
PERCEPTRON, WINNOW, AND PAC LEARNING∗

ROCCO A. SERVEDIO†

SIAM J. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 31, No. 5, pp. 1358–1369

Abstract. We analyze the performance of the widely studied Perceptron andWinnow algorithms
for learning linear threshold functions under Valiant’s probably approximately correct (PAC) model of
concept learning. We show that under the uniform distribution on boolean examples, the Perceptron
algorithm can efficiently PAC learn nested functions (a class of linear threshold functions known
to be hard for Perceptron under arbitrary distributions) but cannot efficiently PAC learn arbitrary
linear threshold functions. We also prove that Littlestone’s Winnow algorithm is not an efficient
PAC learning algorithm for the class of positive linear threshold functions, thus answering an open
question posed by Schmitt [Neural Comput., 10 (1998), pp. 235–250]. Based on our results we
conjecture that no “local” algorithm can learn linear threshold functions efficiently.

Key words. linear threshold function, PAC learning, Perceptron, Winnow

AMS subject classification. 68Q32

PII. S0097539798340928

1. Introduction. The classical Perceptron algorithm and Littlestone’s Winnow
algorithm are two algorithms for learning linear threshold functions which have been
studied extensively in the online mistake bound model [4, 8, 13, 16, 17, 19, 28]. In
this model the learning algorithm sequentially makes predictions on examples as they
are received, using a hypothesis which it can update after each example, and the
performance of an algorithm is measured by the worst-case number of prediction
mistakes it makes on any example sequence. The well-known Perceptron convergence
theorem [6, 20, 24] establishes conditions under which the Perceptron algorithm will
make a bounded number of mistakes on a (possibly infinite) sequence of examples,
and Littlestone [14, 15, 16] has obtained similar results for the Winnow algorithm.

Despite widespread interest in the Perceptron and Winnow algorithms, relatively
little is known about their performance in Valiant’s commonly used probably approx-
imately correct (PAC) model of concept learning [26]. In this paper we establish some
positive and negative results which help to clarify the learning abilities of Perceptron
and Winnow in the PAC model.

In the PAC learning model there is a fixed distribution D from which labelled
examples are drawn; the goal of the learner is to find a hypothesis which closely ap-
proximates the target function under distribution D. It has long been known that
if the space of possible examples is the n-dimensional unit sphere Sn, then the Per-
ceptron algorithm is not an efficient PAC learning algorithm for the class of linear
threshold functions because of “hard” distributions which concentrate their weight
on examples close to the separating hyperplane. Baum [5] has shown that if D is re-
stricted to be the uniform distribution on Sn, though, then Perceptron is an efficient
PAC learning algorithm for the class of linear threshold functions. Schmitt [25] has
shown that Perceptron is not an efficient PAC learning algorithm for the class of linear
threshold functions over the example space {0, 1}n; his proof works by exhibiting a

∗Received by the editors June 19, 1998; accepted for publication (in revised form) January 23,
2002; published electronically May 29, 2002. This work was supported by an NSF Graduate Fellow-
ship and by grants NSF-CCR-95-04436 and ONR-N00014-96-1-0550.

http://www.siam.org/journals/sicomp/31-5/34092.html
†Maxwell Dworkin 147, Division of Engineering and Applied Sciences, Harvard University, Cam-

bridge MA 02138 (rocco@deas.harvard.edu).

1358

PERCEPTRON, WINNOW, AND PAC LEARNING 1359

nested boolean function (a special type of linear threshold function) and a distribution
which is concentrated on “hard” examples for that function. No results analogous to
these have appeared for the Winnow algorithm; as Schmitt noted, it was not known
“whether Littlestone’s rules can PAC identify in polynomial time” [25].

This paper makes the following contributions: In section 3 we show that un-
der the uniform distribution on {0, 1}n the Perceptron algorithm is an efficient PAC
learning algorithm for the class of nested boolean functions. This demonstrates that
Schmitt’s negative result for nested functions depends on choosing a “hard” distribu-
tion. However, in section 4 we give a simple proof that the Perceptron algorithm is not
an efficient PAC learning algorithm for the class of linear threshold functions under
the uniform distribution on {0, 1}n. This provides an interesting contrast to Baum’s
result and answers an open question in Schmitt [25]. Finally, we prove in section 5
that the Winnow algorithm is not an efficient PAC learning algorithm for the class
of positive linear threshold functions over {0, 1}n. To the best of our knowledge this
is the first negative result for Winnow in the PAC model. We conclude in section 6
with suggestions for future research.

2. Preliminaries. A concept class C on an example space X is a collection
of boolean functions on X. The sets C and X are striated; i.e., C = ∪n≥1Cn and
X = ∪n≥1Xn, where each c ∈ Cn has domain Xn. Throughout this paper Xn will
be the boolean cube {0, 1}n. We will mainly deal with the class Hn of n-dimensional
linear threshold functions. A boolean function f : {0, 1}n → {−1, 1} is a linear
threshold function if there is a weight vector w ∈ R

n and a threshold θ ∈ R such that
f(x) = 1 iff w ·x ≥ θ. Such a pair (w, θ) is said to represent f. See [7, 21] for extensive
treatments of linear threshold functions on {0, 1}n.

2.1. Perceptron. Throughout its execution the Perceptron algorithm maintains
a weight vector w and a threshold θ as its current hypothesis. The algorithm proceeds
in a series of steps; in each step it receives an example x, uses its hypothesis to make
a prediction on x, and adjusts its hypothesis if the prediction is incorrect. Initially,
the algorithm starts with weight vector w = (0, . . . , 0) and threshold θ = 0. Upon
receiving an example x, the algorithm predicts according to the threshold function
w · x ≥ θ. If the prediction is incorrect, the hypothesis is updated according to the
following rule:

• On a false positive prediction, set w ← w − x and set θ ← θ + 1.
• On a false negative prediction, set w ← w + x and set θ ← θ − 1.

No change is made if the hypothesis was correct on x. If each example x belongs to
{0, 1}n, then each wi and θ will always be integers; this fact will prove useful later.

The well-known Perceptron convergence theorem bounds the number of mistakes
which the Perceptron algorithm can make.
Theorem 2.1 (see [6, 20, 24]). Let 〈x1, y1〉, . . . , 〈xm, ym〉 be a sequence of labeled

examples with ‖xi‖ ≤ R and yi ∈ {−1, 1} for all i. Let u be a vector and θ, ξ be such
that yi(u · xi − θ) ≥ ξ for all i, where ξ > 0. Then the total number of mistakes made
by the Perceptron algorithm on this example sequence is at most

(R2 + 1)(‖u‖2 + θ2)

ξ2
.

2.2. Winnow. The Winnow algorithm takes as input an initial vector wI ∈ R
n,

a promotion factor α ∈ R, and a threshold θ ∈ R. The algorithm requires that wI is
positive (i.e., each coordinate of wI is positive), that α > 1, and that θ > 0. Like

1360 ROCCO A. SERVEDIO

the Perceptron algorithm, Winnow proceeds in a series of trials and predicts in each
trial according to the threshold function w · x ≥ θ. If the prediction is correct, then
no update is performed; otherwise the weights are updated as follows:

• On a false positive prediction for all i set wi ← α−xiwi;
• On a false negative prediction for all i set wi ← αxiwi.

It should be noted that, in this form, Winnow is capable only of expressing pos-
itive threshold functions as its hypotheses. This limitation can be easily overcome,
however, by using various simple transformations on the input (see [14, 15]). Lit-
tlestone has proved the following result, analogous to the Perceptron convergence
theorem, bounding the number of mistakes which Winnow makes.

Theorem 2.2 (see [16]). Let 〈x1, y1〉, . . . , 〈xm, ym〉 be a sequence of labeled ex-
amples with xi ∈ [0, 1]n and yi ∈ {−1, 1} for all i. Let u be a positive vector and
δ > 0 be such that whenever yi = 1 we have u · x ≥ 1 and whenever yi = −1 we
have u · x ≤ 1− δ. If Winnow is run on this example sequence with initial parameters
wI , α, θ where wI = (1, . . . , 1), α = 1+ δ

2 and θ > 0, then the total number of mistakes
made by Winnow on this example sequence is at most

8n

δ2θ
+max

{
0,

14

δ2

n∑
i=1

ui ln(uiθ)

}
.

2.3. PAC learning with online learning algorithms. In Valiant’s PAC
learning model [12, 26] the learning algorithm has access to an example oracleEX(c,D)
which, in one time step, provides a labelled example 〈x, c(x)〉, where x is drawn from
the distribution D on the example space X. The function c ∈ C is called the target
concept; the goal of the learning algorithm is to construct a hypothesis h which, with
high probability, has low error with respect to c. We thus have the following.

Definition 2.3. We say that an online learning algorithm A (such as Perceptron
or Winnow) is an efficient PAC learning algorithm for concept class C over X if there
is a polynomial p(·, ·, ·) such that the following conditions hold for any n ≥ 1, any
distribution D over Xn, any c ∈ Cn, and any 0 < ε, δ < 1 :

• Given any example x ∈ Xn algorithm A always evaluates its hypothesis on x
and (once provided with c(x)) updates its hypothesis in poly(n) time.

• If algorithm A is run on a sequence of examples generated by successive calls
to EX(c,D), then with probability at least 1 − δ algorithm A will generate a
hypothesis h such that Prx∈D[h(x) �= c(x)] < ε after at most p(n, 1

ε ,
1
δ) calls

to EX(c,D).
An algorithm A is said to be an efficient PAC learning algorithm under a fixed

distribution D if it satisfies the above definition for the fixed distribution D. The most
natural distribution over a finite set is of course the uniform distribution; we write
Un to denote the uniform distribution over {0, 1}n.

2.4. PAC learning versus online mistake bound learning. Several generic
techniques are known [1, 11, 14] for converting any online mistake bound learning
algorithm to a PAC algorithm. These conversion procedures yield PAC learning
algorithms whose running time is polynomially related to the running time of the
original online algorithm. Using these conversion procedures Theorems 2.1 and 2.2
imply that Perceptron and Winnow are efficient PAC learning algorithms for certain
restricted linear threshold learning problems. For example, one straightforwardly
obtains the following.

PERCEPTRON, WINNOW, AND PAC LEARNING 1361

Corollary 2.4. Let CW be the class of linear threshold functions w ·x ≥ θ over
{0, 1}n such that each wi is an integer and

∑n
i=1 |wi| < W. Then both Perceptron and

Winnow yield PAC learning algorithms for CW which run in time poly(n,W, 1
ε ,

1
δ).

It is well known, though, that there are linear threshold functions over {0, 1}n
which require integer coefficients of magnitude 2Ω(n). (See, e.g., [10]; we will see an
example of such a linear threshold function in section 5.1.) For functions such as these
the time bound of Corollary 2.4 is exponentially large in n and hence does not shed
light on whether or not Perceptron and Winnow are efficient PAC learning algorithms.

3. Perceptron can learn nested functions under Un. In this section we
establish a sufficient condition for a family of threshold functions to be efficiently
learnable by Perceptron under Un. We prove that nested functions satisfy this condi-
tion and thereby immediately obtain the main result of this section. This complements
Schmitt’s result [25] that the Perceptron algorithm cannot efficiently PAC learn nested
functions under arbitrary distributions.

The class of nested functions, denoted NFn, was introduced by Anthony, Bright-
well, and Shawe-Taylor in [3].
Definition 3.1. The class of nested functions over x1, . . . , xn is defined as

follows:
1. For n = 1, the functions x1 and x1 are nested.
2. For n > 1, f(x1, . . . , xn) is nested if f = g ∗ ln, where g is a nested function

on x1, . . . , xn−1, ∗ is either ∨ or ∧, and ln is either xn or xn.
It is easy to verify that the class of nested functions is equivalent to the class of 1-

decision lists of length n in which the variables appear in the reverse order xn, . . . , x1.
The following lemma establishes a canonical representation of nested functions as
threshold functions.
Lemma 3.2. Any f ∈ NFn can be represented by a linear threshold function

w1x1 + · · ·+ wnxn ≥ θn

with θn = k + 1
2 for some integer k,wi = ±2i−1, and

∑
wi<0 wi < θn <

∑
wi>0 wi.

Proof. The proof is by induction on n. For n = 1 the appropriate threshold
function is x1 ≥ 1

2 or −x1 ≥ − 1
2 . For n > 1, f must be of the form g ∗ ln, where g is a

nested function on x1, . . . , xn−1. By the induction hypothesis, g can be expressed as a
threshold function w1x1 + · · ·+wn−1xn−1 ≥ θn−1, with w1, . . . , wn−1, θn−1 satisfying
the conditions of the lemma. There are four possibilities:

1. f = g ∧ xn: then f is w1x1 + · · ·+wn−1xn−1 + 2n−1xn ≥ θn = θn−1 + 2n−1.
2. f = g ∧ xn: then f is w1x1 + · · ·+ wn−1xn−1 − 2n−1xn ≥ θn = θn−1.
3. f = g ∨ xn: then f is w1x1 + · · ·+ wn−1xn−1 + 2n−1xn ≥ θn = θn−1.
4. f = g ∨ xn: then f is w1x1 + · · ·+wn−1xn−1 − 2n−1xn ≥ θn = θn−1 − 2n−1.

In each case it can be verified that the stated threshold function is equivalent to f
and that w1, . . . , wn, θn satisfy the conditions of the lemma.
Definition 3.3. Let Gn be a collection of hyperplanes in R

n. A family G =
∪n≥1Gn of hyperplanes is said to be gradual if there is some constant c > 0 such that
the following condition holds: for every τ ≥ 0, every n ≥ 1, and every hyperplane in
Gn, at most cτ2n boolean examples x ∈ {0, 1}n lie within Euclidean distance τ of the
hyperplane. A class of linear threshold functions F is said to be gradual if there is
a mapping ϕ : F → G, where G is a gradual family of hyperplanes, such that for all
f ∈ F, if ϕ(f) is the hyperplane w · x = θ, then (w, θ) represents the linear threshold
function f.

1362 ROCCO A. SERVEDIO

Lemma 3.4. The class of nested functions is gradual.
Proof. We use the representation established in Lemma 3.2; so let f ∈ NFn and

let w · x ≥ θ be a linear threshold function which represents f with wi = ±2i−1 and
θ = k + 1

2 for some integer k. For x ∈ {0, 1}n, if w · x = t, then t must be an integer,
but since every integer has a unique binary representation, at most one x ∈ {0, 1}n
can satisfy w · x = t for any given value of t. Consequently, no example x ∈ {0, 1}n
can have |w · x− θ| < 1

2 , and

|{x ∈ {0, 1}n : |w · x− θ| ≤ m}| ≤ 2m+ 1

for m ≥ 1
2 . The lemma follows by noting that ‖w‖ = (4n−1

3)1/2 = Θ(2n) and that the
distance from a point x′ to the hyperplane w · x = θ is ‖w‖−1 · |w · x′ − θ|.

This lemma ensures that relatively few points can lie close to the separating
hyperplane for a nested function; consequently, as we run Perceptron most of the
updates will cause the algorithm to make significant progress, and it will achieve
ε-accuracy in polynomial time. The following theorem formalizes this intuition.
Theorem 3.5. If C is a gradual class of linear threshold functions, then Percep-

tron is an efficient PAC learning algorithm for C under Un.
Proof. The proof is similar to the proof of Theorem 1 in [5]. Let w · x ≥ θ be

a gradual linear threshold function which represents c. We assume without loss of
generality that w, θ have been normalized; i.e., ‖w‖ = 1, so |w · x− θ| is the distance
from x to the hyperplane. By Definition 3.3, there is some constant k > 0 such that
for all τ > 0 the probability that a random example drawn from EX(c,Un) is within
distance τ of the hyperplane w · x = θ is at most τ/2k. Letting τ = kε, we have
that with probability at most ε/2, a random example drawn from EX(c,Un) is within
distance kε of the hyperplane. Let B ⊆ {0, 1}n be the set of examples x which lie
within distance kε of the hyperplane; so Prx∈Un

[x ∈ B] ≤ ε/2.
Let (wt, θt) represent the Perceptron algorithm’s hypothesis after t updates have

been made. If (wt, θt) is not yet ε-accurate, then with probability at most 1/2 the
next example which causes an update will be in B. Consider the following potential
function:

Nt(α) = ‖αw − wt‖2 + (αθ − θt)
2.

Recalling our Perceptron update rules, we see that Nt+1(α)−Nt(α) is

∆N(α) = ‖αw − wt+1‖2 + (αθ − θt+1)
2 − ‖αw − wt‖2 − (αθ − θt)

2

= ∓2αw · x± 2αθ ± 2wt · x∓ 2θt + ‖x‖2 + 1

≤ 2αA± 2(wt · x− θt) + n+ 1

with A = ∓(w · x − θ). Since x was misclassified, we know that ±(wt · x − θt) ≤ 0,
and hence ∆N(α) ≤ 2αA + n + 1. If x ∈ B, then A ≤ 0; if x /∈ B, then A ≤ −kεα.
As a result, ∆N(α) < n+ 1 for x ∈ B, and ∆N(α) < n+ 1− 2kεα for x /∈ B.

Suppose that during the course of its execution the Perceptron algorithm has
made r updates on examples in B and s updates on examples outside B. Since (w, θ)
have been normalized we have that |θ| ≤ √n, and hence N0(α) ≤ α2(n + 1). Since
Nt(α) must always be nonnegative, it follows that

0 ≤ r(n+ 1) + s(n+ 1− 2kεα) + α2(n+ 1).

If we set α = 12(n+1)
5kε , then simplifying the above inequality we obtain

0 ≤ r − 19

5
s+

144(n+ 1)2

25(kε)2
,

PERCEPTRON, WINNOW, AND PAC LEARNING 1363

from which it follows that if m1 = 144(n+1)2

25(kε)2 updates have been made, at least 7/12

of the updates must have been on examples in B.

Let m = max{144 ln δ
2 ,m1} and consider running the Perceptron algorithm for

2m/ε examples. Let h1, h2, . . . denote the hypotheses which are generated by the
Perceptron algorithm during the course of its execution on these 2m/ε examples. We
have that

Pr[each hi has error > ε] = Pr[(each hi has error > ε) &

(fewer than m updates take place)]

+ Pr[(each hi has error > ε) &

(at least m updates take place)]

≤ Pr[(fewer than m updates take place) |
(each hi has error > ε)]

+ Pr[(at least m updates take place) |
(each hi has error > ε)].

To bound the first of these conditional probabilities, we note that conditioned on the
event that each hi has error at least ε, the expected number of updates is at least 2m.
A straightforward Chernoff bound [2] shows that this first conditional probability is
at most δ/2.

To bound the second conditional probability, we recall that if at least m updates
take place, then at least 7/12 of the updates must be on examples in B. However, as
noted earlier, if each hi has error at least ε, then for each update the probability that
the update is in B is at most 1/2. Another application of Chernoff bounds shows that
the second conditional probability is at most δ/2, and the theorem is proved.

As an immediate corollary of Theorem 2.1 we have that the Perceptron is a PAC
learning algorithm for the class of nested functions under the uniform distribution on
{0, 1}n.

4. Perceptron cannot learn Hn under Un. A very simple argument suffices
to establish this result. We require the following definition.

Definition 4.1 (see [25]). The weight complexity of a linear threshold function
f is the smallest positive integer t such that f can be represented as w · x ≥ θ, with
each wi and θ an integer and max{|w1|, . . . , |wn|, |θ|} ≤ t.

Theorem 4.2. The Perceptron algorithm is not an efficient PAC learning al-
gorithm for the class of linear threshold functions under the uniform distribution on
{0, 1}n.

Proof. We take ε = 1
2n+1 ; so any ε-accurate hypothesis must agree exactly with

the target concept, since misclassification of a single example would imply an er-
ror rate under the uniform distribution of at least 1

2n > ε. H̊astad [9] has con-

structed a linear threshold function which has weight complexity 2Ω(n logn). If we
take this as our target concept, then it follows that at least 2Ω(n log n) update steps
must be performed by the Perceptron algorithm in order to achieve exact identifi-
cation (since Perceptron hypothesis weights are always integral and each weight is
increased by at most 1 during each Perceptron update step). However, the amount
of computation time which a PAC learning algorithm is allowed is only poly(n, 1

ε) =

poly(n, 2n) = 2O(n).

1364 ROCCO A. SERVEDIO

5. Winnow cannot learn Hn. Although the Winnow algorithm has been ex-
tensively studied in the online mistake bound learning model, little is known about
its performance in other learning models. In this section we show that Winnow is not
an efficient PAC learning algorithm for the class of positive linear threshold functions.
More precisely, we prove the following theorem.
Theorem 5.1. Given any positive start vector wI , any promotion factor α > 1

and any threshold θ > 0, there is a positive threshold function c, a distribution D on
{0, 1}n, and a value ε > 0 for which Winnow(wI , α, θ) will not generate a hypothesis
h such that Prx∈D[h(x) �= c(x)] ≤ ε in poly(n, 1

ε) steps.
As a consequence of the proof of this theorem, we will obtain an explicit family of

“hard” threshold functions and corresponding example sequences which cause Winnow
to make exponentially many mistakes. Maass and Turan [18] have used a counting
argument to show that, given any (wI , α, θ), there exists a target threshold function
and example sequence which together cause Winnow(wI , α, θ) to make exponentially
many mistakes, but no explicit construction was known.

5.1. A threshold function with large coefficients and a small specifying
set. The proof of Theorem 3.5 makes use of several lemmas. In the first lemma we
show that a nested boolean function with alternating connectives requires exponen-
tially large coefficients. (Similar results can be found in [21, 22].)
Lemma 5.2. Let n be odd and let u · x ≥ θ be a positive threshold function which

represents the nested function

fn = (. . . (x1 ∨ x2) ∧ x3) ∨ x4) . . .) ∨ xn−1) ∧ xn.

For all i ≥ 3 we have that ui ≥ Fi−3u3, where Fi is the ith Fibonacci number:
F0 = 1, F1 = 1, F2 = 1, F3 = 2, F4 = 3,

Proof. The proof is by induction on k, where n = 2k + 1. For clarity we use two
base cases. The case k = 1 is trivial. If k = 2, then since f5(0, 0, 0, 1, 1) = 1 and
f5(0, 0, 1, 0, 1) = 0, we find that u4 ≥ u3. Similarly, since f5(0, 0, 1, 1, 0) = 0, we find
that u5 ≥ u3.

We now suppose that the lemma is true for k = 1, 2, . . . , j− 1 and let n = 2j+1.
By assumption, (u1, . . . , un) and θ are such that u · x ≥ θ represents fn. If we fix
xn = 1 and xn−1 = 0, then it follows that u1x1 + · · · + un−2xn−2 ≥ θ − un is a
threshold function which represents fn−2; so by the induction hypothesis the lemma
holds for u3, . . . , un−2, and we need only show that it holds for un−1 and un.

Since fn(1, 1, . . . , 1, 0, 0, 1) = 0, we have that u1 + u2 + · · ·+ un−3 + un < θ. On
the other hand, since fn(0, 0, . . . , 0, 1, 1) = 1, we have that un−1+un ≥ θ. From these
two inequalities it follows that

un−1 ≥ u1 + u2 + · · ·+ un−3.

Since u is positive, this inequality implies that

un−1 > u3 + u4 + · · ·+ un−3.

Using the induction hypothesis we obtain the inequality

un−1 ≥ (1 + F1 + · · ·+ Fn−6)u3 = Fn−4u3.

Similarly, since fn(1, 1, . . . , 1, 0) = 0, we have that u1 + u2 + · · ·+ un−1 < θ; so

un ≥ u1 + u2 + · · ·+ un−2 > u3 + u4 + · · ·+ un−2.

PERCEPTRON, WINNOW, AND PAC LEARNING 1365

By the induction hypothesis, we find that

un ≥ (1 + F1 + · · ·+ Fn−5)u3 = Fn−3u3,

and the lemma is proved.

Since Fn = Ω(φn), where φ = 1+
√

5
2 , we have shown that fn must have coefficients

whose ratio is exponentially large.
We require a definition from [3] before stating the next lemma.
Definition 5.3. Let c ∈ Hn. We say that c is consistent with a set S = {〈x1, b1〉,

〈x2, b2〉, . . . , 〈xm, bm〉} of labelled examples if c(xi) = bi for all i. The set S is said
to specify c in Hn if c is the only function in Hn which is consistent with S; we say
that such a set is a specifying set for c in Hn. The specification number of c, denoted
σn(c), is the smallest size of any specifying set for c in Hn.

The following results are proved in [3].
Lemma 5.4.
1. Every c ∈ Hn has a unique specifying set of size σn(c).
2. If c ∈ NFn, then σn(c) = n+ 1.
3. Given any c ∈ Hn, let c ↑ (x1, . . . , xn−1) = c(x1, . . . , xn−1, 1) and let c ↓

(x1, . . . , xn−1) = c(x1, . . . , xn−1, 0). Then σn(c) ≤ σn−1(c↑) + σn−1(c↓).
4. If c ∈ Hn and c depends on only coordinates 1, 2, . . . , k, then the specification

number of c in Hn is σn(c) = 2n−kσk(c).
We use the results of Lemma 5.4 to show that the function gn defined below has

a small specifying set.
Lemma 5.5. Let n be even and let gn be the linear threshold function represented

by

x1 + 2x2 + 4x3 + · · ·+ 2n−2xn−1 + (2n−2 + 1)xn ≥ 4 + 16 + · · ·+ 2n−4 + 2n−2 +
1

2
.

Then σn(gn) ≤ 5n− 8.
Proof. The function gn↓ is represented by

x1 + 2x2 + 4x3 + · · ·+ 2n−2xn−1 ≥ 4 + 16 + · · ·+ 2n−2 +
1

2
.

It is straightforward to verify that this is precisely the nested function

(. . . (x1 ∨ x2) ∧ x3) ∨ x4) . . .) ∧ xn−1

on n− 1 variables. By part 2 of Lemma 5.4, we have σn−1(gn↓) = n.
The function gn↑ is represented by

x1 + 2x2 + 4x3 + · · ·+ 2n−2xn−1 ≥ 4 + 16 + · · ·+ 2n−4 − 1

2
.

Again, one can easily verify that this is precisely the nested function

(. . . (x3 ∨ x4) ∧ x5) ∨ x6) . . .) ∧ xn−3) ∨ xn−2) ∨ xn−1

on the n − 3 variables x3, . . . , xn−1; in this nested function the boolean connectives
alternate between ∨ and ∧ until the very end, where two consecutive ∨’s occur. Since
gn↑ does not depend on the two variables x1, x2, parts 4 and 2 of Lemma 5.4 imply
that σn−1(gn↑) = 4σn−3(gn↑) = 4(n − 2). It follows from part 3 of Lemma 5.4 that
σn(gn) ≤ 5n− 8.

1366 ROCCO A. SERVEDIO

5.2. Proof of Theorem 3.5. One more lemma is required. We prove that
the coefficients of xn−1 and xn in any representation of gn must be almost, but not
exactly, equal.
Lemma 5.6. Let n be even and let gn be as defined in Lemma 5.5. Let v · x ≥ θ

represent gn. Then vn−1 < vn < vn−1 + v3.
Proof. Let ej denote the boolean vector whose jth coordinate is 1 and all of whose

other coordinates are 0. Let a = e3 + e5 + e7 + · · ·+ en−1. Since gn(a) = 0, it follows
that v3 + v5 + · · ·+ vn−1 < θ. On the other hand, let b = e3 + e5 + · · ·+ en−3 + en.
Since gn(b) = 1, it follows that v3 + v5 + · · · + vn−3 + vn ≥ θ. Combining these two
inequalities, we find that vn > vn−1.

To see that vn cannot be much greater than vn−1, let c = e1 + e5 + e7 + e9 + · · ·+
en−3 + en. Since gn(c) = 0, we have v1 + v5 + · · ·+ vn−3 + vn < θ. On the other hand,
let d = e1 + e3 + · · ·+ en−1. Since gn(d) = 1, we have that v1 + v3 + · · ·+ vn−1 ≥ θ.
Combining these two inequalities, we find that vn < vn−1 + v3, and the lemma is
proved.

Proof of Theorem 3.5. We first prove the theorem for the restricted case in which
we assume that wI = (1, . . . , 1). After we have done this we will show how this
assumption can be eliminated.

Fix α > 1 and θ > 0. Let S denote the specifying set for the threshold function
gn; we know from Lemma 5.5 that |S| ≤ 5n− 8. Let D be the distribution on {0, 1}n
which is uniform on S and gives zero weight to vectors outside of S. We will show that
with gn as the target concept, D as the distribution over examples, and ε = 1

5n−7 as
the error parameter, Winnow((1, . . . , 1), α, θ) cannot achieve a hypothesis h(x) which
satisfies PrD[h(x) �= c(x)] ≤ ε in poly(n, 1

ε) = poly(n) steps. To see this, first note
that by our choice of ε and D, any threshold function w · x ≥ θ which is ε-accurate
with respect to gn must be consistent with S. (This technique was first used by Pitt
and Valiant in [23].) Since S is a specifying set for gn, though, if w ·x ≥ θ is consistent
with S, then it must in fact agree exactly with gn. We will show that there is no value
of α which could enable Winnow to generate a vector w such that w ·x ≥ θ represents
gn(x) in poly(n) steps.

Let (w, θ) be such that Winnow generates w and w ·x ≥ θ represents gn(x). Since
gn↓ is precisely the nested function fn−1 of Lemma 5.2 and w is positive, by Lemma
5.2 we have that wn−1 ≥ Fn−4w3. Combining this with Lemma 5.6, we obtain

1 <
wn

wn−1
< 1 +

1

Fn−4
= 1 +

1

Ω(φn)
.

Since we assumed that wI = (1, . . . , 1), and every example for Winnow lies in {0, 1}n,
it follows that wn

wn−1
= αj for some positive integer j, and hence that α = 1 + 1

Ω(φn) .

However, then at least Ω(nφn) update steps are required to achieve wn−1 ≥ Fn−4w3;
consequently, no hypothesis consistent with gn can be achieved in poly(n) steps.

Now we consider the case of an arbitrary positive start vector wI ; so fix some
positive wI , α > 1, and θ > 0. We assume without loss of generality that wI

1 ≤ wI
2 ≤

· · · ≤ wI
n, since if this is not already the case renaming variables will make it so. Since

all examples for Winnow are in {0, 1}n, at every point in the execution of Winnow

the ratio of weights wi and wj must be
wI

i

wI
j

·αc for some integer c. If there is no integer

i1 such that

1 <
wI

n

wI
n−1

· αi1 < 1 +
1

Fn−4
,

PERCEPTRON, WINNOW, AND PAC LEARNING 1367

then Winnow can never achieve a hypothesis which represents the threshold function
gn(x), and can hence never achieve ε-accuracy; so we assume that such an i1 exists.
Similarly, if there is no integer i2 such that

1 <
wI

n−1

wI
n

· αi2 < 1 +
1

Fn−4
,

then there is a threshold function which Winnow can never achieve (the function gn
with a permutation on the variables is such a function); so such an i2 must exist as
well. Taking the product of these inequalities, we find that

1 < αi1+i2 <
(
1 +

1

Fn−4

)2

.

Since i1 + i2 must be a positive integer, this implies that α < (1 + 1
Fn−4

)2. Now

consider a threshold function which requires that w1 ≥ Fn−4wn. (Again, gn with a
permutation on the variables is such a function.) Since wI

1 ≤ wI
n and α < (1+ 1

Fn−4
)2,

it follows that Ω(nφn) update steps will be required. Hence no hypothesis consistent
with gn can be achieved in polynomial time, and the theorem is proved.

As an immediate consequence of this proof, we note that the example sequence
which simply cycles through S will force Winnow to make exponentially many mis-
takes on gn.

6. Conclusion. Many questions remain to be answered about the PAC learning
ability of simple online algorithms such as Perceptron and Winnow. Perceptron is now
known to be a PAC learning algorithm for linear threshold functions under the uniform
distribution on the n-dimensional unit sphere and is known not to be a PAC learning
algorithm for linear threshold functions under the uniform distribution on {0, 1}n.
Analogous results have yet to be obtained for Winnow under uniform distributions.
More generally, it would be interesting to identify the class of threshold functions
which Perceptron (Winnow) can PAC learn under the uniform distribution and under
arbitrary distributions.

The linear threshold function gn used in our Winnow proof is very similar to a
nested function; in particular, both gn ↑ and gn ↓ are nested functions. In light of
this fact, and of Schmitt’s proof that Perceptron is not a PAC learning algorithm for
the class of nested functions, it would be interesting to determine whether Winnow
is capable of PAC learning the class of nested functions (or, equivalently, the class of
decision lists).

Both the Perceptron and Winnow algorithms are local in the sense of [27]: each
update to a weight wi depends only on the value of w · x, the value of wi, the value
of xi, and the correct classification of the example. Such algorithms are of particular
interest because they require very limited communication between the processors that
perform the updates for each weight and are hence well suited for implementation
on a distributed system such as a neural network. Known algorithms for learning
threshold functions efficiently, such as the algorithm of [18] which is based on linear
programming, are nonlocal. We conjecture that local learning algorithms cannot
efficiently learn the unrestricted class of threshold functions.

A final issue is attribute efficiency. A learning algorithm is said to be attribute
efficient if, when the target concept has k relevant variables out of n, the number of
calls which the algorithm makes to the example oracle is polynomial in k and poly-

1368 ROCCO A. SERVEDIO

logarithmic in n. Littlestone’s results for Winnow show that it is an attribute efficient
algorithm for certain simple subclasses of threshold functions such as disjunctions and
r-out-of-k threshold functions. Our results imply that Winnow is not an attribute ef-
ficient PAC learning algorithm for the unrestricted class of linear threshold functions.
It would be interesting to gain a better understanding of the abilities and limitations
of Winnow as an attribute efficient learning algorithm.

Acknowledgment. We thank Les Valiant for helpful comments and suggestions.

REFERENCES

[1] D. Angluin, Queries and concept learning, Machine Learning, 2 (1988), pp. 319–342.
[2] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and

matchings, J. Comput. System Sci., 18 (1979), pp. 155–193.
[3] M. Anthony, G. Brightwell, and J. Shawe-Taylor, On specifying boolean functions using

labelled examples, Discrete Appl. Math., 61 (1993), pp. 1–25.
[4] P. Auer and M. Warmuth, Tracking the best disjunction, in Proceedings of the 36th An-

nual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1995, pp. 312–321.

[5] E. B. Baum, The perceptron algorithm is fast for nonmalicious distributions, Neural Comput.,
2 (1990), pp. 248–260.

[6] H. Block, The perceptron: A model for brain functioning, Rev. Modern Phys., 34 (1962),
pp. 123–135.

[7] M. L. Dertouzos, Threshold Logic: A Synthesis Approach, MIT Press, Cambridge, MA, 1965.
[8] Y. Freund and R. Schapire, Large margin classification using the Perceptron algorithm, in

Proceedings of the 11th Annual Conference on Computational Learning Theory, ACM,
New York, 1998, pp. 209–217.

[9] J. Håstad, On the size of weights for threshold gates, SIAM J. Discrete Math., 7 (1994),
pp. 484–492.

[10] S. Hampson and D. Volper, Linear function neurons: Structure and training, Biol. Cybernet.,
53 (1986), pp. 203–217.

[11] D. Haussler, Space Efficient Learning Algorithms, Technical Report UCSC-CRL-88-2, Uni-
versity of California, Santa Cruz, CA, 1988.

[12] M. Kearns and U. Vazirani, An Introduction to Computational Learning Theory, MIT Press,
Cambridge, MA, 1994.

[13] J. Kivinen, M. Warmuth, and P. Auer, The perceptron algorithm vs. winnow: Linear vs.
logarithmic mistake bounds when few input variables are relevant, in Proceedings of the 8th
Annual Conference on Computational Learning Theory, ACM, New York, 1995, pp. 289–
296.

[14] N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm, Machine Learning, 2 (1988), pp. 285–318.

[15] N. Littlestone, Mistake Bounds and Logarithmic Linear-Threshold Learning Algorithms,
Ph.D. thesis, Technical Report UCSC-CRL-89-11, University of California, Santa Cruz,
CA, 1989.

[16] N. Littlestone, Redundant noisy attributes, attribute errors, and linear-threshold learning
using winnow, in Proceedings of the 4th Annual Conference on Computational Learning
Theory, ACM, New York, 1991, pp. 147–156.

[17] W. Maass and M. Warmuth, Efficient Learning with Virtual Threshold Gates, Technical
Report UCSC-CRL-95-37, University of California, Santa Cruz, CA, 1995.

[18] W. Maass and G. Turan, How fast can a threshold gate learn?, in Computational Learning
Theory and Natural Learning Systems. Volume I: Constraints and Prospects, S. J. Hanson,
G. Drastal, and R. Rivest, eds., MIT Press, Cambridge, MA, 1994, pp. 381–414.

[19] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry, ex-
panded ed., MIT Press, Cambridge, MA, 1988.

[20] A. Novikoff, On convergence proofs on perceptrons, in Proceedings of the Symposium on
Mathematical Theory of Automata, Vol. 12, 1962, pp. 615–622.

[21] S. Muroga, Threshold Logic and its Applications, Wiley-Interscience, New York, 1971.
[22] I. Parberry, Circuit Complexity and Neural Networks, MIT Press, Cambridge, MA, 1994.
[23] L. Pitt and L. G. Valiant, Computational limitations on learning from examples, J. ACM,

35 (1988), pp. 965–984.

PERCEPTRON, WINNOW, AND PAC LEARNING 1369

[24] F. Rosenblatt, Principles of Neurodynamics, Springer-Verlag, New York, 1962.
[25] M. Schmitt, Identification criteria and lower bounds for Perceptron-like learning rules, Neural

Comput., 10 (1998), pp. 235–250.
[26] L. G. Valiant, A theory of the learnable, Comm. ACM, 27 (1984), pp. 1134–1142.
[27] L. G. Valiant, Circuits of the Mind, Oxford University Press, New York, 1994.
[28] L. G. Valiant, Projection learning, in Proceedings of the 11th Annual Conference on Compu-

tational Learning Theory, ACM, New York, 1998, pp. 287–293.

