
Unsupervised Evidence Integration

Philip M. Long plong@cs.columbia.edu

Vinay Varadan varadan@ee.columbia.edu

Sarah Gilman srg2104@columbia.edu

Mark Treshock mat140@columbia.edu

Rocco A. Servedio rocco@cs.columbia.edu

Columbia University, 2960 Broadway, New York, NY 10027-6902 USA

Abstract

Many biological propositions can be sup-
ported by a variety of different types of
evidence. It is often useful to collect to-
gether large numbers of such propositions,
together with the evidence supporting them,
into databases to be used in other analy-
ses. Methods that automatically make pre-
liminary choices about which propositions to
include can be helpful, if they are accurate
enough. This can involve weighing evidence
of varying strength.

We describe a method for learning a scoring
function to weigh evidence of different types.
The algorithm evaluates each source of evi-
dence by the extent to which other sources
tend to support it. The details are guided
by a probabilistic formulation of the prob-
lem, building on previous theoretical work.
We evaluate our method by applying it to
predict protein-protein interactions in yeast,
and using synthetic data.

1. Introduction

Motivation. An ongoing major international effort
has targeted the problem of identifying which pairs of
proteins interact [12, 8, 10, 3]. There are many fun-
damentally different indications of protein-protein in-
teraction. These include indirect indications, such as
a tendency to be synthesized under the same condi-
tions, as well as various high-throughput experimental
techniques that directly test whether pairs of proteins
“like” to bind. Jansen, et al [5] showed that it is pos-
sible to learn an accurate predictor of protein-protein

Appearing in Proceedings of the 22 nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

interactions in yeast using five attributes of a candi-
date protein pair, corresponding to a mix of direct and
indirect evidence as described above.

Other bioinformatics problems take a similar form.
There are many candidate propositions, and a number
of fundamentally different sources of evidence that can
be evaluated for each. One example is pairing genes
in a newly sequenced genome with their counterpart
human genes.

While databases have been automatically constructed
using multiple sources of evidence (see [12]), it has not
been obvious how best to automatically weigh the evi-
dence of different types. A natural approach is to learn
the relationship between numerical scores formalizing
the strength of evidence arising from different sources,
and a binary class designation indicating whether the
statement is true or not. Jansen et al [5] learned to
predict protein-protein interactions in yeast this way.
However, it is often not possible to get sufficient train-
ing data consisting of examples of this relationship,1

as is the case at present regarding protein-protein in-
teractions in higher organisms [11].

Even when a few “gold standard” designations are
available, they may be biased in unpredictable ways,
and these biases could skew the results of algorithms
that tried to use them in a supervised analysis. For ex-
ample, a curated database may tend to be enriched for
conclusions that can be drawn on the basis of the most
easily applied and popular technology. If so, most su-
pervised algorithms would overvalue the attribute cor-
responding to this “popular” evidence source.

Thus, we are faced with the problem of learning a
rule for predicting class membership using training
data without class membership information. This can

1For the case in which the class designation can be ob-
served, sophisticated methods have also been developed
(see [4, 2, 7]).



Unsupervised Evidence Integration

also be thought of as the problem faced by cluster-
ing algorithms; however, the applications driving this
work present opportunities and challenges not found
in many clustering problems.

The first opportunity arises from the fact that the
value of each of the variables can be interpreted as
the strength of evidence of a certain type supporting
the proposition. Consequently, we can assume a pri-
ori that the larger the value of a variable, the more
likely it is that the proposition holds. Furthermore, it
is often the case that a number of unrelated sources
of evidence are available. The approximate indepen-
dence of the prediction errors resulting from such mea-
sures can be exploited by a learning algorithm. (This
was exploited by the supervised algorithm for protein-
protein interaction prediction in yeast in the Jansen,
et al paper.) Finally, usually each of the sources of ev-
idence is known to have some utility, so that deciding
which to use and which to discard (“feature selection”)
is unnecessary.

The term “clustering” arises from the fact that in most
clustering applications, members of each class tend to
be grouped together away from the other classes. For
some of the problems targeted in this work, however,
the distributions of the values of the variables in the
two classes overlap significantly. For example, as ob-
served by Atschul [1], the distribution of BLAST scores
of orthologous pairs of genes is approximately uniform
from 0 up to a maximum, whereas the distribution of
BLAST scores for other pairs of genes is approximately
exponential.2

Because of these special characteristics, we prefer not
to think of the problems studied here as clustering
problems; if they are, they form an important type
of clustering problem that merits special attention. In
any case, we compare the method we propose with
established approaches to clustering.

Our approach. In this paper, we describe a prac-
tical method of unsupervised evidence integration in-
spired by a theoretical analysis.

In the applications targeted in this work, scientists
have sources of evidence that look for fundamentally
different kinds of indications that a proposition might
hold, and thus it is reasonable to expect that these ev-
idence sources are approximately independent given
the class designation. Conditional independence is
used in our analysis in order to conclude that what
association there is between pairs of variables is due
to their common association with the class designa-

2Extreme value distributions [6] provide a more detailed
model.

tion, and therefore strong associations are evidence
that the variables are useful. If significant associa-
tions among variables are possible due to causes other
than the common class designation, it would appear
impossible to perform class prediction in an unsuper-
vised manner, which is our goal. We note that (as will
be seen in Section 2) our method includes measures
that “shrink” estimates toward a default; this may be
viewed in part as hedging against limited violations of
independence. Still, the view that the main source of
dependence among variables is their common associa-
tion with the class designation is central to the design
of our algorithm. While this assumption may not hold
exactly true in real-world data sets, our experimental
results reported in Section 3 show that our method
does perform very well on natural biological data.

The details of our approach are based on a theoreti-
cal analysis that builds on earlier theoretical work by
Mitina and Vereshchagin [9]. In their analysis, in ad-
dition to assuming that the values of X1, ..., Xn are
conditionally independent given Y , they also assumed
that

• the observed variables X1, ..., Xn are {0, 1}-
valued,

• each variable is equal to the hidden class designa-
tion Y more often than not,

• for each i, Pr(Xi 6= Y |Y = y) does not depend on
y.

This last property was identified by Mitina and
Vereshchagin as crucial for their analysis. If indepen-
dent training examples are generated from a source
with these properties, they gave a polynomial-time al-
gorithm that learns a rule for predicting the value of
Y that approaches the accuracy of the optimal such
rule.

Some aspects of our application are not captured in
Mitina and Vereshchagin’s setting. For example, some
of the variables in our applications are continuous-
valued. Even if we were to treat each Xi as a binary-
valued variable by thresholding, it is difficult to do so
in such a way that whether this binary-valued vari-
able equals Y is (approximately) independent of the
value of Y . For these and other reasons, we needed to
build substantially on Mitina and Vereshchagin’s work
to address our applications.

Our algorithm, like Mitina and Vereshchagin’s, takes
advantage of the fact that a variable is valuable for
prediction to the extent that it tends to agree with
other variables. We call our new method peer ranking.3

3Thanks to Vinsensius Vega for suggesting this term.



Unsupervised Evidence Integration

Evaluation. We compare peer ranking with three
possible alternatives. The first is an algorithm that
(i) finds the line with the property that projecting the
examples onto that line maximizes the variance, and
(ii) then sorts examples according to their positions
on that line. The second is an algorithm (described
in Section 3) based on k-means clustering. The third
uses EM, a standard incremental optimization tech-
nique, to search for the maximum likelihood proba-
bility model from a set of “naive bayes” models like
those implicitly used by our method. The applications
targeted in this work give rise to inputs with tens of
millions of examples, and possibly more. Thus, di-
rect application of kernel-based or spectral clustering
methods appears infeasible.

Although the peer ranking method is intended to be
applied in an unsupervised setting, to evaluate how
well it works on natural data, it is necessary to apply
it in a situation where a gold standard is available. For
this, we use five sources of evidence of protein-protein
interaction from Jansen, et al’s paper [5]. We also
evaluated the peer algorithm on synthetic randomly
generated data. On both kinds of data, peer rank-
ing also performs substantially better than the other
methods.

2. The peer ranking algorithm

In our problem, an algorithm is given a collection of
examples, each of which is a tuple (X1, ..., Xn), and
outputs a scoring function g that is used to rank the
examples. The goal is for examples for which a hidden
variable Y takes the value 1 to be high on the list.

As mentioned in the introduction, the peer ranking
approach is based on a view that the values X1, ..., Xn

of the variables, together with the hidden class desig-
nation Y , are generated collectively by a joint proba-
bility distribution. The peer algorithm behaves as if
X1, .., Xn complement one another, in the sense that
they are conditionally independent given Y . It also
behaves as if Pr(Y = 1|Xi > x) is nondecreasing in x
for all i.

2.1. Outline

The outline of the peer ranking algorithm is as follows:

1. It estimates conditional probabilities relevant to
the predictive ability of binary-valued discretiza-
tions of X1, ..., Xn in a number of rounds: in
round number `, it

a. chooses a value β` and thresholds b`,1, ..., b`,n

so that for each i, Pr(Xi ≥ b`,i) ∼ β` (how

β` is chosen, and how exactly b`,1, ..., b`,n are
chosen, are described in Section 2.3),

b. for each i, estimates Pr(Xi ≥ b`,i|Y = 1) and
Pr(Xi ≥ b`,i|Y = 0) (this is the key step in
the algorithm – how it does this is explained
in Section 2.2).

2. It constructs a scoring function g using the esti-
mates as follows: given an example (X1, ..., Xn)
to be scored, it

a. for each i, finds the largest member b of
Bi = {b1,i, b2,i, ...} for which Xi ≥ b (call
it floorBi

(Xi)), and

b. sets g to be an estimate of

Pr(Y = 1|X1 ≥ floorB1
(X1)∧...∧Xn ≥ floorBn

(Xn))

obtained from the previously constructed
conditional probability estimates (how this is
done is described in Sections 2.7 and 2.8).

2.2. The basic estimates

In this subsection we concentrate on a particular iter-
ation of step 1, i.e. a particular value of `. Since ` is
fixed, we drop it from all notation.

Define U1, ..., Un by letting Ui be 1 if Xi ≥ bi, and
0 otherwise. Each value Ui can be viewed as a (very
rough) prediction of Y , since by assumption the ex-
amples with large values of Xi are those examples
that the ith source of evidence views as most likely
to have Y = 1. The value of bi is chosen so that
Pr(Ui = 1) = Pr(Xi ≥ bi) is approximately β (how
this is done is described in Section 2.3), but if, for
example, the distribution of Xi has an accumulation
point (that is, many examples have the same value for
Xi), then this probability may not actually be very
close to β. Note that if we have a lot of training data,
the fraction of examples in our training set for which
Ui = 1 provides an accurate estimate of the true value
of Pr(Ui = 1).

We emphasize the difference between Xi and Ui: Xi is
a (possibly continuous) value that is interpreted as the
strength of evidence of the ith type, and Ui is a binary-
valued prediction obtained by examining whether Xi

is large enough.

Suppose for a moment that we know Pr(Y = 1) (how
to estimate it will be treated in Section 2.4). Since
Pr(Ui = 1|Y = 0) equals

Pr(Ui = 1) − Pr(Y = 1) Pr(Ui = 1|Y = 1)

1 − Pr(Y = 1)
, (1)

if we have an estimate of Pr(Ui = 1|Y = 1), we can
use it to obtain an estimate of Pr(Ui = 1|Y = 0).



Unsupervised Evidence Integration

If, in addition, the number n of variables is at least
3, then in fact we can estimate Pr(Ui = 1|Y = 1) by
looking at the extent to which pairs of variables agree
that Y = 1. This is because for any three distinct
indices i, j, k we have

Pr(Ui = 1|Y = 1)

=ai +

√

(

1−Pr(Y = 1)

Pr(Y = 1)

)

(ai,j−aiaj)(ai,k−aiak)

aj,k−ajak

(2)
where ai denotes Pr(Ui = 1) and ai,j denotes Pr(Ui =
1 & Uj = 1). The straightforward but tedious deriva-
tion of (2) is in Appendix A.

The most natural estimate of ai,j = Pr(Ui = 1 & Uj =
1) is the fraction of training examples for which both
Ui = 1 and Uj = 1. Indeed this, and the corre-
sponding estimate of ai,k, are plugged into the nu-
merator in (2) to estimate Pr(Ui = 1|Y = 1) in
our algorithm. However, estimation of the probabil-
ity aj,k = Pr(Uj = 1 & Uk = 1) in the denominator
requires special treatment. Note that underestimates
of this quantity can have a radical effect on the re-
sulting estimate of Pr(Ui = 1|Y = 1), as they can
bring the denominator close to 0. Thus our algorithm
adjusts the estimate of aj,k upwards by the width of
a 95% confidence interval around the empirical esti-
mate, to make it unlikely that aj,k is underestimated,
and to reduce the extent of such underestimation when
it occurs. Specifically, if qj,k is the fraction of training
examples for which Uj = 1 and Xk ≥ bk, then our
estimate âj,k is given by

âj,k = qj,k + 1.96

√

qj,k(1 − qj,k)

m
, (3)

where m is the number of training examples. This ad-
justment also has the effect of bringing Pr(Ui = 1|Y =
1) closer to Pr(Ui = 1), that is, moderating any opti-
mism about utility of the ith variable.

Estimates of Pr(Ui = 1|Y = 1) can be constructed
in this way using any other pair {j, k} of variables.
The role that a particular pair plays is determined in
part by the fractions qj and qk of training examples for
which Uj = 1 and Uk = 1 respectively. The estimates
obtained from other pairs are combined as follows:

• for all pairs {j, k} of other variables for which

qj,k > qjqk, qi,j > qiqj and qi,k > qiqk, (4)

and estimate of Pr(Ui = 1|Y = 1) is constructed
using using variables j and k as outlined above,
and

• the median of the resulting estimates is used as
the final estimate.

This further enhances the robustness of the method
against departures from the conditional independence
assumption. In the unlikely but conceivable event that
no pair {j, k} satisfies (4), then Pr(Ui = 1|Y = 1) is
estimated to be Pr(Ui = 1) (that is, Ui is estimated to
be useless for prediction).

2.3. Choosing values for β and b

In round `, the peer algorithm chooses thresholds
b`,1, ..., b`,n so that, for each i, the fraction of exam-
ples for which Xi ≥ b`,i is as close as possible to β`

subject to the constraint that the fraction is at least
β`. (Note that many examples might share the same
value of Xi.)

As described above, the event that Xi ≥ b`,i can be
viewed as a rough prediction of the event that Y = 1;
in order for this prediction to be as accurate as possi-
ble we would like to have Pr[Xi ≥ b`,i] ≈ Pr[Y = 1].
Since, in many applications, Pr(Y = 1) is small, the
values of β` are chosen according to a geometric pro-
gression, so that the region near 0 is populated more
densely. Specifically, the value of β is doubled each
time, so that β` = β12

`−1.

We set β1 = 1/m because we cannot measure proba-
bilities at a finer granularity from m examples.

2.4. Estimating Pr(Y = 1)

The ordering output by the algorithm should be ex-
pected to be insensitive to its estimated value of
Pr(Y = 1): the main effect of changing its value will be
to shift all estimates of conditional probabilities up or
down, leaving the order largely unchanged. The value
of Pr(Y = 1) is therefore estimated in a rough way,
by examining the consequences of plugging different
estimates into (1) and (2).

If an estimate is too small, then plugging into (2) will
result in estimates of Pr(Xi ≥ bi|Y = 1) that are too
large. In extreme cases, they can be greater than 1. On
the other hand, using estimates of Pr(Y = 1) that are
too large with (1) can result in estimates of Pr(Xi ≥
bi|Y = 0) that are too small, and, in extreme cases, less
than 0. The value of Pr(Y = 1) is chosen to maximize
the margin by which both of these illogical outcomes
is avoided. This maximum margin might be viewed as
a crude, but computationally feasible, approximation
to maximum likelihood.

2.5. Clipping

Intuitively, the training data can only provide infor-
mation about probabilities at a granularity inversely
proportional to the number of training examples. Con-



Unsupervised Evidence Integration

ditional probability can be informed only at a coarser
granularity. Thus, we clip all probability estimates to
fall between 1/m and 1−1/m (and any other estimates
are replaced with the closest value in that range).

2.6. Enforcing monotonicity

Recall that, in the intended applications, we expect
that Pr(Y = 1|Xi ≥ b) is nondecreasing in b. On
the other hand, our adjustment (3) results in a bias
toward conservatism. While, overall, this helps, one
unfortunate side effect is that our estimates of Pr(Y =
1|Xi ≥ b) might not be monotone in b. An estimate of
Pr(Y = 1|Xi ≥ b) for large b might be based on only a
few cases, and so the algorithm would conservatively
adjust this estimate downward. There might be b′ < b
for which, due to a larger number of cases for which
Xi ≥ b′, the algorithm might be able to confidently
assert a large value of Pr(Y = 1|Xi ≥ b′). But in such
cases, the monotonicity implies that the algorithm can
conclude that Pr(Y = 1|Xi ≥ b) is at least as big.

This reasoning is incorporated into the peer ranking
algorithm in a postprocessing step, in which pairs of
estimates that conflict with the monotonicity assump-
tion are resolved in favor of the more confident esti-
mate.

2.7. Preliminary scoring function

Recall from Section 2.1 that the scoring function is
obtained by evaluating an estimate of

Pr(Y = 1|X1 ≥ floorB1
(X1) ∧ ... ∧ Xn ≥ floorBn

(Xn))

where each Bi is made up of the thresholds b`,i for the
useful rounds `. Exploiting the conditional indepen-
dence assumption in a standard way, we can see that
the above conditional probability is monotone in

∑

i

log
Pr(Xi ≥ bi|Y = 1)

Pr(Xi ≥ bi|Y = 0)
. (5)

Since our ultimate goal is to order the examples based
on their values of X1, ..., Xn, any two scoring functions
are equivalent if they order the examples in the same
way, and thus we can perform any monotone transfor-
mation on our scoring function. The derivation of (5)
is standard (omitted due to space constraints).

Plugging our estimates of Pr(Xi ≥ bi|Y = 1) and
Pr(Xi ≥ bi|Y = 0) for various i into (5), we obtain
our preliminary scoring function.

2.8. Final, smoothed, scoring function

A drawback of the scoring function f described in Sec-
tion 2.7 is that, when used for sorting, it can result in

Figure 1. An example of the definition of the function gi

mapping the value of a variable Xi to its contribution to
the overall score: gi is a continous, piecewise linear approx-
imation to the function fi.

many ties (cases where two propositions are assigned
the same score). Note that (5) expresses f as a sum
over functions that depend on individual variables; let
us denote by fi the function that depends on variable i.
Each of f1, . . . , fn is monotone and piecewise constant.
The final scoring function g used by the peer ranking
algorithm is obtained by replacing each fi with a cor-
responding piecewise linear function gi and letting

g(X1, ..., Xn) =
∑

i

gi(Xi).

A representative example of how gi is generated from
fi is shown in Figure 1: The value of gi at a threshold
is the average of the values of fi on either side, and gi

interpolates linearly between.

2.9. Discussion – why not use bins?

An arguably more principled approach would be to
use the members of each Bi to divide the real line into
bins, and then design the scoring function by evaluat-
ing the conditional probability that Y is 1 given the
bin memberships of the values of the variables. How-
ever, the individual conditional probabilities that val-
ues fall in bins given that Y is 1 and 0 respectively are
estimated with too high a variance for this to work.
The probability that an example falls in a bin is the
difference between the probability that it falls to the
right of the right endpoint, and the probability that if
falls to the right of the left endpoint. The estimate of
the bin probability is thus sensitive to fluctuations in
both these probability estimates. We have found that
the approach we suggest works better, we suspect in
large part because only one of these probabilities is
estimated.



Unsupervised Evidence Integration

We note since the peer algorithm chooses thresholds
geometrically, many of the examples for which Xi ≥
b`,i also satisfy Xi ∈ [b`,i, b`−1,i]. Thus, it is reason-

able to view Pr(Xi≥bi|Y =1)
Pr(Xi≥bi|Y =0) as an approximation to the

corresponding ratio for the bin with left endpoint bi.

Alternatively, note that, if a scientist is able to iden-
tify a null distribution that matches the conditional
distribution given that Y = 0, then Pr(Xi ≥ b|Y = 0)
is the p-value associated with the case where Xi = b.
So the peer method may be viewed as going beyond
combining p-values to also estimate the corresponding
conditional distributions given that Y = 1.

3. Experiments

We evaluated the peer ranking algorithm by applying
it to predict protein-protein interactions in yeast, and
on artificial data. The results are summarized in Ta-
ble 1.

3.1. Other algorithms

We compare the peer algorithm with three standard
methods that are feasible with large datasets like those
that arise in the targeted applications.

The first algorithm (“k-means algorithm”)

1. performs k-means clustering with k = 2,

2. defines the Y = 1 cluster to be the one with the
“larger” center (the center with the larger value
on the majority of the variables),

3. ranks propositions by how much closer they are
to the center of the Y = 1 cluster than the other
cluster center.

The second algorithm (“EM algorithm”) proceeds as
follows:

1. It discretizes the data by dividing the values of
the variables into bins roughly as in the peer al-
gorithm: for each variable i, if the examples are
sorted in order of the values of variable j, then the
jth bin boundary is placed after example num-
ber 100 · 2j . If the next example takes the same
value, the boundary is placed after the last exam-
ple with that value. (As in the peer algorithm,
more boundaries are placed near the top because
the minority class is small, and large values of the
variables are associated with membership in the
minority class.)

2. It learns a Naive Bayes probability model for the
discretized data: i.e., the model includes a sin-

gle binary-valued hidden variable, and regards the
discretized observed variables as conditionally in-
dependent given the hidden variable. It uses EM
to attempt to find the maximum likelihood model
in this class.

3. It defines the Y = 1 cluster to be the one for
which most variables are more likely to take their
largest value.

4. It ranks propositions by evaluating the condi-
tional probability that Y = 1 given the discretized
values of their variables.

The third algorithm (“eigen algorithm”)

1. estimates the covariance matrix C of X1, ..., Xn,

2. finds the eigenvector (w1, ..., wn) of C with the
largest eigenvalue, and

3. ranks propositions by w1X1 + ... + wnXn.

Because the datasets targeted in this work are too
large to fit in memory, the run-times of the algorithms
are dominated by the number of passes required over
the data. The eigen algorithm makes two passes over
the data, one to estimate the covariance matrix, and
one to compute the scores. The peer algorithm needs
to sort the values of each attribute, then make another
pass to collect statistics, followed by a pass to compute
scores. The k-means and EM algorithms need to make
a pass over the data for each iteration, making them
much slower than the eigen and peer algorithms. It
was infeasible for us to perform our experiments while
allowing these algorithms to run all the way to con-
vergence: we limited the number of iterations of each
algorithm to 20, still allowing the iterative algorithms
much more time than the peer and eigen algorithms.

3.2. Protein-protein data

To evaluate algorithms, we need data with gold-
standard indications of the truth or falsehood of the
propositions they are predicting. It is worth empha-
sizing that the purpose of this analysis is to evaluate
the algorithms, and not to discover new biology.

We used data provided with a paper by Jansen, et al
[5] on predicting protein-protein interactions in yeast.
Their analysis used the following sources of evidence
of interaction: (a) the outcome of yeast two-hybrid ex-
periments, high-throughput experiments in which can-
didate pairs of proteins are brought close to one an-
other, with molecular machinery attached that reports
whether they appear to have bound, (b) the outcome



Unsupervised Evidence Integration

of in-vivo pulldown experiments, in which scientists
attempt to catch protein pairs in the act, by grabbing
complexes (groups of interacting proteins), and char-
acterizing them e.g. by breaking them into pieces and
weighing the parts, (c) the tendency to be produced
or not coordinately across a variety of conditions, (d)
similar functional annotations in public databases, and
(e) whether both are essential or not.

We used the raw variables from the Jansen, et al
study exactly as we found them, with the following
exceptions: (a) We summed the indicator variables
corresponding to the results of two yeast two-hybrid
screens, obtaining a single {0, 1, 2}-valued yeast two-
hybrid variable, (b) we analogously summed the two
in-vivo pulldown variables, and (c) we took the recip-
rocals of the two functional annotation raw variables
(to obtain values that increase with the likelihood of
interaction, and are on a similar scale to the other vari-
ables) and added them to obtain a single functional an-
notation variable. Missing values were replaced with
0.

We downloaded the gold-standard indications of in-
teraction from the web site of the Jansen, et al pa-
per: these were obtained from the curated MIPS data.
Jansen, et al, also determined a list of proteins re-
garded as not interacting by finding pairs that are an-
notated as localizing to different parts of the cell in
the GO database. Of the 24229603 protein pairs in
the dataset, 2713970 are given gold standard designa-
tions this way, 8250 annotated as interacting and the
rest not. (In the raw data from the Jansen, et al web
site, 124 protein pairs appeared both in the list of in-
teracting proteins, and in the list of negative examples
arising from the localization evidence. These protein
pairs were regarded as interacting in our evaluation.
This appears the most logical choice, but due to their
small number, this choice must have an insignificant
effect on our evaluation anyway.)

We applied the peer algorithm, and the four algorithms
we compare with, to the set of 24229603 protein pairs
with data from that paper, and evaluated them by
computing ROC scores (also known as the AUC, for
Area Under the Curve) on the 2713970 gold-standard
examples. The results are tabulated in Table 1. Be-
cause the iterative algorithms use random starting con-
figurations, their results are averaged over 5 runs.

For a given value a of the AUC, 1 − a can be viewed
as an error probability: it is the probability that a
randomly chosen true proposition is ranked below a
randomly chosen false proposition. On the protein-
protein data, the peer algorithm reduces this error
probability by more than a factor of two compared

Algorithm Protein-Protein Synthetic

Peer 0.947 0.977
Eigen 0.862 0.899
k-means 0.862 0.724
EM 0.848 0.911

Table 1. AUC scores on protein-protein and synthetic data.

with the other algorithms. With 8250 positive exam-
ples, this difference is highly statistically significant.

3.3. Synthetic data

We also tried out the algorithms on artificially gener-
ated data. An obvious advantage of such data is that
the correct class of an item can be determined with-
out question. In our data, X1, ..., Xn are conditionally
independent given Y . The probability distributions
governing the individual variables were inspired by the
high-level description of BLAST scores described by
Altschul [1]: when Y = 1, Xi is distributed uniformly
on [0, 1], and when Y = 0, Xi is distributed accord-
ing to an exponential distribution that has been trun-
cated at 1 and normalized (so that Pr(Y = 1|X ≥ b)
is monotone in b). To generate variables with varying
strengths, the means of the exponential variables were
chosen uniformly at random from [0,1/2]. The value
1/2 was chosen to generate variables with strong but
not overwhelming association with Y .

We generated 100 random sources with five variables
and Pr(Y = 1) = 0.01 this way. For each source, we
generated 100000 examples, tried all the algorithms,
and calculated the AUC for each algorithm. For each
algorithm, we then averaged the AUC scores.

3.4. Code and data

On the website

http://www.cs.columbia.edu/~plong/peer

the following can be found: source code for all the algo-
rithms, the protein-protein data used in our analysis,
scripts to generate the synthetic data, and a script to
reproduce the results of this section.

Acknowledgments

We warmly thank Edison Liu, Yoav Freund, Vinsen-
sius Vega, K. R. Krishna Murthy, Anshul Kundaje,
John Rice, Prasanna Kolatkar, Peter Bickel, Drew
Bagnell, Naoki Abe, David Haussler and Bin Yu for
valuable conversations.



Unsupervised Evidence Integration

References

[1] S. Altschul. Assessing the accuracy of database
search methods,and improving the performance
of psi-blast, 2002. Invited talk at ISMB.

[2] M. Deng, T. Chen, and F. Sun. An integra-
tive analysis of protein function prediction. RE-

COMB, pages 95–103, 2003.

[3] C. Alfarano et al. The biomolecular interaction
network database and related tools. Nucleic Acids

Res., 33:D418–D424, 2005.

[4] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer.
An efficient boosting algorithm for combining
preferences. In Proc. 15th International Confer-

ence on Machine Learning, 1998.

[5] R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J.
Krogan, S. Chung, A. Emili, M. Snyder, J. F.
Greenblatt, and M. Gerstein. A bayesian net-
works approach for predicting protein-protein in-
teractions from genomic data. Science, 302:449–
453, 2003.

[6] S. Karlin and S. F. Altschul. Method for as-
sessing the statistical significance of molecular se-
quence features by using general scoring schemes.
Proceedings of the National Academy of Sciences,
87:2264–2268, 1990.

[7] G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I.
Jordan, , and W. S. Noble. Kernel-based data fu-
sion and its application to protein function pre-
diction in yeast. PSB, 2003.

[8] E. M. Marcotte, M. Pellegrini, H. L. Ng, D. W.
Rice, T. O. Yeates, and D. Eisenberg. Detecting
protein function and protein-protein interactions
from genome sequences. Science, 285(5428):751–
3, 1999.

[9] O. Mitina and N. Vereshchagin. How to use sev-
eral noisy channels with unknown error probabil-
ities. Information and Computation, 184(2):229–
241, 2003.

[10] I. M. Nooren and J. M. Thornton. EMBO J.,
22(14):3486–92, 2003.

[11] C. Von Mering, R. Krause, B. Snel, M. Cornell,
S. G. Oliver, S. Fields, and P. Bork. Compara-
tive assessment of large-scale data sets of protein-
protein interactions. Nature, 417:399–403, 2002.

[12] I. Xenarios, D. W. Rice, L. Salwinski, M. K.
Baron, E. M. Marcotte, and D. Eisenberg. DIP:
The database of interacting proteins. Nucleic

Acids Research, 28:289–91, 2000.

A. Derivation of equation (2)

Define

• θi = Pr(Ui = 1|Y = 1), and

• p = Pr(Y = 1).

By breaking down into the cases in which Y = 1 and
Y = 0, we get

ai,j = Pr(Ui = Uj = 1|Y = 0) Pr(Y = 0)
+ Pr(Ui = Uj = 1|Y = 1) Pr(Y = 1).

(6)

Exploiting the conditional independence, we get

ai,j = Pr(Ui = 1|Y = 0) Pr(Uj = 1|Y = 0) Pr(Y = 0)
+ Pr(Ui = 1|Y = 1) Pr(Uj = 1|Y = 1) Pr(Y = 1).

(7)
Equation (1) can be rewritten using this section’s no-
tation as follows:

Pr(Ui = 1 | Y = 0) =
ai − pθi

1− p
. (8)

Combining (7) and (8) with the fact that Pr(Y = 0) =
1 − Pr(Y = 1), and simplifying, we get

ai,j =
(ai − pθi)(aj − pθj)

1 − p
+ θiθjp. (9)

Similarly,

ai,k =
(ai − pθi)(ak − pθk)

1 − p
+ θiθkp (10)

aj,k =
(aj − pθj)(ak − pθk)

1 − p
+ θjθkp. (11)

Solving (9) for θj , we get

θj =
aj(θip − ai) + ai,j(1 − p)

p(θi − ai)
. (12)

Replacing the occurrence of θj in (11) with the right-
hand-side of (12) and simplifying yields

aj,k =
ai,jak − ajakθi − ai,jθk + aiajθk

ai − θi

. (13)

Solving (13) for θk and simplifying, we get

θk =
−aiaj,k + ai,jak + aj,kθi − ajakθi

ai,j − aiaj

(14)

Replacing the θk in (10) with the right-hand-side of
(14), and simplifying, yields

ai,k =
(

a2
i (aj,kp − ajak) + (aj,k − ajak)pθ2

i

+ai(ai,jak(1 − p) − 2(aj,k − ajak)pθi)
)

/
(

(ai,j − aiaj)(1 − p)
)

.
(15)

Solving for θi and simplifying completes the proof.


