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Abstract

Much work has been done on learning various classes of “simple” monotone functions
under the uniform distribution. In this paper we give the first unconditional lower bounds
for learning problems of this sort by showing that polynomial-time algorithms cannot learn
shallow monotone Boolean formulas under the uniform distribution in the well-studied
Statistical Query (SQ) model.

We introduce a new approach to understanding the learnability of “simple” monotone
functions that is based on a recent characterization of Strong SQ learnability by Simon
(2007) Using the characterization we first show that depth-3 monotone formulas of size
no(1) cannot be learned by any polynomial-time SQ algorithm to accuracy 1−1/(log n)Ω(1).
We then build on this result to show that depth-4 monotone formulas of size no(1) cannot be
learned even to a certain 1

2 + o(1) accuracy in polynomial time. This improved hardness is
achieved using a general technique that we introduce for amplifying the hardness of “mildly
hard” learning problems in either the PAC or SQ framework. This hardness amplification
for learning builds on the ideas in the work of O’Donnell (2004) on hardness amplification
for approximating functions using small circuits, and is applicable to a number of other
contexts.

Finally, we demonstrate that our approach can also be used to reduce the well-known
open problem of learning juntas to learning of depth-3 monotone formulas.

Keywords: statistical query learning, Boolean formulas, statistical query dimension, hard-
ness of learning

1. Introduction

Motivation. Over the past several decades much work in computational learning theory
has focused on developing efficient algorithms for learning monotone Boolean functions
under the uniform distribution, (see e.g., Amano and Maruoka, 2002; Blum et al., 1998;
Bshouty and Tamon, 2006; Hancock and Mansour, 1991; Jackson et al., 2008; Kearns et al.,
1994; O’Donnell and Servedio, 2007; O’Donnell and Wimmer, 2009; Sakai and Maruoka,
2000; Servedio, 2004) and other works. An intriguing question, which has driven much of this
research and remains open, is whether there is an efficient algorithm to learn monotone DNF
formulas under the uniform distribution. Such an algorithm A would have the following
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performance guarantee: for any target function f : {0, 1}n → {0, 1} that is a monotone
DNF formula with poly(n) terms, given access to independent uniform random examples
(x, f(x)), algorithm A would run in poly(n, 1/ε) time and with high probability output a
hypothesis h that disagrees with f on at most an ε fraction of inputs from {0, 1}n.

Several partial positive results toward learning monotone DNF have been obtained: for
constant ε, algorithms are known that can learn 2

√
logn-term monotone DNF (Servedio,

2004) and poly(n)-size monotone decision trees (O’Donnell and Servedio, 2007) in poly(n)
time. Partial negative results have also been given: Dachman-Soled et al. (2008) has shown
that (under a strong cryptographic hardness assumption) for a sufficiently large absolute
constant d there is no poly(n)-time algorithm that can learn depth-d, size-no(1) Boolean
formulas that compute monotone functions to a certain accuracy 1

2 + o(1). However no
hardness results that apply to monotone formulas of small constant depth are known.

In this work we give unconditional lower bounds showing that simple monotone functions
– computed by monotone Boolean formulas of depth 3 or 4 and size no(1) – cannot be learned
under the uniform distribution in polynomial time. Of course these results are not in the
PAC model of learning from random examples (since unconditional lower bounds in this
model would prove P 6= NP !); our primary lower bounds are for the closely-related and
well-studied Statistical Query learning model, which we describe briefly below.

Statistical Query learning. Kearns (1998) introduced the statistical query (SQ) learning
model as a natural variant of the usual PAC learning model. In the SQ model, instead of
having access to independent random examples (x, f(x)) drawn from distribution D, the
learner is only allowed to obtain statistical properties of examples. Formally, it has access
to a statistical query oracle SQf,D. The oracle SQf,D takes as input a query function
g : X×{-1,+1} → {-1,+1} and a tolerance parameter τ ∈ [0, 1] and outputs a value v such
that:

|v −ED[g(x, f(x))]| ≤ τ.

The learner’s goal – to output a hypothesis h such that Prx∼D[h(x) 6= f(x)] ≤ ε – is
the same as in PAC learning. A poly(n, 1/ε)-time SQ algorithm is only allowed to make
queries in which g can be computed by a poly(n, 1/ε)-size circuit and τ is at most a fixed
1/poly(n, 1/ε) (and of course the algorithm must run for at most poly(n, 1/ε) time steps).

The SQ model is an important and well-studied learning model which has received much
research attention in the 15 years since it was introduced. One reason for this intense interest
is that any concept class that is efficiently learnable from statistical queries is also efficiently
PAC learnable in the presence of random classification noise at any noise rate bounded away
from 1

2 (Kearns, 1998). In fact, since the introduction of the SQ-model virtually all known
noise-tolerant learning algorithms have been obtained from (or rephrased as) SQ algorithms1

(Kearns, 1998; Bylander, 1994, 1998; Dunagan and Vempala, 2004).
Even more importantly, and quite surprisingly, all known techniques in PAC learning

with the exception of Gaussian elimination either fit easily into the SQ model or have
SQ analogues. Thus the study of SQ learning is now an integral part of the study of
noise-tolerant learning and of PAC learning in general. In addition, interest in the SQ

1. One prominent exception is the work of Blum et al. (2003), which gives an algorithm for learning parities
which is tolerant to random noise, although in a weaker sense than the algorithms derived from statistical
queries.
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learning model has been stimulated by recently discovered close connections to privacy-
preserving learning (Blum et al., 2005; Kasiviswanathan et al., 2008), evolvability (Valiant,
2009; Feldman, 2008, 2010) and communication complexity (Sherstov, 2008).

An important property of the SQ model that we rely on in this work is that it is possible
to prove unconditional information-theoretic lower bounds on learning a class of functions
in the SQ model (we will say much more about this below). Such lower bounds give a very
strong indication that the class is unlikely to be efficiently PAC learnable and even less likely
to be PAC learnable in the presence of random classification noise. In particular, it rules
out almost all known approaches to the learning problem, including the algorithms that
rely solely on estimates of Fourier coefficients (which is the primary technique for learning
over the uniform distribution (Servedio, 2004; O’Donnell and Servedio, 2007)).

Background on hardness results for SQ learning. In his paper introducing the SQ
model, Kearns (1998) already showed that the class of all parity functions cannot be SQ-
learned in polynomial time under the uniform distribution. Soon after this Blum et al.
(1994) characterized the weak learnability of every function class F in the SQ model in
terms of the statistical query dimension of F ; roughly speaking, this is the largest number
of functions from F that are pairwise nearly orthogonal to each other (we give a precise
definition in Section 2). The results of Blum et al. (1994) imply that if a class F has SQ-
Dimension nω(1), then no SQ algorithm can even weakly learn F to any accuracy 1

2 + 1
poly(n)

in poly(n) time. This bound was already used to give SQ hardness results for weak learning
classes such as DNF and decision trees in the work of Blum et al. (1994), and more recently
for weak-learning intersections of halfspaces by Klivans and Sherstov (2006). However, it
is well known that the entire class of all monotone Boolean functions over {0, 1}n can be
weakly learned to accuracy 1

2 + 1
poly(n) in poly(n) time (an algorithm that achieves optimal

accuracy 1
2 + Θ(logn)√

n
was recently given by O’Donnell and Wimmer (2009)), and indeed the

class of all monotone functions can easily be shown to have SQ-dimension O(n). Thus the
notion of SQ-dimension alone is not enough to yield SQ lower bounds on learning monotone
functions.

Much more recently, Simon (2007) introduced a combinatorial parameter of a func-
tion class F called its strong Statistical Query dimension, and showed that this parameter
at error rate ε characterizes the information-theoretic strong learnability of F to accu-
racy 1 − ε. (We give a precise definition of the strong SQ-dimension in Section 2.) We
use this characterization, which was later strengthened and simplified by Feldman (2010)
(and independently by Szörényi, 2009) to obtain the lower bounds, which we now describe.
(Throughout the following description of our results, the underlying distribution is always
taken to be uniform over {0, 1}n.)

Our Results: Unconditional Hardness of Learning Simple Monotone Functions.
We give the first strong SQ-dimension lower bound for a class of “simple” monotone func-
tions. More precisely, as our first main result, we show that the class of size-no(1), depth-3
monotone formulas has strong SQ-dimension nω(1) at a certain error rate 1/(log n)Θ(1).
By the results of Simon and Feldman, this implies that such formulas cannot be effi-
ciently learned to accuracy 1 − 1/(log n)Θ(1) by any polynomial-time SQ learning algo-
rithm. Roughly speaking, our proof works by constructing a class of slice functions of
“well-separated” parities over poly log(n) variables. We show that this class of functions

3
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has the combinatorial properties required to satisfy the strong SQ-dimension criterion, and
that every function in the class can be computed by a small monotone formula of depth 3.

In addition to this result, we show that a variant of the basic idea of our construction can
be used to reduce PAC learning of log n-juntas (or functions that depend on at most log n
variables) over k = log2 n/ log log n variables to learning of depth-3 monotone functions.
Learning of juntas is an important open problem in learning theory (Blum, 2003) for which
the best known algorithm achieves only a polynomial factor speed-up over the trivial brute
force algorithm (Mossel et al., 2007). Note that there are nΩ(log logn) juntas in the above class
of functions and therefore our reduction implies that strong learning of monotone depth-3
formulas of poly(n)-size (even over only k variables) would require a major breakthrough
on the problem of learning juntas over the uniform distribution.

These results are the first lower bounds for learning monotone depth-3 formulas, and
leave only the question of learning monotone DNF formulas (which are of course depth-
2 rather than depth-3 monotone formulas) open. However, these results only say that
monotone depth-3 formulas cannot be learned to a rather high (1 − o(1)) accuracy. Thus
a natural goal is to obtain stronger hardness results which show that simple monotone
functions are hard to SQ learn even to coarse accuracy – ideally to some accuracy level
1
2 + o(1) only slightly better than random guessing. Of course, we might expect that to
achieve this we must use somewhat more complicated functions than depth-3 formulas, and
this does turn out to be the case – but only a bit more complicated, as we describe below.

We introduce a general method of amplifying the hardness of a class of functions that are
“mildly hard to learn” (i.e., hard to learn to high accuracy), to obtain a class of functions
that are “very hard to learn” (i.e., hard to learn to accuracy even slightly better than random
guessing). We show that our method, which builds on O’Donnell’s beautiful hardness
amplification for approximating Boolean functions using small circuits (O’Donnell, 2004),
can be applied both within the uniform-distribution PAC model (Th. 12) and within the
uniform-distribution Statistical Query model (Th. 14). The latter is of course our main
interest in this paper, but we believe that the result is of independent interest and therefore
present both versions.

We note that while our hardness amplification follows the general approach of O’Donnell,
the learning setting is quite different from approximation of a fixed function by a non-
uniform circuit and hence new technical ideas are required to successfully translate the
approach (especially in the SQ case). We defer the discussion of the proof technique and
technical contributions to Section 4.

Using this hardness amplification for SQ learning together with our first main result,
we obtain our second main result: we show that the class of size-no(1), depth-4 monotone
formulas cannot be SQ-learned even to 1

2 + 2−(logn)γ accuracy in poly(n) time for any γ <
1/2. We are able to increase the depth by only one (from 3 to 4) by a careful construction of
the combining function in our hardness amplification framework; we use a depth-2 combining
function due to Talagrand and the complement of the “tribes” function which have useful
extremal noise stability properties as shown by O’Donnell (2004); Mossel and O’Donnell
(2003).

The primary motivating question of learnability of monotone DNF formulas over the
uniform distribution is not resolved in this work. At the same time our results suggest that
this long-standing open problem can be tackled by bounding the strong SQ-dimension of
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monotone DNF formulas (our own efforts to derive a non-trivial bound were not successful
thus far).

Relation to previous work. To the best of our knowledge even the “mild hardness”
result that we prove for depth-3 monotone formulas is the first unconditional negative
result known for learning a class of polynomial-time computable monotone functions in the
uniform-distribution SQ model. We note that the strong 1

2 +o(1) hardness that we establish
for depth-4 monotone formulas is provably near-optimal, since as mentioned earlier the class
of all monotone functions over {0, 1}n can be learned to accuracy 1

2 + Θ(logn)√
n

in polynomial

time (O’Donnell and Wimmer, 2009).
While the recent work by Dachman-Soled et al. (2008) also gave negative results for

learning constant-depth monotone formulas, those results are different from ours in signifi-
cant ways. Dachman-Soled et al. (2008) used a strong cryptographic hardness assumption
– that Blum integers are 2n

ε
-hard to factor on average for some fixed ε > 0 – to show that

for some sufficiently large absolute constant d, the class of monotone functions computed
by size-no(1), depth-d formulas cannot be PAC learned, under the uniform distribution, to
a certain accuracy 1

2 + o(1). In contrast, our main hardness result applies to the more

restricted classes of size-no(1), depth-3 and 4 monotone formulas, and gives unconditional
hardness for polynomial-time algorithms in the Statistical Query model.

Our reduction from learning juntas can be thought of as giving a hardness result based
on a relatively strong computational assumption and hence has the same flavor as the result
by (Dachman-Soled et al., 2008). In addition to better depth, our reduction is substantially
simpler and more direct than the reduction from factoring Blum integers.

Finally, we remark here that our hardness amplification method for PAC and SQ learning
may be viewed as a significant strengthening and generalization of some earlier results.
Boneh and Lipton (1993) described a form of uniform-distribution hardness amplification
for PAC learning based on the XOR lemma; our PAC hardness amplification generalizes
their result and extends to SQ learning. More recently, Dachman-Soled et al. (2008) used
elements of O’Donnell’s technique to amplify information-theoretic hardness of learning.
Specifically, the “mildly hard” class of functions F used by Dachman-Soled et al. (2008)
consists of all functions of the form slice(f), where f may be any Boolean function and
slice(f) is the function which agrees with Majority everywhere except the middle layer of
the Boolean hypercube. An easy argument shows that F is a class of monotone functions
that is hard to learn to accuracy 1−Θ(1)/

√
n. Using the fact that a random function in F is

trivial to predict off of the middle layer and is totally random on the middle layer, expected
bias analysis from (O’Donnell, 2004) is used by Dachman-Soled et al. (2008) to derive
information-theoretic hardness of learning the combined function class Fg. In contrast, the
hardness amplification results of this paper amplify computational hardness, do not assume
any particular structure of the base class F (only that it is “mildly hard to learn”) and,
importantly, apply to learning in the SQ model.

Organization. Section 2 gives background on Statistical Query learning, the SQ-dimension,
and the strong SQ-dimension. In Section 3 we describe our class of depth-3 monotone formu-
las and show that it is “mildly” hard to learn in the SQ model by giving a superpolynomial
lower bound on its strong SQ-dimension. We give the reduction from learning juntas in
Section 3.3. Section 4 presents our general hardness amplification results for the uniform-
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distribution PAC model and the uniform-distribution Statistical Query learning model. We
apply our hardness amplification technique from Section 4 to obtain our second main result,
strong SQ hardness for depth-4 formulas, in Section 5.

2. The Statistical Query Model, SQ-Dimension, and Strong
SQ-Dimension

Recall the definition of Statistical Query learning from Section 1. Blum et al. (1994) intro-
duced the notion of the SQ-dimension of function class F under distribution D, and showed
that it characterizes the weak-learnability of F under D in the SQ model. Bshouty and
Feldman (2002) and Yang (2005) later generalized and sharpened the result of Blum et al.
(1994). We will use Yang’s version here extended to sets of arbitrary real-valued functions.
We write “〈f, g〉D” to denote Ex∼D[f(x)g(x)] and “ ‖f‖D” to denote (〈f, f〉D)1/2.

Definition 1 Given a set C of real-valued functions, the SQ-dimension of C with respect
to D (written SQ-DIM(C,D)) is the largest number d such that ∃{f1 , . . . , fd} ⊆ C with the
property that ∀i 6= j,

|〈fi, fj〉D| ≤
1

d
. (1)

When D is the uniform distribution we simply write SQ-DIM(C). We refer to the LHS of
Equation (1) as the correlation between fi and fj under D.

Intuitively, this condition says that C contains d “nearly-uncorrelated” functions. It is
easy to see that if C is a concept class with SQ-DIM(C,D) = d then C can be weakly learned

with respect to D to accuracy 1
2 + Θ(1)

d using d Statistical Queries with tolerance Θ(1)
d ;

simply ask for the correlation between the unknown target function f and each function in
the set {f1, . . . , fd}. Since the set is maximal, the target function must have correlation at
least 1/d with at least one of the functions.

Blum et al. showed that the other direction is true as well; if C is efficiently weakly
learnable, then C must have small SQ-dimension.

Theorem 2 (Blum et al., 1994, Th. 12) Given a concept class C and a distribution D,
let SQ-DIM(C,D) = d. Then if the tolerance τ of each query is always at least 1/d1/3, at
least 1

2d
1/3 − 1 queries are required to learn C with advantage 1/d3.

As an example, the class PARn of all parity functions over n variables has SQ-DIM(PARn) =
2n, and thus any SQ algorithm for learning parities over the uniform distribution U to ac-
curacy 1

2 + 1
2O(n) requires exponential time.

2.1. The Strong SQ-Dimension

The statistical query dimension only characterizes the weak SQ-learnability of a class and is
not sufficient to characterize its strong SQ-learnability. The first characterization of strong
SQ learning was given by Simon (2007), but for our application a subsequent accuracy-
preserving characterization by Feldman will be more convenient to use (Feldman, 2010).

Let F∞1 denote the set of all functions from {0, 1}n → [−1, 1], i.e., all functions with
L∞-norm bounded by 1. For a Boolean function f , we define BD(f, ε) to be {g : {0, 1}n →

6
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{−1, 1} : PrD[g 6= f ] ≤ ε}, i.e., the ε-ball around f . The sign function is defined as
sign(z) = 1 for z ≥ 0, sign(z) = −1 for z < 0. Finally, for a set of real-valued functions C,
let C − g = {f − g : f ∈ C}.

Definition 3 Given a concept class C and ε > 0, the strong SQ-dimension of C with respect
to D is defined to be:

SQ-SDIM(C,D, ε) = sup
g∈F∞1

SQ-DIM((C \BD(sign(g), ε))− g,D).

Just as for the weak SQ-dimension, the strong SQ-dimension completely characterizes
the strong SQ-learnability of a concept class.

Theorem 4 (Feldman, 2010) Let C be a concept class over {0, 1}n, D be a probabil-
ity distribution over {0, 1}n and ε > 0. If there exists a polynomial p(·, ·) such that
C is SQ learnable over D to accuracy ε from p(n, 1/ε) queries of tolerance 1/p(n, 1/ε)
then SQ-SDIM(C,D, ε + 1/p(n, 1/ε)) ≤ p′(n, 1/ε) for some polynomial p′(·, ·). Further,
if SQ-SDIM(C,D, ε) ≤ q(n, 1/ε) for some polynomial q(·, ·) then C is SQ learnable over D
to accuracy ε from q′(n, 1/ε) queries of tolerance 1/q′(n, 1/ε) for some polynomial q′(·, ·).

Armed with Definition 3 and Theorem 4, we can show that a concept class C is not
polynomial-time learnable to high accuracy by choosing a suitable ε = Ω(1/ poly(n)) and
a suitable function g ∈ F∞1 and proving that SQ-DIM((C \ BU (sign(g), 2ε)) − g) = nω(1)

(we can assume without loss of generality that ε upper bounds the tolerance of an SQ
algorithm). We do just this, for a class of depth-3 monotone formulas, in the next section.

3. Lower Bounds for Depth-3 Monotone Formulas

In this section we describe our lower bound for SQ learning of depth-3 monotone formulas
and the reduction from learning juntas.

3.1. Strong SQ lower bound

We start be showing a family of monotone functions that cannot be strong SQ-learned in
polynomial time under the uniform distribution. The high-level idea is that we embed a
family of non-monotone functions with high SQ-dimension – a family of parity functions –
into the middle level of the k-dimensional Boolean cube, and thus obtain a class of monotone
functions with high strong SQ-dimension.

A k-variable slice function for f , where f is a real-valued function over {0, 1}k, is denoted
slicef . For x ∈ {0, 1}k the value of slicef (x) is 1 if x has more than dk/2e ones, −1 if x
has fewer than dk/2e ones, and f(x) if x has exactly dk/2e ones. The functions we consider
will only be defined over the first k out of n variables. Throughout the rest of this section,
without loss of generality, we will always assume that k is even.

Theorem 5 Let P be the class of 2k−1 parity functions χ : {0, 1}k → {-1,+1} over an
odd number of the first k variables. Let M be the class of corresponding k-variable slice
functions sliceχ for χ ∈ P. Let k = log2−β(n) for β any absolute constant in (0, 1). Then

for every ε = o(1/
√
k), we have SQ-SDIM(M, ε) = nΘ(log1−β n), and every function in M

is balanced.

7
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Proof We first show that every function sliceχ ∈ M is balanced, i.e. outputs +1 and −1
with equal probability. As k is even, the number of inputs with greater than k/2 ones is
the same as the number of inputs with fewer than k/2 ones. As for the middle layer, given
an input with exactly k/2 ones on which χ outputs +1, flipping all the bits gives another
point with exactly k/2 ones on which χ outputs −1 (as χ is a parity on an odd number of
bits). Thus every sliceχ ∈M is balanced on the middle layer and thus is balanced overall.

Let g = slice0, where 0 is the constant 0 function. We will show that SQ-DIM(M \
BU (sign(g), 2ε) − g) = nω(1). By Stirling’s approximation, the middle layer of the k-
dimensional hypercube is a λk =

(
k
k/2

)
/2k = Θ(1/

√
k) fraction of the 2k points. Thus for

ε = o(1/
√
k) we have that M is disjoint from BU (sign(g), 2ε) = ∅ (since sign(g) equals

+1 everywhere on the middle layer and every function in M is balanced on the middle
layer), and it is enough to lower-bound SQ-DIM(M−g) in order to lower-bound the strong
SQ-dimension of M.

The functions in M− g have a nice structure as they output 0 everywhere except the
middle layer of {0, 1}k, where they output ±1. Thus, the correlation between any two
functions in M− g depends only on the values on the middle slice. Let χA, χB ∈ P be the
parity functions over the sets of variables A,B ⊆ [k]. Recalling Equation (1),

|〈sliceχA−g, sliceχB−g〉U | = |EU [1|x|=k/2 ·χA ·χB]| = EU [1|x|=k/2 · χA⊕B] = 1̂|x|=k/2(A⊕B)

where A ⊕ B denotes the symmetric difference between the sets A and B, 1|x|=k/2 is the

indicator function of the middle slice, and ĥ(A) is the Fourier coefficient of h with index χA.
In other words, the correlation between (sliceχA−g) and (sliceχB −g) is exactly the Fourier

coefficient of 1|x|=k/2 with index A⊕B. Let s = |A⊕B|. By symmetry, all
(
k
s

)
of the degree-

s Fourier coefficients of 1|x|=k/2 are the same, and since by Parseval’s identity the squares of
all the Fourier coefficients sum to EU [12

|x|=k/2] = λk, we have |〈sliceχA − g, sliceχB − g〉U | ≤√
λk/
(
k
s

)
≤
(
k
s

)−1/2
.

It remains to identify a large collection of these slice functions such that the pairwise
correlations are small. This can be done easily by picking any χA ∈ P, removing all
χB ∈ P such that |A ⊕ B| /∈ [k/3, 2k/3], and repeating this process. Since each removal
step removes at most a 1

2Θ(k) fraction of all 2k−1 elements of P, in this fashion we can con-

struct a set S of size 2Θ(k). Every pair of parities in S has symmetric difference s for some
s ∈ [k/3, 2k/3], and for such an s we have

(
k
s

)
= 2Θ(k). Thus the set {sliceχ − g}χ∈S is a

collection of 2Θ(k) = nΘ(log1−β n) functions inM− g whose pairwise correlations are each at
most 1/2Θ(k) = 1/nΘ(log1−β n), and thus the SQ-dimension ofM−g is at least nΘ(log1−β n).

3.2. The depth-3 construction

It remains to show that every function in M has a depth-3 monotone formula.

Theorem 6 Let χ be any parity function over some subset of the variables x1, . . . , xk where
k = log2−β(n) for β any absolute constant in (0, 1). Then the k-variable slice function sliceχ
is computed by an no(1)-size, depth-3 monotone formula.

8
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Proof Let Thkj be the k-variable threshold function that outputs TRUE if at least j of the

k inputs are set to 1, and FALSE otherwise. The threshold function Thkj can be computed

by a monotone formula of size no(1) and depth 3 using the construction of Klawe et al.
(1984).

Let χ be a parity function on j out of the first k variables. For x ∈ {0, 1}k let x1 refer
to the j variables of χ and x2 refer to the remaining k − j variables. We claim that

sliceχ(x) =
∨

odd i<j

[Thji (x
1) ∧ Thk−jk/2−i(x

2)] .

To see this, note that if an input x has fewer than k/2 ones, then there can be no i such

that Thji (x
1) and Thk−jk/2−i(x

2) both hold, so this function outputs FALSE as it should. If

x has more than k/2 ones, some ` of them are in x1, and at least k/2 − ` + 1 of them are
in x2. If ` is odd then i = ` makes the OR output TRUE, and if ` is even then i = (`− 1)
makes the OR output TRUE. Finally, if x has exactly k/2 ones, and an odd number of
them are in x1, the formula is satisfied; if an even number of them are in χ, the formula is
not satisfied.

Each Thji and Thk−jk/2−i can be computed by a no(1)-size, depth-3 monotone formula

with an OR on top (Klawe et al., 1984). Using the distributive law we can convert

Thji (x
1) ∧ Thk−jk/2−i(x

2) to also be a no(1)-size, depth-3 monotone formula with an OR on

top. This OR can be collapsed with the top dj/2e-wise OR, yielding a no(1)-size, depth-3
monotone formula for sliceχ.

We have thus established:

Theorem 7 For some ε = 1/(log n)Θ(1), the class of no(1)-size, depth-3 monotone formulas
has Strong SQ-Dimension nω(1).

As an immediate corollary, by Theorem 4 we get:

Corollary 8 The class of no(1)-size, depth-3 monotone formulas is not SQ-learnable to
some accuracy 1− 1/(log n)Θ(1) in poly(n) time.

3.3. Reduction from learning juntas

We now show that ideas from the proof of Theorem 6 can also be used to reduce learning
of other non-monotone function classes to learning of shallow monotone formulas. Namely,
we give the following reduction from learning of juntas over k = log2 n/ log log n variables
to learning of depth-3 monotone formulas. The ith variable of a Boolean function f is said
to be relevant if there exist inputs x and y in {0, 1}n that differ only on the ith coordinate
such that f(x) 6= f(y). A j-junta is a function that has at most j relevant variables.

Theorem 9 Let A be a uniform distribution PAC learning algorithm that learns the class
of poly(n)-size depth-3 monotone formulas to accuracy ε in time polynomial in n and
1/ε. Then there exists a uniform-distribution PAC learning algorithm C that exactly
learns the class of log(n)-juntas where the relevant variables are chosen from the first
k = log2(n)/ log log(n) variables in time polynomial in n.

9
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The proof of Theorem 9 appears in the full version.
We note that Theorem 9 is incomparable to Corollary 8. It is easy to translate Theorem

9 into the SQ model. As a result we would obtain a superpolynomial lower bound for strong
SQ learning monotone depth-3 formulas. This is true since a junta can be a parity function

and there are at least
(log2 n/ log logn

logn

)
= nΩ(log logn) different parities in the above class of

juntas. However both the lower bound and the accuracy parameter in Corollary 8 are
substantially better. The better accuracy parameter is required for hardness amplification
using a single additional level.

In the next section we introduce hardness amplification machinery that will enable us
to extend the SQ learning hardness result to accuracy 1

2 + o(1) (for depth-4 formulas).

4. Hardness Amplification for Uniform Distribution Learning

O’Donnell (2004) developed a general technique for hardness amplification. His approach,
which may be viewed as a generalization of Yao’s XOR lemma, gives a bound on the hardness
of g ⊗ f = g(f(x1), . . . , f(xk)) where f is a “mildly” hard function and g is an arbitrary
k-bit combining function.

At a high-level O’Donnell’s proof has three components. The first component shows the
existence of a circuit weakly approximating f over any δ-fraction of the domain whenever
there exists a circuit for g⊗f that outperforms the expected bias of g (see definition below).
The second part of O’Donnell’s proof uses Impagliazzo’s hard-core lemma (Impagliazzo,
1995) to obtain a δ-approximating circuit for f given circuits that weakly approximate f
over any δ-fraction of the domain. The third component is the construction of combining
functions that have the desired expected bias.

The first of the two primary obstacles in translating the result to the learning framework
is that the first component uses non-uniform advice that depends on f . This advice is, in
general, not available to the learning algorithm2. A substantial effort was devoted to ob-
taining (more) uniform versions of O’Donnell’s result, most notably by Trevisan (Trevisan,
2003, 2005). Both of his reductions are uniform and do not use access to f but neither is
sufficient for our purposes. The first reduction only amplifies to accuracy 3/4 + o(1) (Tre-
visan, 2003) and the second reduction uses a specific combining function of non-constant
circuit depth (Trevisan, 2005). At the same time a learning algorithm has a form of access
to f (either random examples or statistical queries) and hence hardness amplification need
not be independent of f (or “black-box”). Indeed, it is not hard to show that Trevisan’s
simpler and more uniform version of the first component (Trevisan, 2003) can be simulated
using random examples of f in place of non-uniform advice (Trevisan, 2010). However, it
is unclear if this approach can be used with access only to statistical queries. To solve this
problem we show a uniform and general version of the first component, namely an algo-
rithm that given a circuit for g ⊗ f produces a short list of circuits that, with significant
probability, contains a circuit weakly approximating f over any δ-fraction of the domain
chosen in advance (Lem. 11). The algorithm does not use access to f but can use statistical
queries to find the weakly approximating circuit among the candidate circuits.

2. To avoid a potential source of confusion we remark that while our SQ learning lower bounds are
information-theoretic and hence allow obtaining an SQ learning algorithm that uses non-uniform ad-
vice, such advice cannot depend on f .

10
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The second obstacle is the fact that in order to obtain a circuit for g ⊗ f a learning
algorithm needs to simulate a statistical query oracle for g ⊗ f using a statistical query
oracle for f (when learning from random examples simulation of random examples of g⊗ f
is trivial). We show that this is possible by giving a procedure that uses a function ψ
that approximates f in place of f to answer statistical queries for g ⊗ f . To create such
ψ we use a form of gradient descent to f in which the equivalent of the gradient can be
generated whenever ψ cannot be used in place of f to answer a statistical query for g ⊗ f .
The number of steps of the gradient descent is bounded and therefore this method produces
correct answers to statistical queries for g ⊗ f .

We replace the second component (the hard-core lemma) with “smooth boosting,” a
technique from computational learning theory which is known to be analogous to hard-core
set constructions (Klivans and Servedio, 2003).

Finally, for the third component we need to show that appropriate hardness amplifica-
tion can be obtained by using only one additional level of depth. By combining balanced
Talagrand CNF and the complement of the “tribes” DNF with carefully chosen parameters
and using analysis from (O’Donnell, 2004; Mossel and O’Donnell, 2003), we demonstrate

hardness amplification from 1 − log−α n accuracy to 1/2 + 2− logβ n accuracy using a small
monotone CNF as a combining function, where α and β are positive constants (Lem. 16).

Notation and Terminology. For g a k-variable Boolean function and f an n-variable
Boolean function, we write g ⊗ f to denote the nk-variable function g(f(x1), . . . , f(xk)).
For F a class of n-variable functions and g a fixed k-variable combining function, we write
Fg to denote the class {g ⊗ f : f ∈ F}.

Let P kδ denote the distribution of random restrictions ρ on k coordinates, in which each
coordinate is mapped independently to ? with probability δ, to 0 with probability (1−δ)/2,
and to 1 with probability (1−δ)/2. We write hρ for the function given by applying restriction
ρ to the function h. For a k-variable ±1-valued function h we write bias(h) to denote
max{Pr[h = −1],Pr[h = 1]}. The expected bias of h at δ is ExpBiasδ(h) = Eρ[bias(hρ)],
where ρ is a random restriction from P kδ .

4.1. Hardness Amplification in the PAC Setting

The most significant use of non-uniformity in the first component of O’Donnell’s proof is the
lemma asserting that if one can predict a Boolean function on the hypercube noticeably bet-
ter than the function’s bias then there exist two adjacent points of the hypercube on which
predictions are noticeably different (O’Donnell, 2004). We start by showing an average-case
version of this lemma by proving that predictions need to be different on average over all
edges of the hypercube.

Lemma 10 Given two functions h : {0, 1}k → {−1, 1} and p : {0, 1}k → [0, 1], suppose
that

1

2k

 ∑
x:h(x)=1

p(x) +
∑

x:h(x)=−1

(1− p(x))

 ≥ bias(h) + ε . (2)

Then E(x,y)[|p(x)− p(y)|] ≥ 4ε2/k where (x, y) is a randomly and uniformly chosen edge in

the Boolean hypercube {0, 1}k.

11
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Proof Let us assume without loss of generality that h is biased towards 1. By the Poincaré
inequality over the discrete cube we know that for any function p over {0, 1}k:

Var[p] = E[p2]−E[p]2 ≤ k

4
E(x,y)[(p(x)− p(y))2].

The range of p is [0, 1], so E(x,y)[|p(x) − p(y)|] ≥ E(x,y)[(p(x) − p(y))2] ≥ 4Var[p]/k. It is
now sufficient to prove that Var[p] ≥ ε2.

Let b := bias(h) = Pr[h = 1] ≥ 1/2. We can rewrite Equation 2 as

b+ ε ≤ 1

2k

 ∑
x:h(x)=1

p(x) +
∑

x:h(x)=−1

(1− p(x))


= E[h(x)(p(x)−E[p(x)])] + E[p(x)]b+ (1−E[p(x)])(1− b).

As b ≥ 1/2, bE[p] + (1 − b)(1 − E[p]) < b, and thus E[h(x)(p(x) − E[p(x)])] ≥ ε. Because
h(x) ∈ {−1, 1} we obtain E[|p − E[p]|] ≥ ε. Using the Cauchy-Schwarz inequality, we get
Var[p] = E[(p−E[p])2] ≥ E[|p−E[p]|]2 ≥ ε2.

Suppose we are given a circuit C that approximates g ⊗ f sufficiently well that it out-
performs the expected bias of g. Roughly speaking, the following lemma shows that for any
large enough set S, from C we can extract a circuit C ′ that weakly approximates f over
the inputs in S.

Lemma 11 There is a randomized algorithm Extract with the following property: For
any:

1. Parameters 0 < ε ≤ 1/2, 0 < η < 1, subset S ⊆ {0, 1}n such that |S| = η2n, Boolean
function g over {0, 1}k, and

2. Boolean function f such that bias(f) ≤ 1/2 + ε/(8k) and bias(f |S) ≤ 1/2 + ε2/(4k),

given a circuit C over {0, 1}k×n s.t.

PrUk [C = g ⊗ f ] = Pr(x1,...,xk)∈{0,1}k×n [C(x1, . . . , xk) = g(f(x1), . . . , f(xk))]

≥ ExpBiasη(g) + ε,

the algorithm Extract returns an n-input circuit C ′ such that with probability at least ε2/k
(over the randomness of Extract) we have Prx∈S [C ′(x) = f(x)] ≥ 1/2 + ε2/(2k). The
algorithm Extract runs in time O(nk + |C|) and the circuit C ′ is of size at most |C|.

The proof of Lemma 11 appears in the full version.
As we will see below, two key properties of this lemma are that Extract is efficient

and is oblivious of both f and S. The second property is crucial for hardness amplification
in the SQ model. In the second part of the proof, we show how an algorithm A that
learns the combined class Fg to moderate accuracy can be used to obtain an algorithm B
that learns the original class F to high accuracy. This is exactly the well-studied “weak

12
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learning =⇒ strong learning” paradigm of boosting in computational learning theory (see
Schapire, 1990, 2001 for introductions to boosting). Roughly speaking, boosting algorithms
are automatic procedures that can be used to convert any weak learning algorithm (that
only achieves low accuracy slightly better than 1/2) into a strong learning algorithm (that
achieves high accuracy close to 1). Boosting algorithms work by repeatedly running the weak
learning algorithm under a sequence of carefully chosen probability distributions D1,D2, . . . ,
obtaining weak hypotheses h1, h2, . . . . If each hypothesis hi has non-negligible accuracy
under the distribution Di that was used to generate it, then the boosting guarantee ensures
that the final hypothesis h (which combines h1, h2, . . . ) has high accuracy under the original
distribution.

Since we require the set |S| to be “large” (recall the statement of Lemma 11), we will need
to use a so-called “smooth boosting algorithm” such as the algorithm by Servedio (2003).
A 1/δ-smooth boosting algorithm is a boosting algorithm with the following property: if the
original distribution is uniform over a finite domain X (as is the case for us here), then
in learning to final accuracy δ, every distribution Di that the smooth boosting algorithm
constructs will be “1/δ-smooth,” meaning that it puts probability weight at most 1

δ ·
1
|X| on

any example x ∈ X. Such 1/δ-smooth distributions correspond naturally to large sets S (of
size δ2n) in Lemma 11.

So at a high level, we use a smooth boosting algorithm, and for each smooth distribu-
tion that it constructs we use Extract several times to generate a set of candidate weak
hypotheses (recall that Extract constructs a “good” C ′ only with some nonnegligible prob-
ability). These hypotheses are then tested using uniform examples (filtered according to
the current smooth distribution; since the distribution is smooth this does not incur much
overhead), and we identify one which has the required nonnegligible accuracy. The boost-
ing guarantee ensures that the combined hypothesis has accuracy 1 − δ under the original
(uniform) distribution.

Having sketched the intuition for the second stage, we now state the main hardness
amplification theorem for PAC learning.

Theorem 12 Let F be a class of functions such that for every f ∈ F , bias(f) ≤ 1/2 +
ε/(8k). Let A be a uniform distribution PAC learning algorithm that learns Fg to accuracy
ExpBiasδ(g) + ε. There exists a uniform-distribution PAC learning algorithm B that learns
F to accuracy 1− δ in time O(T1 · T2 · poly(n, k, 1/ε, 1/δ)) where T1 is the time required to
evaluate g and T2 is the running time of A.

Proof Let f denote the unknown target function. We will first simulate A to obtain
a circuit C that is (ExpBiasδ(g) + ε)-close to g ⊗ f . To generate a random example of
g ⊗ f we simply draw k random examples of f : (x1, `1), . . . , (xk, `k) and give the example
((x1, . . . , xk), g(`1, . . . , `k)) to A.

We now use C to produce weak hypotheses on distributions produced by the 1/δ-smooth
boosting algorithm by Servedio (2003) (here δ refers to the desired accuracy parameter).

Let Dt(x) denote the distribution obtained at step t of boosting and let h1, . . . , ht−1 be
the hypotheses obtained in the previous stages of boosting. Let M = 2nL∞(Dt) and let
St denote a set obtained by including each point x ∈ {0, 1}n randomly with probability
Dt(x)/M . As it is easy to see (e.g., Impagliazzo, 1995), for any function h fixed indepen-
dently of the random choices that determine St, with probability at least 1 − 2−n/2 (over
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the choice of St) |PrDt [h = f ] − PrSt [h = f ]| ≤ 2−n/2. Therefore for our purposes we can
treat PrSt [h = f ] as equal to PrDt [h = f ].

If bias(f |St) ≥ 1/2 + ε2/(4k) then PrSt [f = b] ≥ 1/2 + ε2/(4k) for b ∈ {−1, 1}. Other-
wise, by Lemma 11, with probability at least ε2/k the algorithm Extract returns a circuit
C1 such that PrSt [C1 = f ] ≥ 1/2 + ε2/(2k). As it is easy to see from the analysis by Serve-
dio (2003), the value Dt(x)/M equals µt(f(x), h1(x), . . . , ht−1(x)) for a fixed function µt
defined by the boosting algorithm. This allows the learning algorithm to generate random
examples from Dt(x) by filtering random and uniform examples using µt. In particular, we
can estimate PrDt [h = f ] to accuracy ε2/(12k) and confidence 1/2 using Õ(k2/ε4δ) random
and uniform examples in order to test whether either −1, 1 or C ′ give a good weak hypoth-
esis (the 1/δ factor in the number of examples suffices because we are using a 1/δ-smooth
boosting algorithm). By repeating the execution of Extract a total of O(ε−2 · k log (k/εδ))
times we can ensure that with probability at least 2/3 this weak learning step is successful
in all O(k2/(ε4δ)) boosting stages that the booster by Servedio (2003) requires. This implies
that the boosting algorithm produces a (1−δ)-accurate hypothesis with probability at least
2/3. It is easy to verify that the running time of this algorithm is as claimed.

Remark 13 This hardness amplification also applies to algorithms using membership queries
since membership queries to g ⊗ f can be easily simulated using membership queries to f .

4.2. Hardness amplification in the Statistical Query setting

We now establish the SQ version of hardness amplification.

Theorem 14 Let F be a class of functions such that for every f ∈ F , bias(f) ≤ 1/2 +
ε/(8k). Let A be a uniform-distribution SQ-learning algorithm that learns Fg to accuracy
ExpBiasδ(g)+ε using queries of tolerance τ . There exists a uniform-distribution SQ learning
algorithm B that learns F to accuracy 1 − δ in time O(T1 · T2 · poly(n, k, 1/ε, 1/δ)) using
queries of tolerance Ω(δ ·min{τ/k, ε2/k}), where T1 is the time required to evaluate g and
T2 is the running time of A.

Proof The main challenge in translating the result to SQ-learning is to simulate SQs for
g⊗f using SQs for f . Given the circuit C we can proceed exactly as in the proof of Theorem
12 but use SQs of tolerance Ω(δε2/k) to estimate the bias of f on St or to test whether the
output of Extract is a weak hypothesis.

We now describe how to simulate statistical queries to g⊗ f . The distribution is known
to be uniform therefore it is sufficient to answer only correlational statistical queries of A
(Bshouty and Feldman, 2002), namely, it is sufficient to be able to estimate EUk [φ · (g⊗ f)]
within τ/2, where φ is a Boolean function over {0, 1}kn. To estimate EUk [φ · (g ⊗ f)] we
plan to use random sampling with an approximation to f used in place of f . We refer to the
approximation as ψr(x). However, before doing so, we first test whether ψr is suitable to be
used as a replacement. In the main technical claim we prove that if ψr(x) cannot be used
to replace f then we can find a way to update ψr to ψr+1 which is closer to f than ψr in
L2 distance. The number of such updates will be bounded and therefore we will eventually
obtain ψr that can be used in place of f . Formally, let ψ0(x) ≡ 0 and for a function
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ψr(x) ∈ F∞1 we denote by Ψr(x) the random {−1, 1} variable with expectation ψr(x). We
also denote by g ⊗Ψr the random variable obtained by applying g to k evaluations of Ψr.

Lemma 15 For i ∈ [k] and y = y1, . . . , yi−1, yi+1, . . . , yk ∈ {0, 1}n and any function φ
over {0, 1}kn, we denote φi,y(xi) = φ(y1, y2, yi−1, xi, yi+1, . . . , yk). Let λ = |EUk [φ · g ⊗ f ]−
EUk,Ψ[φ · g ⊗ Ψ]|. Then for randomly and uniformly chosen i, y, with probability at least
λ/(4k), |EU [φi,y(x) · f(x)]−EU [φi,y(x) · ψ(x)]| ≥ λ/(2k).

Proof First we denote by g ⊗ f i,Ψ the i-th hybrid between g ⊗ f and g ⊗Ψ. Namely, the
randomized function g⊗f i,Ψ(x) = g(f(x1), . . . , f(xi),Ψ(xi+1), . . . ,Ψ(xk)). Now, g⊗fk,Ψ =
g ⊗ f and g ⊗ f0,Ψ = g ⊗Ψ. Hence we can write,∣∣EUk [φ · g ⊗ f ]−EUk,Ψ[φ · g ⊗Ψ]

∣∣ = k ·
∣∣Ei∈[k]

[
EUk,Ψ[φ · g ⊗ f i,Ψ]−EUk,Ψ[φ · g ⊗ f i−1,Ψ]

]∣∣
We now split the random and uniform choice over {0, 1}kn into choosing y = y1, . . . , yi−1, yi+1, . . . , yk ∈
{0, 1}n and xi ∈ {0, 1}n randomly and uniformly.∣∣Ei∈[k],y

[
EU ,Ψ[(φ · g ⊗ f i,Ψ)i,y(xi)]−EU ,Ψ[(φ · g ⊗ f i−1,Ψ)i,y(xi)]

]∣∣ ≥ λ/k . (3)

We claim that

EU ,Ψ[(φ · g ⊗ f i,Ψ)i,y(xi)] = EU
[
φi,y ·EΨ[(g ⊗ f i,Ψ)i,y(xi)]

]
= EU [φi,y · (αi,yf(xi) + βi,y)] .

Here αi,y and βi,y are constants in [−1, 1].
To see this assume for simplicity that Ψ is deterministic. Then

(g ⊗ f i,Ψ)i,y(xi) = g(f(y1), . . . , f(yk−1), f(xi), f(yk−1), . . . , f(yk)) .

All the variables of g are fixed except for the i-th and therefore this restriction of g equals
1,−1, f(xi) or −f(xi). This corresponds to αi,y, βi,y ∈ {−1, 0, 1} and exactly one of them
is non-zero. For randomized Ψ we obtain a fixed convex combination of the deterministic
cases that can be represented by αi,y, βi,y ∈ [−1, 1]. Similarly,

EU ,Ψ[(φ · g ⊗ f i−1,Ψ)i,y(xi)] = EU [φi,y · (αi,yψ(xi) + βi,y)] .

By substituting this into equation (3), we obtain∣∣αi,y ·Ei∈[k],y [EU [φi,y · f(xi)]−EU [φi,y · ψ(xi)]]
∣∣ ≥ λ/k .

By the averaging argument, we obtain that with probability at least λ/(4k) over the choice
of i and y, |EU [φi,y · f(xi)]−EU [φi,y · ψ(xi)]| ≥ λ/(2k).

If |EUk [φ · g ⊗ f ] − EUk,Ψr [φ · g ⊗ Ψr]| ≥ τ/3 then with probability at least τ/(12k)
for a randomly chosen φi,y, |EU [φi,y · f(xi)] − EU [φi,y · ψ(xi)]| ≥ τ/(6k). Let τ ′ = τ/(6k).
Now we sample φi,y and test if |EU [φi,y · f(xi)] − EU [φi,y · ψ(xi)]| ≤ 2τ ′/3 using a single
SQ of tolerance τ ′/6 and an estimate of EU [φi,y ·ψ(xi)] within τ ′/6 obtained using random
sampling. It is easy to see that by repeating this procedure O(k log (1/∆)/τ) times and
using O(k log (1/∆)/τ) random samples we can ensure that with probability at least 1−∆
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some φi′,y′ will pass the test whenever |EUk [φ · g ⊗ f ]− EUk,Ψr [φ · g ⊗Ψr]| ≥ τ/3 and also
that |EU [φi′,y′ · f(xi′)]−EU [φi′,y′ · ψ(xi′)]| ≥ 2τ ′/3− τ ′/3 = τ ′/3 whenever φi′,y′ passes the
test.

If the test was not passed then we estimate EUk,Ψ[φ · g ⊗ Ψ] within τ/6 using random
sampling and return the estimate as the answer to the query. Using O(k log (1/∆)/τ)
random samples we can ensure that with probability 1 − 2∆ the returned estimate is τ/2
close to EUk [φ · g ⊗ f ].

Otherwise, we use such φi′,y′ to update ψr using the idea from Feldman’s (2010, Th.3.5)
strong SQ characterization: ψr+1 = P1(ψr + (τ ′/3) · φi′,y′). Here P1(a) is the function that
equals a when a ∈ [−1, 1] and equals sign(a) otherwise.

As is proved by Feldman (2010, Cl.3.6), |EU [φi′,y′ · (f(xi′)−ψ(xi′)]| ≥ τ ′/3 implies that
EU [(f − ψr+1)2] ≤ EU [(f − ψr)2] − (τ ′/3)2. Therefore at most O(k2/τ2) such updates are
possible giving an upper bound on the additional time required to produce the desired es-
timates to all the SQs of A (a similar bound can also be obtained using a different update
method of Trevisan et al. (2009)). For an appropriate ∆ = poly(k, 1/τ) we can make sure
that the success probability is at least 2/3.

5. Amplified Hardness for SQ Learning of Depth-4 Monotone Formulas

We begin this section by showing how a refinement of the constructions and analysis from
(O’Donnell, 2004; Mossel and O’Donnell, 2003) can be used to obtain a small monotone
CNF with low expected bias. Specifically, we prove the following lemma.

Lemma 16 For every 0 < γ < 1/2, there exists a circuit Ck,m over k variables such that:

ExpBias1/
√
m(Ck,m) ≤ 1

2
+ 2−(logn)γ ,

where k = 2(logn)α and m = log2−β(n) for γ < α < β/2 < 1/2, and Ck,m is computable by
a monotone CNF of size no(1).

The proof of Lemma 16 appears in the full version.
Coupled with our hardness result for depth-3 monotone formulas, Lemma 16 gives the

claimed lower bound for depth-4 monotone formulas.

Theorem 17 For every 0 < γ < 1/2, the class of no(1)-size, depth-4 monotone formulas is
not SQ-learnable to accuracy 1

2 + 2−(logn)γ in poly(n) time.

The proof of Theorem 17 appears in the full version.
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