invocation by randomly choosing s once and for all the
first time it is invoked and labeling the necessary portion of the tree “on the fly” at
each invocation by choosing random strings for the depth-i nodes as required and
computing descendents’ labels as described above. Ai must store the random strings
which it uses to label depth-i nodes so as to maintain consistency over successive
invocations.)

For i = 0, 1, . . . , n let pi
n denote Pr[MAi outputs 1], i.e. the probability that

M outputs 1 if its oracle queries are answered by algorithm Ai. Let pg
n denote

Prs∈{0,1}n [Mgs outputs 1] and pF ′

n denote PrF ′∈F ′

n
[MF ′

outputs 1]. We have that
p0

n = pg
n since algorithm A0 behaves exactly like an oracle for gs where s is a random

n-bit string. We also have that pn
n = pF ′

n since algorithm An behaves exactly like an
oracle for F ′ ∈ F ′

n. Inequality (3) thus implies that |p0
n − pn

n| ≥ 1/Q(n) for infinitely
many values of n.

Now we describe the algorithm M∗ which distinguishes between sets of strings.
Let q(n) be a polynomial which bounds the running time of M on inputs of length
n (so M makes at most q(n) oracle queries given access to an oracle from {0, 1}n to
{0, 1}n). The algorithm M∗ takes as input a set Un of 2q(n) strings of length 2n. M∗
works by first selecting a uniform random value 0 ≤ i ≤ n− 1 and a uniform random
string s ∈ {0, 1}n. M∗ then runs algorithm M, answering M ’s oracle queries as follows
(there are two cases depending on whether or not the prefix s1 . . . si is 0i):

• Case 1: s1 . . . si 6= 0i
. Let x = x1 . . . xn be the query string. If no earlier

query string had prefix x1 . . . xi or (x1⊕s1) . . . (xi⊕si), then M∗ takes the
next two 2n-bit strings from Un; call these strings u1 = u1

0u
1
1 and u2 = u2

0u
2
1

where |ui
j | = n. M∗ stores the four pairs

(x1 . . . xi0, u1
0), (x1 . . . xi1, u1

1), ((x1⊕s1) . . . (xi⊕si)0, u
2
0), and

((x1⊕s1) . . . (xi⊕si)1, u
2
1)

and answers with the string

Gxn
(Gxn−1

(. . . Gxi+2
(u1

xi+1
) . . .))⊕

Gxn⊕sn
(Gxn−1⊕sn−1

(. . . Gxi+2⊕si+2
(u2

xi+1⊕si+1
) . . .)). (∗)

Otherwise, if an earlier query string had prefix x1 . . . xi or (x1⊕s1) . . . (xi⊕si),
then instead M∗ retrieves the two previously stored pairs

(x1 . . . xixi+1, u
1
xi+1

) and ((x1⊕s1) . . . (xi⊕si)(xi+1⊕si+1), u
2
xi+1⊕si+1

)

and answers with (∗) as above.
• Case 2: s1 . . . si = 0i

. Let x = x1 . . . xn be the query string. If no earlier
query string had prefix x1 . . . xi, then M∗ takes the next 2n-bit string from
Un; call this string u = u0u1 where |u0| = |u1| = n. M∗ stores the two pairs

(x1 . . . xi0, u0), (x1 . . . xi1, u1)

and answers with

Gxn
(Gxn−1

(. . . Gxi+2
(uxi+1

) . . .))⊕
Gxn⊕sn

(Gxn−1⊕sn−1
(. . . Gxi+2⊕si+2

(uxi+1⊕si+1
) . . .)). (∗∗)
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Otherwise, if an earlier query string had prefix x1 . . . xi, then M∗ retrieves
the two pairs

(x1 . . . xixi+1, uxi+1
) and (x1 . . . xi(xi+1⊕si+1), uxi+1⊕si+1

)

(these two pairs are the same if si+1 = 0) and answers with (∗∗) as above.
The crucial properties of algorithm M∗, which are straightforwardly verified, are

the following: If each string in Un is generated by applying G to a random n-bit string
(scenario 1), then M∗ simulates a computation of M with oracle Ai. On the other
hand, if each string in Un is chosen uniformly from {0, 1}2n (scenario 2), then M∗
simulates a computation of M with oracle Ai+1.

It is easy to see now that in scenario 1 we have Pr[M∗ outputs 1] =
∑n−1

i=0 pi
n/n

while in scenario 2 we have Pr[M∗ outputs 1] =
∑n

i=1 pi+1
n /n. These two probabilities

differ by (1/n) · |p0
n − pn

n|, which is at least 1/nQ(n) for infinitely many values of n.
Now by Fact 5 the existence of M∗ contradicts the fact that G is a pseudorandom
generator, and the lemma is proved.


