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Abstract—Let g : {−1, 1}k → {−1, 1} be any Boolean
function and q1, . . . , qk be any degree-2 polynomials over
{−1, 1}n. We give a deterministic algorithm which, given as
input explicit descriptions of g, q1, . . . , qk and an accuracy
parameter ε > 0, approximates

Prx∼{−1,1}n [g(sign(q1(x)), . . . , sign(qk(x))) = 1]

to within an additive ±ε. For any constant ε > 0 and k ≥ 1
the running time of our algorithm is a fixed polynomial in n
(in fact this is true even for some not-too-small ε = on(1) and
not-too-large k = ωn(1)). This is the first fixed polynomial-
time algorithm that can deterministically approximately count
satisfying assignments of a natural class of depth-3 Boolean
circuits.

Our algorithm extends a recent result [1] which gave a deter-
ministic approximate counting algorithm for a single degree-2
polynomial threshold function sign(q(x)), corresponding to the
k = 1 case of our result. Note that even in the k = 1 case it is
NP-hard to determine whether Prx∼{−1,1}n [sign(q(x)) = 1] is
nonzero, so any sort of multiplicative approximation is almost
certainly impossible even for efficient randomized algorithms.

Our algorithm and analysis requires several novel technical
ingredients that go significantly beyond the tools required to
handle the k = 1 case in [1]. One of these is a new multidi-
mensional central limit theorem for degree-2 polynomials in
Gaussian random variables which builds on recent Malliavin-
calculus-based results from probability theory. We use this CLT
as the basis of a new decomposition technique for k-tuples
of degree-2 Gaussian polynomials and thus obtain an efficient
deterministic approximate counting algorithm for the Gaussian
distribution, i.e., an algorithm for estimating

Prx∼N(0,1)n [g(sign(q1(x)), . . . , sign(qk(x))) = 1].

Finally, a third new ingredient is a “regularity lemma” for
k-tuples of degree-d polynomial threshold functions. This gen-
eralizes both the regularity lemmas of [2], [3] (which apply
to a single degree-d polynomial threshold function) and the
regularity lemma of Gopalan et al [4] (which applies to a
k-tuples of linear threshold functions, i.e., the case d = 1).
Our new regularity lemma lets us extend our deterministic
approximate counting results from the Gaussian to the Boolean
domain.

Keywords-Approximate counting; derandomization; polyno-
mial threshold function

I. INTRODUCTION

Unconditional derandomization has been an important
research area in computational complexity theory over the
past two decades [5]–[8]. A major research goal in this
area is to obtain efficient deterministic approximate count-
ing algorithms for “low-level” complexity classes such as
constant depth circuits, small space branching programs,
polynomial threshold functions, and others [1], [9]–[14].
Under the widely-believed hypothesis P = BPP, there
must be a polynomial time deterministic algorithm that can
approximate the fraction of satisfying assignments to any
polynomial–size circuit. Since finding such an algorithm
seems to be out of reach of present day complexity the-
ory [15], research efforts have been directed to the afore-
mentioned low-level classes.

A natural class of Boolean functions to consider in
this context is the class of polynomial threshold functions
(PTFs). Recall that a degree-d PTF, d ≥ 1, is a Boolean func-
tion f : {−1, 1}n → {−1, 1} defined by f(x) = sign(p(x))
where p : {−1, 1}n → R is a degree-d polynomial over the
reals and sign : R → {−1, 1} is defined as sign(z) = 1
iff z ≥ 0. In the special case where d = 1, degree-d PTFs
are often referred to as linear threshold functions (LTFs).
Understanding the structure of these functions has been a
topic of extensive investigation for decades (see e.g., [16]–
[23] and many other works) due to their importance in
fields such as concrete complexity theory [24]–[30], learning
theory [31]–[34], voting theory [35], [36], and others.

In the context of approximate counting, there is a signifi-
cant gap in our understanding of low-degree PTFs. An out-
standing open problem is to design a deterministic algorithm
that approximates the fraction of satisfying assignments to
a constant degree PTF over {−1, 1}n to an additive ±ε
and runs in time poly(n/ε). Even for the class of degree-2
PTFs, until recently no deterministic algorithm was known
with running time poly(n) for any sub-constant value of
the error ε. In previous work [1] we obtained such an
algorithm. In the present paper we make further progress on
this problem by developing the first efficient deterministic



counting algorithm for the class of juntas of (any constant
number of) degree-2 PTFs.

A. Our main result.

As our main result, we give a polynomial-time determinis-
tic approximate counting algorithm for any Boolean function
of constantly many degree-2 polynomial threshold functions.

Theorem 1. [Deterministic approximate counting of func-
tions of degree-2 PTFs over {−1, 1}n] There is an algorithm
with the following properties: given an arbitrary function
g : {−1, 1}k → {−1, 1} and k degree-2 polynomials
q1(x1, . . . , xn), . . . , qk(x1, . . . , xn) and an accuracy param-
eter ε > 0, the algorithm runs (deterministically) in time
poly(n) ·2(1/ε)2O(k)

and outputs a value v ∈ [0, 1] such that∣∣∣∣ Pr
x∈{−1,1}n

[g(sign(q1(x)), . . . , sign(qk(x))) = 1]− v
∣∣∣∣ ≤ ε.

Our result may be (somewhat informally) restated in
terms of Boolean circuits as a poly(n)-time deterministic
approximate counting algorithm for the class NC0-Thr-
AND2 of depth-3 circuits that have an arbitrary NC0 gate
(i.e., junta) at the top level, arbitrary weighted threshold
gates at the middle level, and fanin-2 AND gates at the
bottom level. Theorem 1 is a broad generalization of the
main result of [1], which establishes the special k = 1 case
of the current result.

As noted in [1], the problem of determining whether
Prx∈{−1,1}n [p(x) ≥ 0] is nonzero for a degree-2 poly-
nomial p is well known to be NP-hard, and hence no
efficient algorithm, even allowing randomness, can give a
multiplicative approximation to Prx∼{−1,1}n [p(x) ≥ 0]
unless NP ⊆ RP. Given this, it is natural to work towards
an additive approximation, which is what we achieve.

Previous work. For k = 1 and d = 1 Gopalan et al. in
[14] obtained a multiplicatively (1±ε)-accurate deterministic
poly(n, 1/ε) time approximate counting algorithm. For d ≥
2, however, as noted above additive approximation is the best
one can hope for. For the special case of k = 1, in separate
work [1], the authors have given a deterministic approximate
counting algorithm that runs in time poly(n, 2poly(1/ε)). As
we explain in detail in the rest of this introduction, more
sophisticated ideas and techniques are required to obtain the
results of the current paper for general k. These include a
new central limit theorem based on Malliavin calculus and
Stein’s method, and a new decomposition procedure that
goes well beyond the decomposition approach employed in
[1].

We remark that the only previous deterministic approx-
imate counting algorithm for k-juntas of degree-2 PTFs
follows from the pseudorandom generators (PRGs) of [37]
(which are based on bounded independence). The running
time of the resulting algorithm is npoly(1/ε), even for k = 1.

B. Techniques.

Our high-level approach to establishing Theorem 1 fol-
lows a by now standard approach in this area. We first (i)
establish the result for general polynomials over Gaussian
inputs; then (ii) use a “regularity lemma” to show that every
polynomial over Boolean inputs can be decomposed into a
“small” number of regular polynomials over Boolean inputs;
and finally (iii) use an invariance principle to reduce the
problem for “regular” polynomials over Boolean inputs to
the problem for regular polynomials over Gaussian inputs.
This general approach has been used in a number of previous
works, including constructions of unconditional PRGs [4],
[28], [37]–[40], learning and property testing [41], [42],
and other works. However, we emphasize that significant
novel conceptual and technical work is required to make this
approach work in our setting. More specifically, to achieve
step (i), we require (i.a) a new multidimensional CLT for
degree-2 Gaussian polynomials with small eigenvalues and
(i.b) a new decomposition procedure that transforms a k-
dimensional vector of Gaussian polynomials into a tractable
form for the purpose of approximate counting. For step
(ii) we establish a novel regularity lemma for k-vectors
of low-degree polynomials. Finally, Step (iii) follows by
an application of the invariance principle of Mossel [43]
combined with appropriate mollification arguments [37]. In
the rest of this section we discuss our new approaches to
Steps (i) and (ii).

Step (i): The counting problem over Gaussian inputs.:
The current paper goes significantly beyond the techniques
of [1]. To explain our new contributions let us first briefly
recall the [1] approach.

The main observation enabling the result in [1] is this: Be-
cause of rotational symmetry of the Gaussian distribution, a
degree-2 Gaussian polynomial can be “diagonalized” so that
there exist no “cross-terms” in its representation. In a little
more detail, if p(x) =

∑
i,j aijxixj (we ignore the linear

term for simplicity), where x ∼ N(0, 1)n, then p can be
rewritten in the form p(y) =

∑
i λiy

2
i , where y ∼ N(0, 1)n

and the λi’s are the eigenvalues of the corresponding matrix.
Roughly speaking, once such a representation has been
(approximately) constructed, the counting problem can be
solved efficiently by dynamic programming. To construct
such a decomposition, [1] employs a “critical-index” based
analysis on the eigenvalues of the corresponding matrix. For
the analysis of the [1] algorithm, [1] proves a CLT for a
single degree-2 Gaussian polynomial with small eigenvalues
(this CLT is based on a result of Chaterjee [44]). (We note
that this informal description suppresses several non-trivial
technical issues, see [1] for details.)

At a high level, the approach of the current paper builds on
the approach of [1]. To solve the Gaussian counting problem
we use a combination of (i.a) a new multidimensional CLT
for k-tuples of degree-2 Gaussian polynomials with small



eigenvalues, and (i.b) a novel decomposition result for k-
tuples of degree-2 Gaussian polynomials. We now elaborate
on these steps.

(i.a) As our first contribution, we prove a new multidimen-
sional central limit theorem for k-tuples of degree-2
Gaussian polynomials (Theorem 3). Roughly speaking,
our CLT states that if each polynomial in the k-
tuple has small eigenvalues, then the joint distribution
of the k-tuple is close to a k-dimensional Gaussian
random variable with matching mean and covariance
matrix. The closeness here is with respect to the k-
dimensional Kolmogorov distance over Rk (a natural
generalization of Kolmogorov distance to vector-valued
random variables, which we denote dK and which is
useful for analyzing PTFs). To establish our new CLT,
we proceed in two steps: In the first (main) step, we
make essential use of a recent multidimensional CLT
due to Nourdin and Peccati [45] (Theorem 6) which is
proved using a combination of Malliavin calculus and
Stein’s method. To use this theorem in our setting, we
perform a linear-algebraic analysis which allows us to
obtain precise bounds on the Malliavin derivatives of
degree-2 Gaussian polynomials with small eigenvalues.
An application of [45] then gives us a version of
our desired CLT with respect to “test functions” with
bounded second derivatives (Theorem 7). In the second
step, we use tools from mollification [37] to translate
this notion of closeness into closeness with respect to
k-dimensional Kolmogorov distance, thus obtaining our
intended CLT. (As a side note, we believe that this work
is the first to use Malliavin-calculus-based tools in the
context of derandomization.)

(i.b) As our second contribution, we give an efficient pro-
cedure that transforms a k-tuple of degree-2 Gaussian
polynomials p = (p1, . . . , pk) into a k-tuple of degree-
2 Gaussian polynomials r = (r1, . . . , rk) such that:
(1) p and r are dK-close, and (2) the k-tuple r has
a “nice structure” that allows for efficient determin-
istic approximate counting. In particular, there is a
“small” set of variables such that for each restriction
ρ fixing this set, the restricted k-tuple of polynomials
r|ρ is well-approximated by a k-dimensional Gaussian
random variable (with the appropriate mean and co-
variance matrix). Once such an r has been obtained,
deterministic approximate counting is straightforward
via an appropriate discretization of the k-dimensional
Gaussian distribution (see Section IV).
We now elaborate on Item (1) above. At a high level,
the main step of our transformation procedure performs
a “change of basis” to convert p = (p1(x), . . . , pk(x))
into an essentially equivalent (for the purpose of ap-
proximate counting) vector q = (q1(y), . . . , qk(y)) of
polynomials. The high-level approach to achieve this

is reminiscent of (and inspired by) the decomposition
procedure for vectors of k linear forms in [4]. However,
there are significant complications that arise in our
setting. In particular, in the [4] approach, a vector of
k linear forms is simplified by “collecting” variables
in a greedy fashion as follows: Each of the k linear
forms has a “budget” of at most B, meaning that at
most B variables will be collected on its behalf. Thus,
the overall number of variables that are collected is
at most kB. At each stage some variable is collected
which has large influence in the remaining (uncollected)
portion of some linear form. The [4] analysis shows that
after at most B variables have been collected on behalf
of each linear form, each of the k linear forms will
either be regular or its remaining portion (consisting
of the uncollected variables) will have small variance.
In our current setting, we are dealing with k degree-2
Gaussian polynomials instead of k linear forms. Recall
that every degree-2 polynomial can be expressed as a
linear combination of squares of linear forms (i.e., it
can be diagonalized). Intuitively, since Gaussians are
invariant under change of basis, we can attempt to use
an approach where linear forms will play the role that
variables had in [4]. Mimicking the [4] strategy, each
quadratic polynomial will have at most B linear forms
collected on its behalf, and at most kB linear forms
will be collected overall. Unfortunately, this vanilla
strategy does not work even for k = 2, as it requires
a single orthonormal basis in which all the degree-2
polynomials are simultaneously diagonalized.
Instead, we resort to a more refined strategy. Starting
with the k quadratic polynomials, we use the following
iterative algorithm: If the largest magnitude eigenvalue
of each quadratic form is small, we are already in
the regular case (and we can appeal to our multidi-
mensional CLT). Otherwise, there exists at least one
polynomial with a large magnitude eigenvalue. We
proceed to collect the corresponding linear form and
“reduce” every polynomial by this linear form. (The
exact description of this reduction is somewhat involved
to describe, but intuitively, it uses the fact that Gaus-
sians are invariant under orthogonal transformations.)
This step is repeated iteratively; an argument similar
to [4] shows that for every quadratic polynomial, we
can collect at most B linear forms. At the end of
this procedure, each of the k quadratic polynomials
will either be “regular” (have small largest magnitude
eigenvalue compared to the variance of the remaining
portion), or else the variance of the remaining portion
will be small. This completes the informal description
of our transformation.

Our main result for the Gaussian setting is the following
theorem:



Theorem 2. [Deterministic approximate counting of func-
tions of degree-2 PTFs over Gaussians] There is an al-
gorithm with the following properties: It takes as input
explicit descriptions of n-variable degree-2 polynomials
q1, . . . , qk, an explicit description of a k-bit Boolean func-
tion g : {−1, 1}k → {−1, 1}, and a value ε > 0. It runs
(deterministically) in time poly(n) · 2poly(2k/ε) and outputs
a value ṽ ∈ [0, 1] such that∣∣PrG∼N(0,1)n [g(Q1(G), . . . , Qk(G)) = 1]− ṽ

∣∣ ≤ ε, (1)

where Qi(x) = sign(qi(x)) for i = 1, . . . , k.

We note that in the case k = 1, the algorithm of the
current work is not the same as the algorithm of [1] (indeed,
observe the above algorithm runs in time exponential in 1/ε
even for k = 1, whereas the algorithm of [1] runs in time
poly(n/ε) for a single Gaussian polynomial).

Step (ii): The regularity lemma.: Recall that the in-
fluence of variable i on a multilinear polynomial p =∑
S⊆[n] p̂(S)

∏
i∈S xi over {−1, 1}n (under the uniform

distribution) is Infi(p)
def
=
∑
S3i p̂(S)2 and that the vari-

ance of p is Var[p] = Ex∈{−1,1}n [(p(x) − E[p])2] =∑
∅6=S p̂

2(S). For p a degree-d polynomial we have Var[p] ≤∑n
i=1 Infi(p) ≤ d · Var[p], so for small constant d the

variance and the total influence
∑n
i=1 Infi(d) are equal up

to a small constant factor. A polynomial p is said to be τ -
regular if for all i ∈ [n] we have Infi(p) ≤ τ ·Var[p].

As noted earlier, by adapting known invariance principles
from the literature [46] it is possible to show that an algo-
rithm for approximately counting satisfying assignments of
a junta of degree-2 PTFs over N(0, 1)n will in fact also suc-
ceed for approximately counting satisfying assignments of
a junta of sufficiently regular degree-2 PTFs over {−1, 1}n.
Since Theorem 2 gives us an algorithm for the Gaussian
problem, to complete the chain we need a reduction from
the problem of counting satisfying assignments of a junta of
arbitrary degree-2 PTFs over {−1, 1}n, to the problem of
counting satisfying assignments of a junta of regular degree-
2 PTFs over {−1, 1}n.

We accomplish this by giving a novel regularity lemma
for k-tuples of degree-2 (or more generally, degree-d) poly-
nomials. Informally speaking, this is an efficient determinis-
tic algorithm with the following property: given as input
a k-tuple of arbitrary degree-2 polynomials (p1, . . . , pk)
over {−1, 1}n, it constructs a decision tree of restrictions
such that for almost every root-to-leaf path (i.e., restric-
tion ρ) in the decision tree, all k restricted polynomials
(p1)ρ, . . . , (pk)ρ are “easy to handle” for deterministic ap-
proximate counting, in the following sense: each (pi)ρ is
either highly regular, or else is highly skewed, in the sense
that its constant term is so large compared to its variance that
the corresponding PTF sign((pi)ρ) is guaranteed to be very
close to a constant function. Such leaves are “easy to handle”
because we can set the PTFs corresponding to “skewed”

polynomials to constants (and incur only small error); then
we are left with a junta of regular degree-2 PTFs, which can
be handled using the Gaussian algorithm as sketched above.

A range of related “regularity lemmas” have been given
in the LTF/PTF literature [2]–[4], [47], but none with all the
properties that we require. [48] implicitly gave a regularity
lemma for a single LTF, and [2], [3], [47] each gave (slightly
different flavors of) regularity lemmas for a single degree-d
PTF. Subsequently [4] gave a regularity lemma for k-tuples
of LTFs; as noted earlier our decomposition for k-tuples of
degree-2 polynomials over Gaussian inputs given in Section
IV uses ideas from their work. However, as we describe in
Section 7 of the full version, their approach does not seem
to extend to degrees d > 1, so we must use a different
approach to prove our regularity lemma.

C. Organization.

In Section II we state and prove our new multidimensional
CLT. We give the transformation procedure that is at the
heart of our decomposition approach in Section III, and
present the actual deterministic counting algorithm for the
Gaussian case that uses this transformation in Section IV.
Section V shows how the new regularity lemma for k-tuples
of Boolean PTFs gives the main Boolean counting result.
Due to space limitations, the regularity lemma is proved in
the full version.

II. A MULTIDIMENSIONAL CLT FOR DEGREE-2
GAUSSIAN POLYNOMIALS

In this section we present a central limit theorem which
plays a crucial role in the decomposition result which we
establish in the following sections. Let q = (q1, . . . , qk)
where each qi is a degree-2 polynomial in Gaussian random
variables (x1, . . . , xn) ∼ N(0, 1)n. Our CLT states that
under suitable conditions on q1, . . . , qk — all of them have
only small–magnitude eigenvalues, no Var[qi] is too large
and at least one Var[qi] is not too small — the distribution
of q is close (in k-dimensional Kolmogorov distance) to the
distribution of the k-dimensional Gaussian random variable
whose mean and covariance matrix match q.

Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be two
Rk-valued random variables. We define the k-dimensional
Kolmogorov distance between X and Y to be dK(X,Y ) =
sup(θ1,...,θk)∈Rk |Pr[∀ i ∈ [k] Xi ≤ θi]−Pr[∀ i ∈ [k] Yi ≤
θi]|. We have the following:

Theorem 3. Let q = (q1(x), . . . , qk(x)) where each qi is
a degree-2 Gaussian polynomial that satisfies Var[qi] ≤
1 and |λmax(qi)| ≤ ε for all i ∈ [k]. Suppose that
maxi∈[k] Var(qi) ≥ λ. Let C denote the covariance matrix
of q and let N = N((µ1, . . . , µk), C) be a k-dimensional
Gaussian random variable with covariance matrix C and
mean (µ1, . . . , µk) where µi = E[qi]. Then dK(q,N) ≤
O(k2/3ε1/6/λ1/6).



Looking ahead to motivate this result for our ulti-
mate purposes, Theorem 3 is useful for deterministic
approximate counting because if q = (q1, . . . , qk) sat-
isfies the conditions of the theorem, then the theorem
ensures that Prx∼N(0,1)n [∀` ∈ [k], q`(x) ≤ 0] is close to
Pr [∀` ∈ [k], N` ≤ 0]. Note that the latter quantity can be
efficiently estimated by a deterministic algorithm.

A key ingredient in the proof of Theorem 3 is a CLT
due to Nourdin and Peccati [45] which gives a bound that
involves the Malliavin derivative of the functions q1, . . . , qk.
In Section II-A we give the necessary background from
Malliavin calculus and build on the [45] result to prove a
result which is similar to Theorem 3 but gives a bound on
E[h(q)]−E[h(N)] rather than dK(q,N) for a broad class of
“test functions” h (see Theorem 7 below). In Section II-B
we show how Theorem 7 can be combined with standard
“mollification” techniques to yield Theorem 3.

A. Malliavin calculus and test functions with bounded sec-
ond derivative.

We need some notation and conceptual background before
we can state the Nourdin-Peccati multi-dimensional CLT
from [45]. Their CLT is proved using Stein’s method; while
there is a rich theory underlying their result we give only
the absolute basics that suffice for our purposes. (See e.g.
[45], [49] for detailed treatments of Malliavin calculus and
its interaction with Stein’s Method.)

We will use X to denote the space Rn endowed with
the standard N(0, 1)n normal measure and P to denote the
family of all polynomials over X . For integer d ≥ 0 we let
Hd denote the “d-th Wiener chaos” of X , namely the space
of all homogeneous degree-d Hermite polynomials over X .
We define the operator Id : P → Hd as follows : Id maps
p ∈ P to the degree-d part of its Hermite expansion, so if
p has degree d then p = I0(p) + · · ·+ Id(p).

We next define the generator of the Ornstein-Uhlenbeck
semigroup. This is the operator L which is defined on P via

Lp =
∞∑
q=0
−q · Iq(p).

It is easy to see that for p ∈ P we have the inverse operator

L−1p =
∞∑
q=1

−1

q
Iq(p).

Next we introduce the notion of the Malliavin derivative.
The Malliavin derivative operator D maps a real-valued
random variable (defined over X by a differentiable real-
valued function f : Rn → R) to an n-dimensional vector of
random variables in the following way: for f : Rn → R,

Df =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

The following key identity provides the fundamental
connection between Malliavin Calculus and Stein’s method,
which is used to prove Theorem 6 below:

Claim 4 (see e.g. Equation (2.22) of [45]). Let h : R→ R
be a continuous function with a bounded first derivative.
Let p and q be polynomials over X with E[q] = 0. Then
E[qh(p)] = E[h′(p) · 〈Dp , −DL−1q〉].

Specializing to the case h(x) = x, we have

Corollary 5. Let p and q be finite degree polynomials over
X with E[q] = 0. Then, E[qp] = E[〈Dp , −DL−1q〉].

We now recall the following CLT due to Nourdin and
Peccati:

Theorem 6. [ [45], see also [49], Theorem 6.1] Let p =
(p1, . . . , pk) where each pi is a Gaussian polynomial with
E[pi] = 0. Let C be a symmetric PSD matrix in Rk×k and
let N be a mean-0 k-dimensional Gaussian random variable
with covariance matrix C. Then for any h : Rk → R, h ∈ C2

such that ‖h′′‖∞ <∞, we have

|E[h(p)]−E[h(N)]| < 1

2
‖h′′‖∞ · disc(C, Y )

where Y ∈ Rk×k such that Y (i, j) = 〈Dpi ,−DL−1pj〉
and disc(C, Y ) =

∑k
i=1

∑k
j=1 E[|C(i, j)− Y (i, j)|].

We now use Theorem 6 to prove our main result of this
subsection, which is the following CLT for multidimensional
degree-2 Gaussian polynomials with small-magnitude eigen-
values. Our CLT says that such multidimensional random
variables must in fact be close to multidimensional Gaussian
distributions, where “closeness” here is measured using
test functions with bounded second derivative. (In the next
subsection we extend this result using mollification tech-
niques to obtain Theorem 3, which uses multidimensional
Kolmogorov distance.)

Theorem 7. Let q = (q1, . . . , qk) where each qi is a
degree-2 mean-0 Gaussian polynomial with Var[qi] ≤ 1 and
|λmax(qi)| ≤ ε. Let C denote the covariance matrix of q,
so C(i, j) = Cov(qi, qj) = E[qiqj ]. Let N be a mean-zero
k-dimensional Gaussian random variable with covariance
matrix C. Then for any h : Rk → R, h ∈ C2 such that
‖h′′‖∞ <∞, we have

|E[h(q)]−E[h(N)]| < O(k2ε) · ‖h′′‖∞.

Proof: As in Theorem 6, we write Y (a, b) to denote
〈Dqa,−DL−1qb〉. For any 1 ≤ a, b ≤ k, we have

C(a, b) = Cov(qa, qb) = E[qaqb] = E[Y (a, b)], (2)

where the second equality is because qa and qb have mean
0 and the third equality is by Corollary 5. Since C is a
covariance matrix and every covariance matrix is PSD, we
may apply Theorem 6, and we get that

|E[h(q)]−E[h(N)]| < k2

2
‖h′′‖∞ · ‖C − Y ‖∞



where ‖C − Y ‖∞ is the largest entry of the matrix C − Y .
Further, the quantity on the right hand side is exactly

‖h′′‖∞ · max
1≤a,b≤k

E[|Y (a, b)−E[Y (a, b)]|

where we used (2) for the equality. By Jensen’s inequality we
have E[|Y (a, b)−E[Y (a, b)]|] ≤

√
Var[Y (a, b)]. Lemma 8

below gives us that Var[Y (a, b)] ≤ O(ε2), and the theorem
is proved.

It remains to establish the following lemma:

Lemma 8. For each 1 ≤ a, b ≤ k, we have that
Var[Y (a, b)] = O(ε2).

Proof: Fix 1 ≤ a, b ≤ k, so qa(x1, . . . , xn) and
qb(x1, . . . , xn) are degree-2 Gaussian polynomials with
mean 0. Recalling the spherical symmetry of the N(0, 1)n

distribution, by a suitable choice of basis that diagonalizes
qa we may write

qa(x) =
n∑
i=1

λix
2
i +

n∑
i=1

βixi + γ

and
qb(x) =

n∑
i,j=1

δijxixj +
n∑
i=1

κixi + ρ,

where we take δij = δji for all 1 ≤ i, j ≤ k.
Recalling that Y (a, b) = 〈Dqa,−DL−1qb〉, we start by

observing that Dqa = (2λ`x` + β`)`=1,...,n. For −DL−1qb,
we have that L−1qb = −I1(qb) − (1/2)I2(qb). We have
I1(qb) =

∑n
i=1 κixi. Recalling that the first two normal-

ized Hermite polynomials are h1(x) = x and h2(x) =
(x2 − 1)/

√
2, it is straightforward to verify that I2(qb) (the

homogeneous degree-2 part of the Hermite expansion of qb)
is

I2(qb) =
∑

1≤i 6=j≤k
δijh1(xi)h1(xj) +

n∑
i=1

√
2 · δiih2(xi).

Hence

L−1qb = −
n∑
i=1

κixi−
1

2

∑
1≤i 6=j≤k

δijxixj−
1

2

n∑
i=1

δii(x
2
i −1),

so
−DL−1qb =

(
κ` +

n∑
i=1

δi`xi

)
`=1,...,n

.

We thus can write Y (a, b) as a degree-2 polynomial in the
variables x1, . . . , xn as

Y (a, b) =
n∑̀
=1

(2λ`x` + β`) ·
(
κ` +

n∑
i=1

δi`xi

)
=

n∑
i=1

n∑̀
=1

2λ`δi`xix` +
n∑̀
=1

2κ`λ`x`

+
n∑
i=1

(
n∑̀
=1

β`δi`

)
xi +

n∑̀
=1

κ`β`.

Given p : Rn → R defined by p(x) =∑
1≤i≤j≤n aijxixj +

∑
1≤i≤n bixi+C, let us define SS(p)

as SS(p) =
∑

1≤i≤j≤n a
2
ij +

∑
1≤i≤n b

2
i . We recall the

following straightforward claim, which was established in
[1]:

Claim 9. [Claim 20 of [1]] Given p : Rn → R, we have
that 2SS(p) ≥ Var(p) ≥ SS(p).

By Claim 9, we know that Var[Y (a, b)] ≤ SS(Y (a, b)).
Using the inequality (r + s)2 ≤ 2r2 + 2s2 for the degree-1
coefficients, to prove the lemma it suffices to show that

n∑
i=1

n∑̀
=1

(λ`δi`)
2 +

n∑̀
=1

(κ`λ`)
2 +

n∑
i=1

(
n∑̀
=1

β`δi`

)2

≤ O(ε2).

(3)
We bound each term of (3) in turn. For the first, we recall that
each λ` is an eigenvalue of qa and hence satisfies λ2

` ≤ ε2;
hence we have

n∑
i=1

n∑̀
=1

(λ`δi`)
2 ≤ ε2

n∑
i=1

n∑̀
=1

(δi`)
2 ≤ ε2,

where we have used Claim 9 again to get that∑n
i,`=1(δi`)

2 ≤ SS(qb) ≤ Var[qb] ≤ 1. For the second
term, we have

n∑̀
=1

(κ`λ`)
2 ≤ ε2 ·

n∑̀
=1

κ2
` ≤ ε2 · SS(qb) ≤ ε2.

Finally, for the third term, let us write M = (δi`) for the
k × k matrix corresponding to the quadratic part of qb and
β̄ for the column vector whose `-th entry is β`. Then we
have that
n∑
i=1

(
n∑̀
=1

β`δi`

)2

= ‖Mβ̄‖22 ≤ ‖λmax(M)β̄‖22 ≤ ε2‖β̄‖2

≤ ε2,

where the second inequality is because each eigenvalue of
pb has magnitude at most 1 and the third is because ‖β̄‖22 ≤
SS(pa) ≤ Var[pa] ≤ 1. This concludes the proof of Lemma
8.

B. From test functions with bounded second derivative to
multidimensional Kolmogorov distance.

In this subsection we show how “mollification” arguments
can be used to extend Theorem 7 to Theorem 3. The main
idea is to approximate the (discontinuous) indicator function
of an appropriate region by an appropriately “mollified”
function (that is continuous with bounded second derivative)
so that the corresponding expectations are approximately
preserved. There are several different mollification construc-
tions in the literature that could potentially by used for this
purpose. We use the following theorem from [37].

Theorem 10. [ [37], Theorem 4.8 and Theorem 4.10] Let
I : Rk → {0, 1} be the indicator of a region R in Rk and
c > 0 be arbitrary. Then there exists a function Ĩc : Rk →
[0, 1] satisfying:
• ‖∂β Ĩc/∂xβ‖∞ ≤ (2c)|β| for any β ∈ Nk, and



• |I(x) − Ĩc(x)| ≤ min{1, O(( k
c·d(x,∂R) )2)} for all x ∈

Rk,

where d(x, ∂R) is the Euclidean distance of the point x to
the closest point in R.

We use this to prove the following lemma, which says
that if a k-dimensional Gaussian X “mimics” the joint dis-
tribution Y of a vector of k degree-2 Gaussian polynomials
(in the sense of “fooling” all test functions h with bounded
second derivative), then X must have small k-dimensional
Kolmogorov distance from Y :

Lemma 11. Let p1(x), . . . , pk(x) : Rn → R be degree-
2 polynomials with maxi∈[k] Var(pi) ≥ λ, and let Y be
their joint distribution when x is drawn from N(0, 1)n.
Let X ∈ Rk be a jointly normal distribution such that
maxi Var(Xi) ≥ λ. Suppose that for all functions h : Rk →
R, h ∈ C2, it holds that |E[h(X)]− E[h(Y )]| ≤ ‖h′′‖∞ · η.
Then we have

dK(X,Y ) ≤ O
(
k1/3η1/6

λ1/6

)
.

Proof: Fix any θ ∈ Rn and define the function I :

Rk → {0, 1} to be the indicator of the region R
def
= {x ∈

Rk : xi ≤ θi}. Choose c > 0. We have∣∣Pr[∀ i ∈ [k] Xi ≤ θi]−Pr[∀ i ∈ [k] Yi ≤ θi]
∣∣

= |E[I(X)]−E[I(Y )]|
≤

∣∣∣E[Ĩc(X)]−E[Ĩc(Y )]
∣∣∣+
∣∣∣E[Ĩc(Y )]−EI(Y )]

∣∣∣
+
∣∣∣E[Ĩc(X)]−E[I(X)]

∣∣∣
≤ 4c2η +

∣∣∣E[Ĩc(Y )]−EI(Y )]
∣∣∣

+
∣∣∣E[Ĩc(X)]−E[I(X)]

∣∣∣ ,
where we used the first item of Theorem 10 to bound the
first term. We proceed to bound the other two terms. For the
first one, choose δ > 0 and now note that∣∣E[Ĩc(Y )]−EI(Y )]

∣∣
≤ Ey∼Y [|Ĩc(y)− I(y)|]

≤ Pry∼Y [d(y, ∂R) ≤ δ] +O

(
k2

c2δ2

)
≤ O

( √
δ

λ1/4

)
+O

(
k2

c2δ2

)
,

The second inequality above used 0 ≤ I, Ĩc ≤ 1 and the
second item of Theorem 10. The final inequality used the
Carbery-Wright anti-concentration bound together with the
observation that in order for y ∼ Y to be within distance δ
of δR, it must be the case that |pi(y) − θi| ≤ δ where i is
the element of [k] that has Var(pi) ≥ λ. Similar reasoning

gives that∣∣E[Ĩc(X)]−EI(X)]
∣∣ ≤ O( √δ

λ1/4

)
+O

( k2

c2δ2

)
(in fact here the

√
δ

λ1/4 can be strengthened to δ
λ1/2 because

now Xi is a degree-1 rather than degree-2 polynomial in
N(0, 1) Gaussians, but this will not help the overall bound).
Optimizing for δ by setting δ = k4/5λ1/10/c4/5, we get that∣∣Pr[∀ i ∈ [k] Xi ≤ θi]−Pr[∀ i ∈ [k] Yi ≤ θi]

∣∣
≤ 4c2η +O

(
k2/5

c2/5λ1/5

)
.

Now optimizing for c by choosing c = k1/6/(η5/12γ1/12),
we get that∣∣Pr[∀ i ∈ [k] Xi ≤ θi]−Pr[∀ i ∈ [k] Yi ≤ θi]

∣∣
≤ O

(
k1/3η1/6

λ1/6

)
,

which concludes the proof of Lemma 11.
With Lemma 11 and Theorem 7 in hand we are ready to

prove Theorem 3:

Proof of Theorem 3: For i ∈ [k] let q̃i(x) = qi(x)−E[qi], so
q̃i has mean zero. Applying Theorem 7 to q̃ = (q̃1, . . . , q̃k)
we get that any h with ‖h′′‖∞ ≤ ∞ satisfies |E[h(q̃)] −
E[h(N(0, C))]| ≤ O(k2ε) · ‖h′′‖∞. Applying Lemma 11,
taking X to be N(0, C) and its η parameter to be O(k2ε),
we get that

dK(q̃, N(0, C)) ≤ O
(
k2/3ε1/6

λ1/6

)
,

which gives the theorem as claimed.

III. TRANSFORMING A k-TUPLE OF DEGREE-2
GAUSSIAN POLYNOMIALS

In this section we present a deterministic procedure,
called Transform, which transforms an arbitrary k-tuple
of degree-2 polynomials (q1, . . . , qk) into an “essentially
equivalent” (for the purpose of approximately counting PTF
satisfying assignments under the Gaussian distribution) k-
tuple of degree-2 polynomials (r1, . . . , rk) that have a “nice
structure”. This structure enables an efficient deterministic
decomposition of the joint distribution. In the following sec-
tion we will give an efficient algorithm to do deterministic
approximate counting for vectors of polynomials with this
“nice structure.”

In more detail, the main theorem of this section, Theorem
12, says the following: Any k-tuple q = (q1, . . . , qk) of
degree-2 Gaussian polynomials can be efficiently determinis-
tically transformed into a k-tuple r = (r1, . . . , rk) of degree-
2 Gaussian polynomials such that (i) dK(r, q) ≤ O(ε),
and (ii) for every restriction fixing the first t = poly(k/ε)
variables, the k-tuple r|ρ = (r1|ρ, . . . , rk|ρ) of restricted



polynomials has k-dimensional Kolmogorov distance O(ε)
from the k-dimensional Normal distribution with matching
mean and covariance matrix. More formally,

Theorem 12. There is an algorithm Transform with
the following properties: It takes as input a k-tuple
q = (q1, . . . , qk) of degree-2 polynomials over Rn with
Varx∼N(0,1)n [qi(x)] = 1 for all i ∈ [k], and a parameter
ε > 0. It runs in deterministic time poly(n, k, 1/ε) and
outputs a k-tuple r = (r1, . . . , rk) of degree-2 polynomials
over Rn and a value 0 ≤ t ≤ O(k ln(1/ε)/ε2) such that
both of the following hold:

(i) dK(q, r) ≤ O(ε), where q is the random variable
q = (q1(x), . . . , qk(x)) with x ∼ N(0, 1)n and
r = (r1(y), . . . , rk(y)) with y ∼ N(0, 1)n; and

(ii) For every restriction ρ = (ρ1, . . . , ρt), we have
dK(r|ρ, N(µ(r|ρ),Σ(rρ))) ≤ ε. Here “rρ” denotes
the random variable (r1|ρ(y), . . . , rk|ρ(y)) where y ∼
N(0, 1)n and ri|ρ(y)

def
= ri(ρ1, . . . , ρt, yt+1, . . . , yn);

µ(r|ρ) denotes the vector of means (µ1|ρ, . . . , µk|ρ) ∈
Rk where µi|ρ = Ey∼N(0,1)n [ri|ρ(y)]; and Σ(rρ)
denotes the covariance matrix in Rk×k whose (i, j)
entry is Covy∼N(0,1)n(ri|ρ(y), rj |ρ(y)).

At a high level, the Transform procedure first performs
a “change of basis” using the procedure Change-Basis to
convert q = (q1(x), . . . , qk(x)) into an “almost equivalent”
vector p = (p1(y), . . . , pk(y)) of polynomials. (Concep-
tually the distribution of (p1(y), . . . , pk(y)) is identical to
the distribution of (q1(x), . . . , qk(x)), but in reality some
approximations need to be made because we can only
approximately compute eigenvalues, etc.; hence the two
vector-valued random variables are only “almost equiva-
lent.”) Next, the Transform procedure runs Process-Polys
on (p1, . . . , pk); this further changes each pi slightly, and
yields polynomials r1, . . . , rk which are the final output
of Transform(q1, . . . , qk). A detailed description of the
Transform procedure follows:

Transform
Input: vector q = (q1, . . . , qk) of degree-2 polynomials
q`(x1, . . . , xn) such that Ex∼N(0,1)n [q`(x)2] = 1 for all
` = 1, . . . , k; parameter ε > 0
Output: A vector r = (r1(y), . . . , rk(y)) of degree-
2 polynomials over Rn, and a value 0 ≤ t ≤
O(k ln(1/ε)/ε2).

1) Set η = (ε/k)4/(log(k/ε))2 and ε′ = ε12η2/k8.
2) Run Change-Basis((q1, . . . , qk), ε′, η) and let

(p1, . . . , pk), t be its output.
3) Run Process-Polys((p1, . . . , pk), t, η) and let

(r1, . . . , rk), k′ be its output.
4) Output (r1, . . . , rk), t.

Subsection III-A below gives a description and analysis
sketch of Change-Basis. Further details are postponed to
the full version.

A. The Change-Basis procedure.

1) Setup for the Change-Basis procedure.: We start with
a few definitions. We say that a set A = {L1(x), . . . , Lr(x)}
of r ≤ n linear forms Li(x) = v(i) ·x over x1, . . . , xn is or-
thonormal if Ex∼N(0,1)n [Li(x)Lj(x)] = δij for 1 ≤ i, j ≤ r
(equivalently, v(1), . . . , v(r) are orthonormal vectors).

Definition 13. Let q : Rn → R be a degree-2 polynomial
q(x) =

∑
1≤i≤j≤n aijxixj +

∑
1≤i≤n bixi + c and let

{Li(x) = v(i) ·x}i=1,...,n be a full orthonormal set of linear
forms. Let A = {L1, . . . , Lr} and B = {Lr+1, . . . , Ln} for
some 0 ≤ r ≤ n. We define Proj(q,A,B), the projection
of q onto A, and Res(q,A,B), the residue of q w.r.t. A, as
follows. Rewrite q using the linear forms Li(x), i.e.

q =
∑

1≤i≤j≤n
αijLi(x)Lj(x) +

∑
1≤i≤n

βiLi(x) + c. (4)

Define

Res(q,A,B)
def
=

∑
r<i≤j≤n

αijLi(x)Lj(x)+
∑

r<i≤n
βiLi(x)+c

(5)
and

Proj(q,A,B)
def
= q − Res(q,A,B).

Idealized Assumption #1: There is a poly(n) time de-
terministic procedure Complete-Basis which, given a set
A = {Li(x)}i=1,...,r of orthonormal linear forms, outputs
a set B = {Lj(x)}j=r+1,...,n such that A ∪ B is a full
orthonormal set of linear forms.

Claim 14. There is an efficient algorithm Rewrite which,
given as input q and sets A = {Li(x)}i=1,...,r, B =
{Lr+1(x), . . . , Ln(x)} such that A∪B is a full orthonormal
basis, outputs coefficients αij , βi, c such that (4) holds.

Next we observe that the largest eigenvalue can never
increase as we consider the residue of q with respect to
larger and larger orthonormal sets of linear forms:

Lemma 15. Fix any degree-2 polynomial q and any full
orthonormal set {Li(x) = v(i) · x}i=1,...,n of linear forms.
Let A = {Li(x) = v(i) · x}i=1,...,r and B = {Li(x) = v(i) ·
x}i=r+1,...,n. Then we have that |λmax(Res(q,A,B))| ≤
|λmax(q)|.

2) The Change-Basis procedure.: We now describe the
Change-Basis procedure. This procedure takes as input a
vector q = (q1, . . . , qk) of k degree-2 polynomials, where
each qi is specified explicitly by its coefficients, and two
parameters ε′, η > 0. It outputs a vector of polynomials
p = (p1(y), . . . , pk(y)) where each p`(y1, . . . , yn) is also



specified explicitly by coefficients α(`)
ij , β(`)

i , c(`) that define
p`(y) as

p`(y) =
∑

1≤i≤j≤n
α

(`)
ij yiyj +

∑
1≤i≤n

β
(`)
i yi + c(`), (6)

and an integer 0 ≤ t ≤ k ln(1/η)/ε′2. As its name suggests,
the Change-Basis procedure essentially performs a change
of basis on Rn and rewrites the polynomials q`(x) in the
new basis as p`(y). It is helpful to think of yi as playing the
role of Li(x) where {Li(x)}i=1,...,n is a set of orthonormal
linear forms computed by the algorithm, and to think of the
coefficients α(`)

ij , β(`)
i , c(`) defining p`(y) as being obtained

from q`(x) by rewriting q`(x) using the linear forms Li(x)
as in (4).

The Change-Basis procedure has two key properties.
The first is that the two vector-valued random vari-
ables (q1(x), . . . , qk(x)) (where x ∼ N(0, 1)n) and
(p1(y), . . . , pk(y)) (where y ∼ N(0, 1)n) are very close in
Kolmogorov distance. (In the “idealized” version they are
identically distributed, and in the “real” version they are
close in k-dimensional Kolmogorov distance.) The second
is that each of the p` polynomials is “nice” in a sense which
we make precise in Lemma 16 below. (Roughly speaking,
p` either almost entirely depends only on a few variables,
or else has a small-magnitude max eigenvalue.)

Change-Basis
Input: vector q = (q1, . . . , qk) of degree-2 polynomials
q`(x1, . . . , xn) such that Ex∼N(0,1)n [q`(x)2] = 1 for all
` = 1, . . . , k; parameters ε′, η > 0
Output: A vector p = (p1(y), . . . , pk(y)) of degree-2
polynomials (described explicitly via their coefficients
as in (6)) satisfying the guarantees of Lemma 16, and
an integer t ≥ 0.

1) Initialize the set of linear forms A to be ∅. Let
q̃`(x) = q`(x) for all ` = 1, . . . , k.

2) If each ` = 1, . . . , k is such that q̃` satisfies either
(a) Var[q̃`] ≤ η, or
(b) (λmax(q̃`))

2

Var[q̃`]]
≤ ε′,

then use Complete-Basis to compute a set B of
linear forms B = {L|A|+1(x), . . . , Ln(x)} such
that A∪ B is a full orthonormal basis, and go to
Step 5. Otherwise, proceed to Step 3.

3) Let `′ ∈ [k] be such that q̃`′ does not satisfy either
(a) or (b) above. Let v ∈ Rn be a unit eigenvector
corresponding to the maximum magnitude eigen-
value λmax(q̃`′). Let L(x) = v · x. Add L(x) to
A.

4) Use Complete-Basis(A) to compute a set of
linear forms B = {L|A|+1(x), . . . , Ln(x)} such
that A ∪ B is a full orthonormal basis. For all

` = 1, . . . , k use Rewrite(q`,A,B) to com-
pute coefficients α

(`)
ij , β

(`)
i , c(`) as in (4)). Set

q̃`(x) = Res(q`,A,B) and Proj(q`,A,B) =
q`(x)− q̃`(x). Go to Step 2.

5) We have A = {L1(x), . . . , L|A|(x)} and B =
{L|A|+1(x), . . . , Ln(x)}. For each ` ∈ [k] use
Rewrite on q` to compute coefficients α(`)

ij , β(`)
i ,

c(`) such that q`(x) equals∑
1≤i≤j≤n

α
(`)
ij Li(x)Lj(x)+

∑
1≤i≤n

β
(`)
i Li(x)+c(`).

Output the polynomials p1(y), . . . , pk(y) defined
by these coefficients as in (6), and the value t =
|A|.

Idealized assumption #2: There is a poly(n) time deter-
ministic procedure which, given q̃` as input,

• exactly computes the maximum eigenvalue λmax(q̃`),
and

• exactly computes a unit eigenvector corresponding to
λmax(q̃`).

In the full version, we prove the following:

Lemma 16. (Idealized lemma about Change-Basis:) Given
as input a vector q = (q1, . . . , qk) of degree-2 polyno-
mials such that Ex∼N(0,1)n [qi(x)2] = 1 and parameters
ε′, η > 0, the algorithm Change-Basis((q1, . . . , qk), ε′, η))
runs in time poly(n, t, 1/ε′) and outputs polynomials
p1(y), . . . , pk(y) (described via their coefficients as in (6))
and a value 0 ≤ t ≤ k ln(1/η)/ε′2 such that items (1) and
(2) below both hold.

1) The vector-valued random variables q =
(q1(x), . . . , qk(x)) (where x ∼ N(0, 1)n) and
p = (p1(y), . . . , pk(y)) (where y ∼ N(0, 1)n) are
identically distributed.

2) For each ` ∈ [k], at least one of the following holds:

a) Vary∼N(0,1)n [Tailt(p`(y))] ≤ η, or
(b) (λmax(Tailt(p`))

2

Var[Tailt(p`)]
≤ ε′.

(Non-idealized lemma about Change-Basis:) This is the
same as the idealized lemma except that (1) above is
replaced by

dK(p, q) ≤ O(ε′). (7)

In a real number model of computation, the “Idealized
Assumptions” hold true and we obtain the “idealized” ver-
sion of Lemma 16. In a bit complexity model the “Idealized
Assumptions” do not hold in that we cannot exactly compute
the desired quantities, and instead high-accuracy approxima-
tions must be used. See the end of Section 2 (Preliminaries)
of the full version for a discussion of approximation issues
and error bounds.



IV. PROOF OF THEOREM 2: EFFICIENT DETERMINISTIC
APPROXIMATE COUNTING USING TRANSFORMED

DEGREE-2 GAUSSIAN POLYNOMIALS

Given Theorem 12, there is a natural approach for the
counting algorithm Count-Gauss, corresponding to the fol-
lowing steps:

Count-Gauss
Input: k-tuple p = (p1, . . . , pk) of degree-2
polynomials p`(y1, . . . , yn), ` ∈ [k], such that
Vary∼N(0,1)n [p`(y)] = 1; parameter ε > 0.
Output: An ±O(ε) additive approximation to the prob-
ability Prx∼N(0,1)n [∀` ∈ [k], p`(x) ≥ 0].

1) Run Transform(p, ε) to obtain a k-tuple of poly-
nomials r = (r1, . . . , rk) each of unit variance
and a value 0 ≤ t ≤ O(k ln(1/ε)/ε2).

2) Deterministically construct a product distribution
Dt = ⊗ti=1Di supported on a set S ⊆ Rt of
cardinality (kt/ε)O(t) such that a t-tuple τ =
(τ1, . . . , τt) ∈ Rt drawn from Dt is “close” to
a draw of ρ = (ρ1, . . . , ρt) from N(0, 1)t. In
particular, Di = D for all i ∈ [t], where D is
a sufficiently accurate discrete approximation to
N(0, 1). (See the proof of Lemma 17 for a precise
description of the construction and guarantee.)

3) For each τ ∈ S, simplify the polynomials
r1, . . . , rk by applying the restriction to obtain
(r1|τ , . . . , rk|τ ), and compute the vector of means
µ(rτ ) and matrix of covariances Σ(rτ ).

4) Finally, for each τ ∈ S, deterministically com-
pute a ±ε-accurate additive approximation to the
probability Pry∼N(µ(rτ ),Σ(rτ ))[∀i ∈ [k], yi ≥ 0];
let pτ be the value of the approximation that is
computed. Average all the values of pτ obtained
for each value τ ∈ S , and return the average.

Recall that the k-vector of polynomials r = (r1. . . . , rk)
constructed in Step 1 satisfies the statement of Theorem 12.
In particular, for every restriction of the first t variables,
the restricted polynomials are ε-close in Kolmogorov dis-
tance to a Gaussian with the corresponding mean and
covariance matrix. Hence, for each possible restriction ρ
of these t variables, the probability that the restricted
intersection of polynomials is satisfied is ε-close to the
quantity Pry∼N(µ(rρ),Σ(rρ))[∀i ∈ [k], yi ≥ 0]. Hence, if
we could take “all” possible restrictions of these t variables,
compute the corresponding probabilities and “average” the
outcomes, we would end up with an ε-approximation to the
desired probability. To achieve this efficiently, in Step 2, we
construct a sufficiently accurate discrete approximation to
the normal distribution N(0, 1)t.

We have the following lemma:

Lemma 17. Let r` : Rn → R, ` ∈ [k], be k unit variance
degree-2 polynomials. There exists a discrete distribution
Dt = ⊗ti=1Di supported on (kt/ε)O(t) points that can be
constructed explicitly in output polynomial time such that∣∣Prx∼Nt(0,1),y∼Nn−t(0,1) [∀` ∈ [k], r`(x, y) ≥ 0]−

Prx̃∼Dt,y∼Nn−t(0,1) [∀` ∈ [k], r`(x̃, y) ≥ 0]
∣∣ ≤ O(ε).

For Step 4 we note that the corresponding problem is that
of counting an intersection of k halfspaces with respect to
a Gaussian distribution over Rk. We recall that, by Theo-
rem 1.5 of [4], s = Õ(k6/ε2)-wise independence ε-fools
such functions. Since we are dealing with a k-dimensional
problem, any explicit construction of an s-wise independent
distribution yields a deterministic ε-approximate counting
algorithm that runs in time kO(s), completing the proof of
Theorem 2.

V. DETERMINISTIC APPROXIMATE COUNTING FOR
g(sign(q1(x)), . . . , sign(qk(x))) OVER {−1, 1}n

In this section we extend the deterministic approximate
counting result that we established for the Gaussian distri-
bution on Rn to the uniform distribution over {−1, 1}n, and
prove Theorem 1. As discussed in the introduction, there
are three main ingredients in the proof of Theorem 1. The
first, of course, is the Gaussian counting result, Theorem 2,
established earlier. The second is a deterministic algorithmic
regularity lemma for k-tuples of low-degree polynomials:

Lemma 18. [algorithmic regularity lemma, general k, gen-
eral d] There is an algorithm ConstructTree with the
following property:

Let p1, . . . , pk be degree-d multilinear polynomials with b-
bit integer coefficients over {−1, 1}n. Fix 0 < τ, ε, δ < 1/4.
Algorithm ConstructTree (which is deterministic) runs in
time poly(n, b, 2Dd,k(τ,ε,δ)) and outputs a decision tree T

of depth at most Dd,k(τ, ε, δ) :=
(

1
τ · log 1

ε ·
)(2d)Θ(k)

· log 1
δ .

Each internal node of the tree is labeled with a vari-
able and each leaf ρ is labeled with a k-tuple of poly-
nomials ((p1)ρ, . . . , (pk)ρ) and with a k-tuple of labels
(label1(ρ), . . . , labelk(ρ)). For each leaf ρ and each i ∈ [k]
the polynomial (pi)ρ is the polynomial obtained by applying
restriction ρ to polynomial pi, and labeli(ρ) belongs to the
set {+1,−1,“fail”, “regular”}. The tree T has the following
properties:

1) For each leaf ρ and index i ∈ [k], if labeli(ρ) ∈
{+1,−1}, then Prx∈{−1,1}n [sign((pi)ρ(x)) 6=
labeli(ρ)] ≤ ε;

2) For each leaf ρ and index i ∈ [k], if
labeli(ρ) =“regular” then (pi)ρ is τ -regular;
and

3) With probability at least 1 − δ, a random path from
the root reaches a leaf ρ such that labeli(ρ) 6=“fail”
for all i ∈ [k].



The third ingredient is the following version of the mul-
tidimensional invariance principle, which lets us move from
the Gaussian to the Boolean domain:

Theorem 19. Let p1(x), . . . , pk(x) be degree-d multilinear
polynomials over {−1, 1}n, and let Pi(x) = sign(pi(x)) for
i = 1, . . . , k. Suppose that each pi is τ -regular. Then for any
g : {−1, 1}k → {−1, 1}, we have that∣∣Prx∼{−1,1}n [g(P1(x), . . . , Pk(x)) = 1]−

PrG∼N(0,1)n [g(P1(G), . . . , Pk(G)) = 1]
∣∣ ≤ ε̃(d, τ, k),

where ε̃(d, τ, k) := 2O(k) · 2O(d) · τ1/(8d).

The regularity lemma for k-tuples of polynomials, Lemma
18, requires significant technical work; we prove it in Section
7 of the full version. In contrast, Theorem 19 is a fairly direct
consequence of the multidimensional invariance principle of
Mossel [46] (see full version). In the full version we show
how these results can be combined to prove Theorem 1.
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