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Abstract. We consider the problem of learning miztures of product distributions over discrete
domains in the distribution learning framework introduced by Kearns et al. [Proceedings of the
26th Annual Symposium on Theory of Computing (STOC), Montréal, QC, 1994, ACM, New York,
pp. 273-282]. We give a poly(n/e)-time algorithm for learning a mixture of k arbitrary product
distributions over the n-dimensional Boolean cube {0, 1}" to accuracy ¢, for any constant k. Previous
polynomial-time algorithms could achieve this only for k£ = 2 product distributions; our result answers
an open question stated independently in [M. Cryan, Learning and Approzimation Algorithms for
Problems Motivated by Evolutionary Trees, Ph.D. thesis, University of Warwick, Warwick, UK, 1999]
and [Y. Freund and Y. Mansour, Proceedings of the 12th Annual Conference on Computational
Learning Theory, 1999, pp. 183-192]. We further give evidence that no polynomial-time algorithm
can succeed when k is superconstant, by reduction from a difficult open problem in PAC (probably
approximately correct) learning. Finally, we generalize our poly(n/e)-time algorithm to learn any
mixture of £ = O(1) product distributions over {0,1,...,b— 1}", for any b = O(1).
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1. Introduction.

1.1. Framework and motivation. In this paper we study mizture distribu-
tions. Given distributions X!,..., X* over R" and mixing weights 7', ..., 7% that
sum to 1, a draw from the mixture distribution Z is obtained by first selecting ¢ with
probability 7¢ and then making a draw from X*. Mixture distributions arise in many
practical scientific situations as diverse as medicine, geology, and artificial intelligence;
indeed, there are several textbooks devoted to the subject [23, 19].

Assuming that data arises as a mixture of some distributions from a class of
distributions C, it is natural to try to learn the parameters of the mixture components.
Our work addresses the learning problem in the PAC-style (probably approximately
correct) model introduced by Kearns et al. [18]. In this framework we are given a
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class C of probability distributions over R™ and access to random data sampled from
an unknown mixture Z of k unknown distributions from C. The goal is to output a
hypothesis mixture Z’ of k distributions from C, which (with high confidence) is e-close
to the unknown mixture. The learning algorithm should run in time poly(n/e). The
standard notion of “closeness” between distributions Z and Z’, proposed by Kearns
et al. and used in this work, is the Kullback—Leibler (KL) divergence (or relative
entropy), defined as KL(Z||Z') := [ Z(x)In(Z(x)/Z'(x))."

In this paper we learn mixtures of product distributions over the Boolean cube
{0,1}", and more generally over the b-ary cube {0,...,b — 1}"; i.e., the classes C
will consist of distributions X* whose n coordinates are independent distributions
over {0,1} and {0,...,b — 1}, respectively.? Such learning problems have been well
studied in the past, as we now describe.

1.2. Related work. In [18], Kearns et al. gave efficient algorithms for learning
mixtures of Hamming balls; these are product distributions over {0,1}™ in which all
the coordinate means E[Xz] must be either p or 1 — p for some unknown p which is
fixed over all mixture components. Although these algorithms can handle mixtures
with k¥ = O(1) many components, the fact that the components are Hamming balls
rather than general product distributions is a very strong restriction. (The algorithms
also have some additional restrictions: p has to be bounded away from 1/2, and a
more generous learning scenario is assumed in which the learner is in addition given
oracle access to the target distribution Z—i.e., it can submit an input x and get back
the probability mass that Z assigns to x.)

More recently, Freund and Mansour [14] gave an efficient algorithm for learning
a mixture of two general product distributions over {0,1}". Very roughly speaking,
their algorithm uses a “hold-out” set of attributes to approximately reconstruct the
line passing through the two means E[X!], E[X?] of the product distributions X*
and X?; the algorithm then performs a one-dimensional search on this line for the
optimal pair of centers to maximize the likelihood of the data. Around the same
time Cryan [8] and Cryan, Goldberg, and Goldberg [9] gave an efficient algorithm for
learning phylogenetic trees in the two-state general Markov model. Their algorithm
has several stages including estimating covariances between different pairs of leaves,
partitioning the leaves into “related sets,” constructing a tree for each related set, and
then generating an overall tree topology. For the special case in which the tree topol-
ogy is a star, this gives an algorithm for learning an arbitrary mixture of two product
distributions over {0, 1}". Both [14] and [8] stated as an open question the problem of
obtaining a polynomial-time algorithm for learning a mixture of k > 2 product distri-
butions. Indeed, recent work of Mossel and Roch [20] on learning phylogenetic trees
argues that the rank-deficiency of transition matrices is a major source of difficulty,
and this may indicate why k = 2 has historically been a barrier—a two-row matrix
can be rank-deficient only if one row is a multiple of the other, whereas the general
case of k > 2 is much more complex.

In other related work, there is a vast literature in statistics on the general prob-
lem of analyzing mixture data—see [19, 21, 23] for surveys. To a large degree this

!The KL divergence is often defined in terms of log,. It is more convenient for us to use In, and
it is easy to see that this choice does not affect our results. We remind the reader (see, e.g., [7]) that
|1Z—2Z'||1 < v2+/KL(Z||Z'), where ||-||1 denotes total variation distance; hence if the KL divergence
is small, then the total variation distance is also small.

20f course, the algorithm works for product distributions over ™ for any alphabet ¥ with
|X| = b; i.e., the names of the characters in the alphabet do not matter.
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work centers on trying to find the exact best mixture model (in terms of likelihood)
which explains a given data sample; this is computationally intractable in general.
In contrast, our main goal (and the goal of [18, 14, 9, 8, 20]) is to obtain efficient
algorithms that produce e-close hypotheses.

We also note that there has been recent interest in learning mixtures of n-
dimensional Gaussians from the point of view of clustering [10, 11, 2, 24]. In this
framework one is given samples from a mixture of “well-separated” Gaussians, and
the goal is to classify each point in the sample according to which Gaussian it came
from. We discuss the relationship between our scenario and this recent literature on
Gaussians in section 11; here we emphasize that throughout this paper we make no
“separation” assumptions (indeed, no assumptions at all) on the component product
distributions in the mixture.

Finally, the problem of learning discrete mixture distributions may have applica-
tions to other areas of theoretical computer science, such as database privacy [22, 6]
and quantum complexity [1].

1.3. Our results. In this paper we give an efficient algorithm for learning a
mixture of £ = O(1) many product distributions over {0,1}". Our main theorem is
the following.

THEOREM 1. Fiz any k = O(1), and let Z be any unknown mizture of k product
distributions over {0,1}™. Then there is an algorithm that, given samples from Z and
any €,6 > 0 as inputs, runs in time poly(n/e) - log(1/6) and with probability 1 — 6
outputs a mizture Z' of k product distributions over {0,1}" satisfying KL(Z||Z") < e.

We emphasize that our algorithm requires none of the additional assumptions—
such as minimum mixing weights or coordinate means being bounded away from 0,
1/2, or 1—that appear in some work on learning mixture distributions.

Our algorithm runs in time (rn/e)°**)| which is polynomial only if k is constant;
however, this dependence may be unavoidable. In Theorem 18 we give a reduction
from a difficult open question in computational learning theory (the problem of learn-
ing decision trees of superconstant size) to the problem of learning a mixture of any
superconstant number of product distributions over {0,1}". This implies that solving
the mixture learning problem for any k& = w(1) would require a major breakthrough
in learning theory, and suggests that the dependence on k in the exponent of the
running time may be unavoidable.

We also generalize our result to learn a mixture of product distributions over
{0,...,b—1}"™ for any constant b, as follows.

THEOREM 2. Fiz any k = O(1) and b = O(1), and let Z be any unknown mizture
of k product distributions over {0,...,b—1}". Then there is an algorithm that, given
samples from Z and any €,6 > 0 as inputs, runs in time poly(n/e)-log(1/6) and with
probability 1 — 6 outputs a mizture Z' of k product distributions over {0,...,b—1}"
satisfying KL(Z||Z') < e.

Taking b = k, this gives a polynomial-time algorithm for learning k-state Markov
evolutionary trees (METSs) with a star topology. (Note that the main result of [9, 8]
is an algorithm for learning two-state METs with an arbitrary topology; hence our
result is not comparable to theirs.)

2. Overview of our approach.

2.1. The WAM algorithm. The cornerstone of our overall learning algorithms
is an algorithm we call WAM (for weights and means). WAM is an algorithm that
takes as input a parameter € > 0 and has access to samples from an unknown mixture
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Z of k product distributions X!,..., X*. Here each X! = (Xi,...,X¢) is an R"-
valued random vector with independent coordinates. The goal of WAM is to output
accurate estimates for all of the mizing weights 7 and coordinate means /13- = E[Xg]
Note that a product distribution over {0,1}™ is completely specified by its coordinate
means.

More precisely, WAM outputs a list of poly(n/e) many candidates ((71,... &*),
(i1, i3, ..., if)); each candidate may be viewed as a possible estimate for the correct
mixing weights and coordinate means. We will show that with high probability at least
one of the candidates output by WAM is parametrically accurate; roughly speaking,
this means that the candidate is a good estimate in the sense that |#* — 7?| < € for
each i and that |1} — p%| < € for each i and j. However, there is a slight twist: if a
mixing weight 7% is very low, then WAM may not receive any samples from X*, and
thus it is not reasonable to require that WAM get an accurate estimate for u}, ..., ul.
On the other hand, if 7’ is so low, then it is not very important to get an accurate
estimate for pf, ..., u, because X' has only a tiny effect on Z. We thus make the
following formal definition.

DEFINITION 3. A candidate ((7',...,7%), (i}, 4d, ..., %)) is said to be paramet-
rically e-accurate if

L |7 =7t <€ forall 1 <i<k;
2. |ﬂ§-—u§-|§ef0ralll§i§k and 1 < j < n such that ™ > €.

The main technical theorem in this paper, Theorem 4, shows that so long as the
X?s take values in a bounded range, WAM will with high probability output at least
one candidate that is parametrically accurate. The proof of this theorem uses tools
from linear algebra (singular value theory) along with a very careful error analysis.

Remark 1. As will be clear from the proof of Theorem 4, WAM will succeed even
if the mixture distributions X* are only pairwise independent, not fully independent.
This may be of independent interest.

2.2. From WAM to PAC learning (binary case). As we noted already, in
the binary case a product distribution on {0, 1}™ is completely specified by its n coor-
dinate means; thus a candidate can essentially be viewed as a hypothesis mixture of
product distributions. (This is not precisely correct, as the candidate mixing weights
may not precisely sum to 1 and the candidate means might be outside the range [0, 1]
by as much as e.) To complete the learning algorithm described in Theorem 1 we
must give an efficient procedure that takes the list output by WAM and identifies a
candidate distribution that is close to Z in KL divergence, as required by Theorem 1.
We do this in two steps:

1. We first give an efficient procedure that converts a parametrically accurate
candidate into a proper hypothesis distribution that is close to Z in KL di-
vergence. We apply this procedure to each candidate in the list output by
WAM, and thus obtain a list of mixtures (hypotheses), at least one of which
is close to Z in KL divergence.

2. We then show that a maximum-likelihood procedure can take a list of hy-
potheses, at least one of which is good (close to Z in KL divergence), and
identify a single hypothesis which is good.

2.3. Larger alphabets. In the larger alphabet setting, Z is a mixture of k
product distributions X!, ..., X* over {0,...,b— 1}". Now each mixture component
X' is defined by bn parameters p;:’e (Witlhj =1,...,nand £ =0,...,b—1), where p;,z
is the probability that a draw from X yields ¢. The simple but useful observation
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that underlies our extension to {0,...,b—1}" is the following: just as any distribution
over {0, 1} is completely specified by its mean, any distribution Xj» over {0,...,b—1}
is completely specified by its first b — 1 moments E[X!], E[(X%)?], ..., E[(X})*1].?
Our approach is thus to run WAM b — 1 times; for £ = 1,...,b — 1 the fth run will
sample from the given mixture distribution and convert each sample (z1,...,z,) to
the sample (z¢,...,2%). We then carefully combine the lists output by the runs of

WAM, and follow steps similar to 1 and 2 above to find a good hypothesis in the
combined list.

2.4. Outline. Section 3 is dedicated to explaining the ideas behind the WAM
algorithm and its proof of correctness. The detailed algorithm and proof are then
presented in section 4. We discuss the application of WAM to the b-ary case in
section 5. The two steps outlined in section 2.2 are conceptually straightforward, but
the details are quite technical; they are given in sections 6 through 8. The pieces are
all put together to prove Theorem 2 in section 9 (note that Theorem 1 is a special
case of Theorem 2).

In section 10 we detail our reduction from a difficult open question in computa-
tional learning theory. We conclude in section 11 with a discussion of applications
and future work.

3. The WAM algorithm. In this section we describe our main algorithm,
WAM. We assume a general mixture setting: WAM has access to samples from
Z, a mixture of k product distributions X', ..., X* with mixing weights 7!,..., 7%,
Each X = (X{,...,X!) is an n-dimensional random variable. We will further assume
that all components’ coordinates are bounded in the range [—1,1]; i.e., X* € [-1,1]"
with probability 1. We have chosen [—1, 1] for mathematical convenience; by scaling
and translating samples we can get a theorem about any interval such as [0,1] or
[0, (b — 1)71], with an appropriate scaling of e. We write ,u; = E[X;] € [-1,1] for
the mean of the jth coordinate of X?.

Our main theorem is the following.

THEOREM 4. There is an algorithm WAM with the following property: for any
k=0(1) and any €,6 > 0, WAM runs in time poly(n/e)-log(1/6) and outputs a list
of poly(n/e) many candidates, at least one of which (with probability at least 1 —§6)
is parametrically e-accurate.

We give the full proof of correctness in section 4.2. The remainder of this section
is devoted to explaining the main ideas behind the algorithm and its analysis.

3.1. Overview of WAM. There is of course a brute-force way to come up with

a list of candidates ((#',...,#%), (a},d,..., ak)), at least one of which is paramet-
rically e-accurate: simply “try all possible values” for the parameters up to additive
accuracy €. In other words, try all values 0, €, 2¢, 3¢, . . ., 1 for the mixing weights and

all values —1, —1+e¢,...,1—¢, 1 for the means. We call this approach “gridding.” Un-
fortunately there are ©(n) parameters in a candidate, so this naive gridding strategy
requires time (and produces a list of length) (1/¢)®(™) i.e., exponential in n, which is
clearly unacceptable.

The basic idea behind WAM is as follows: given all pairwise correlations between
the coordinates of Z, it can be shown that there are a constant number of “key”
parameters that suffice to determine all others. Hence in polynomial time we can

3This is the case since the distribution can be recovered from the moments by solving a system
of linear equations based on a Vandermonde matrix, which has full rank.
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empirically estimate all the correlations, try all possibilities for the constantly many
key parameters, and then determine the remaining ©(n) parameters.

The main challenge in implementing this idea is that it is not at all a priori clear
that the error incurred from gridding the key parameters does not “blow up” when
these are used to determine the remaining parameters. The heart of our analysis
involves showing that it suffices to grid the key parameters to granularity poly(e/n)
in order to get final error e.

3.2. The algorithm, and intuition for the analysis. We will now go over the
steps of the algorithm WAM and at the same time provide an “intuitive” discussion
of the analysis. A concise description of the steps of WAM is given at the start of
section 4 for the reader’s convenience. Throughout this section we will assume for the
sake of discussion that the steps we take incur no error; a sketch of the actual error
analysis appears in section 3.3.

The first step of WAM is to “grid” the values of the mixing weights {7?} to
granularity eyt := €. Since there are only constantly many mixing weights, this
costs just a multiplicative factor of poly(1/e) in the running time. The remainder of
the algorithm then assumes that the mixing weights are known. These mixing weights
are of course approximate, but for the purposes of this intuitive description of WAM,
we will simply assume that we have exactly correct values for {r'}.

The next step is simple: suppose that some s of the & mixing weights we have
are smaller than e. By the definition of being “e-parametrically accurate,” we are not
obliged to worry about coordinates with such small mixing weights; hence we will
simply forget about these mixture components completely and treat k as k — s in
what follows. (We assign arbitrary values for the candidate means of the forgotten
components.) We may henceforth assume that 7% > € > 0 for all i.

The next step of algorithm WAM is to use samples from Z to estimate the pairwise
correlations between the coordinates of Z. Specifically, for all pairs of coordinates
1 < j < j" <n, the algorithm WAM empirically estimates

corr(j, j') = E[Z;Z;].

The estimation will be done to within additive accuracy €matrix = poly(e/n); specif-
ically, €matrix = 7° !, where 7 := €2/n%. With high (i.e., 1 — §) confidence we will
get good such estimates in time poly(n/e) - log(1/8). Again, for the purposes of this
intuitive description of WAM we will henceforth assume that we have exactly correct
values for each value corr(j, ;). (As an aside, this is the only part of the algorithm
that uses samples from Z; as we will shortly see, this justifies Remark 1.)

Observe that since X; and X;-, are (pairwise) independent we have

k k k
corr(j, j') = B[Z;Z;] = > w'BXiX}] =Y w'BXIEX)] =Y wuiul.
=1 =1 =1
Let us define
5 = Vi

and write fi; = (@}, i3, ..., %) € [=1,1]* for 1 < j < n. We thus have

corr(j, J/) = ﬂ] . ﬁj’?
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i k. k
S Mz Mg = B
A el B giddad
Matrix M of M; ’S 77777777777777777777
solved for estimated

Fic. 1. The full rank case. We solve for the unknown /13 's in M 7 using the gridded values in
Mg and the values in B estimated directly from the samples.

where - denotes the dot product in R¥. The remaining task for WAM is to determine
all the values ,u; Since WAM already has values for each 7% and each ¢ > € > 0, it

suffices for WAM to determine all the values /Tj and then divide by V7.

At this point WAM has empirically estimated values for all the pairwise dot
products fi; - fijr, j # j', and as mentioned, for intuitive purposes we are assuming
that all of these estimates are exactly correct. Let M denote the k£ x n matrix whose
(i,4) entry is the unknown ﬂ;-; i.e., the jth column of M is fi;. The statement that
WAM has all the dot products fi; - fi;- for j # j' is equivalent to saying that WAM
has all the off-diagonal entries of the Gram matrix M " M. We are thus led to what
is essentially the central problem WAM solves:

Central task. Given (estimates) for the off-diagonal entries of the n x n Gram
matric MT M, generate (estimates of) all possible candidates for the entries of the
k x n matrizc M.

(Note: The diagonal entries of M "M are the quantities fi; - ji; = Zle 7 (%),
and there is no obvious way to estimate these quantities using samples from Z. Also
there are n such quantities, which is too many to “grid over.” Nevertheless, the fact
that we are missing the diagonal entries of M " M will not play an important role for
WAM.)

In general, a complete n x n Gram matrix determines the original k£ X n matrix up
to isometries on R¥. Such isometries can be described by k x k orthonormal matrices,
and these k2 “degrees of freedom” roughly correspond to the constantly many key
parameters that we grid over in the end. A geometric intuition for the central task
is the following: there are n unknown vectors in R* and we have all the “angles”
(more precisely, the dot products) between them. Thus fixing & of the vectors (hence
k? unknown coordinates) is enough to completely determine the remainder of the
vectors.

The full rank case. We proceed with our intuitive description of WAM and show
how to solve the central task when M has full rank. Having done this, we will give the
actual steps of the algorithm that show how the full rank assumption can be removed.

So suppose for now that M has full rank. Then there exists some set of k columns
of M that are linearly independent, say J = {j1,...,jx} C [n]. Algorithm WAM
tries all () = poly(n) possibilities for the set J and then grids over the vectors
fjys - -, [y, With granularity e€magrix = poly(e/n) in each coordinate. As usual for the
purposes of intuition, we assume that we now have fi;,, ..., fi;, exactly correct.

Let M7 be the k x k matrix given by the J-columns of M, and let M7 be the
k x (n — k) matrix given by deleting the J-columns of M. WAM now has the entries
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of Mz and must compute the remaining unknowns, M ;. Since WAM has all of the
off-diagonal entries of M T M, it has all of the values of B = M}My. (See Figure 1.)
However, the columns of M 7 are linearly independent, so M 7 is invertible, and hence
WAM can compute M} = BM‘}1 in poly(n) time. Having done this, WAM has all
the entries of M, and so the central task is complete, as is the algorithm.

The general case. Of course, in general, M does not have full rank. This represents
the main conceptual problem we faced in rigorously solving the central task. Indeed,
we believe that handling rank-deficiency is the chief conceptual problem for the whole
learning mixtures question, and that our linear algebraic methods for overcoming it
(the description of which occupies the remainder of section 3) are the main technical
contribution of this paper.

Suppose rank(M) = r < k. By trying all possible values (only constantly many),
algorithm WAM can be assumed to know r. Now by definition of rank(M) = r there
must exist & — 7 orthonormal vectors u,,1,...,u € [~1,1]* which are orthogonal to
all columns of M. WAM grids over these vectors with granularity €matrix, incurring
another multiplicative poly(n/e) factor in the running time. As usual, assume for the
intuitive discussion that we now have the u;’s exactly. Let these vectors be adjoined as
columns to M, forming M’. But now the matrix M’ has full rank; furthermore, WAM
knows all the off-diagonal elements of (M’)T M, i.e., all the pairwise dot products of
M"’s columns, since all of the new dot products which involve the u;’s are simply 0!
Thus we now have an instance of the central task with a full rank matrix, a case we
already solved. (Technically, n may now be as large as n + (k — 1), but this is still
O(n), and hence no time bound is affected.) Solving the central task on M’ (which
contains all the entries of M) completes the algorithm WAM in the rank-deficient
case.

3.3. Sketch of the actual analysis of WAM. The preceding intuitive dis-
cussion of algorithm WAM neglected all error analysis. Correctly handling the error
analysis is the somewhat subtle issue we discuss in this section. As mentioned, the
full proof is given in section 4.2.

The main issue in the error analysis comes in understanding the right notion of
the rank of M—since all of our gridding inevitably yields only approximations of the
entries of M, the actual notion of rank is far too fragile to be of use. Recall the outline
of the algorithm in our idealized intuition (rank-deficient case):

r = dimension of subspace in which fi;’s lie
= augment M by k — r orthogonal u;’s, forming M’ = M’ now full rank

= find nonsingular k x k submatrix M’; = solve linear system M'}M& =B.

For the purposes of the error analysis, we reinterpret the operation of WAM as follows:

(1) r* = dimension of subspace in which the fi;’s “essentially” lie
= augment M by k —r “essentially” orthogonal u;’s, forming M’
= M’ now “strongly” full rank

= find “strongly” nonsingular k x k submatrix M’ = solve linear system M'}M} = B.

The real difficulty of the error analysis comes in the last step: controlling the error
incurred from solving the linear system. Since we will have only approximately correct
values for the entries of M’ and B, we need to analyze the additive error arising from
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solving a perturbed linear system. Standard results from numerical analysis (see
Proposition 9 in section 4.1) allow us to bound this error by a function of (i) the error
in M!; and B, and (ii) the smallest singular value of M';, denoted by oy (M"). More
precisely, as we describe in Proposition 9, the error is bounded by the errors in M s
and B normalized by o (M’).

Let us briefly recall some notions related to singular values. Given any k x n
matrix M, the first (largest) singular value of M is o1 (M) = maxy, |,=1 [[uf M2,
and a w; achieving this maximum is taken as the first (left) singular vector of M.
The second singular value of M is 02(M) = maX|y,|,=1,us Lu [ug M|l2, and ug is
the second left singular vector of M. In general, the ith singular value and vector
are given by maximizing over all ||u;||2 = 1 orthogonal to all us,...,u;—1. In a well-
defined sense (the Frobenius norm), the smallest singular value o (M) measures the
distance of M from being singular.

WAM’s final error bounds arise from dividing the error in its estimates for M,
and B by the smallest singular value of M/,. The error in the estimates for the
entries of M’ come from gridding, and thus can essentially be made as small as
desired; WAM makes them smaller than €airix. The errors in B come from two
sources: some of the entries of B are estimates of quantities fi; - fi;» = corr(j, j’), and
again these errors can be made essentially as small as desired, smaller than €y atrix-
However, the other errors in B come from approximating the quantities fi; - u; by 0,
i.e., assuming that the augmenting vectors are orthogonal to the columns of M.

As the reader may by now have guessed, the vectors with which WAM attempts
to augment M will be the last k — r* singular vectors of M, u,«41,...,ur. The hope
is that for an appropriate choice of r* these singular vectors will be “essentially”
orthogonal to the columns of M, and that the resulting M’ will be “strongly” full
rank, in the sense that o (M’) will be somewhat large (cf. (1)). One can show (see
Proposition 8 of section 4.1) that the extent to which the w;’s are orthogonal to the
columns of M is controlled by the (r* + 1)th singular value of M; ie., |f; - u;| <
ore41(M) for all ¢ > r* + 1; this is precisely the error we incur for the zero entries
in B. On the other hand, one can also show that the augmented M’ has smallest
singular value at least o,.«(M). Thus we are motivated to choose r* so as to get a
large multiplicative gap between o« (M) and o,+11(M), as follows.

DEFINITION 5. Given T > 0, the T-essential rank of M is

r*(M)=r:(M)=min{0 <r <k:o,p1(M)/o.(M) <71},

where we take oo(M) =1 and o1 (M) = 0.

One might think that if the additive error incurred from solving the linear system
were to be roughly o« (M) /0o,«11(M), then it should suffice to select 7 on the order of
poly(e). However, there is still a missing piece of the analysis: although the smallest
singular value of M’ becomes at least o« (M) after adjoining the u;’s, we use only a
k x k submatriz M’; to solve the linear system. Is it the case that if M’ has a large
smallest singular value then its “best” k x k submatrix also has a somewhat large
smallest singular value? We need a quantitative version of the fact that a nonsingular
k x n matrix has a k x k nonsingular submatrix (again, cf. (1)).

This does not seem to be a well-studied problem, and indeed there are some open
questions in linear algebra surrounding the issue. It is possible to derive an extremely
weak quantitative result of the required nature using the Cauchy-Binet formula. We
instead give the following quantitatively strong version.

COROLLARY 6. Let A be a k x n real matriz with o (A) > €. Then there exists
a subset of columns J C [n] with |J| =k such that or,(Ay) > €//k(n — k) + 1.
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(We call the result a corollary because our proof in section 4.1 is derived from
a 1997 linear algebraic result of Goreinov, Tyrtyshnikov, and Zamarashkin [15]. In-
cidentally, it is conjectured in their paper that \/k(n — k) + 1 can be replaced by

N

With this result in hand it becomes sufficient to take 7 = €2 /n?, as described in
the previous section. Now the error analysis can be completed:
e If M has a singular value gap of 7 and so has essential rank r* < k, then when

WAM tries out the appropriate r* and singular vectors, the error it incurs
from solving the linear system is roughly at most O(y/n1) = O(e?/n3/?), and
as we show at the end of section 4.2, having this level of control over errors
in solving the linear system for the unknown ﬂ;’s lets us obtain the final /L;-
values to the required e-accuracy.

On the other hand, if M has no singular value gap smaller than 7, then its
smallest singular value is at least 7%; thus it suffices to take emamix = 777 =
poly(e/n) to control the errors in the full rank case.

See section 4.2 for the detailed proof of correctness.

4. Algorithm WAM. Algorithm WAM has access to samples from the mixture
Z and takes as input parameters €,6 > 0.
ALGORITHM WAM.

1.
2.

_ 3 _ 2/,2 _ ~k+1
Let Ewts = €7, T—E/TL > and Ematlrix*’rJr .

Grid over the mixing weights, producing values #',...,7% €[0,1]
accurate to within feyts. If s of these weights are smaller
than € — €y4s, eliminate them and treat k as k — s in what
follows.

. Make empirical estimates corr(j,j’) for all correlations

corr(j,j') = B[Z;Zj] = [ij - fi;; for j # j' to within Zematrix, with
confidence 1 — 9.

Let M be the kx n matrix of unknowns (M;;) = (%), and try all
possible integers 0 <r* <k for the essential rank of M.

. Grid over k —r* vectors Up«y1,...,U € [—1, 1]]C to within =e€patrix

in each coordinate and augment M with these as columns,
forming M’.

. Try all possible subsets of exactly k column indices of ]\//.7’;

write these indices as J =JUJ’, where J corresponds to
columns from the original matrix M and J' corresponds to
augmented columns. Grid over [—1,1] for the entries of M in
columns J to within Zepatrix, yielding {ﬁ; 1€[k],jeJ}. Let
Z/\4\"7 denote the matrix of estimates for all the columns in 7.
(See Figure 2.)

Let J denote the columns of M other than J, and let M 7
denote the matrix of remaining unknowns formed by these
columns. Let B be the matrix with rows indexed by J and
columns indexed by J whose (j,j') entry is the estimate corr(j,;’
of fij-fijy if j/€J, or is 0 if j'€ J'. Using the entries of B
and M& (all of which are known), solve the system M}—M\& =B

)

to obtain estimates ﬁ; for the entries of M7 (which are the
unknown ﬂ;’s), thus producing estimates ﬁ; for all entries of

M. (If the matrix ]\7"7 is singular, simply abandon the current
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t columns
Ups g1y ooy Ugg
n columns of M which augment M
—
7 S BEPERIRE il |
. . I
[
k rows ‘
of M :
: [
: : |
~1 J J/ |
iy oo X ——
columns of J k columns of J

n+ (k —r*) columns of M’

F1a. 2. A depiction of the matriz used by WAM. For ease of illustration the columns J of M
are depicted as being the rightmost columns of M, and the columns J' from the augmenting columns
Ug—t4+1,--., U are depicted as being the leftmost of those augmenting columns.

gridding.)

8. From the estimated values ﬁ;, compute the estimates ﬂ; :ﬁ;/\/ﬁ
for all ¢,5. (Note that #* is never 0, since each is at least
€ — €wts > 0.)

9. Output the candidate ((a',...,7%), (al,@d,... 0k)).

4.1. Linear algebra necessities. In this section we give the results from linear
algebra and numerical analysis necessary for the analysis of WAM.

Let A = (a;;) be any k x n real matrix, and write its singular value decomposition
as A = UXV. Here U is a k x k matrix with orthonormal columns w1, ..., us, % is
a k x k diagonal matrix with o1(A) > .-+ > 0;(A4) > 0 on the diagonal, and V is a
k x n matrix with orthonormal rows. We let o1(A) > -+ > ox(A4) > 0 denote the
singular values of A, and let uq,...,u; denote the corresponding left singular vectors
of A, i.e., the columns of U. If it is clear from context, we simply write o; for o;(A).
Recall that

e the vectors uq, ..., u; form an orthonormal basis for R¥;
o 01 = max,|,=1 |z Al|2 and o} = miny,,=1 [z All2.

The Frobenius norm ||A||r of a k x n matrix A is defined as ||A]|r = \/Zi’j(Aw-)Q.
We recall the well-known fact that o1(A) equals the Frobenius norm distance from

the k x n matrix A to the nearest rank-deficient matrix A, i.e.,

ox(A)= min ||A- AHF
rank(A)<k

The spectral norm ||Alls of a k x n matrix A is [[Allz = max),,— [|[Az|. It is
well known that ||All2 = o1 and ||A||r = \/of + -+ 0}; note that this implies
1All2 < I1A]lF-

Our first necessary result is a quantitative version of the elementary fact that a
full rank k x n matrix has a full rank k& x k submatrix. We will use the following
theorem of Goreinov, Tyrtyshnikov, and Zamarashkin [15].

THEOREM 7 (see [15]). Let V be a k x n real matriz with orthonormal rows.
Then there is a k x k submatriz V; which has o,(Vy) > 1/y/k(n — k) + 1.
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The result we need is an easy corollary, Corollary 6 given above.

Proof of Corollary 6. Recall that by the singular value decomposition we have
A =UXV, where U is a k X k matrix with orthonormal columns, ¥ is a k x k& diagonal
matrix with diagonal entries o1,...,0%, and V is a k X n matrix with orthonormal
rows. Let V; be the k x k submatrix of V' whose existence is asserted by Theorem 7,
so 0(Vy) > 1/\/k(n — k) + 1. We have 01 (U) = 1 (since U is an orthogonal matrix)
and o, (%) > ¢, so

0 (UXVy) 2 0 (U)og(X)or(Vy) = ¢/ k(n — k) + 1,

where the inequality holds since 0 (PQ) > o, (P)ok(Q) for any k x k matrices P, Q.
(This is easily seen from the variational characterization oy (P) = minj,|,=1 ||z P||2.)
The corollary follows by observing that UXV; is the k x k submatrix of A whose
columns are in J. O

The next result we will need is the characterization of what happens when the
last k — r* left singular vectors of a matrix are adjoined to it.

PROPOSITION 8. Let A be a k X n matrix with columns a1,...,a,. Fix any r*,
and let upxy1,...,u be the left singular vectors corresponding to the smallest singular
values opxi1,...,0, of A. Let A’ be A with the vectors up«41,...,ur adjoined as

columns. Then
or(A") > min{1, 0, (A)},
and for all v* +1 < ¢ < k and for all columns a; of A we have
0 - uel < a,-1(A).

Proof. Write the singular value decomposition A = UXV, where U is a k x k
matrix with orthonormal columns uq, ..., ug, % is a k X k diagonal matrix with o; >
-++ > o > 0 on the diagonal, and V is a £ X n matrix with orthonormal rows. It
follows that for any vector z € R¥ we have

zTAl3 = of(z ur)® + - + op (2 up)?.

Let R denote the k x (k—r*) matrix whose columns are w,« 11, ..., ux, s0 we have A’ =
[A R]. It is easily verified that the left singular vectors of R are simply w41, ..., Ug,
while the singular values of R are all 1. Consequently we have

lz "R = (2 "upei1)® + - + (@ wr)?

for any = € RF.
Now recall the variational characterization of oi(A’), namely ox(A") =
min . ,—1 |7 A'||2. Since |27 A'||s = /|2 T A2 + ||z T R|2, we have

(2) okx(A’) = min \/J%(mTul)Q +o At o Tug)? + (2T up 1)+ -+ (2T ug)2.

llzll2=1

Since u1,...,u, form an orthonormal basis for R¥ we have that (z7Twu;)? 4 --- +
(xTug)? =1 for all ||z||s = 1. If we let ap = (2 upey1)? + -+ + (2T ug)?, then the
quantity inside the square root of (2) is at least o2 (1 — o) + @ > min{o2.,1}. This
proves the first inequality of the proposition.
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For the second inequality, we observe that a; - up = u/ UXv;, where v; is the jth
column of V. Since U is orthonormal and Y, , = o, we thus have

"LLZUZUH = |ope,j| < 0 < Oprga,

where the first inequality holds since the rows of V' are orthonormal, and hence each
entry of V must be at most 1 in magnitude. a

The final result we will need involves controlling the error in a perturbed linear
system in terms of the smallest singular value. Although we could not find the fol-
lowing statement in the literature, it should be considered a very basic result from
numerical analysis.

PROPOSITION 9. Let A be a monsingular k X k matriz, b be a k-dimensional
vector, and x be the solution to Az = b. Assume that ||z]le < 1. Suppose A’ is a
k x k matriz such that each entry of A— A’ is at most ematrix in magnitude, and assume
that ematrix < ok (A)/2k. Let b’ be a k-dimensional vector satisfying ||b—b||co < €rhs-
Let 2’ be the solution to A'x’ =b'. Then we have

matrix T €rh
x—a:’oo<0k3/2€at75.
o = ] < O(K2) et

Proof. Write E = A — A" and n = b — . By our assumption on A’ we have
IE|lF = |A— A'||F < kématrix- By our assumption on €patrix this is at most oy (A)/2.
It follows that o (A") > ox(A)/2, and in particular A’ is nonsingular. Thus 2’ is
indeed well defined, and we may write
Ar —Ar' =Ed'+n=2—-2'" =A1Es +1n)

AT (B (2012 [|2 + [1n]l2)

1 ’
m ((/{Ematrix)(”x —x HQ + ||(£||2) + (\/Efrhs))

= (O'k(A) - kematrix)Hx - 517/”2 S kematrixHx||2 + \/%erhs-

= [l — 2|2

IN

IN

We now use 0;(A) — kématrix > 0k(A)/2 to conclude

2(k6matrix||x”2 + \/Eerhs)
or(A) '

lz — 2’2 <

Finally, ||z — 2/||oc < || — 2'||2 and ||z]|2 < V& complete the proof. 0

4.2. Proof of Theorem 4. We go through the algorithm step by step, as it
appears at the start of section 4. In step 1 of WAM, we define constants eys = €2,
T = 62/n2, and €matrix = 7771, which we use throughout the proof.

In step 2 of WAM, the algorithm will grid over estimates 7% that satisfy |#! —7?| <
€wts for all 4. In this case, any mixing component X’ whose mixing weight 7’ is at
least € will not be eliminated. Since we need not be concerned with accuracy for the
means of the other mixing components, we can ignore them and assume for the rest
of the proof that 7 > e for all i.

Now we come to the main work in the proof of correctness of Theorem 4: namely,
showing that in steps 3-7 of Algorithm WAM, accurate estimates for the [Lj.’s are
produced. Our goal for most of the remainder of the proof will be to show that we
obtain estimates ﬁ; satisfying

5 — 5| < &= ¢
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for all 4.

To that end, let 7* = r%(M), the T-essential rank of M. We will quickly dismiss
the two easy cases, r* = 0 and r* = k; we then treat the general case 0 < r* < k.

r* = 0 case. By definition, in this case o1 (M) < 7 < €. Since o1(M) is at least
as large as the magnitude of M’s largest entry, we must therefore have |ﬁ;| < € for
all 4,j. Now when WAM tries r* = 0 in step 4, tries the k standard basis vectors for
Uy, ..., in step 5, and chooses all of these vectors for J in step 6, it will set B =0
in step 7 and get ﬁ; = 0 for all 4, j when it solves the linear system. But this is indeed
within an additive 7 < € of the true values, as desired.

r* = k case. By definition, it’s not hard to see that in this case we must have
ox(M) > 7%. Now consider when WAM tries r* = k in step 4. Step 5 becomes
vacuous. By Corollary 6 there is some set of k columns J = J such that ox (M) >

M)/\/k(n —k)+1 > 7%/n. In step 6, WAM will try out this J and grid the
associateg entries to within feyatrix. In step 7 the algorithm will use only cort’s in
forming B, and these will also be correct to within an additive ey atrix- We can now
use Proposition 9—note that epaprix = 78T < (77 /n)/2k < 01, (M7)/2k, as necessary.
This gives estimates in step 7 satisfying

n 2¢
| — i) < 0<k3/2>%t;" = O(k*?n7) <é
as desired.

0 < 7* < k case. In this case, by definition of the essential rank, we have

(3) 70 (M) > oy 1 (M) > 7F.
In step 4 WAM will try out the correct value for r*, and in step 5 WAM will grid
over vectors U,=41, ..., U that are within £epa4ix in each coordinate of the actual
last left singular vectors of M, w,«11, ..., ur. Let M’ denote the matrix M with these
true singular vectors adjoined. By Proposition 8 we have

(4) (M) > min{l, o, (M)}.

From the crude upper bound o,«(M) < [[M|lr = />, ;(ii 4)? < Vkn, we can re-
state (4) as simply ox(M') > o« (M)/vVEkn. Now applymg Corollary 6, we conclude
there is a subset J of M”’s columns with |J| = k such that

(5) ow(MY) > op (M) ) k(n — k) +1> oy« (M) /kn.

In step 6, WAM will try this set of columns J = J U J’; it will also grid estimates
for the entries in thi/s\column that are correct up to an additive +€patrix. Note that
WAM now has an M "7 that has all entries correct up to an additive fematrix. NOW
consider the matrix B WAM forms in step 7. For the columns corresponding to J
the entries are given by corr’s, which are correct to within &€ a¢rix. For the columns
corresponding to J' the entries are 0’s; by the second part of Proposition 8 these
are correct up to an additive o« +1(M ). We now use Corollary 6 to bound the error

resulting from solving the system M TM 'z =DBin step 7. To check that the necessary
hypothesis is satisfied we combine (3) and (5):

o (M%) )2k > o0 (M) /2k*n > 712k > 7R = e i
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Now Proposition 9 tells us that the ﬁ; produced satisfy

24 ~3 matrix + Hl&X{Em trix, Or*+1 (M)} €matrix + Op*41 (M)
i pil < O k3/2 €mat a <0 k5/2

|:LL] uj| — ( ) O'k(M&) — ( n) Oy (M) )

where in the last step we used (5). But by (3) we have ematrix/0r+ (M) < €matrix /751 =

72 and also 0« 1(M) /o« (M) < 7. Thus we have

iy — fij] < O(k*Pn)r <,

as desired.

It remains to bound the error blowup in step 8. By this point we have values
for the 7%’s that are accurate to within dey, and further, all 7%’s are at least e.
We also have values for all ﬁ;’s that are accurate to within €. Since the function

g(x,y) = y/+/x satisfies

9 L 30 ‘ 9 ’ —1/2
sup | =—g(z,y)| = =€ and sup |=—g(z,y)| =€ /2,
2€le,1] ’595 ( >‘ 2 wele1] |0Y (@)
yE[fl,l] ye[flfl]

the mean value theorem implies that in step 8 our resulting estimates ﬂ; are accurate
to within additive error

1
Ewts 5673/2 +é- eV <

as necessary.
This completes the proof of WAM’s correctness. As for the running time, it is

easy to see that the dominating factor comes from gridding over the entries of M ; and

Ups 41, - .-, Ug. Since there are k? entries and we grid to granularity ematrix = R

poly(n/e)*, the overall running time is poly(n/e)k3; i.e., poly(n/e) for constant k.

5. Estimating higher moments. In this section we explain our remarks from
section 2.3 more thoroughly; specifically, how to use WAM to learn a mixture Z of
k product distributions X!, ..., X* over {0,...,b—1}". Such a distribution can be
“parametrically” described by mixing weights {7*};c(x) and probabilities {p; +}, where
p§,z = Pr[Xg ={].

Running WAM on samples from Z gives a list of estimates of mixing weights and
coordinate means E[Xﬂ, but these coordinate means are insufficient to completely
describe the distributions X; However, suppose that we run WAM on samples from
Z' (i.e., each time we obtain a draw (z1, ..., z,) from Z, we actually give (z{,...,2")
to WAM). It is easy to see that, by doing this, we are running WAM on the -
weighted mixture of distributions (X'), ..., (X*)*; we will thus get as output a list
of candidates for the mixing weights and the coordinate £th moments B[(X!)*] for Z.

Our algorithm for distributions over {0, ...,b— 1}" uses this approach to obtain
a list of candidate descriptions of each of the first b — 1 coordinate moments of Z.
The algorithm then essentially takes the cross-product of these b — 1 lists to obtain a
list of overall candidates, each of which is an estimate of the mixing weights and all
b — 1 moments. Since WAM guarantees that each list contains an accurate estimate,
the overall list will also contain an accurate estimate of the mixing weights and of all
moments. For each candidate the estimate of the moments is then easily converted
to “parametric form” {p§7e}, and as we show, any candidate with accurate estimates

of the moments yields an accurate estimate of the probabilities pj ‘-
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We now give the main theorem of the section, the proof of which contains the
details of the algorithm.

THEOREM 10. Fiz k = O(1), b = O(1). Let Z be a mizture of k product
distributions X',... . X* over {0,...,b — 1}", so Z is described by miring weights
7, ..., 7" and probabilities {pé,[}ie[k],je[n],ZG{O,.,.,b—l}'

There is an algorithm with the following property: for any €,6 > 0, the algorithm
runs in poly(n/e) - log% time, and with probability 1 — 6 outputs a list of candidates
({7}, {B} ¢}) such that for at least one candidate in the list, the following hold:

L. |7t — 7| <€ for alli € [k]; and
2. |ﬁ§,e —p§7e| < e for all 4, j,¢ such that ™ > €.

Proof. Foreach £ =1,...,b—1, the algorithm runs WAM on the random variable
Z'. In each such run, the “¢’ parameter of WAM is set to € := eay/(O(b%/?) -
(b — 1)°~1), where o}, is a constant we define later, and the “6” parameter is set to
8" :=6/(b—1). From these runs we obtain (b — 1) lists Lq,...,Ly_1 of candidates
<{ﬁi},{ﬂ§)e}i7j>, where ﬂ;e is an estimate of :“;;e = E[(X;)é] The algorithm then
uses these (b — 1) lists to construct one larger list L of candidates ({7'}, {1’ ,}ij.0),
where each candidate estimates the mixing weights and all b — 1 moments. This is
done by taking all possible combinations of one candidate from each of the b — 1 lists
Ly,...,Ly_1 and combining them as follows: take the mixing weights {#?} from the
candidate from list L1, and for £ =1,...,b—1, take {ué’g}i,j from the candidate from
list Ly. The list L will have size |L| = ng;% |L¢| = poly(n,1/e).

Theorem 4 on the WAM algorithm guarantees that with probability at least
1—(b—1)§ = 1—6, each list Ly contains a candidate whose {fi’ ,} are accurate
estimates of the ¢th moments. When we choose the accurate candidate from each
list, we will obtain an overall candidate in L that is accurate on all b — 1 moments.
Define ¢’ := €'(b—1)"""/2 = €03,/ O(b/?). Formally, the list L will contain a candidate
({7}, {i% o }ij.e) such that (i) |7° — 7| < € for all i € [k], and (ii) |}, — pl | < €
for all 4, 7, ¢ such that 7' > ¢”. (The extra factor of (b—1)*~!/2 comes from the need
to scale the distributions for WAM so that the means fall into the range [—1,1].)

To complete the proof of the theorem, we must show how the algorithm converts
each candidate ({7}, {1} ,}) in the list L into “parametric” form ({7}, {p’ ,}) so that
the “good” candidate satisfying (i) and (ii) above does not incur much error. It is easy
to see that for a given i € [k], j € [n], we have (1} o, ..., 1k, 1) = (g, 05 1)V,
where V is a b x b Vandermonde matrix (more precisely, Vo 5 = (a — 1)#~1, with
Vi1 = 1). Following this characterization, the algorithm computes (ﬁé‘,m . 7}3;',1;—1) =
(ﬂ;,m ... ,ﬂ;b_l)V_l for each 7, j to obtain parametric estimates {ﬁ;yé} for the prob-
abilities {p;-’[}.

Now applying Proposition 9, we have that for all 4,7,/ we have |ﬁ§7€ - p§7e| <
¢ - O(b%/?))oy, = €, where oy is set equal to o,(V), the smallest singular value of V.
(Since the Vandermonde matrix is nonsingular, even without specifying o, we have
that it is a positive constant that depends only on b; it can be shown to be at least
b=Poly(®) ) The running time is dominated by the time to take the cross-product of
the lists. This concludes the proof of Theorem 10. 0

We remark that the running time dependence on b is of the form (n/€)P°¥®); since
a b in the exponent is inevitable in our cross-product approach, we have refrained from
excessive optimization of the dependence on b (by doing things such as representing
the alphabet by bth roots of unity rather than equally spaced reals, which would have
given a better Vandermonde singular value bound).
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6. The road ahead. Since the binary domain {0, 1}" corresponds to the b = 2
case of the general {0,...,b— 1}" domain, here we shall deal only with the latter.

Recall that p;Z is the probability that under the ¢th product distribution over
{0,...,b — 1}™ in the target mixture Z, the jth coordinate takes value ¢. From
Theorem 10, we have a list L of M candidates ({7}, {p} ,}) such that at least one
candidate is parametrically accurate—i.e., satisfies the following:

1. |7 —7f| <eforalli=1...k; and
2. |p} =yl <eforallic k], je[n]and £ €{0,...,b— 1} such that 7" > e.

In section 7, we show how to convert a candidate into a true mixture of product
distributions, in such a way that any parametrically accurate candidate becomes a
mixture distribution with small KL divergence from the target distribution (see The-
orem 11). Applying this conversion procedure to the list from Theorem 10, we get
a list of M hypothesis mixture distributions such that at least one hypothesis in the
list has small KL divergence from the target Z (see Theorem 15).

Then in section 8 we show how a maximum likelihood procedure can find a KL-
accurate hypothesis (one with small KL divergence from Z) from among a list of
hypotheses, one of which is guaranteed to have good KL divergence (see Theorem 16).

In section 9 we combine Theorem 16 with Theorem 15 to obtain Theorem 2.

7. From candidates to hypothesis mixture distributions. The following
theorem defines a process that converts a single candidate for the 7*’s and p; /sofZ
to a true mixture of product distributions over {0,...,b— 1}™ that has at least some
minimum mass on every point in {0,...,b— 1}". (As we will see in section 8, this
minimum mass condition is required by the maximum likelihood procedure.) More
importantly, the theorem guarantees that if the candidate is parametrically accurate,
then the process outputs a mixture distribution with small KL divergence relative
to Z.

THEOREM 11.

1. There is an efficient procedure A which takes values €vprobs, €wts > 0 and
fri,ﬁ;e as inputs and outputs a mixture Z of k product distributions over
{0,...,b—1}" with mizing weights 7 > 0 and probabilities p;e > 0 satisfying

(a) 2, % =1, and for each i € [k] and j € [n], S0y Pie=1;
(b) Z(x) > (ebprobs)™ for all z € {0,...,b— 1}

2. Furthermore, suppose that Z is a mizture of k product distributions on
{0,...,b—1}" with mizing weights ©*, ..., 7" and probabilities p}z, and that
the following are satisfied:

(a) fori=1,...,k we have |t* — 7| < €ywts, and
(b) for all i, j, ¢ such that ™ > €minwt we have ‘p;,e — ]5;'-7@\ < €bprobs-

Then for sufficiently small enprons and ewts the mizture 7 will satisfy

(6) KL(Z‘ |Z) S n(ebpr0b57 Ewtsy 6minwt)y
where
3 .1/2 1/3

7’](‘Ebprobs’ Ewts 6minwt) =n- (12b €bpr0bs) + keminwtn ln(b/ebprobs) + Ewts*

We prove Theorem 11 in section 7.2 after setting up the required machinery in
section 7.1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



LEARNING MIXTURES OF PRODUCT DISTRIBUTIONS 1553

7.1. Some tools. Here we give some propositions which will be used in the proof
of Theorem 11.

The following simple proposition bounds the KL divergence between two product
distributions in terms of the KL divergences between their coordinates.

ProrosITION 12. Suppose that Pq,..., P, and Qq,...,Q, are distributions
satisfying KL(P;||Q;) < € for alli. Then KL(Pyx---xP,||Q1x---xQ,) <> €.

Proof. We prove the case n = 2:

KL(P; x P3[|Q; x Q2) ZZPl m
(z)

"q
=Y 2P E;+ZZP1 Wi g

_ZPQ KL(P4|Q1) +ZP1 ) KL(P2[|Q2)

~—

—
<
=

<€+ €.

The general case follows by induction. 1]

Very roughly speaking, the following proposition states that if P is a m-weighted
mixture of distributions P',...,P* and Q is a y-weighted mixture of distributions
Q. ..., Q", then if each Q! is “close” to the corresponding P and the 7-weighting
s “close” to the y-weighting, then Q is “close” to P. To make this precise we need
several technical conditions as stated in the proposition.

PROPOSITION 13. Let w', ..., 7% ~' ....~% > 0 be mizing weights satisfying
St =34 =1. Let €1, €2, €3, €z, €an be positive constants. Let T = {i : m* > e3}.
Let P, ..., P* and QU, ..., QF be distributions. Suppose that

1. |7 —~t <€ for alli € [k];

2. v' > ey for alli € [k|;

3. KL(P!||Q!) < ez for alli € I;

4. KL(PY|Q?) < ean for all i € [K].
Then, letting P denote the m-mizture of the P?’s and Q the y-mizture of the Q'’s,
for any €4 > €1 we have

€1

€
KL(P||Q) < ez + kesean + kegIn — +

€2 64—61.

Proof.
KL(P||Q) = Z (ZWZPZ )mW
< Z Z TP (z Zg:gg (by the log-sum inequality [7])

%

= wl iz nPi(z) e nﬂ-—
- S (Fen gl PanT)
- ZwiKL(PiHQiHZwiln%

(7) = (Zﬂi KL(PiIQi)> + (Z ' KL(PiIIQi)> +Zﬂi ln:*

i€z i¢T
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For the first term of (7), we have
SR KL(PY|QY) < er.
i€l
For the second term of (7), we have
%Wi KL(P'||Q") < kes ?é?lg]({KL(PZHQz)} < kegean.

For the third term of (7), letting Z’' = {i € Z : ©* > ¢}, we have

(8) Zwiln::—ZwianquZwiln:z.

igT i€’

For the first sum in (8) we have

; 7Ti €
> a'ln— < keyln—.
¢ T’ v €2

For the second sum in (8), note first that for any i such that 7% < 4, the contribution
to the second sum is negative. For any other i, we have 7' > ~* and therefore

~% > 1t — ¢;. Consequently we have :—: < I =14 -9 <1+ —2—. Hence the

— 7mi—e Ti—ep — €1—€1 "

second sum in (8) is at most

; 7Ti : €1 €1
mln — < ﬂ'lln(l—&— )g
Z r)/Z Z

€4 — € €4 — € )
i€T’ €T’ 47 a 474

Putting all the bounds together, the proof is done. ]

Finally, we will also need the following elementary proposition.

PROPOSITION 14. Let P and Q denote distributions over {0,...,b— 1}, where
P has probabilities py, . ..,pp—1 and Q has probabilities qq,...,q—1. Suppose that
lpe—qe| < &< % foralll €{0,...,b—1}, and that also g > 7 for all € {0,...,b—1},
where T < &. Then KL(P||Q) < 26'/2 + b¢3/2 /1.

Proof. Let Lo = {€ € {0,...,b—1} : p, < &Y%} and Ly;y = {0,...,b— 1} \
Lsmai- We bound the contribution to KL(P||Q) from Lgy,eu and Ly, separately.

Now for the L4 case. For all £, it is easy to see that In % <In 5% = ln(l—i—%) <

. 3/2 .
%. Thus each £ € Lgpq contributes at most py ln% < % Since |Lsman| < b, the

total contribution to KL(P||Q) from L4 is at most bg
If £ € Ly;g4, then we have

pe o _Pe g, &

< < 3 <1422,
g ~ pe—E& pe—&

gr—¢ >
where the last inequality holds since /2 < £1/2/2 (since & < 7). We thus have that

the total contribution to KL(P||Q) from ¢ € Ly;, is at most In(1 + 2¢1/2) < 2¢1/2,
This proves the proposition. 1]

1+
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~ 7.2. Proof of Theorem 11. We construct a mixture 7 of product distributions
Z',...,7Z* by defining new mixing weights 7* and probabilities p;'.)g. The procedure
A is defined as follows:

1. Foralli=1,...,k let

R B if T > ewts,
™ = e oAd
Ewts  1f ' < Egts-

Now let s be such that s Zle it = 1, and take 7* = si’.
2. For all i € [k] and j € [n], let

pZ )= ﬁ;e if ﬁ;'"g > €bprobs;
I €bprobs if p}j < €bprobs-

Now let ¢ be such that tZée{O,...,bfl}p';",é =1, and take p;i’z = tji;'-’[.
It is clear from construction that this yields 7, p;'-’e that satisfy condition 1(a) of the

theorem. It is also clear that for each i € [k] we have that the distribution 7' satisfies
Z'(z) > €pons for all z € {0,...,6 — 1}", and thus the mixture Z must satisfy
Z(z) > €hprobs for all these z. This gives part 1(b) of the theorem.

We now turn to part 2, and henceforth assume that the conditions on 7*, 7*, D5 05
Py from part 2 are indeed all satisfied. Roughly speaking, these conditions tell us
that 7, p; , are “good” (in the sense that they are parametrically accurate); we will

show that the resulting 7*, p;ij are “good” (in the sense of giving rise to a mixture Z
that satisfies (6)).
Our goal is to apply Proposition 13 with parameter settings

Ewts

€1 = 3kewts, €9 = T, €3 = €minwt;
1/2 3 1/2
(9) €4 = €ytgy €1 = 12nb Ebprobs’ €all = nln(b/ebprobs)

to bound KL(Z||Z). To satisfy the conditions of Proposition 13 we must (1) upper
bound |7 — 7%| for all 4, (2) lower bound 7 for all 4, (3) upper bound KL(Z||Z?) for
all i such that © > epinwt, and (4) upper bound KL(Z||Z?) for all i € [k]. We now
do this.

(1) Upper bounding |x* — 7%|. Fix any i € [k]. If 7' > €yts, then we have 7 = 7%,
so |mt — 7] < eyts. On the other hand, if #% < ey4s, then it must be the case that
70 < 2€wts, 50 we again have |7? — 7¢| < €5, Since Zle 7t =1 it follows that

k
(10) ZT‘-Z -1 S kewts
i=1
and thus
k
D i€ [1— kewis 1+ ewis).
i=1
By definition of s this gives
1 1
11 € )
( ) 5 |:1 + k€wts 1-— kewts
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Multiplying inequality (10) by s, recalling that SZLI ' = 1, and assuming €5 <
1/(2k), we obtain

ke
‘1 - 3| S Skewts S % S 2kewts~
— R€wts

Thus, we have
7t — 7t < |mt — A+ |7 - 7
S Ewts + ‘7(-1 - 7TZ|
Ewts + ‘(1 - S)ﬂ-z|

Ewts + 2k'ewts |7TZ |

<
<

Ewts + 2kewts ;

certainly, this gives |1 — 7| < 3keyts.
(2) Lower bounding 7*. To lower bound 7*, we note that since 7 > ey for all i,
under the assumption eyts < 1/(2k), we have

il — gy 1 Py Ewts 2€wts
— 1+ kewts — 14+ kewts - 3 ’

where the first inequality follows from (11).

(3) Upper bounding KL(Z'||Z") for all i such that ™" > €minwt. Fix an ¢ such that
T > €minwt, and fix any j € [n]. Let P denote the distribution over {0,...,b — 1}
with probabilities pj o, ..., p},_;, and let Q denote the distribution over {0,...,b—1}
with probabilities p§707 . 7p§7b_1.

We first show that each p; ¢ is close to ﬁ; , and thus also tp p; o This is done' very
much as in (1) above. If p’ ; > €pprobs, then we have ji} , = p% ,, and so |pj, —]3;-_)[| <
€bprobs (by condition 2(b) in the theorem statement). On the other hand, if p}, <
€bprobs, then it must be the case that p}z < 2€pprobs, SO wWe again have |p§’z — p;@| <

Ebprobs- Since Zlg;é pj-,z =1 it follows that

b—1

(12) ZP}@ -1 S biprobs
=0

and thus

b—1
Zﬁ;’,é € [1 - bebprobsy 1 + bebprobs]~
=0

By definition of t this gives

(13) te { ! !

b
1+ bfbprobs 1- bebprobs

Multiplying inequality (12) by ¢, recalling that tzg;é p; ¢ = 1, and assuming epprobs <

1/(2b), we obtain

bebprobs

1 —t] < tbe <
| | - bprobs 1-— bebprobs

< 2b€bprobs .
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Thus, we have

D50 = Byl < D50 — Byl + 1550 — D]
< €bprobs + |50 — B4l
= €bprobs + |(1 = 1) 4|
< €bprobs + 2b6bprobs|2§§',£|

< €bprobs T 2b€bprobs;

certainly, this gives \p;'-’e — p§.’e| < 3bepprobs-

Moreover, since j)';-,z > €pprobs for all £ and p;e = t]ﬁ;'w where ¢ > % (by (13) and
€bprobs < 1/b), we also have p;g > €pprobs/2. We may thus apply Proposition 14
to P and Q (taking 7 = €pprobs/2 and & = 3bepprobs), and we obtain KL(P||Q) <

2(3benprobs) /2 4 b(3bebprobs )2/ (ebprobs/2). A rough estimation gives that this is at
most 12b361131/)30bs. Each Z? (Zi7 respectively) is the product of n such distributions P
(distributions Q, respectively) over {0,...,b — 1}. Therefore, by Proposition 12, we
have KL(Z'||Z") < n - (12b36igob§) for all ¢ with 7 > eminwt-

(4) Upper bounding KL(Z'||Z") for all i € [k]. This is simple: fix any i € [k].
Since we know that Z*(x) > €1, for all z € {0,...,b—1}", we immediately have

KL(ZzHZz) < _H(Zi) + 1m<1/(61)r>r013S)n) < n1n<b/€bprobS)»

where H(X) := > X(z)In(1/X(z)) denotes the“entropy in nats” of the random
variable X.

We can now apply Proposition 13 with the parameter settings given by (9). Propo-
sition 13 implies

KL(Z||Z) < n- (126%€)2 10) + keminwen I0(b/€nprobs)
1/2

1/2 € 3k€ 1,
+ k:ew/ts In WtSQ 72 Wes
Ewts/ Ewts — SkEwts

<

Considering the terms of the expression in brackets above, if we set €yts = s for
some appropriately chosen small constant ¢, then we have that

1/2
b2 Ew/ts — k2 2 <11/3

wts 111 wts 111 > 5C€wts
- T
and
3kewts 12 1 173
1/2 < 6kewts < §6wts'
€uts — SKEwts
Hence

KL(Z||Z) < n- (12662 1) + Keminwen 10(b/€bprobs) + evea

wts*®

This concludes the proof of Theorem 11. ]
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7.3. Some candidate distribution is good. Here we establish the following.

THEOREM 15. Let b= O(1), and let Z be any unknown mizture of k product dis-

tributions over {0,...,b—1}". There is a poly(n/e)-log % time algorithm which, given

samples from Z, outputs a list of poly(n/e) many miztures of product distributions
over {0,...,b— 1} with the properties that

1. every distribution Z' in the list satisfies (5555)°" < Z'(x) < 1 for all x €

{0,...,b—=1}"; and

2. with probability 1—6, some distribution Z* in the list satisfies KL(Z||Z*) < e.

Proof. We will use a specialization of Theorem 10 in which we have different
parameters for the different roles that e plays, as follows.

THEOREM 10'. Fiz k = O(1), b = O(1). Let Z be a mizture of k product
distributions X', ..., X* over {0,...,b—1}", so that Z is described by mizing weights
7, ..., 7" and probabilities {pé,(}ie[k],je[n],ée{o,...,b—l}'

There is an algorithm with the following property: for any €wts, €bprobs, €Eminwt, 0 >
0, with probability 1 — & the algorithm outputs a list of candidates ({7}, {p’ ,}) such
that for at least one candidate in the list, the following hold:

L 7" — 7| < €wts for all i € [k]; and
2. |13;‘,£ —p;'-’e| < €pprobs for all i, j, € such that ™ > eminwt -
The algorithm runs in time poly(n/e’) -log(1/6), where € = min{ewts, €bprobs; Eminwt } -

Let €,6 > 0 be given. We run the algorithm of Theorem 10’ with parameters
€bprobs = (36%)27 Eminwt = m, and €yis = ; With these parameters
the algorithm runs in time poly(n/e) - log %. By Theorem 10, we get as output a list
of poly(n/e) many candidate parameter settings ({#"}, {fi}}) with the guarantee that
with probability 1 — ¢ at least one of the settings satisfies

o |1t — 7Y < ewis for all i € [k], and
. |ﬁ§7£ — p§’£| < €pprobs for all i, j, £ such that 7 > €minwt-

We now pass each of these candidate parameter settings through Theorem 11. It
follows that the resulting distributions each satisfy €f s = (35555)"" < Z'(z) < 1
for all z € {0,1}™. A routine verification shows that with our choice of €pprobs, Eminwts
and eyt We have

1/3 €
wts < g

b
keminwtn In

1/2 €
n - (12b%€ )< -
bprobs 3’ €bprobs

€
gg, and €

Thus 7(€bprobs, €wts: Eminwt) < €, and we have that at least one of the resulting distri-
butions Z* satisfies KL(Z||Z*) < e. a

8. Finding a good hypothesis using maximum likelihood. Theorem 15
gives us a list of distributions, at least one of which is close to the target mixture
distribution Z that we are trying to learn. Now we must identify some distribution
in the list which is close to the target. In this section we give a simple maximum
likelihood algorithm which helps us accomplish this. This is a standard situation
(see, e.g., section 4.6 of [14]), and we emphasize that the ideas behind Theorem 16
below are not new. However, we were unable to find in the literature a clear statement
of the exact result which we need, so for completeness we give our own statement and
proof below.

Let P be a target distribution over some space X. Let Q be a set of hypothesis
distributions such that at least one Q* € Q has KL(P||Q*) < e. The following
algorithm will be used to find a distribution QM € Q which is close to P. Draw a set
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S of samples from the distribution P. For each Q € Q, compute the log-likelihood

AMQ) =D (-nQ(x)).

zeS

Now output the distribution QMY € Q such that A(Q) is minimum. This is known as
the maximum likelihood (ML) algorithm since it outputs the distribution in @ which

maximizes arg maxqeo [[,cg Q).

THEOREM 16. Let 3,a,€ > 0 be such that a < 3. Let Q be a set of hypothesis
distributions for some distribution P over the space X such that at least one Q* € Q
has KL(P||Q*) < €. Suppose also that o < Q(z) < 8 for all Q € Q and all x such
that P(x) > 0.

Run the ML algorithm on Q using a set S of independent samples from P, where
|S| = m. Then, with probability 1 — 6, where

62
6<(1Q[+1) exp <2m10g2(5/a)> ’

the algorithm outputs some distribution QMY € Q which has KL(P||QML) < 4e.
Before proving Theorem 16 we give some preliminaries. Let P and Q be arbitrary
distributions over some space X. We can rewrite the KL divergence between P and

Q as
(14) KL(P||Q) = —H(P) - ) P(z)nQ(),

zeX

where H(P) = — >+ P(z)InP(x) is the “entropy in nats” of P.

Consider the random variable — In Q(z), where x is a sample from the distribution
P. Using (14), we can express the expectation of this variable in terms of the KL
divergence:

(15) Erep[—InQ(z)] = KL(P[|Q) + H(P).

Recall that when the ML algorithm runs on a list Q of distributions, it uses a set
S of independent samples from P, where m = |S|. For each distribution Q € Q, the
algorithm computes

AQ) =D (-InQ(x)).

zeS

So, by (15), we have that the expected “score” of distribution Q is the following:
(16) Es[A(Q)] = m(H(P) + KL(P[|Q)).

We recall the theorem of Hoeffding [16], as follows.

THEOREM 17 (Hoeffding). Let x1,...,x, be independent bounded random vari-
ables such that each x; falls into the interval [a,b] with probability one. Let X =
Z?:l x;. Then for any t > 0 we have

Pr[X —E[X]>1] < 27 /mb—a)® PrX —E[X] < —t] < o 2t°/n(b—a)®

Now we can prove Theorem 16.
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Proof of Theorem 16. Call a distribution Q € Q good if KL(P||QML) < 4e, and
bad otherwise. Note that, by assumption, we have at least one good distribution in Q.
The probability 6 that the algorithm fails to output some good distribution is at
most the probability that either some bad distribution Q has A(Q) < m(H (P) + 3¢)
or the good distribution Q* has A(Q*) > m(H(P) + 2¢). Thus, by a union bound,

we have
an § < 1Q]-Pr[A(Q) < m(H(P) + 3¢) | KL(P||Q) > 4e]
+ Pr[A(Q*) > m(H(P) + 2¢)] .

For each bad Q € @ which has KL(P||Q) > 4e we have

Pr[A(Q) < m(H(P) + 3¢)] = Pr[A(Q) < m(H(P) + 4¢) — em))
(18) < PrlA(Q) < m(H(P) + KL(P||Q)) — em)]
(19) Pr{A(Q) < Es[A(Q)] — em]
(20) < exp <—2m o (ﬂ/@)

Equation (18) follows from the bound on the KL divergence, (19) follows from (16),
and (20) follows from the Hoeffding bound (Theorem 17).
Following the same logic for Q* where KL(P||Q*) < €, we get

Pr(A(Q%) > m(H(P) + 2¢)] = Pr{A(Q") = m(H (P) + €) + me]
< PriA(Q") = m(H(P) + KL(P[|Q")) + me]
= Pr[A(Q") > Es[A(Q")] + me]
2
(21) < exp (le()gQ(ﬂ/a)) .

Theorem 16 follows from plugging (20) and (21) into (17). d

9. Putting it all together. All the pieces are now in place for us to prove our
main learning result, Theorem 2, for learning mixtures of product distributions over
{0,...,b—1}".

Proof of Theorem 2. Run the algorithm described in Theorem 15. With prob-
ability 1 — é this produces a list of T' = poly(n/e) many hypothesis distributions,
one of which has KL divergence at most € from Z and each of which puts weight at
least (==57)?" on every point in {0,...,b — 1}". Now run the ML algorithm with

nb3
a= (%)2", B =1, and m = poly(n, 1/€) In(T/é). By Theorem 16, with probability
at least 1 — 6 the ML algorithm outputs a hypothesis with KL divergence at most 4¢
from Z. Thus with overall probability 1 — 26 we get a hypothesis with KL divergence
at most 4e from Z, and the total running time is poly(n/e) - log(1/6). Replacing € by
€/4 and 6 by §/2, we are done. d
Tracing through the proofs, it is easy to check that the running time dependence

on k is (n/e)°*") .log 3.

10. Hardness of learning mixtures of product distributions. In this sec-
tion we give evidence that the class of mixtures of k(n) product distributions over the
Boolean cube may be hard to learn in polynomial time for any k(n) = w(1).

Before describing our results, we recall some standard terminology about Boolean
decision trees. A decision tree is a rooted binary tree in which each internal node has
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two children and is labeled with a variable and each leaf is labeled with a bit b € {0, 1}.
A decision tree T' computes a Boolean function f : {0,1}" — {0,1} in the obvious
way: on input z € {0,1}", if variable x; is at the root of T, we go to either the left
or right subtree, depending on whether x; is 0 or 1. Continue in this fashion until
reaching a bit leaf; the value of this bit is f(x).

Our main result in this section is the following theorem.

THEOREM 18. For any function k(n), if there is a poly(n/e)-time algorithm
which learns a mixzture of k(n) many product distributions over {0,1}", then there is
a poly(n/e) time uniform distribution PAC learning algorithm which learns the class
of all k(n)-leaf decision trees.

We note that after years of intensive research, no poly(n)-time uniform distribu-
tion PAC learning algorithm is known which can learn k(n)-leaf decision trees for any
k(n) = w(1); indeed, such an algorithm would be a major breakthrough in compu-
tational learning theory.* The fastest algorithms to date [12, 3] can learn k(n)-leaf
decision trees under the uniform distribution in time n'°¢*("), This suggests that it
may be impossible to learn mixtures of a superconstant number of product distribu-
tions over {0,1}" in polynomial time.

The basic idea behind this theorem is quite simple. Given any k(n)-leaf decision
tree T', the set of all positive examples for T is a union of at most k(n) many disjoint
subcubes of {0,1}", and thus the uniform distribution over the positive examples
is a mixture of at most k(n) product distributions over {0,1}". If we can obtain a
high-accuracy hypothesis mixture D for this mixture of product distributions, then
roughly speaking D must put “large” weight on the positive examples and “small”
weight on the negative examples. We can thus use D to make accurate predictions of
T’s value on new examples very simply as follows: given a new example = to classify,
we simply compute the probability weight that the hypothesis mixture D puts on x,
and output 1 or 0 depending on whether this weight is large or small.

We now give the formal proof of Theorem 18. The following claim is used in the
proof.

CramM 1. Let T be a k-leaf decision tree, let b € {—1,1} be a bit, let S =
{z € {0,1}" : T'(x) = b}, and let Ug denote the uniform distribution over S. Then
Us is a mixture of k product distributions.

Proof. We show that Ug is a mixture of ¢ product distributions, where ¢ is the
number of leaves in T" which are labeled with bit b. To see this, observe that the k&
leaves of T partition {0, 1}™ into k disjoint subsets, each consisting of those x € {0, 1}"
which reach the corresponding leaf. For a leaf at depth d the corresponding subset is
of size 2"~¢ and consists of those z € {0,1}" which satisfy the length-d conjunction
defined by the path from the root to that leaf. Thus, choosing a uniform element
of S can be performed by the following process: (i) choose a leaf whose label is
b, where each leaf at depth d is chosen with probability proportional to 1/2¢; and
then (ii) choose a uniform random example from the set of examples which satisfy
the conjunction corresponding to that leaf. The uniform distribution over examples
which satisfy a given conjunction is easily seen to be a product distribution X over
{0,1}" in which E[X;] € {0,3,1} for all i = 1,...,n. It follows that the uniform
distribution over S is a mixture of ¢ product distributions of this sort. 0

Proof of Theorem 18. We suppose that we are given access to an oracle EX(T', i)
which, at each invocation, supplies a labeled example (z,T(z)) € {0,1}™ x {0,1},

4 Avrim Blum has offered a $1000 prize for solving a subproblem of the k(n) = n case and a $500
prize for a subproblem of the k(n) = logn case; see [4].
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where x is chosen from the uniform distribution U over {0,1}" and T is the un-
known k(n)-leaf decision tree to be learned. We describe an efficient algorithm A’
which with probability 1 — § outputs a hypothesis h : {0,1}" — {0, 1} which satisfies
Pry[h(z) # T(x)] < e. The algorithm A’ uses as a subroutine an algorithm A which
learns a mixture of k(n) product distributions. Let M be the number of examples
required by algorithm A to learn an unknown mixture of k(n) product distributions
to Li-norm accuracy 1 — 5 and confidence 1 — g. Recall from section 1.1 that to learn
to Li-norm error € it suffices to learn to KL divergence €2, and thus we have that
M = poly(n/e) by our assumption on the running time of A.

Algorithm A’ works as follows:

1. Determine b € {—1,1} such that with probability 1 — g tree T' outputs b on
at least 1/3 of the inputs in {0,1}™. Let S denote {z € {0,1}" : T'(x) = b},
and let Ug denote the uniform distribution over S.

2. Run algorithm A using samples from the uniform distribution Ug; simulate
Us by invoking EX(T,U), and using the only examples with labels T'(z) = b.
To be confident that algorithm A receives at least M examples from Usg,
we draw ©(M log(1/6)) examples from EX(T,U). Let D’ be the hypothesis
distribution which is the output of A.

3. Output the hypothesis h : {0,1}" — {—1,1}, which is defined as follows:
given x, if D'(x) < 54, then h(x) = —b; else h(z) = b.

We now verify the algorithm’s correctness. Note first that step 1 can easily be
performed by making O(log §) draws from EX(T,U{) to obtain an empirical estimate
of Pry[T'(xz) = b]. Assuming that |S| is indeed at least 2" /3, a simple Chernoff bound
shows that O(M log 3) draws from EX(T,U) suffice to obtain M examples with label
b in step 2 with probability 1 — g. We run A on examples generated by Ug, which by
Claim 1 is a mixture of k product distributions. Consequently, with overall probability
at least 1 — ¢ the hypothesis D’ generated in step 2 satisfies | D" —Us||1 < §.

Now observe that the hypothesis h in step 3 disagrees with T on precisely those
x which either (i) belong to S but have D’(x) < 5%, or (ii) do not belong to S but

2.2m
have D'(z) > 5%-. Each x of type (i) contributes at least 55~ toward |D" — Us||x
since Us(z) > 5 for each z € S. Each x of type (ii) also incurs at least 55— toward

D" — Us||. Consequently, since ||[D' — Us|1 < §, there are at most €2™ points
x € {0,1}"™ on which h is wrong. Thus, we have shown that, with probability at least
1 — 6, the hypothesis h is an e-accurate hypothesis for T" with respect to the uniform
distribution, as desired. ]

Remark 2. We note that our reduction to decision tree learning in fact uses only
quite restricted mixtures of product distributions in which (i) the mixture coefficients
are proportional to powers of 2, (ii) the supports of the product distributions in
the mixture are mutually disjoint, and (iii) each product distribution is a uniform
distribution over some subcube of {0,1}" (equivalently, each product distribution has
each E[X;] € {—1,0,1}). Thus, even this restricted class of mixtures of k(n) product
distributions is as hard to learn as k(n)-leaf decision trees.

Remark 3. The known results of Blum et al. [5] imply the following unconditional
hardness result: the class of k(n)-leaf decision trees cannot be learned under the
uniform distribution in time less than n'°¢*¥(") in the model of learning from statistical
queries.

A “statistical query” learning algorithm is allowed to obtain only statistical esti-
mates (accurate to within some specified error tolerance) of properties of the distribu-
tion over pairs (x, T'(x)), and does not have access to actual labeled examples (z, T'(x)).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



LEARNING MIXTURES OF PRODUCT DISTRIBUTIONS 1563

The algorithm is “charged” more time for estimates with a higher precision guarantee;
this is motivated by the fact that such high-precision estimates would normally be
obtained, given access to random examples, by drawing a large sample and making an
empirical estimate. (See [17] for a detailed description of the statistical query model.)

Note that our algorithm for learning mixtures of product distributions interacts
with the data solely by constructing empirical estimates of probabilities; thus, when
this algorithm is used in the reduction of Theorem 18, the resulting algorithm for
learning decision trees is easily seen to have an equivalent statistical query algorithm.
Thus the results of Blum et al. unconditionally imply that no algorithm with the same
basic approach as our algorithm can learn mixtures of k(n) product distributions in
time less than nlogk(),

11. Conclusions and future work. We have shown how to learn mixtures of
any constant number of product distributions over {0,1}", and more generally over
{0,...,b—1}", in polynomial time.

The methods we use are quite general and can be adapted to learn mixtures of
other types of multivariate product distributions which are definable in terms of their
moments. Along these lines, we have used the approach in this paper to give a PAC-
style algorithm for learning mixtures of &k = O(1) axis-aligned Gaussians in polynomial
time [13]. (We note that while some previous work on learning mixtures of Gaussians
from a clustering perspective can handle k¥ = w(1) many component Gaussians, all
such work assumes that there is some minimum separation between the centers of the
component Gaussians, since otherwise clustering is clearly impossible. In contrast,
our result in [13]—in which we do not attempt to do clustering but instead find a
hypothesis distribution with small KL divergence from the target mixture—does not
require us to assume that the component Gaussians are separated.) We expect that
our techniques can also be adapted to learn mixtures of other distributions such as
products of exponential distributions or beta distributions.

It is natural to ask whether our approach can be extended to learn mixtures of
distributions which are not necessarily product distributions; this is an interesting di-
rection for future work. Note that our main algorithmic ingredient, algorithm WAM,
requires only that the coordinate distributions be pairwise independent.

Finally, one may also ask if it is possible to improve the efficiency of our learning
algorithms—can the running times be reduced to no(k2), to n9%®) or even nCUogk)?
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