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Abstract

This paper studies the complexity of learning classes of expressions in propositional
logic from equivalence queries and membership queries. In particular, we focus on
bounding the number of queries that are required to learn the class ignoring com-
putational complexity. This quantity is known to be captured by a combinatorial
measure of concept classes known as the certificate complexity. The paper gives new
constructions of polynomial size certificates for monotone expressions in conjunctive
normal form (CNF), for unate CNF functions where each variable affects the func-
tion either positively or negatively but not both ways, and for Horn CNF functions.
Lower bounds on certificate size for these classes are derived showing that for some
parameter settings the new certificate constructions are optimal. Finally, the paper
gives an exponential lower bound on the certificate size for a natural generalization
of these classes known as renamable Horn CNF functions, thus implying that the
class is not learnable from a polynomial number of queries.
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1 Introduction

This paper studies the complexity of learning classes of expressions in proposi-
tional logic from equivalence queries and membership queries [1]. In this model
a learner tries to identify a hidden concept by asking questions. An equivalence
query allows the learner to present a hypothesized definition of the concept
and ask whether it is correct. If the definition is not correct the learner obtains
a counterexample, which can be chosen adversarially. In a membership query
the learner presents a potential instance and asks whether it is a member of
the concept. The goal of the learner is to identify the concept while using
as little resources as possible. Here resources refer both to run time and to
the number of queries asked in the process of identifying the concept. Such
complexity measures are relevant when we fix a concept class, a set of con-
cepts, from which the hidden concept is chosen. Then a single learner must be
able to identify any member of this class in this manner while using bounded
resources.

Since its introduction this model has been extensively studied and many
classes have been shown to be efficiently learnable. Of particular relevance
for the current paper are learning algorithms for monotone expressions in
disjunctive normal form (DNF) [2,1], unate DNF expressions [3], and Horn
expressions [4,5]. Some results in this model have also been obtained for sub-
classes of Horn expressions in first order logic but the complexity map there
is less clear. Except for a “monotone-like case” [6] the query complexity is
either exponential in one of the crucial parameters (e.g. universally quantified
variables) [7,8] or the algorithms use additional syntax based oracles [9–11]. It
is thus interesting to investigate whether this gap is necessary. Results in [12]
show that VC-dimension [13] cannot resolve this question. We therefore need
to investigate the certificate complexity [14,15] that more directly captures
the query complexity. The current paper takes a first step in this direction by
studying the query complexity in the propositional case.

Certificate complexity was introduced by [14,15] (see also [16,17]) who show
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that a class C is learnable from a polynomial number of proper equivalence
queries (using hypotheses in C) and membership queries if and only if the
class C has polynomial size certificates. This characterization is information
theoretic and ignores run time. Certificates have already proved to be a useful
tool for studying learnability. For example, conjunctions of unate formulas are
learnable with a polynomial number of queries but not learnable in polynomial
time unless P=NP [18]. A recent result of [19] shows that DNF expressions
require a super-polynomial number of queries even when the hypotheses are
larger than the target function by some factor, albeit the factor is small.

This paper establishes lower and upper bounds on certificates for several
classes. We give constructions of polynomial certificates for (1) monotone CNF
where no variables are negated, (2) unate CNF where by renaming some vari-
ables as their negations we get a monotone formula, and (3) Horn CNF where
each clause has at most one positive literal. We give certificates in the stan-
dard learning model as well as the model of learning from entailment [5] that
is studied extensively in Inductive Logic Programming (see e.g. [20]).

The learnability results that follow from these certificate results are weaker
than the results in [2,1,3,4] since we obtain query complexity results and the
results cited are for time complexity. However, the certificate constructions
which we give are different from those implied by these earlier algorithms,
so our results may be useful in suggesting new learning algorithms. We also
give new lower bounds on certificate size for each of these concept classes.
For some parameter settings, our lower bounds imply that our new certificate
constructions are exactly optimal.

Finally, we also consider the class of renamable Horn CNF expressions. Note
that unate CNF and Horn CNF generalize monotone expressions in two dif-
ferent ways. Renamable Horn expressions combine the two allowing to get
a Horn formula after renaming variables. Renamable Horn formulas can be
identified in polynomial time and have efficient satisfiability algorithms and
are therefore interesting as a knowledge representation [21]. While unate CNF
and Horn CNF each have polynomial certificates, we give an exponential lower
bound on certificate size for renamable Horn CNF. This proves that the class
of renamable Horn CNFs is not learnable in polynomial time from membership
and equivalence queries, and answers an open question posed in [22].

We note that recent work of [23] gives strong negative results on learning
DNF formulas. More precisely, [23] show that if NP 6= RP then there is no
polynomial-time proper PAC learning algorithm for DNF formulas. This re-
sult thus provides a computational lower bound for proper learning of DNF
in the standard PAC setting of learning from random examples only. In con-
trast, the certificate constructions that we consider have implications for the
information-theoretic complexity of proper learning algorithms in the frame-
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work of exact learning from membership and equivalence queries. Characteriz-
ing the query complexity of learning DNF in this model remains an important
open question.

2 Preliminaries

We consider families of expressions built from n ≥ 1 propositional variables.
We assume some fixed ordering so that an element of {0, 1}n specifies an
assignment of a truth value to these variables. The weight of an assignment is
the number of bits that are non-zero.

A literal is a variable or its negation. A term is a conjunction of literals. A
DNF expression is a disjunction of terms. A clause is a disjunction of literals.
A CNF expression is a conjunction of clauses. The DNF size of a boolean
function f : {0, 1}n → {0, 1}, denoted |f |DNF , is the minimum number of
terms in a DNF representation of f . The CNF size of f , |f |CNF , is defined
analogously. In general, let R be a representation class for boolean formulas.
Then |f |R is the R-size of a minimal representation for f in R. If f 6∈ R, we
assign |f |R =∞.

Next, we present some classes of boolean formulas and their properties. In
what follows we use the notation f(x) = 1 or x |= f interchangeably, where f
is a boolean function and x is an assignment. Both stand for classical formula
satisfiability. Additionaly, when x |= f we say that x is positive for f and
when x 6|= f we say that x is negative for f .

A term t is a minterm for a boolean function f if t |= f but t′ 6|= f for every
other term t′ ⊂ t. A DNF representation t1∨ . . .∨ tk of a boolean function f is
non redundant if each ti is a minterm of f and if removing any ti changes the
function. That is, there is an assignment x such that x |= ti but x 6|= ∨j 6=itj.
Analogously, a CNF representation c1∧ . . .∧ ck is not redundant if each clause
is minimal and for all ci we have ∧j 6=icj 6|= ci.

A monotone CNF (DNF) expression is a CNF (DNF) with no negated vari-
ables. Semantically, a function is monotone iff:

∀x, y ∈ {0, 1}n : if x ≤ y then f(x) ≤ f(y), (1)

where ≤ between assignments denotes the standard bit-wise comparison rela-
tion.

An anti-monotone CNF (DNF) expression is a CNF (DNF) where all variables

4



appear negated. Semantically, a function is anti-monotone iff:

∀x, y ∈ {0, 1}n : if x ≤ y then f(x) ≥ f(y). (2)

Let a, x, y ∈ {0, 1}n be three assignments. The inequality between assignments
x ≤a y is defined as x ⊕ a ≤ y ⊕ a, where ⊕ is the bit-wise exclusive OR.
Intuitively if a[i], the i’th bit of a, is 0 then we get the normal order on this
bit. But if a[i] = 1 we use 1 < 0 for the corresponding variable. We denote
x <a y iff x ≤a y but y 6≤a x.

A boolean function f (of arity n) is unate iff there exists some assignment a
(called an orientation for f) such that

∀x, y ∈ {0, 1}n : if x ≤a y then f(x) ≤ f(y). (3)

Equivalently, a variable cannot appear both negated and unnegated in any
non-redundant CNF or DNF representation of f . Each variable is either mono-
tone or anti-monotone. It is well known that a unate DNF expression has a
unique minimal representation given by the disjunction of its minterms, and
similarly the minimal CNF representation is unique.

A Horn clause is a clause in which there is at most one positive literal, and a
Horn expression is a conjunction of Horn classes. A Horn clause (xi1 ∨ · · · ∨
xik ∨xik+1

) is easily seen to be equivalent to the implication xi1 · · · xik → xik+1
;

we refer to xi1 · · · xik as the antecedent and to xik+1
as the consequent of such

a clause. Notice that an anti-monotone CNF expression can be seen as a Horn
CNF whose clauses have empty consequents. For example, the anti-monotone
CNF (ā ∨ b̄) ∧ (b̄ ∨ c̄) is equivalent to the Horn CNF (ab → false) ∧ (bc →
false).

Let x, y ∈ {0, 1}n be two assignments. Their intersection x∩y is the assignment
that sets to 1 only those variables that are 1 in both x and y. It is well known
that a function is Horn iff

∀x, y ∈ {0, 1}n : if x |= f and y |= f, then x ∩ y |= f (4)

The original characterization is due to McKinsey [24], although it was stated
in a different context and in more general terms. It was further explored by
Horn [25]. A proof adapted to our setting can be found e.g. in [26].

Let a, x, y ∈ {0, 1}n be three assignments. Let a[i] be the i-th bit of assignment
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a. The unate intersection x ∩a y is defined as:

(x ∩a y)[i] =











x[i] ∧ y[i] if a[i] = 0

x[i] ∨ y[i] otherwise

It is easy to see that this definition is equivalent to (x∩a y)[i] = ((x[i]⊕a[i])∩
(y[i] ⊕ a[i])) ⊕ a[i] and that (x ∩a y) ≤a x and (x ∩a y) ≤a y so that ≤a and
∩a behave like their normal counterparts.

We say that a boolean function f (of arity n) is renamable Horn if there
exists some assignment c such that fc is Horn, where fc(x) = f(x⊕ c) for all
x ∈ {0, 1}n. In other words, the function obtained by taking the complement
of variables set to 1 in c is Horn. We call such an assignment c an orientation
for f . Equivalently, a function is renamable Horn iff there exists an assignment
c such that

∀x, y ∈ {0, 1}n : if x |= f and y |= f, then x ∩c y |= f. (5)

The renamable Horn size of a renamable Horn function f , that is |f |Ren−Horn,
is the CNF Horn size of fc(x).

Let B be any of the classes of propositional expressions defined above; Bm

denotes the subclass of B whose concepts have size at most m.

The following simple lemma is useful in our constructions:

Lemma 1 Let c be any clause, t any term, and x, y, a any assignments.
(1) If x 6|= c and y 6|= c then x ∩a y 6|= c for any a.
(2) If x |= t and y |= t then x ∩a y |= t for any a.

Proof: For (1) note that if x and y falsify the clause c then all the variables in
c have to share the same value in both x and y. Therefore their “intersection”
(w.r.t. any orientation a) does not change the value of these variables in the
resulting x ∩a y implying that that x ∩a y falsifies c. The same argument can
be used to establish (2). 2

2.1 Learning with Queries and Certificates

We briefly review the model of exact learning with equivalence queries and
membership queries [1]. Before the learning process starts, a concept c ∈ B is
fixed. We refer to this concept as the target concept. The learning algorithm
has access to an equivalence oracle and a membership oracle that provide
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information about the target concept. In an equivalence query, the learner
presents a hypothesis and the oracle answers Yes if it is a representation of
the target concept. Otherwise, it answers No and provides a counterexample,
that is, an example x ∈ {0, 1}n where the target and hypothesis disagree.
In general the representation of hypotheses is not restricted. However, for
proper learnability we require that the hypothesis in an equivalence query is
represented by a formula in B. In a membership query, the learner presents an
example and the oracle answers Yes or No depending on whether the example
presented is a member of the target concept. For any target expression in
the concept class the learning algorithm is required to identify the target
expression and get a Yes answer to an equivalence query.

When concept classes are parametrized by size the notion of proper learnability
can be slightly refined. In particular we allow the learning algorithm to learn
concepts in Bm using hypotheses in Bp(m,n) for some polynomial p().

Definition 2 The query complexity of a concept class B, with hypothesis
expansion p(n,m), denoted QC(B, n,m, p(n,m)), is the minimum number of
queries required by any algorithm that learns B with equivalence queries and
membership queries, where the hypotheses are restricted to be in Bp(m,n).

If p(n,m) is a polynomial and QC is polynomial in n,m then we say that B is
properly learnable with a polynomial number of queries. If p(n,m) = m and
QC is polynomial in n,m then we say that B is strongly properly learnable
with a polynomial number of queries.

Certificates are similarly defined relative to expansions in representation of
concepts. Informally, a certificate gives a proof that a function f whose B-size
is more than p(n,m) is not in Bm. More formally,

Definition 3 Let R be a class of representations defining a boolean con-
cept class B. The class R has certificates of size q(n,m) for representa-
tion expansion p(n,m) if for every n,m > 0 and for every boolean function
f ⊆ {0, 1}n s.t. |f |R > p(m,n), there is a set Q ⊆ {0, 1}n satisfying the fol-
lowing: (1) |Q| ≤ q(m,n) and (2) for every g ∈ Bm there is some x ∈ Q s.t.
g(x) 6= f(x). In other words, (2) states that no function in Bm is consistent
with f over Q.

If p(·, ·) and q(·, ·) are polynomials then we say that B has polynomial size
certificates. The certificate size of B for representation expansion p(n,m), de-
noted CS(B, n,m, p(n,m)) is the smallest function q(n,m) which satisfies the
above.

We can now state the relation between query complexity and certificates:
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Theorem 4 [15,14,16]

CS(B, n,m, p(n,m)) ≤ QC(B, n,m, p(n,m)) ≤ CS(B, n,m, p(n,m)) log(|Bm|)

3 Certificates for monotone and unate CNFs

In this section we give constructions of certificates for monotone and unate
classes. We present the basic result for the class of anti-monotone CNF so as
to make the relation to the certificate for Horn expressions as clear as possible.

Theorem 5 The class of anti-monotone CNF has polynomial size certificates
with p(m,n) = m and q(m,n) = min{(m + 1)n,

(

m+1
2

)

+ m + 1}.

Proof: Fix m,n > 0. Fix any f ⊆ {0, 1}n s.t. |f |anti−monCNF > p(m,n) = m.
We proceed by cases.

Case 1. f is not anti-monotone. In this case, there must exist two assign-
ments x, y ∈ {0, 1}n s.t. x < y but f(x) < f(y) (otherwise f would be
anti-monotone). Let Q = {x, y}. Notice that by definition no anti-monotone
CNF can be consistent with Q. Moreover, |Q| = 2 ≤ q(m,n).

Case 2. f is anti-monotone. Let c1 ∧ c2 ∧ . . ∧ cm ∧ . . ∧ ck be a minimal
representation for f . Notice that k ≥ m+1 since |f |anti-monCNF > p(m,n) = m.

We give two different constructions for certificates in this case that achieve the
two parts in the bound. Define assignment x[ci] as the assignment that sets to
1 exactly those variables that appear in ci’s antecedent. For example, if n = 5
and ci = v3v5 → false then x[ci] = 00101.

Remark 6 Notice that every x[ci] falsifies ci (antecedent is satisfied but con-
sequent is false) but satisfies every other clause in f . If this were not so, then
we would have that some other clause cj in f is falsified by x[ci], that is, the
antecedent of cj is true and therefore all variables in cj appear in ci as well
(i.e. cj ⊆ ci). This is a contradiction since ci would be redundant and we are
looking at a minimal representation of f .

Let 0i be the assignment with 0 in position i and 1 elsewhere. For the first
construction let Q1 = Q+

1 ∪Q−, where

Q− =
{

x[ci]
∣

∣

∣ 1 ≤ i ≤ m + 1
}

and

Q+
1 =

{

x[ci] ∩ 0j

∣

∣

∣ 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n, and x[ci][j] = 1
}

.

Notice that |Q1| ≤ (m+ 1)n. By the remark assignments in Q− falsify f , and
since these are maximally negative assignments it is also clear that assignments
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in Q+
1 satisfy f . Any anti-monotone CNF g with at most m clauses will cover

two examples x[ci], x[cj ] in Q− with the same clause. Therefore one of the
assignments directly below x[ci] which is in Q+

1 is also falsified by this clause.
So g is not consistent with f over Q1.

For the second construction let Q2 = Q+
2 ∪Q−, where Q− is defined as above,

and

Q+
2 =

{

x[ci] ∩ x[cj ]
∣

∣

∣ 1 ≤ i < j ≤ m + 1
}

.

Notice that |Q2| ≤
(

m+1
2

)

+ m + 1. The assignments in Q+
2 are positive for

f . To see this, suppose some x[ci] ∩ x[cj ] ∈ Q+
2 falsifies f . Then there is some

clause c in f that is falsified by x[ci] ∩ x[cj ] ∈ Q+
2 . That is, all variables in c

are set to 1 by x[ci] ∩ x[cj ] ∈ Q+
2 . Therefore, all variables in c are set to 1 by

x[ci] and x[cj ] and they falsify the same clause which is a contradiction by the
remark above.

It is left to show that no anti-monotone CNF g s.t. |g|anti-monCNF ≤ m is
consistent with f over Q2. Fix any g = c′1 ∧ . .∧c′l with l ≤ m. If g is consistent
with Q−, then there is a c′ ∈ g falsified by two different x[ci], x[cj ] ∈ Q− since
we have m + 1 assignments in Q− but strictly fewer clauses in g. Lemma 1
guarantees that x[ci]∩x[cj ] 6|= c′ and therefore g is falsified by x[ci]∩x[cj ] as well.
But x[ci] ∩ x[cj ] ∈ Q+

2 and satisfies f . We conclude that no g can be consistent
with f over Q+

2 . 2

By duality of the boolean operators and DNF vs. CNF representations we get

Corollary 7 The classes monotone DNF,anti-monotone DNF, monotone CNF,
anti-monotone CNF have certificates of size min{(m + 1)n,

(

m+1
2

)

+ m + 1}.

Constructing certificates for unate expressions appears harder at first since
there are many more g functions that may be consistent with Q1 or Q2.
Nonetheless essentially the same construction works here as well. Since for
unate classes we define an orientation to transform the function to be mono-
tone rather than anti-monotone, one would need the dual of the previous
construction. To make the notation similar to the previous case we present
the result for DNF which means taking the dual again so that we can use
intersection as before.

Theorem 8 Unate DNFs have polynomial size certificates with p(m,n) = m

and q(m,n) = min{(m + 1)n,
(

m+1
2

)

+ m + 1}.

Proof: Fix m,n > 0. Fix any f ⊆ {0, 1}n s.t. |f |unateDNF > p(m,n) = m.
Now we proceed by cases.

Case 1. f is not unate. In this case, there must exist four assignments x, y, z, w ∈
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{0, 1}n and a position i (1 ≤ i ≤ n) such that:

• x[j] = y[j] for all 1 ≤ j ≤ n, j 6= i and x[i] < y[i]
• z[j] = w[j] for all 1 ≤ j ≤ n, j 6= i and z[i] > w[i]
• f(x) > f(y) and f(z) > f(w)

Let Q = {x, y, z, w}. Notice that |Q| ≤ q(m,n). To see that no unate DNF
can be consistent with f over Q, take any unate DNF g and suppose it is
consistent. Let b be an orientation for g. If b[i] = 0 then we have that x ≤b y
but g(x) > g(y). If b[i] = 1 then z ≤b w but g(z) > g(w). Therefore there
cannot be any unate function consistent with f over Q.

Case 2. f is unate. Let a be any orientation showing that f is unate. Sup-
pose w.l.o.g. (just renumber variables accordingly) that a = 0r1n−r where r is
the number of monotone variables in f . Suppose that the variables in f are
{v1, ..., vn} and consider any minimal DNF representation t1∨t2∨...∨tm∨...∨tk
of f . Notice that k ≥ m+1 since |f |unateDNF > p(m,n) = m. Since a is an ori-
entation for f , and the DNF is minimal non-redundant the variables {v1, ..., vr}
appear always positive in the DNF and variables {vr+1, ..., vn} appear always
negated. Define j-th value of assignment x[ti] as (for 1 ≤ j ≤ n):

x[ti][j] =







































1 if j ≤ r and vj appears in ti

0 if j ≤ r and vj does not appear in ti

0 if j > r and v̄j appears in ti

1 if j > r and v̄j does not appear in ti

Notice that if f does not depend on a variable vj, so that it does not appear
in any of the terms, then it has the same value in all the assignments.

Let 0j be defined as above. For the first construction let Q1 = Q+∪Q−
1 where

Q+ =
{

x[ti]
∣

∣

∣ 1 ≤ i ≤ m + 1
}

and

Q−
1 =

{

x[ti] ∩a (a⊕ 0j)
∣

∣

∣ 1 ≤ i ≤ m + 1 and x[ti][j] = 1− a[j].
}

Notice that a⊕ 0j has all bits except the jth at their maximal value so x[ti]∩a

(a⊕ 0j) flips the jth bit in x[ti] to its minimum value. Each relevant variable
has at least one pair of assignments in Q+, Q−

1 with Hamming distance 1
showing the direction of its influence. Therefore any unate g consistent with
Q1 must have all variable polarities set correctly. As a result, the argument
for the monotone case shows that any unate g with at most m terms over
the relevant variables cannot be consistent with f over Q1. Since irrelevant
variables have a constant value in Q1 they cannot affect consistency of any
potential g.
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For the second construction let Q2 = Q+ ∪Q−
2 where Q+ is defined as before

and

Q−
2 =

{

x[ti] ∩a x[tj ]
∣

∣

∣ 1 ≤ i < j ≤ m + 1
}

.

As before it is easy to see that the assignments in Q+ are positive and assign-
ments in Q−

2 are negative for f .

It is left to show that no unate DNF g s.t. |g|unateDNF ≤ m is consistent with
f over Q2. If g is consistent with Q+, then there is a t′ ∈ g satisfied by two
assignments x[ti], x[tj ] ∈ Q+. By Lemma 1 we get that x[ti]∩a x[tj ] |= t′ and so it
satisfies g as well. Since x[ti] ∩a x[tj ] ∈ Q−

2 and it falsifies f , g is not consistent
with f over Q2. 2

Corollary 9 The class of unate CNF has polynomial size certificates with
p(m,n) = m and q(m,n) = min{(m + 1)n,

(

m+1
2

)

+ m + 1}.

4 Certificates for Horn CNF

For anti-monotone CNF we could use the assignments defined by the clauses to
generate the certificate. In particular the property from Remark 6 shows that
each such assignment falsifies the clause generating it but no other clause in
the representation. Any non-redundant CNF representation has such a set of
assignments (since otherwise some clause is not needed in the representation)
but it is not necessarily easy to find such assignments. As the following lemma
shows for Horn expressions we can do this efficiently:

Lemma 10 Let f be a non-redundant Horn CNF. For every clause c in f ,
we can efficiently find an assignment x[c] s.t. x[c] falsifies c but satisfies every
other clause in f .

Proof: Note first that such an assignment must exist since f \ c 6|= c implies
that there is an x such that x |= f \ c and x 6|= c. Now since f \ c is Horn and
using Lemma 1 we see that if x, y are two different assignments satisfying this
condition then so is x∩ y. So there is a unique minimal assignment satisfying
this property. The minimal assignment can be found by finding the minimal
model of (f \ c) ∧ c. 2

Remark 11 While the previous lemma shows how to find the assignments ef-
ficiently they are not as explicitly related to the syntax of the representation as
in the monotone case. It is interesting to note that given any non-redundant
Horn CNF we can “saturate” it by adding implied propositions to the an-
tecedents of rules. For example, if f = (a → b) ∧ (a → c) we change the
representation to f = (a → b) ∧ (ab → c). One can show that if this is done
sequentially until no more changes can be made then the final representation
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has a syntactic property as in Remark 6. This construction was used in a
previous version of this paper [27] and the improvement in Lemma 10 was
suggested by an anonymous referee.

Theorem 12 Horn CNFs have polynomial size certificates with p(m,n) =

m(n + 1) and q(m,n) =
(

m+1
2

)

+ m + 1.

Proof: Fix m,n > 0. Fix any f ⊆ {0, 1}n s.t. |f |hornCNF > p(m,n) = m(n+
1). Again, we proceed by cases.

Case 1. f is not Horn. By Eq. (4), there must exist two assignments x, y ∈
{0, 1}n s.t. x |= f and y |= f but x ∩ y 6|= f . Let Q = {x, y, x ∩ y}. Again by
Eq. (4) no Horn CNF can be consistent with Q. Moreover, |Q| = 3 ≤ q(m,n).

Case 2. f is Horn. Let c1 ∧c2 ∧. .∧ck′ be a minimal non-redundant representa-
tion of f . Notice that k′ ≥ m(n+1)+1 since |f |hornCNF > p(m,n) = m(n+1).
Since there are more than m(n+1) clauses, there must be at least m+1 clauses
sharing a single consequent in f (there are at most n+1 different consequents
among the clauses in f, including the constant false). Let these clauses be
c1 = s1 → b, . . , ck = sk → b, with k ≥ m+ 1. Let x[ci] be the assignment that
satisfies the conditions of Lemma 10 for ci. Let Q = Q+ ∪Q− where

Q− =
{

x[ci]
∣

∣

∣ 1 ≤ i ≤ m + 1
}

and

Q+ =
{

x[ci] ∩ x[cj ]
∣

∣

∣ 1 ≤ i < j ≤ m + 1
}

.

Notice that |Q| = |Q+|+ |Q−| ≤
(

m+1
2

)

+m+1 = q(m,n). The assignments in

Q− are negative for f by Lemma 10. We next show that every assignment in Q+

satisfies every clause in f and therefore also satisfies f . Take any assignment
x[ci] ∩ x[cj ] ∈ Q+. For clauses c other than ci and cj, Lemma 10 guarantees
that x[ci] |= c and x[cj ] |= c and therefore x[ci] ∩ x[cj ] |= c since c is Horn. To
see that x[ci] ∩ x[cj ] |= ci, suppose by way of contradiction that it does not.
Since both x[cj ] and x[ci] have the bit corresponding to their consequent set
to 0 by construction (ci and cj share the same consequent), it must be that
x[ci] ∩ x[cj ] satisfies the antecedent of ci. Therefore x[cj ] must also satisfy the
antecedent of ci, and x[cj ] 6|= ci in contradiction with Lemma 10. We can prove
the remaining case x[ci] ∩ x[cj ] |= cj analogously.

The argument that no Horn CNF g s.t. |g|hornCNF ≤ m is consistent with f
over Q is analogous to the anti-monotone case. 2

Remark 13 The construction above relies on the fact that we can find many
clauses with the same consequent. This fact does not hold in first order logic
since the number of possible consequents is not bounded and therefore this
hinders generalization. It is thus worth noting that a related construction with
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slightly worse bounds does not require identical consequents. Consider again
the minimal representation c1 ∧ c2 ∧ . . ∧ ck′ with k′ ≥ m(n + 1) + 1. In this
construction we use a larger Q−

Q− =
{

x[ci]
∣

∣

∣ 1 ≤ i ≤ m(n + 1) + 1
}

and in addition we use the set

Qothers =
{

x[ci] ∩ x[cj ]
∣

∣

∣ 1 ≤ i < j ≤ m(n + 1) + 1
}

.

Note that assignments in Qothers may be either positive or negative since we
have not restricted the consequent of clauses in Q−. However, since Q− is large,
we get that some clause of g captures at least n + 2 assignments in Q−. We
now consider the use of assignments from saturated expressions, and consider
the relation between antecedents of different clauses generating these n + 2
assignments. Since subsumption chains for antecedents (given by the subset
relation over variables) are of length at most n+1, any set of clauses of this size
must have a pair of clauses whose antecedents do not subsume one another.
As a result there is at least one pair of clauses with incomparable antecedents,
so that the intersection of assignments satisfies f but falsifies g so that g is not
consistent with f over the certificate set. Unfortunately, subsumption chains
for antecedents in first order logic can be long [28] so there are still obstacles
in lifting the construction.

5 Learning from entailment

Work in inductive logic programming addresses learning formulas in first or-
der logic and several setups for representing examples have been studied. The
setup studied above where an example is an assignment in propositional logic
generalizes to using first order structures (also known as interpretations) as ex-
amples. The model is therefore known as learning from interpretations [29]. In
the model of learning from entailment an example is a clause. A clause exam-
ple is positive if it is implied by the target and negative otherwise. Therefore
a certificate in this context is a set of clauses. In particular, as in the previous
case, for any expression f whose size is more than p(m,n), a set Q of at most
q(m,n) clauses must satisfy that for any g ∈ Bm at least one element c of Q
separates f and g, that is f |= c and g 6|= c or vice versa. We present a gen-
eral transformation that allows us to obtain an entailment certificate from an
interpretation certificate. Similar observations have been made before in dif-
ferent contexts, e.g. [30,20], where one transforms efficient algorithms instead
of just certificates.

Definition 14 Let x be an assignment. Then ones(x) is the set of variables
that are set to 1 in x. We slightly abuse notation and write ones(x) to denote
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also the conjunction of the variables in the set ones(x).

Lemma 15 Let f be a boolean expression and x an assignment. Then,

x |= f if and only if f 6|= (ones(x)→
∨

b6∈ones(x) b).

Proof: Suppose x |= f . Suppose by way of contradiction that f |= (ones(x)→
∨

b6∈ones(x) b). But since x 6|= (ones(x) →
∨

b6∈ones(x) b) we conclude that x 6|= f ,
which contradicts our initial assumption. Now, suppose x 6|= f . Hence, there
is a clause s →

∨

i bi in f falsified by x. This can happen only if s ⊆ ones(x)
and bi 6∈ ones(x) for all i. Clearly, (s →

∨

i bi) |= (ones(x) →
∨

b6∈ones(x) b).
Therefore f |= (ones(x)→

∨

b6∈ones(x) b). 2

Theorem 16 Let S be an interpretation certificate for an expression f w.r.t.
a class B of boolean expressions. Then, the set {ones(x)→

∨

b6∈ones(x) b | x ∈ S}
is an entailment certificate for f w.r.t. B.

Proof: If S is an interpretation certificate for f w.r.t. some class B of propo-
sitional expressions, then for all g ∈ B there is some assignment x ∈ S such
that x |= f and x 6|= g or vice versa. Therefore, by Lemma 15, it follows that
f 6|= (ones(x) →

∨

b6∈ones(x) b) and g |= (ones(x) →
∨

b6∈ones(x) b) or vice versa.
Given the arbitrary nature of g the theorem follows. 2

Remark 17 In the theorem above we include non-Horn clauses in the cer-
tificate. This is necessary since otherwise one cannot distinguish a function f
from its Horn least upper bound [26,31], the function that is equivalent to the
conjunction of all Horn clauses implied by f . For example, one cannot distin-
guish f = {a → b, b → c ∨ d} from g = {a → b} with Horn clauses only. It
is worth noting, however, that a learning algorithm can use these certificates
while making queries on Horn clauses only. The algorithm in [15,14] simu-
lates the Halving Algorithm. In this process the algorithm constructs various
functions f and asks membership queries on the examples in their certifi-
cates, i.e. in our case on the clauses. For a Horn expression T it holds that
T |= s → b1 ∨ ... ∨ bk if and only if T |= s → bi for some i. Thus, instead of
asking a membership query on s→ b1∨ ...∨ bk, the algorithm can ask k mem-
bership queries on s → bi and reconstruct the answer. So while the certificate
must include non-Horn clauses, the queries can avoid those.

6 Certificate size lower bounds

The certificate results above imply that unate and Horn CNF are learnable
with a polynomial number of queries but as mentioned above this was already
known. It is therefore useful to review the relationship between the certificate
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size of a class and its query complexity. Recall from Theorem 4 that we have
CS(B, n,m, p(n,m)) ≤ QC(B, n,m, p(n,m)) ≤ CS(B, n,m, p(n,m)) log(|Bm|).
We note first that positive certificate results are not likely to improve known
upper bounds for these classes. For the class of monotone DNF there is an
algorithm that achieves query complexity O(mn) [2,1]. In this case we have
log(|monotoneDNFm|) = Θ(mn), so a certificate result is not likely to improve
the known learning complexity. In the case of Horn CNF, there is an algorithm
that achieves query complexity O(m2n) [4]. Since again log(|HornCNFm|) =
Θ(mn) improving on the known complexity O(m2n) would require a certificate
for Horn of size o(m).

The results in this section show that this is not possible and in fact that
our certificate constructions are optimal. We do this by giving lower bounds
on certificate size. Naturally, these also imply lower bounds for the learning
complexity.

In particular, for every m,n with m < n we construct an n-variable monotone
DNF f of size ≤ n and show that any certificate that f has more than m terms
must have cardinality at least q(m,n) = m + 1 +

(

m+1
2

)

. This construction is

shown for p(n,m) = m thus giving lower bounds for strongly proper learning
the class. We also give a variant where the size of f is n and where m < n
can be chosen arbitrarily. Thus the lower bound on learning complexity holds
for any hypothesis expansion p(n,m) < n. For m > n we show that there is a
monotone DNF of size m + 1 that requires a certificate of size Ω(mn). Again
the bound is tight for strongly proper learning of monotone expressions. The
lower bounds apply for Horn expressions as well where for m > n we have
a gap between O(m2) upper bound and Ω(mn) lower bound. The result for
m < n is given in the next two theorems:

Theorem 18 Any certificate construction for monotone DNF for m < n with
p(m,n) = m has size q(m,n) ≥ m + 1 +

(

m+1
2

)

.

Proof: Let Xn = {x1, . . , xn} be the set of n variables and let m < n. Let
f = t1 ∨ · · · ∨ tm+1 where ti is the term containing all variables (unnegated)
except xi. Such a representation is minimal and hence f has size exactly m+1.
We show that for any set Q of size less than m+1+

(

m+1
2

)

there is a monotone
DNF with at most m terms consistent with f over Q.

If Q contains at most m positive assignments of weight n − 1 then it is easy
to see that the function with minterms corresponding to these positive assign-
ments is consistent with f over Q. Hence we may assume that Q contains at
least m+1 positive assignments of weight n− 1. Thus if |Q| < m+1+

(

m+1
2

)

then Q must contain strictly less than
(

m+1
2

)

negative assignments. Notice
that all the intersections between pairs of positive assignments of weight n−1
are different and there are

(

m+1
2

)

such intersections. It follows that Q must
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be missing some intersection between some pair of positive assignments in Q.
But then there is an m-term monotone DNF consistent with Q which uses one
term for the missing intersection and m− 1 terms for the other m− 1 positive
assignments. 2

The next theorem improves the hypothesis expansion from p(n,m) = m to
any choice satisfying p(n,m) < n.

Theorem 19 Any certificate construction for monotone DNF for m < n with
p(m,n) < n has size q(m,n) ≥ m + 1 +

(

m+1
2

)

.

Proof: Let q(m,n) = m + 1 +
(

m+1
2

)

and define f =
∨

i∈{1,..,n} ti where ti
is the term containing all variables (unnegated) except xi. Clearly, all ti are
minterms, f has size exactly n and f is monotone. We show that for any
m < n and any set of assignments Q of cardinality strictly less than q(m,n),
there is a monotone function g of at most m terms consistent with f over Q.

We first argue that w.l.o.g. we can assume that all the assignments in the
potential certificate Q have weight n − 1 (positive assignments) or weight
n − 2 (negative assignments). If Q contains the positive assignment 1n, then
we replace it by any assignment that of weight n− 1. If Q contains a negative
assignment x of weight smaller than n−2, then we replace it by any assignment
x′ ≥ x of weight n − 2. Let Q′ be the set obtained by replacing all these
assignments of weight exactly n or smaller than n−2 in the manner described.
Now any monotone function g consistent with Q′ is also consistent with Q. As
a result if Q′ is not a certificate then neither is Q.

We next show that if |Q| < q(m,n) then there exists a function g consistent
with Q. Now since assignments in Q have weight n−1 or n−2 we can model the
problem of finding a suitable monotone function as a graph coloring problem.
We map Q into a graph GQ = (V,E) where V = {p ∈ Q | f(p) = 1} and
E = {(p1, p2) | {p1, p2, p1 ∩ p2} ⊆ Q}. Let |V | = v and |E| = e.

First we show that if GQ is m-colorable then there is a monotone function g of
DNF size at most m that is consistent with f over Q. It is sufficient that for
each color c we find a term tc that (1) is satisfied by the positive assignments
in Q that have been assigned color c, with the additional condition that (2)
tc is not satisfied by any of the negative assignments in Q. We define tc as
the minterm corresponding to the intersection of all the assignments colored
c by the m-coloring. Property (1) is clearly satisfied, since no variable set to
zero in any of the assignments is present in tc. To see that (2) holds it suffices
to notice that the assignments colored c form an independent set in GQ and
therefore none of their pair-wise intersections is in Q. By the assumption no
negative point below the intersections is in Q either. The resulting consistent
function g contains all minterms tc. Since the graph is m-colorable, g has at
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most m terms.

It remains to show that GQ is m-colorable. Note that the condition |Q| <
q(m,n) translates into v + e < q(m,n) in GQ. If v ≤ m then there is a trivial

m-coloring. For v ≥ m + 1, we have e <
(

m+1
2

)

− 1 so it suffices to prove the
following lemma to complete the proof of Theorem 19:

Lemma 20 Any v-node graph with v ≥ m + 1 with at most
(

m+1
2

)

− 1 edges
is m colorable.

We prove this lemma by induction on v. The base case is v = m + 1; in this
case since the graph has at most

(

m+1
2

)

− 1 edges it can be colored with only
m colors by reusing one color for the missing edge. For the inductive step,
note that any v-node graph which has at most

(

m+1
2

)

− 1 edges must have
some node with fewer than m neighbors since otherwise there would be at
least vm/2 ≥ (m+2)m

2
= (m+1)m

2
+ m

2
>

(

m+1
2

)

− 1 edges in the graph. By the

induction hypothesis there is an m-coloring of the (v−1)-node graph obtained
by removing this node of minimum degree and its incident edges. But since
the degree of this node was less than m in G, we can color G using at most
m colors. This concludes the proof of Lemma 20 and of Theorem 19. 2

Finally, we give an Ω(mn) lower bound on certificate size for monotone DNF
for the case m > n. Like Theorem 18 this result gives a lower bound on query
complexity for any strongly proper learning algorithm.

Theorem 21 Any certificate construction for monotone DNF for m > n with
p(m,n) = m has size q(m,n) = Ω(mn).

Proof: Fix any constant k. We show that for all n and for all m =
(

n
k

)

− 1,
there is a function f of monotone DNF size m + 1 such that any certificate
showing that f has more than m terms must contain Ω(nm) assignments.

We define f as the function whose satisfying assignments have at least n− k
bits set to 1. Notice that the DNF size of f is exactly

(

n
k

)

= m + 1. Let P
be the set of assignments corresponding to the minterms of f , i.e. P consists
of all assignments that have exactly n − k bits set to 1. Let N be the set
of assignments that have exactly n − (k + 1) bits set to 1. Notice that f
is positive for the assignments in P but negative for those in N . Clearly,
assignments in P are minimal weight positive assignments and assignments
in N are maximal weight negative assignments. Note that |P | =

(

n
k

)

and

|N | = (m+1)n−k
k+1

=
(

n
k+1

)

= Ω(mn) for constant k. Moreover, any assignment
in N is the intersection of two assignments in P .

We next show that any certificate for f must have size at least |P |+ |N |. As
in the previous proof, we may assume w.l.o.g. that any certificate Q contains
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assignments in P ∪ N only. Let Q ⊂ P ∪ N . If Q has at most m positive
assignments then it is easy to construct a function consistent with Q regard-
less of how negative examples are placed. Otherwise, Q contains all the m+1
positive assignments in P and the rest are assignments in N . If Q misses any
assignment in N then we build a consistent function by using the minterm
corresponding to the missing intersection to “cover” two of the positive as-
signments with just one term. The remaining m − 1 positive assignments in
P are covered by one minterm each. Hence, any certificate Q must contain
P ∪N and thus is of size Ω(nm). 2

Finally, we observe that all the lower bounds above apply to unate and Horn
CNF expressions as well. This follows from the fact that the function f used
in the construction is outside the class (has size more than m in all cases)
and that the function g constructed is in the class (since monotone DNF is a
special case of unate DNF and Horn DNF). We therefore have:

Corollary 22 Any certificate construction for unate CNF (DNF) and for
Horn CNF (DNF) must satisfy the bounds given in Theorems 18, 19 and 21.

7 An exponential lower bound for renamable Horn

In this section we show that renamable Horn CNF expressions do not have
polynomial certificates. This answers an open question of [22] and implies that
the class of renamable Horn CNF is not exactly learnable using a polynomial
number of membership and equivalence queries. In the following let B be the
class of renamable Horn expressions.

To show non-existence of polynomial certificates, we need to prove the fol-
lowing: for all two-variable polynomials p(·, ·) and q(·, ·) there exist n,m > 0
and a boolean function f̂ ⊆ {0, 1}n with |f̂ |B > p(m,n) such that for every
Q ⊆ {0, 1}n, either (1) |Q| > q(m,n) or (2) some g ∈ Bm is consistent with f
over Q.

In order to show this, we define a function f̂ that is not renamable Horn, so
that |f̂ |B = ∞ > p(m,n) holds for any function p(m,n) and the requirement
can be simplified. Utilizing this simplification, what we show is: for each n
which is a multiple of 3, there exists a non-renamable Horn f̂ ⊆ {0, 1}n s.t.
if no g ∈ Bn6 is consistent with f̂ over some set of assignments Q (i.e. we
are taking m = n6), then |Q| ≥ 1

3
22n/3. Equivalently, for every such n every

certificate Q that f̂ is not a renamable Horn CNF function of size n6 has to
be of exponential size. This is clearly sufficient to prove the non-existence of
polynomial certificates for renamable Horn boolean functions.

18



We say that a set Q such that no g ∈ Bn6 is consistent with f̂ over Q is a
certificate that f̂ is not small renamable Horn. The following lemma is useful:

Lemma 23 Let f be a satisfiable renamable Horn function. Then there is an
orientation c for f such that c |= f .

Proof: Let c′ be an orientation of f such that c′ 6|= f . Let c be the positive
assignment of f which is minimal with respect to the partial order imposed
by ≤c′ . There exists a single such assignment. This can be seen via Eq. (5)
since if a and b are both positive assignments unrelated in the partial order
imposed by ≤c′ , then c′′ = a ∩c′ b is positive.

We claim that c is an orientation for f . It suffices to show a ∩c′ b = a ∩c b for
all positive assignments a and b. We show that (a ∩c′ b)[i] = (a ∩c b)[i] for all
1 ≤ i ≤ n. If i is such that c[i] = c′[i] then clearly (a∩c′ b)[i] = (a∩c b)[i]. Let i
be such that c[i] 6= c′[i]. Then every positive assignment sets the bit i like c[i]: if
a[i] 6= c[i] then (a∩c′ c)[i] = c′[i] and thus (a∩c′ c) <c′ c (strictly), contradicting
the minimality of c. Thus a[i] = b[i] = c[i] and (a ∧ b)[i] = (a ∨ b)[i], and
therefore (a ∩c b)[i] = (a ∩c′ b)[i]. 2

We next define the function f̂ . As the next lemma shows f̂ is not renamable
Horn. The function has two useful properties: it has a very small number
of satisfying assignments, and the hamming distance between these is large.
The second property helps guarantee that the certificate is large. The first
property is used to bound the size of the hypothesis expansion. This is the
main difference from an earlier result of [22] where a weaker type of lower
bound was proved. In that result Feigelson [22] gave a class of functions and
showed that a superpolynomial size set of assignments is needed to certify
that they are not renamable Horn. However, a certificate only needs to certify
that the function is not small renamable Horn so the result did not have direct
implications for certificate size. This is addressed by the current construction.

Definition 24 Let n = 3k for some k ≥ 1. We define f̂ : {0, 1}n → {0, 1}
to be the function whose only satisfying assignments are 0k1k1k, 1k0k1k, and
1k1k0k.

Lemma 25 The function f̂ defined above is not renamable Horn.

Proof: To see that a function f is not renamable Horn with orientation c it
suffices to find a triple (p1, p2, q) such that p1 |= f , p2 |= f but q 6|= f where
q = p1 ∩c p2. By Lemma 23 it is sufficient to check that the three positive
assignments are not valid orientations for f :
The triple (1k1k0k, 1k0k1k, 1k1k1k) rejects c = 0k1k1k.
The triple (0k1k1k, 1k1k0k, 1k1k1k) rejects c = 1k0k1k.
The triple (0k1k1k, 1k0k1k, 1k1k1k) rejects c = 1k1k0k. 2
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Consider next how certificates for renamable Horn may be structured. If an
orientation c does not witness that f is renamable Horn then there is a triple
of assignments (p1, p2, q) such that p1 |= f , p2 |= f , q = p1 ∩c p2 but q 6|= f .
However, a certificate does not necessarily need to have such a triple explicitly.
To illustrate this consider three positive assignments x, y, z and a negative
assignment w such that w = (x ∧c y) ∧c z. Clearly {x, y, z, w} show that c is
not an orientation for f but the assignment (x∧c y) is not in the set and there
is no explicit triple of this form. As the next lemma shows a weaker notion of
triple must appear in any certificate.

We say that a triple (p1, p2, q) such that p1 |= f , p2 |= f but q 6|= f is suitable
for c if q ≤c p1 ∩c p2.

Lemma 26 If Q is a certificate that f̂ is not small renamable Horn with
orientation c, then Q includes a suitable triple (p1, p2, q) for c.

Proof: Suppose that a certificate Q that f̂ is not small renamable Horn with
orientation c does not include any suitable triple (p1, p2, q) for c. We define a
function g that is consistent with f̂ on Q as follows:

g(x) =



























1 if x ∈ Q and x |= f̂

1 if x ≤c (s1 ∩c s2) for any s1, s2 ∈ Q s.t. s1 |= f̂ and s2 |= f̂

0 otherwise.

The function g is consistent with Q since by assumption no negative example
is covered by the second condition.

First we show that the function g is renamable Horn with orientation c. Con-
sider any assignments p1, p2 that are positive for g, i.e., p1 |= g and p2 |= g,
and let t = p1 ∩c p2. If p1, p2 are included in Q, then clearly t |= g by the
definition of g. If p1 6∈ Q then p1 ≤c (s1 ∩c s2) for some positive s1, s2 ∈ Q
(second condition in the definition of g). Since t ≤c p1 ≤c (s1 ∩c s2), then by
the definition of g, t |= g as well. The same reasoning applies for the remaining
case p2 6∈ Q. Hence, g is renamable Horn with orientation c. Note that this
part of the proof does not rely on specific properties of f̂ and thus holds for
any f which is not renamable Horn.

Now, we show that g is also small. We use the fact that our particular f̂ is de-
signed to have very few positive assignments. First notice that g only depends
on the positive assignments in Q. Moreover, these must be positive assign-
ments for f̂ . Suppose that Q contains any l ≤ 3 of these positive assignments.

20



Let these be x1, . . , xl. A DNF representation for g is:

g =
∨

1≤i≤l

ti ∨
∨

1≤i<j≤l

ti,j

where ti is the term that is true for the assignment xi only and ti,j is the term
that is true for the assignment xi ∩c xj and all assignments below it (w.r.t. c).
Notice that we can represent this with just one term by removing literals that
correspond to maximal values (w.r.t. c). For example, if l = 2 and x1 = 001111,
x2 = 110011 and c = 101001 then t1 = v1 v2v3v4v5v6, x1 ∩c x2 = 101011, and
the only variable at its maximal value is v5 so t1,2 = v1v2v3v4v6.

Since l ≤ 3, g has at most 3 +
(

3
2

)

= 6 terms. Hence, g has CNF size at

most n6 (multiply out all terms to get the clauses). Note that so far we have
shown that |g|CNF ≤ n6 but we must also show that |g|Ren−Horn is small. This
follows from the well known fact that if a function h is Horn and g is a non-
Horn CNF representation for h, then every clause in g can be replaced with
a Horn clause which uses a subset of its literals; see e.g. [24] or Claim 6.3 of
[26]. So the arbitrary CNF for g can be replaced with a renamable Horn CNF
of the same size. We arrive at a contradiction: Q is not a certificate that f̂ is
not small renamable Horn with orientation c since g̃ is not rejected. 2

Theorem 27 For all n = 3k, there is a function f̂ : {0, 1}n → {0, 1} which
is not renamable Horn such that any certificate Q showing that the renamable
Horn size of f̂ is more than n6 must have |Q| ≥ 1

3
22n/3.

Proof: Recall that a triple (p1, p2, q) is suitable for c if p1 |= f , p2 |= f but
q 6|= f where q ≤c p1 ∩c p2. Consider any bit where p1 and p2 differ, that is
p1[i] 6= p2[i]. In this case the intersection always obtains the minimal value
p1[i] ∩c p2[i] = c[i]. This also implies that q[i] ≤c p1[i] ∩c p2[i] = c[i] satisfies
q[i] = c[i]. Now if p1, p2 have k bits with different values, any fixed q forces k
bit values in c and therefore (p1, p2, q) is suitable for 2n−k values of c.

Now we use the fact that the Hamming distance between any two positive
assignments of f̂ is 2n/3. A negative example in Q can appear in at most
3 triples (only 3 choices for p1, p2), and hence any negative example in Q
contributes to at most 3 ·2n/3 orientations. The theorem follows since we need
to reject all orientations. 2

Corollary 28 Renamable Horn CNFs do not have polynomial sized certifi-
cates.
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8 Conclusion

This paper provides a study of the certificate complexity of several well known
representation classes for propositional expressions. Since certificates are known
to characterize the query complexity of exact learning with queries our results
have direct implications for learnability. In particular the paper provides cer-
tificate constructions and hence upper bounds on their size for monotone,
unate and Horn expressions. Lower bounds for these classes are also derived
and these are tight in some cases. An exponential lower bound for the class
of renamable Horn expressions establishes that the class is not learnable with
a polynomial number of queries. The following table summarizes the bounds
obtained in this paper:

Class LowerBound UpperBound

unate DNF/CNF m < n
(

m+1
2

)

+ m + 1∗ (Th. 19)
(

m+1
2

)

+ m + 1 (Th. 8)

unate DNF/CNF m ≥ n Ω(mn)∗∗ (Th. 21) O(mn) (Th. 8)

Horn CNF m < n
(

m+1
2

)

+ m + 1∗ (Th. 19)
(

m+1
2

)

+ m + 1 (Th. 12)

Horn CNF m ≥ n Ω(mn)∗∗ (Th. 21)
(

m+1
2

)

+ m + 1 (Th. 12)

renamable Horn CNF 1
32

2n/3 (Th. 27)

∗ For p(m, n) < n.

∗∗ Strong certificate size only, i.e. p(m, n) = m.

Several interesting questions remain unsolved. For Horn expressions with m >
n clauses there is a gap between the lower bound Ω(mn) and the upper bound
O(m2). Also except for renamable Horn the lower bounds are for strongly
proper learnability or a small expansion in hypothesis size p(m,n) < n. Iden-
tifying the certificate complexity and equivalently the query complexity of
general DNF is an important open question. Finally, as mentioned in the
introduction, there is an exponential gap between known lower bounds and
upper bounds on learning complexity for first order Horn expressions. Cer-
tificates may provide a tool to resolve this gap and the constructions for the
propositional special cases developed in this paper are natural starting points
in such an endeavor.
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