
Optimal Cryptographic Hardness of Learning

Monotone Functions

Dana Dachman-Soled, Homin K. Lee, Tal Malkin,
Rocco A. Servedio, Andrew Wan, and Hoeteck Wee

{dglasner,homin,tal,rocco,atw12,hoeteck}@cs.columbia.edu

Abstract. A wide range of positive and negative results have been es-
tablished for learning different classes of Boolean functions from uni-
formly distributed random examples. However, polynomial-time algo-
rithms have thus far been obtained almost exclusively for various classes
of monotone functions, while the computational hardness results ob-
tained to date have all been for various classes of general (nonmono-
tone) functions. Motivated by this disparity between known positive re-
sults (for monotone functions) and negative results (for nonmonotone
functions), we establish strong computational limitations on the efficient
learnability of various classes of monotone functions.
We give several such hardness results which are provably almost optimal
since they nearly match known positive results. Some of our results show
cryptographic hardness of learning polynomial-size monotone circuits to
accuracy only slightly greater than 1/2 + 1/

√
n; this accuracy bound is

close to optimal by known positive results (Blum et al., FOCS ’98). Other
results show that under a plausible cryptographic hardness assumption,
a class of constant-depth, sub-polynomial-size circuits computing mono-
tone functions is hard to learn; this result is close to optimal in terms of
the circuit size parameter by known positive results as well (Servedio, In-
formation and Computation ’04). Our main tool is a complexity-theoretic
approach to hardness amplification via noise sensitivity of monotone
functions that was pioneered by O’Donnell (JCSS ’04).

1 Introduction

More than two decades ago Valiant introduced the Probably Approximately Cor-
rect (PAC) model of learning Boolean functions from random examples [Val84].
Since that time a great deal of research effort has been expended on trying
to understand the inherent abilities and limitations of computationally efficient
learning algorithms. This paper addresses a discrepancy between known posi-
tive and negative results for uniform distribution learning by establishing strong
computational hardness results for learning various classes of monotone func-
tions.

1.1 Background and Motivation

In the uniform distribution PAC learning model, a learning algorithm is given
access to a source of independent random examples (x, f(x)) where each x is

drawn uniformly from the n-dimensional Boolean cube and f is the unknown
Boolean function to be learned. The goal of the learner is to construct a high-
accuracy hypothesis function h, i.e., one which satisfies Pr[f(x) 6= h(x)] ≤ ǫ
where the probability is with respect to the uniform distribution and ǫ is an error
parameter given to the learning algorithm. Algorithms and hardness results in
this framework have interesting connections with topics such as discrete Fourier
analysis [Man94], circuit complexity [LMN93], noise sensitivity and influence
of variables in Boolean functions [KKL88,BKS99,KOS04,OS07], coding theory
[FGKP06], privacy [BLR08,KLN+08], and cryptography [BFKL93,Kha95]. For
these reasons, and because the model is natural and elegant in its own right, the
uniform distribution learning model has been intensively studied for almost two
decades.

Monotonicity makes learning easier. For many classes of functions, uni-
form distribution learning algorithms have been devised which substantially im-
prove on a naive exponential-time approach to learning via brute-force search.
However, despite intensive efforts, researchers have not yet obtained poly(n)-
time learning algorithms in this model for various simple classes of functions.
Interestingly, in many of these cases restricting the class of functions to the cor-
responding class of monotone functions has led to more efficient – sometimes
poly(n)-time – algorithms. We list some examples:

1. A simple algorithm learns monotone O(log n)-juntas to perfect accuracy
in poly(n) time, and a more complex algorithm [BT96] learns monotone
Õ(log2(n))-juntas to any constant accuracy in poly(n) time. In contrast, the
fastest known algorithm for learning arbitrary k-juntas runs in time n.704k

[MOS04].

2. The fastest known uniform distribution learning algorithm for the general
class of s-term DNF, due to Verbeurgt [Ver90], runs in time nO(log s) to learn
to any constant accuracy. In contrast, for s-term monotone DNF [Ser04] gives

an algorithm which runs in sO(log s) time. Thus the class of 2O(
√

log n)-term
monotone DNF can be learned to any constant accuracy in poly(n) time,

but no such result is known for 2O(
√

log n)-term general DNF.

3. The fastest known algorithm for learning poly(n)-size general decision trees
to constant accuracy takes nO(log n) time (this follows from [Ver90]), but
poly(n)-size decision trees that compute monotone functions can be learned
to any constant accuracy in poly(n) time [OS07].

4. No poly(n)-time algorithm can learn the general class of all Boolean functions

on {0, 1}n to accuracy better than 1
2 + poly(n)

2n , but a simple polynomial-time
algorithm can learn the class of all monotone Boolean functions to accu-

racy 1
2 + Ω(1)√

n
[BBL98]. We note also that the result of [BT96] mentioned

above follows from a 2Õ(
√

n)-time algorithm for learning arbitrary mono-
tone functions on n variables to constant accuracy (it is easy to see that no
comparable algorithm can exist for learning arbitrary Boolean functions to
constant accuracy).

Cryptography and hardness of learning. Essentially all known representation-
independent hardness of learning results (i.e., results which apply to learning
algorithms that do not have any restrictions on the syntactic form of the hypothe-
ses they output) rely on some cryptographic assumption, or an assumption that
easily implies a cryptographic primitive. For example, under the assumption that
certain subset sum problems are hard on average, Kharitonov [Kha95] showed
that the class AC

1 of logarithmic-depth, polynomial-size AND/OR/NOT circuits
is hard to learn under the uniform distribution. Subsequently Kharitonov showed
[Kha93] that if factoring Blum integers is 2nǫ

-hard for some fixed ǫ > 0, then
even the class AC

0 of constant-depth, polynomial-size AND/OR/NOT circuits
similarly cannot be learned in polynomial time under the uniform distribution.
In later work, Naor and Reingold [NR04] gave constructions of pseudorandom
functions with very low circuit complexity; their results imply that if factoring
Blum integers is super-polynomially hard, then even depth-5 TC

0 circuits (com-
posed of MAJ and NOT gates) cannot be learned in polynomial time under
uniform. We note that all of these hardness results apply even to algorithms
which may make black-box “membership queries” to obtain the value f(x) for
inputs x of their choosing.

Monotonicity versus cryptography? Given that cryptography precludes ef-
ficient learning while monotonicity seems to make efficient learning easier, it is
natural to investigate how these phenomena interact. One could argue that prior
to the current work there was something of a mismatch between known positive
and negative results for uniform-distribution learning: as described above a fairly
broad range of polynomial-time learning results had been obtained for various
classes of monotone functions, but there were no corresponding computational
hardness results for monotone functions. Can all monotone Boolean functions
computed by polynomial-size circuits be learned to 99% accuracy in polynomial
time from uniform random examples? As far as we are aware, prior to our work
answers were not known even to such seemingly basic questions about learning
monotone functions as this one. This gap in understanding motivated the re-
search presented in this paper (which, as we describe below, lets us answer “no”
to the above question in a strong sense).

1.2 Our results and techniques: cryptography trumps monotonicity

We present several different constructions of “simple” (polynomial-time com-
putable) monotone Boolean functions and prove that these functions are hard
to learn under the uniform distribution, even if membership queries are allowed.
We now describe our main results, followed by a high-level description of how
we obtain them.

In [BBL98] Blum et al. showed that arbitrary monotone functions cannot

be learned to accuracy better than 1
2 + O(log n)√

n
by any algorithm which makes

poly(n) many membership queries. This is an information-theoretic bound which
is proved using randomly generated monotone DNF formulas of size (roughly)
nlog n. A natural goal is to obtain computational lower bounds for learning

polynomial-time-computable monotone functions which match, or nearly match,

this level of hardness (which is close to optimal by the (1
2 + Ω(1)√

n
)-accuracy al-

gorithm of Blum et al. described above). We prove near-optimal hardness for
learning polynomial-size monotone circuits:

Theorem 1 (informal). If one-way functions exist, then there is a class of
poly(n)-size monotone circuits that cannot be learned to accuracy 1

2 + 1
n1/2−ǫ for

any fixed ǫ > 0.

Our approach yields even stronger lower bounds if we make stronger assump-
tions:

– Assuming the existence of subexponential one-way functions, we improve the
bound on the accuracy to 1/2 + polylog(n)/n1/2.

– Assuming the hardness of factoring Blum integers, our hard-to-learn func-
tions may be computed in monotone NC

1.
– Assuming that Blum integers are 2nǫ

-hard to factor on average (the same
hardness assumption used in Kharitonov’s work [Kha93]), we obtain a lower
bound for learning constant-depth circuits of sub-polynomial size that almost
matches the positive result in [Ser04]. More precisely, we show that for any
(sufficiently large) constant d, the class of monotone functions computed by

depth-d AND/OR/NOT circuits of size 2(log n)O(1)/(d+1)

cannot be learned to
accuracy 51% under the uniform distribution in poly(n) time. In contrast,
the positive result of [Ser04] shows that monotone functions computed by

depth-d AND/OR/NOT circuits of size 2O((log n)1/(d+1)) can be learned to any
constant accuracy in poly(n) time.

These results are summarized in Figure 1.

Proof techniques. A natural first approach is to try to “pseudorandomize”
[BBL98]’s construction of random nlog n-term monotone DNFs. While we were
not able to do this directly, it turns out that a closely related approach does yield
some results along the desired lines. In the full version of the paper (available
online), we present and analyze a simple variant of the [BBL98] information-
theoretic construction and then show how to “pseudorandomize” the variant.
Since our variant gives a weaker quantitative bound on the information-theoretic
hardness of learning than [BBL98], this gives a construction of polynomial-time-
computable monotone functions which, assuming the existence of one-way func-
tions, cannot be learned to accuracy 1

2 + 1
polylog(n) under the uniform distribu-

tion. While this answers the question posed above (even with “51%” in place of

“99%”), the 1
polylog(n) factor is rather far from the O(log n)√

n
factor that one might

hope for as described above.
In Section 2 we use a different construction to obtain much stronger quan-

titative results; another advantage of this second construction is that it enables
us to show hardness of learning monotone circuits rather than just circuits com-
puting monotone functions. We start with the simple observation that using
standard tools it is easy to construct polynomial-size monotone circuits comput-
ing “slice” functions which are pseudorandom on the middle layer of the Boolean

Hardness assumption Complexity of f Accuracy bound Ref.

none random nlog n-term mono.
DNF

1
2

+ ω(log n)

n1/2 [BBL98]

OWF (poly) poly-size monotone circuits 1
2

+ 1

n1/2−ǫ Thm. 1

OWF (2n
α

) poly-size monotone circuits 1
2

+ poly(log n)

n1/2 Thm. 3

factoring BI (poly) monotone NC
1-circuits 1

2
+ 1

n1/2−ǫ FV

factoring BI (2n
α

) AND/OR/NOT circuits of

size 2(log n)O(1)/(d+1)

and
depth d

1
2

+ o(1) FV

Fig. 1. Summary of known hardness results for learning monotone Boolean functions.
The meaning of each row is as follows: under the stated hardness assumption, there is
a class of monotone functions computed by circuits of the stated complexity which no
poly(n)-time membership query algorithm can learn to the stated accuracy. In the first
column, OWF and BI denote one-way functions and Blum Integers respectively, and
“poly” and “2n

α

” means that the problems are intractable for poly(n)- and 2n
α

-time
algorithms respectively (for some fixed α > 0). Recall that the poly(n)-time algorithm
of [BBL98] for learning monotone functions implies that the best possible accuracy

bound for monotone functions is 1
2

+ Ω(1)

n1/2 . “FV” means the result is established in the
full version of this paper.

cube {0, 1}n. Such functions are easily seen to be mildly hard to learn, i.e., hard

to learn to accuracy 1 − Ω(1)√
n
. We then use the elegant machinery of hardness

amplification of monotone functions which was pioneered by O’Donnell [O’D04]
to amplify the hardness of this construction to near-optimal levels (rows 2–4 of
Figure 1). We obtain our result for constant depth, sub-polynomial-size circuits
(row 5 of Figure 1) by augmenting this approach with an argument which at a
high level is similar to one used in [AHM+06], by “scaling down” and modifying
our hard-to-learn functions using a variant of Nepomnjaščĭı’s theorem [Nep70].

1.3 Preliminaries

We consider Boolean functions f : {0, 1}n→{0, 1}. We view {0, 1}n as endowed
with the natural partial order x ≤ y iff xi ≤ yi for all i = 1, . . . , n. A Boolean
function f is monotone if x ≤ y implies f(x) ≤ f(y).

We establish that a class C of functions is hard to learn by showing that
for a uniform random f ∈ C, the expected error of any poly(n)-time learning
algorithm L is close to 1/2 when run with f as the target function. Thus we
bound the quantity

Pr
f∈C,x∈{0,1}n

[Lf (1n)→h;h(x) = f(x)] (1)

where the probability is also taken over any internal randomization of the learn-
ing algorithm L. We say that class C is hard to learn to accuracy 1

2 + ǫ(n) if

for every poly(n)-time membership query learning algorithm L (i.e., p.p.t. or-
acle algorithm), we have (1) < 1

2 + ǫ(n) for all sufficiently large n. As noted
in [BBL98], it is straightforward to transform a lower bound of this sort into a
lower bound for the usual ǫ, δ formulation of PAC learning.

2 Lower Bounds via Hardness Amplification of Monotone

Functions

In this section we prove our main hardness results, summarized in Figure 1, for
learning various classes of monotone functions under the uniform distribution
with membership queries.

Let us start with a high-level explanation of the overall idea. Inspired by the
work on hardness amplification within NP initiated by O’Donnell [O’D04,HVV06],
we study constructions of the form

f(x1, . . . , xm) = C(f ′(x1), . . . , f
′(xm))

where C is a Boolean “combining function” with low noise stability (we give
precise definitions later) which is both efficiently computable and monotone.
Recall that O’Donnell showed that if f ′ is weakly hard to compute and the
combining function C has low noise stability, then f is very hard to compute.
This result holds for general (non-monotone) functions C, and thus generalizes
Yao’s XOR lemma, which addresses the case where C is the XOR of m bits (and
hence has the lowest noise stability of all Boolean functions, see [O’D04]).

Roughly speaking, we establish an analogue of O’Donnell’s result for learn-
ing. Our analogue, given in Section 2.2, essentially states that for certain well-
structured1 functions f ′ that are hard to learn to high accuracy, if C has low
noise stability then f is hard to learn to accuracy even slightly better than 1/2.
Since our ultimate goal is to establish that “simple” classes of monotone func-
tions are hard to learn, we shall use this result with combining functions C that
are computed by “simple” monotone Boolean circuits. In order for the overall
function f to be monotone and efficiently computable, we need the initial f ′

to be well-structured, monotone, efficiently computable, and hard to learn to
high accuracy. Such functions are easily obtained by a slight extension of an
observation of Kearns et al. [KLV94]. They noted that the middle slice f ′ of a

random Boolean function on {0, 1}k is hard to learn to accuracy greater than
1−Θ(1/

√
k) [BBL98,KLV94]; by taking the middle slice of a pseudorandom func-

tion instead, we obtain an f ′ with the desired properties. In fact, by a result of
Berkowitz [Ber82] this slice function is computable by a polynomial-size mono-
tone circuit, so the overall hard-to-learn functions we construct are computed
by polynomial-size monotone circuits.

Organization. In Section 2.2 we adapt the analysis in [O’D04,HVV06] to re-
duce the problem of constructing hard-to-learn monotone Boolean functions to

1 As will be clear, the proof requires that f ′ be balanced and have a “hard-core set.”

constructing monotone combining functions C with low noise stability. In Sec-
tion 2.3 we show how constructions and analyses from [O’D04,MO03] can be used
to obtain a “simple” monotone combining function with low noise stability. In
Section 2.4 we establish Theorems 2 and 3 (lines 2 and 3 of Figure 1) by making
different assumptions about the hardness of the initial pseudorandom functions.
Finally, we use more specific assumptions about the hardness of factoring Blum
integers to extend our hardness results to very simple circuit classes (lines 4 and
5 of Figure 1); because of space constraints these results are deferred to the full
version.

2.1 Preliminaries

Functions. Let C : {0, 1}m→{0, 1} and f ′ : {0, 1}k→{0, 1} be Boolean func-

tions. We write C ◦ f ′⊗m to denote the Boolean function over ({0, 1}k)m given
by

C ◦ f ′⊗m(x) = C(f ′(x1), . . . , f
′(xm)), where x = (x1, . . . , xm).

For g : {0, 1}k→{0, 1}, we write slice(g) to denote the “middle slice” function:

slice(g)(x) =

1 if |x| > ⌊k/2⌋
g(x) if |x| = ⌊k/2⌋
0 if |x| < ⌊k/2⌋.

It is immediate that slice(g) is a monotone Boolean function for any g.

Bias and noise stability. Following the analysis in [O’D04,HVV06], we shall
study the bias and noise stability of various Boolean functions. Specifically, we
adopt the following notations and definitions from [HVV06]. The bias of a 0-1
random variable X is defined to be

Bias[X]
def
= |Pr[X = 0] − Pr[X = 1]|.

Recall that a probabilistic Boolean function h on {0, 1}k is a probability distri-
bution over Boolean functions on {0, 1}k (so for each input x, the output h(x)
is a 0-1 random variable). The expected bias of a probabilistic Boolean function
h is

ExpBias[h]
def
= Ex[Bias[h(x)]].

Let C : {0, 1}m→{0, 1} be a Boolean function and 0 ≤ δ ≤ 1
2 . The noise stability

of C at noise rate δ, denoted NoiseStabδ[C], is defined to be

NoiseStabδ[C]
def
= 2 · Pr

x,η
[C(x) = C(x ⊕ η)] − 1

where x ∈ {0, 1}m is uniform random, η ∈ {0, 1}m is a vector whose bits are
each independently 1 with probability δ, and ⊕ denotes bitwise XOR.

2.2 Hardness amplification for learning

Throughout this subsection we write m for m(n) and k for k(n). We shall
establish the following:

Lemma 1. Let C : {0, 1}m→{0, 1} be a polynomial-time computable function.

Let G′ be the family of all 22k

functions from {0, 1}k to {0, 1}, where n = mk
and k = ω(logn). Then the class C = {f = C ◦ slice(g)⊗m | g ∈ G′} of Boolean
functions over {0, 1}n is hard to learn to accuracy

1

2
+

1

2

√

NoiseStabΘ(1/
√

k)[C] + o(1/n).

This easily yields Corollary 1, which is an analogue of Lemma 1 with pseu-
dorandom rather than truly random functions, and which we use to obtain our
main hardness of learning results.

Proof of Lemma 1: Let k,m be such that mk = n, and let C : {0, 1}m→{0, 1}
be a Boolean combining function. We prove the lemma by upper bounding

Pr
g∈G′,x∈{0,1}n

[

Lf(1n) → h; h(x) = f(x)
]

(2)

where L is an arbitrary p.p.t. oracle machine (running in time poly(n) on input

1n) that is given oracle access to f
def
= C◦slice(g)⊗m and outputs some hypothesis

h : {0, 1}n→{0, 1}.
We first observe that since C is computed by a uniform family of circuits of

size poly(m) ≤ poly(n), it is easy for a poly(n)-time machine to simulate oracle
access to f if it is given oracle access to g. So (2) is at most

Pr
g∈G′, x∈{0,1}n

[

Lg(1n) → h; h(x) = (C ◦ slice(g)⊗m)(x)
]

. (3)

To analyze the above probability, suppose that in the course of its execution L
never queries g on any of the inputs x1, . . . , xm ∈ {0, 1}k, where x = (x1, . . . , xm).
Then the a posteriori distribution of g(x1), . . . , g(xm) (for uniform random
g ∈ G′) given the responses to L’s queries that it received from g is identical to
the distribution of g′(x1), . . . , g

′(xm), where g′ is an independent uniform draw
from G′: both distributions are uniform random over {0, 1}m. (Intuitively, this
just means that if L never queries the random function g on any of x1, . . . , xm,
then giving L oracle access to g does not help it predict the value of f on
x = (x1, . . . , xm).) Since L runs in poly(n) time, for any fixed x1, . . . , xm the

probability that L queried g on any of x1, . . . , xm is at most m·poly(n)
2k . Hence (3)

is bounded by

Pr
g,g′∈G′, x∈{0,1}n

[

Lg(1n) → h; h(x) = (C ◦ slice(g′)⊗m)(x)
]

+
m · poly(n)

2k
. (4)

The first summand in (4) is the probability that L correctly predicts the value
C ◦ slice(g′)⊗m(x), given oracle access to g, where g and g′ are independently

random functions and x is uniform over {0, 1}n. It is clear that the best possible
strategy for L is to use a maximum likelihood algorithm, i.e., predict according
to the function h which, for any fixed input x, outputs 1 if and only if the random
variable (C ◦ slice(g′)⊗m)(x) (we emphasize that the randomness here is over the
choice of g′) is biased towards 1. The expected accuracy of this h is precisely

1

2
+

1

2
ExpBias[C ◦ slice(g′)⊗m]. (5)

Now fix δ
def
=

(

k
⌊k/2⌋

)

/2k = Θ(1/
√
k) to be the fraction of inputs in the “middle

slice” of {0, 1}k. We observe that the probabilistic function slice(g′) (where g′

is truly random) is “δ-random” in the sense of ([HVV06], Definition 3.1), i.e.,
it is balanced, truly random on inputs in the middle slice, and deterministic on
all other inputs. This means that we may apply a technical lemma [HVV06,
Lemma 3.7]) to slice(g′) (see also [O’D04]) to obtain

ExpBias[C ◦ slice(g′)⊗m] ≤
√

NoiseStabδ[C]. (6)

Combining (4), (5) and (6) and recalling that k = ω(logn), we obtain Lemma 1.
⊓⊔

Corollary 1. Let C : {0, 1}m→{0, 1} be a polynomial-time computable function.
Let G be a pseudorandom family of functions from {0, 1}k to {0, 1} which are
secure against poly(n)-time adversaries, where n = mk and k = ω(logn). Then
the class C = {f = C ◦ slice(g)⊗m | g ∈ G} of Boolean functions over {0, 1}n is
hard to learn to accuracy

1

2
+

1

2

√

NoiseStabΘ(1/
√

k)[C] + o(1/n).

Proof. The corollary follows from the fact that (3) must differ from its pseudo-
random counterpart,

Pr
g∈G, x∈{0,1}n

[

Lg(1n) → h; h(x) = (C ◦ slice(g)⊗m)(x)
]

, (7)

by less than 1/n2 (in fact by less than any fixed 1/ poly(n)). Otherwise, we would
easily obtain a poly(n)-time distinguisher that, given oracle access to g, runs L
to obtain a hypothesis h and checks whether h(x) = (C ◦ slice(g)⊗m)(x) for a
random x to determine whether g is drawn from G or G′. ⊓⊔

By instantiating Corollary 1 with a “simple” monotone function C having low
noise stability, we obtain strong hardness results for learning simple monotone
functions. We exhibit such a function C in the next section.

2.3 A simple monotone combining function with low noise stability

In this section we combine known results of [O’D04,MO03] to obtain:

Proposition 1. Given a value k, let m = 3ℓd2d for ℓ, d satisfying 3ℓ ≤ k6 <
3ℓ+1 and d ≤ O(k.35). Then there exists a monotone function C : {0, 1}m →
{0, 1} computed by a uniform family of poly(m)-size, log(m)-depth monotone
circuits such that

NoiseStabΘ(1/
√

k)[C] ≤ O
(k6 logm

m

)

. (8)

Note that in this proposition we may have m as large as 2Θ(k.35) but not

larger. O’Donnell[O’D04] gave a lower bound ofΩ(log2 m
m) on NoiseStabΘ(1/

√
k)[C]

for every monotone m-variable function C, so the above upper bound is fairly

close to the best possible (within a polylog(m) factor if m = 2kΘ(1)

).
Following [O’D04,HVV06], we use the “recursive majority of 3” function and

the “tribes” function in our construction. We require the following results on
noise stability:

Lemma 2 ([O’D04]). Let Rec-Maj-3ℓ : {0, 1}3ℓ→{0, 1} be defined as follows:

for x = (x1, x2, x3) where each xi ∈ {0, 1}3ℓ−1

,

Rec-Maj-3ℓ(x)
def
= Maj(Rec-Maj-3ℓ−1(x

1),Rec-Maj-3ℓ−1(x
2),Rec-Maj-3ℓ−1(x

3)).

Then for ℓ ≥ log1.1(1/δ), we have NoiseStabδ[Rec-Maj-3ℓ] ≤ δ−1.1(3ℓ)−.15.

Lemma 3 ([MO03]). Let Tribesd : {0, 1}d2d→{0, 1} denote the “tribes” func-
tion on d2d variables, i.e., the read-once 2d-term monotone d-DNF

Tribesd(x1, . . . , xd2d)
def
= (x1 ∧ · · · ∧ xd) ∨ (xd+1 ∧ · · · ∧ x2d) ∨ · · · .

Then if η ≤ O(1/d), we have NoiseStab 1−η
2

[Tribesd] ≤ O
(

ηd2

d2d

)

≤ O
(

1
2d

)

.

Lemma 4 ([O’D04]). If h is a balanced Boolean function and ψ : {0, 1}r →
{0, 1} is arbitrary, then for any δ we have

NoiseStabδ[ψ ◦ h⊗r] = NoiseStab 1
2−

NoiseStabδ [h]

2

[ψ].

Proof of Proposition 1: We take C to be Tribesd ◦Rec-Maj-3⊗d2d

ℓ . Since
Rec-Maj-3ℓ is balanced, by Lemma 4 we have

NoiseStabδ[C] = NoiseStab 1
2−

NoiseStabδ[Rec-Maj-3ℓ]

2

[Tribesd].

Setting δ = Θ(1/
√
k) and recalling that 3ℓ ≤ k6, we have ℓ ≥ log1.1(1/δ) so we

may apply Lemma 2 to obtain

NoiseStabΘ(1/
√

k)[Rec-Maj-3ℓ] ≤ Θ((
√
k)1.1)(k6)−.15 = O(k−.35).

Since O(k−.35) ≤ O(1/d), we may apply Lemma 3 with the previous inequalities
to obtain

NoiseStabΘ(1/
√

k)[C] ≤ O
(1

2d

)

.

The bound (8) follows from some easy rearrangement of the bounds on k,m, d
and ℓ. It is easy to see that C can be computed by monotone circuits of depth
O(ℓ) = O(logm) and size poly(m), and the proposition is proved. ⊓⊔

2.4 Nearly optimal hardness of learning polynomial-size monotone
circuits

Given a value of k, let m = 3ℓd2d for ℓ, d as in Proposition 1. Let G be a
pseudorandom family of functions {g : {0, 1}k→{0, 1}} secure against poly(n)-
time adversaries, where n = mk. Since we have k = ω(logn), we may apply
Corollary 1 with the combining function from Proposition 1 and conclude that
the class C = {C ◦ slice(g)⊗m | g ∈ G} is hard to learn to accuracy

1

2
+O

(k3
√

logm√
m

)

+ o(1/n) ≤ 1

2
+O

(k3.5
√

logn√
n

)

. (9)

We claim that in fact the functions in C can be computed by poly(n)-size mono-
tone circuits. This follows from a result of Berkowitz [Ber82] which states that if
a k-variable slice function is computed by a AND/OR/NOT circuit of size s and
depth d, then it is also computed by a monotone AND/OR/MAJ circuit of size
O(s + k) and depth d + 1. Combining these monotone circuits for slice(g) with
the monotone circuit for C, we obtain a poly(n)-size monotone circuit for each
function in C.

By making various different assumptions on the hardness of one-way func-
tions, Proposition ?? lets us obtain different quantitative relationships between
k (the input length for the pseudorandom functions) and n (the running time of
the adversaries against which they are secure), and thus different quantitative
hardness results from (9) above:

Theorem 2. Suppose that standard one-way functions exist. Then for any con-
stant ǫ > 0 there is a class C of poly(n)-size monotone circuits that is hard to
learn to accuracy 1

2 + 1
n1/2−ǫ .

Proof. If poly(n)-hard one-way functions exist then we may take k = nc in
Proposition ?? for arbitrarily small constant c; this corresponds to taking d =
C log k for C a large constant in Proposition 1. The claimed bound on (9) easily
follows. (We note that while not every n is of the required formmk = 3ℓd2dk, it is
not difficult to see that this and our subsequent theorems hold for all (sufficiently
large) input lengths n by padding the hard-to-learn functions.) ⊓⊔

Theorem 3. Suppose that subexponentially hard (2nα

for some fixed α > 0)
one-way functions exist. Then there is a class C of poly(n)-size monotone circuits

that is hard to learn to accuracy 1
2 + polylog(n)

n1/2 .

Proof. As above, but now we take k = logC n for some sufficiently large constant
C (i.e., d = c log k for a small constant c). ⊓⊔

References

[AHM+06] E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and M. Saks. Minimizing
DNF Formulas and AC0

d Circuits Given a Truth Table. In CCC, pages 237–
251, 2006.

[BBL98] A. Blum, C. Burch, and J. Langford. On learning monotone boolean func-
tions. In 39th FOCS, pages 408–415, 1998.

[Ber82] S. J. Berkowitz. On some relationships between monotone and non-
monotone circuit complexity. Technical Report, University of Toronto, 1982.

[BFKL93] A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic Primitives
Based on Hard Learning Problems. In CRYPTO ’93, pages 278–291, 1993.

[BKS99] I. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of Boolean
functions and applications to percolation. Inst. Hautes Études Sci. Publ.

Math., 90:5–43, 1999.
[BLR08] A. Blum, K. Ligett, and A. Roth. A learning theory perspective on data

privacy. Manuscript, 2008.
[BT96] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions.

Journal of the ACM, 43(4):747–770, 1996.
[FGKP06] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami. New results for

learning noisy parities and halfspaces. In 47th FOCS, pages 563–576, 2006.
[HVV06] A. Healy, S. Vadhan, and E. Viola. Using Nondeterminism to Amplify

Hardness. SIAM Journal on Computing, 35(4):903–931, 2006.
[Kha93] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In

25th STOC, pages 372–381, 1993.
[Kha95] M. Kharitonov. Cryptographic lower bounds for learnability of Boolean

functions on the uniform distribution. JCSS, 50:600–610, 1995.
[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean

functions. In 29th FOCS, pages 68–80, 1988.
[KLN+08] S. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith.

What can we learn privately? Manuscript, 2008.
[KLV94] Michael J. Kearns, Ming Li, and Leslie G. Valiant. Learning boolean for-

mulas. J. ACM, 41(6):1298–1328, 1994.
[KOS04] A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and

thresholds of halfspaces. JCSS, 68(4):808–840, 2004.
[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier

transform and learnability. Journal of the ACM, 40(3):607–620, 1993.
[Man94] Y. Mansour. Learning Boolean functions via the Fourier transform, pages

391–424. Kluwer Academic Publishers, 1994.
[MO03] Elchanan Mossel and Ryan O’Donnell. On the noise sensitivity of monotone

functions. Random Struct. Algorithms, 23(3):333–350, 2003.
[MOS04] E. Mossel, R. O’Donnell, and R. Servedio. Learning functions of k relevant

variables. J. Comput. & Syst. Sci., 69(3):421–434, 2004.
[Nep70] V.A. Nepomnjaščĭı. Rudimentary predicates and Turing calculations. Math

Dokl., 11:1462–1465, 1970.
[NR04] M. Naor and O. Reingold. Number-theoretic constructions of efficient

pseudo-random functions. Journal of the ACM, 51(2):231–262, 2004.
[O’D04] R. O’Donnell. Hardness amplification within NP. JCSS, 69(1):68–94, 2004.
[OS07] R. O’Donnell and R. Servedio. Learning monotone decision trees in poly-

nomial time. SIAM Journal on Computing, 37(3):827–844, 2007.
[Raz85] A. Razborov. Lower bounds on the monotone network complexity of the

logical permanent. Mat. Zametki, 37:887–900, 1985.
[Ser04] R. Servedio. On learning monotone DNF under product distributions. In-

formation and Computation, 193(1):57–74, 2004.
[Val84] L. Valiant. A theory of the learnable. CACM, 27(11):1134–1142, 1984.
[Ver90] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-

polynomial time. In 3rd COLT, pages 314–326, 1990.

