
Separating Models of Learning from Correlated

and Uncorrelated Data

Ariel Elbaz, Homin K. Lee, Rocco A. Servedio⋆, and Andrew Wan

Department of Computer Science
Columbia University

{arielbaz,homin,rocco,atw12}@cs.columbia.edu

Abstract. We consider a natural framework of learning from correlated
data, in which successive examples used for learning are generated ac-
cording to a random walk over the space of possible examples. Previous
research has suggested that the Random Walk model is more powerful
than comparable standard models of learning from independent exam-
ples, by exhibiting learning algorithms in the Random Walk framework
that have no known counterparts in the standard model. We give strong
evidence that the Random Walk model is indeed more powerful than
the standard model, by showing that if any cryptographic one-way func-
tion exists (a universally held belief in public key cryptography), then
there is a class of functions that can be learned efficiently in the Ran-
dom Walk setting but not in the standard setting where all examples are
independent.

1 Introduction

It is a commonly held belief in machine learning that having access to correlated
data – for example, having random data points that differ only slightly from
each other – is advantageous for learning. However, we are not aware of research
that rigorously validates this belief from the vantage point of the abilities and
limitations of computationally efficient learning. Our work is motivated by this
disparity.

We study a natural model of learning from correlated data, by considering
a framework in which the learning algorithm has access to successive examples
that are generated by a random walk. We give strong evidence that learning
is indeed easier, at least for some problems, in this framework of correlated
examples than in the standard framework in which no correlations exist between
successive examples.

1.1 Background

In the well-known Probably Approximately Correct (PAC) learning model intro-
duced by Valiant [16], a learning algorithm is given access to a source EXD(c)

⋆ Supported in part by NSF CAREER award CCF-0347282 and a Sloan Foundation
Fellowship.

of labelled examples each of which is drawn independently from a fixed probabil-
ity distribution D over the space of possible instances. The goal of the learning
algorithm is to construct (with high probability) a high-accuracy hypothesis for
the target concept c with respect to D.

Aldous and Vazirani [1] introduced and studied a variant of the PAC learning
model in which successive examples are generated according to a Markov process,
i.e. by taking a random walk on an (exponentially large) graph. Subsequent work
by Gamarnik [8] extended this study to infinite Markov chains and gave bounds
on the sample complexity required for learning in terms of the VC dimension
and certain mixing properties of the underlying Markov chain. Neither [1] nor
[8] considered computational issues for learning algorithms in the Random Walk
framework.

In this paper we consider an elegant model of learning from Random Walk
examples that is well suited for computational analyses. This model was intro-
duced by Bartlett, Fischer and Höffgen [2] and subsequently studied by Bshouty
et al. [6]. In this framework (described in detail in Section 2), successive examples
for the learning algorithm are produced sequentially according to an unbiased
random walk on the Boolean hypercube {0, 1}n. The PAC goal of constructing
a high-accuracy hypothesis for the target concept with high probability (where
accuracy is measured with respect to the stationary distribution of the random
walk, i.e. the uniform distribution on {0, 1}n) is unchanged. This is a natural way
of augmenting the model of uniform distribution PAC learning over the Boolean
hypercube (which has been extensively studied, see e.g. [4, 5, 7, 12, 13, 14, 15, 17]
and references therein) with the ability to exploit correlated data.

Bartlett et al. gave polynomial-time learning algorithms in this model for sev-
eral concept classes including Boolean threshold functions in which each weight
is either 0 or 1, parities of two monotone conjunctions over x1, . . . , xn, and
Disjunctive Normal Form (DNF) formulas with two terms. These learning algo-
rithms are proper, meaning that in each case the learning algorithm constructs a
hypothesis representation that belongs to the class being learned. Since proper
learning algorithms were not known for these concept classes in the standard
uniform distribution model, this gave the first circumstantial evidence that hav-
ing access to random walk examples rather than uniform independent examples
might bestow a computational advantage.

More recently, Bshouty et al. [6] gave a polynomial-time algorithm for learn-
ing the unrestricted class of all polynomial-size DNF formulas over {0, 1}n in
the Random Walk model. Since no comparable polynomial-time algorithms are
known in the standard uniform distribution model (and their existence is a well-
studied open question for which an affirmative answer would yield a $1000 prize,
see [3]), this gives stronger evidence that the Random Walk model is strictly more
powerful than the normal uniform distribution model. Thus, it is natural to now
ask whether the perceived superiority of random walk learning over uniform

distribution learning can be rigorously established under some widely accepted
hypothesis about efficient computation.1

1.2 Our Results

In this work we give such a separation, under a generic cryptographic hardness
assumption, between the Random Walk model and the uniform distribution
model. Our main result is a proof of the following theorem:

Theorem 1. If any cryptographic one-way function exists, then there is a con-
cept class over {0, 1}n that is PAC learnable in poly(n) time in the Random
Walk model but is not PAC learnable in poly(n) time in the standard uniform
distribution model.

We emphasize that the separation established by Theorem 1 is computational
rather than information-theoretic. It will be evident from our construction that
the concept class of Theorem 1 has poly(n) VC dimension, and thus the class can
be learned using poly(n) many examples even in the distribution-independent
PAC learning model; the difficulty is in obtaining a polynomial-time algorithm.

We remind the reader that while the existence of any one-way function is
a stronger assumption than the assumption that P6=NP (since at this point
it is conceivable that P6=NP but one-way functions do not exist), it is an al-
most universally accepted assumption in cryptography and complexity theory.
(In particular, the existence of one-way functions is the weakest of the many
assumptions on which the entire field of public-key cryptography is predicated.)
We also remind the reader that all known representation-independent compu-
tational hardness results in learning theory (where any efficiently evaluatable
hypothesis representation is allowed for the learning algorithm, as is the case
in Theorem 1 above) rely on cryptographic hardness assumptions rather than
complexity-theoretic assumptions such as P 6=NP.

The rest of the paper is structured as follows: Section 2 gives necessary def-
initions and background from cryptography and the basics of our random walk
model. Section 3 gives a partial separation, and in Section 4 we show how the
construction from Section 3 can be used to achieve a total separation and prove
Theorem 1.

2 Preliminaries

2.1 Notation

We denote by [n] the set {1, . . . , n}. For an n-bit string r ∈ {0, 1}n and an
index i ∈ [n], the i-th bit of r is denoted r[i]. We write U to denote the uniform
distribution on {0, 1}n.

1 Note that it is necessary to make some computational hardness assumption in order
to separate these two learning models. It is easy to see that if P=NP, for instance,
then the concept class of all polynomial-size Boolean circuits would be efficiently
learnable in both these models (as well as far weaker models), and essentially all
considerations about the computational complexity of learning would become trivial.

2.2 Learning Models

Recall that a concept class C = ∪n∈NCn is a collection of Boolean functions where
each f ∈ Cn maps {0, 1}n → {0, 1}. A uniform example oracle for f is an oracle
EXU (f) which takes no inputs and, when invoked, outputs a pair 〈x, f(x)〉 where
x is drawn uniformly and independently from {0, 1}n at each invocation.

Definition 1 (PAC learning). A concept class C is uniform distribution PAC-
learnable if there is an algorithm A with the following property: for any n, any
target concept f ∈ Cn, and any ǫ, δ > 0, if A is given access to oracle EXU (f)
then A runs for poly(n, 1

ǫ
, 1

δ
) time steps and with probability 1 − δ outputs a

Boolean circuit h such that Prx∈U [h(x) 6= c(x)] ≤ ǫ.

In the (uniform) Random Walk model studied in [2, 6], a random walk or-
acle is an oracle EXRW (f) which, at its first invocation, outputs an example
〈x, f(x)〉 where x is drawn uniformly at random from {0, 1}n. Subsequent calls
to EXRW (f) yield examples generated according to a uniform random walk on
the hypercube {0, 1}n. That is, if x is the i-th example, the i + 1-st example is
x′, where x′ is chosen by uniformly selecting one of the n bits of x and flipping
it.

Definition 2 (PAC learning in the Random Walk model). A concept
class C is PAC-learnable in the Random Walk model if there is an algorithm A
that satisfies Definition 1 above but with EXRW (f) in place of EXU (f).

As in [6], it is convenient for us to work with a slight variant of the Random
Walk oracle which is of equivalent power; we call this the updating Random Walk
oracle and denote it by EXURW (f). If the last example generated by EXURW (f)
was x ∈ {0, 1}n, the updating Random Walk oracle chooses a uniform index
i ∈ [n], but instead of flipping the bit x[i] it replaces x[i] with a uniform random
bit from {0, 1} (i.e. it flips the bit with probability 1/2 and leaves x unchanged
with probability 1/2) to obtain the new example x′. We say that such a step
updates the i-th bit position.

An easy argument given in [6] shows that the Random Walk oracle can ef-
ficiently simulate the updating Random Walk oracle and vice versa, and thus
any concept class that is efficiently learnable from one oracle is also efficiently
learnable from the other. We introduce the updating Random Walk oracle be-
cause it is easy to see (and well known) that the updating random walk on the
hypercube mixes rapidly. More precisely, we have the following fact which will
be useful later:

Fact 1 Let 〈x, f(x)〉 be a labeled example that is obtained from EXURW (f),
and let 〈y, f(y)〉 be the labeled example that EXURW (f) outputs n ln n

δ
draws

later. Then with probability at least 1− δ, the two strings x, y are uniformly and
independently distributed over {0, 1}n.

Proof. Since it is clear that x and y are each uniformly distributed, the only thing
to check for Fact 1 is independence. This follows since y will be independent of

x if and only if all n bit positions are updated in the n ln n
δ

draws between x and
y. For each draw, the probability that a particular bit is not updated is (1− 1

n
).

Thus after n ln n
δ

draws, the probability that any bit of r has not been updated
is at most n(1 − 1

n
)n ln n

δ ≤ δ.. This yields the fact. ¥

Note that Fact 1 implies that any concept class C that is uniform distribution
PAC-learnable is also PAC-learnable in the Random Walk model, since we can
obtain independent uniform random examples in the Random Walk model with
essentially just a Θ(n log n) slowdown.

2.3 Background from Cryptography

We write Rn to denote the set of all 22n

Boolean functions from {0, 1}n to
{0, 1}. We refer to a function f chosen uniformly at random from Rn as a truly
random function. We write Df to denote a probabilistic polynomial-time (p.p.t.)
algorithm D with black-box oracle access to the function f .

Informally, a one-way function is a function f : {0, 1}n → {0, 1}n that is
computable by a poly(n) time algorithm but is hard to invert in the sense that no
poly(n)-time algorithm can successfully compute f−1 on a nonnegligible fraction
of outputs of f. (See [9] for a detailed definition and discussion of one-way
functions.) In a celebrated result, H̊astad et al. [11] showed that if any one-way
function exists, then pseudorandom function families must exist as well.

Definition 3. A pseudorandom function family [10] is a collection of functions
{fs : {0, 1}|s| → {0, 1}}s∈{0,1}∗ with the following two properties:

1. (efficient evaluation) there is a deterministic algorithm which, given an n-bit
seed s and an n-bit input x, runs in time poly(n) and outputs fs(x);

2. (pseudorandomness) for all polynomials Q, all p.p.t. oracle algorithms D,
and all sufficiently large n, we have that

∣

∣

∣

∣

Pr
f∈Rn

[Df (1n) outputs 1] − Pr
s∈{0,1}n

[Dfs(1n) outputs 1]

∣

∣

∣

∣

<
1

Q(n)
.

The argument 1n indicates that the “distinguisher” algorithm D must run
in poly(n) time steps since its input is of length n. Intuitively, condition (2)
above states that a pseudorandom function cannot be distinguished from a truly
random function by any polynomial-time algorithm that has black-box access to
the pseudorandom function with an inverse polynomial advantage over random
guessing.

3 A Partial Separation

3.1 A first attempt

It is clear that in the Random Walk model a learning algorithm will get many
pairs of examples that are adjancent vertices of the Hamming cube {0, 1}n,

whereas this will not be the case for a learner in the standard uniform distribu-
tion model (with high probability, a set of poly(n) many independent uniform
examples from {0, 1}n will contain no pair of examples that have Hamming dis-
tance less than n/2−O(

√
n log n)). Thus, in attempting to separate the random

walk model from the standard uniform distribution model, it is natural to try
to construct a concept class using pseudorandom functions fs but altered in
such a way that seeing the value of the function on adjacent inputs gives away
information about the seed s.

One natural approach is the following: given a pseudorandom function family
{fs : {0, 1}k → {0, 1}}s∈{0,1}k , one could define a concept class of functions

{f ′
s : {0, 1}k × {0, 1}log k × {0, 1} → {0, 1}}s∈{0,1}k as follows:

f ′
s(x, i, b) =

{

fs(x) if b = 0

fs(x) ⊕ s[i] if b = 1

where x is a k-bit string, i is a (log k)-bit string encoding an integer between 1
and k, and b is a single bit. A learning algorithm in the Random Walk model
will be able to obtain all bits s[1], . . . , s[k] of the seed s (by waiting for pairs
of successive examples (x, i, b), (x, i, 1 − b) in which the final bit b flips for all k
possible values of i), and will thus be able to exactly identify the target concept.
However, even though a standard uniform distribution learner will not obtain
any pair of inputs that differ only in the final bit b, it is not clear how to show
that no algorithm in the standard uniform distribution model can learn the
concept class to high accuracy. Such a proof would require one to show that
any polynomial-time uniform distribution learning algorithm could be used to
“break” the pseudorandom function family {fs}, and this seems difficult to do.
(Intuitively, this difficulty arises because the b = 1 case of the definition of f ′

s

“mixes” bits of the seed with the output of the pseudorandom function.) Thus,
we must consider alternate constructions.

3.2 A partial separation

In this section we describe a concept class and prove that it has the following
two properties: (1) A randomly chosen concept from the class is indistinguishable
from a truly random function to any polynomial-time algorithm which has an
EXU (·) oracle for the concept (and thus no such algorithm can learn to accuracy
ǫ = 1

2− 1
poly(n)); (2) However, a Random Walk algorithm with access to EXRW (·)

can learn any concept in the class to accuracy 3
4 . In the next section we will

extend this construction to fully separate the Random Walk model from the
standard uniform model and thus prove Theorem 1.

Our construction uses ideas from Section 3.1; as in the construction proposed
there, the concepts in our class will reveal information about the seed of a pseu-
dorandom function to learning algorithms that can obtain pairs of points with
only the last bit flipped. However, each concept in the class will now be defined
by two pseudorandom functions rather than one; this will enable us to prove that

the class is indeed hard to learn in the uniform distribution model (but will also
prevent a Random Walk learning algorithm from learning to high accuracy).

Let F be a family of pseudorandom functions {fr : {0, 1}k → {0, 1}}r∈{0,1}k .

We construct a concept class G = {gr,s : r, s ∈ {0, 1}k}, where gr,s takes an n-bit
input that we split into four parts for convenience. As before, the first k bits
x give the “actual” input to the function, while the other parts determine the
mode of function that will be applied.

gr,s(x, i, b, y) =

fs(x) if y = 0, b = 0

fs(x) ⊕ r[i] if y = 0, b = 1

fr(x) if y = 1

(1)

Here b and y are one bit and i is log k bits to indicate which bit of the seed r
is exposed. Thus half of the inputs to gr,s are labeled according to fr, and the
other half are labeled according to either fs or fs ⊕ r[i] depending on the value
of b.

The following lemma establishes that G is not efficiently PAC-learnable under
the uniform distribution, by showing that a random function from G is indistin-
guishable from a truly random function to any algorithm which only has EXU (·)
access to the target concept. (A standard argument shows that an efficient PAC
learning algorithm can be used to obtain an efficient distinguisher simply by run-
ning the learning algorithm and using its hypothesis to predict a fresh random
example. Such an approach must succeed with high probability for any function
from the concept class by virtue of the PAC criterion, but no algorithm that
has seen only poly(n) many examples of a truly random function can predict its
outputs on fresh examples with probability nonnegligibly greater than 1

2 .)

Lemma 1. Let gr,s : {0, 1}n → {0, 1} be a function from G chosen by selecting
r and s uniformly at random from {0, 1}k, where k satisfies n = k+log k+2. Let
f be a truly random function. Then for any ǫ = Ω(1

poly(n)), no p.p.t. algorithm

can distinguish between having oracle access to EXU (gr,s) versus oracle access
to EXU (f) with success probability greater than 1

2 + ǫ.

Proof. The proof is by a hybrid argument. We will construct two intermedi-
ate functions, hr and h′

r. We will show that EXU (gr,s) is indistinghable from
EXU (hr), EXU (hr) from EXU (h′

r), and EXU (h′
r) from EXU (f). It will then

follow that EXU (gr,s) is indistinguishable from EXU (f).
Consider the function

hr(x, i, b, y) =

f(x) if y = 0, b = 0

f(x) ⊕ r[i] if y = 0, b = 1

fr(x) if y = 1

. (2)

Here we have simply replaced fs with a truly random function. We claim that
no p.p.t. algorithm can distinguish oracle access to EXU (gr,s) from oracle access

to EXU (hr); for if such a distinguisher D existed, we could use it to obtain an
algorithm D′ to distinguish a randomly chosen fs ∈ F from a truly random
function in the following way. D′ picks r at random from {0, 1}k and runs D,
answering D’s queries to its oracle by choosing i, b and y at random, querying its
own oracle to receive a bit q, and outputting q when both y and b are 0, q⊕r[i]
when y = 0 and b = 1, and fr(x) when y = 1. It is easy to see that if D′’s oracle
is for a truly random function f ∈ R then this process perfectly simulates access
to EXU (hr), and if D′’s oracle is for a randomly chosen fs ∈ F then this process
perfectly simulates access to EXU (gr,s) for r, s chosen uniformly at random.

We now consider the intermediate function

h′
r(x, i, b, y) =

{

f(x) if y = 0

fr(x) if y = 1

and argue that no p.p.t. algorithm can distinguish oracle access to EXU (hr)
from access to EXU (h′

r). When y = 1 or both y = 0 and b = 0, both hr and
h′

r will have the same output. Otherwise, if y = 0 and b = 1 we have that
hr(x, i, b, y) = f(x) ⊕ ri whereas h′

r(x, i, b, y) = f(x). Now, it is easy to see that
an algorithm with black-box query access to hr can easily distinguish hr from h′

r

(simply because flipping the penultimate bit b will always cause the value of hr

to flip but will only cause the value of h′
r to flip half of the time). But for an

algorithm that only has oracle access to EXU (·), conditioned on never receiving
the same string x twice (a condition that fails to hold only with negligible – in
fact, inverse exponential – probability), it is easy to see that whether the oracle is
for hr or h′

r, each output value that the algorithm sees on inputs with y = 0 and
b = 1 will be a fresh independent uniform random bit. (This is simply because
a random function f can be viewed as tossing a coin to determine its output on
each new input value, so no matter what r[i] is, XORing it with f(x) yields a
fresh independent uniform random bit.)

Finally, it follows from the definition of pseudorandomness that no p.p.t.
algorithm can distinguish oracle access to EXU (h′

r) from access to EXU (f).
We have thus shown that EXU (gr,s) is indistinghable from EXU (hr), EXU (hr)
from EXU (h′

r), and EXU (h′
r) from EXU (f). It follows that EXU (gr,s) is indis-

tinguishable from EXU (f), and the proof is complete. ¥

We now show that gr,s is learnable to accuracy 3
4 in the Random Walk model:

Lemma 2. There is an algorithm A with the following property: for any δ >
0 and any concept gr,s ∈ G, if A is given access to a Random Walk oracle
EXRW (gr,s) then A runs in time poly(n, log(1/δ)) and with probability at least
1 − δ, algorithm A outputs an efficiently computable hypothesis h such that
PrU [h(x) 6= gr,s(x)] ≤ 1

4 .

Proof. As described in Section 2, for convenience in this proof we will assume
that we have an updating Random Walk oracle EXURW (gr,s).

We give an algorithm that, with probablity 1−δ, learns all the bits of r. Once
the learner has obtained r she outputs the following (randomized) hypothesis h:

h(x, i, b, y) =

{

$ if y = 0

fr(x) if y = 1

where $ denotes a random coin toss at each invocation. Note that h incurs zero
error relative to gr,s on inputs that have y = 1, and has error rate exactly 1

2 on
inputs that have y = 0. Thus the overall error rate of h is exactly 1

4 .
We now show that with probability 1−δ (over the random examples received

from EXURW (gr,s)) the learner can obtain all of r after receiving T = O(n2k ·
log2(n/δ)) many examples from EXURW (gr,s). The learner does this by looking
at pairs of successive examples; we show (Fact 4 below) that after seeing t =
O(nk · log(k/δ)) pairs, each of which is independent from all other pairs, we
obtain all of r with probability at least 1 − δ

2 . To get t independent pairs of
successive examples, we look at blocks of t′ = O(n log(tn/δ)) many consecutive
examples, and use only the first two examples from each such block. By Fact 1
we have that for a given pair of consecutive blocks, with probability at least
1 − δ

2t
the first example from the second block is random even given the pair of

examples from the first block. A union bound over the t blocks gives total failure
probability at most δ

2 for independence, and thus an overall failure probability
of at most δ.

We have the following simple facts:

Fact 2 If the learner receives two consecutive examples w = (x, i, 0, 0), w′ =
(x, i, 1, 0) and the corresponding labels gr,s(w), gr,s(w

′), then the learner can ob-
tain the bit r[i].

Fact 3 For any j ∈ [k], given a pair of consecutive examples from EXURW (gr,s),
a learning algorithm can obtain the value of r[j] from this pair with probability
at least 1

4kn
.

Proof. By Fact 2, if the first example is w = (x, i, b, y) with i = j, y = 0 and
the following example differs in the value of b, then the learner obtains r[j]. The
first example (like every example from EXURW (gr,s)) is uniformly distributed
and thus has i = j, y = 0 with probability 1

2k
. The probability that the next

example from EXURW (gr,s) flips the value of b is 1
2n

. ¥

Fact 4 After receiving t = 4kn · log(k/δ′) independent pairs of consecutive ex-
amples as described above, the learner can obtain all k bits of r with probability
at least 1 − δ′.

Proof. For any j ∈ [k], the probability that r[j] is not obtained from a given pair
of consecutive examples is at most (1 − 1

4kn
). Thus after seeing t independent

pairs of consecutive examples, the probability that any bit of r is not obtained
is at most k(1 − 1

4kn
)t. This yields the fact. ¥

Thus the total number of calls to EXURW (gr,s) that are required is

T = t · t′ = O(nk log(k/δ)) · O(n log(tn/δ)) = O(n2k log2(n/δ)).

Since k = O(n), Lemma 2 is proved. ¥

4 A Full Separation

We would like to have a concept class for which a Random Walk learner can
output an ǫ-accurate hypothesis for any ǫ > 0. The drawback of our construction
in Section 3.2 is that a Random Walk learning algorithm can only achieve a
particular fixed error rate ǫ = 1

4 . Intuitively, a Random Walk learner cannot
achieve accuracy better than 3

4 because on half of the inputs the concept’s value
is essentially determined by a pseudorandom function whose seed the Random
Walk learner cannot discover. It is not difficult to see that for any given ǫ =

1
poly(n) , by altering the parameters of the construction we could obtain a concept

class that a Random Walk algorithm can learn to accuracy 1−ǫ (and which would
still be unlearnable for a standard uniform distribution algorithm). However, this
would give us a different concept class for each ǫ, whereas what we require is a
single concept class that can be learned to accuracy ǫ for each ǫ > 0.

In this section we present a new concept class G′ and show that it achieves this
goal. The idea is to string together many copies of our function from Section 3.2
in a particular way. Instead of depending on two seeds r, s, a concept in G′ is
defined using k seeds r1, . . . , rk and k− 1 subfunctions gr1,r2

, gr2,r3
, . . . , grk−1,rk

.
These subfunctions are combined in a way that lets the learner learn more and
more of the seeds r1, r2, . . . , and thus learn to higher and higher accuracy, as
she receives more and more examples.

4.1 The Concept Class G′

We now describe G′ in detail. Each concept in G′ is defined by k seeds r1, . . . , rk,
each of length k. The concept g′r1,...,rk

is defined by

g′r1,...,rk
(x, i, b, y, z) =

{

grα(z),rα(z)+1
(x, i, b, y) if α(z) ∈ {1, . . . , k − 1}

frk
(x) if α(z) = k

As in the previous section x is a k-bit string, i is a log k-bit string, and b and y
are single bits. The new input z is a (k − 1)-bit string, and the value α(z) ∈ [k]
is defined as the index of the leftmost bit in z that is 1 (for example if z =
0010010111 then α(z) = 3); if z = 0k−1 then α(z) is defined to be k. By this
design, the subfunction grj ,rj+1

will be used on a 1/2j fraction of the inputs to
g′. Note that g′ maps {0, 1}n to {0, 1} where n = 2k + log k + 1.

4.2 Uniform Distribution Algorithms Cannot Learn G′

We first show that G′ is not efficiently PAC-learnable under the uniform distri-
bution. This is implied by the following lemma:

Lemma 3. Let g′r1,...,rk
: {0, 1}n → {0, 1} be a function from G′ chosen by

selecting r1, . . . , rk uniformly at random from {0, 1}k, where k satisfies n =
2k+log k+1. Let f be a truly random function. Then for any ǫ = Ω(1

poly(n)), no

p.p.t. algorithm can distinguish between having access to EXU (g′r1,...,rk
) versus

access to EXU (f) with success probability greater than 1
2 + ǫ.

Proof. Again we use a hybrid argument. We define the concept classes H(ℓ) =
{hr1,...,rℓ;f : r1, . . . , rℓ ∈ {0, 1}k, f ∈ Rk} for 2 ≤ ℓ ≤ k. Each function hr1,...,rℓ;f

takes the same n-bit input (x, i, b, y, z) as g′r1,...,rk
. The function hr1,...,rℓ;f is

defined as follows:

hr1,...,rℓ;f (x, i, b, y, z) =

{

grα(z),rα(z)+1
(x, i, b, y) if α(z) < ℓ

f(x) otherwise.

Here as before, the value α(z) ∈ [k] denotes the index of the leftmost bit of z
that is one (and we have α(z) = k if z = 0k−1).

We will consider functions that are chosen uniformly at random from H(ℓ),
i.e. r1, . . . , rℓ are chosen randomly from {0, 1}k and f is a truly random function
from Rk. Using Lemma 1, it is easy to see that for a distinguisher that is given
only oracle access to EXU (·), a random function from H(2) is indistinguishable
from a truly random function from Rn. We will now show that, for 2 ≤ ℓ < k, if
a random function from H(ℓ) is indistinguishable from a truly random function
then the same is true for H(ℓ + 1). This will then imply that a random function
from H(k) is indistinguishable from a truly random function.

Let hr1,...,rℓ+1
be taken randomly from H(ℓ + 1) and f be a truly random

function from Rn. Suppose we had a distinguisher D that distinguishes between
a random function from H(ℓ + 1) and a truly random function from Rn with
success probability 1

2 + ǫ, where ǫ = Ω(1
poly(n)). Then we can use D to obtain

an algorithm D′ for distinguishing a randomly chosen fs ∈ F from a randomly
chosen function f ∈ Rk in the following way. D′ first picks strings r1, . . . , rℓ at
random from {0, 1}k. D′ then runs D, simulating its oracle in the following way.
At each invocation, D′ draws a random (x, i, b, y, z) and behaves as follows:

– If α(z) < ℓ, then D′ outputs 〈(x, i, b, y, z), grα(z),rα(z)+1
(x, i, b, y)〉.

– If α(z) = ℓ, then D′ calls its oracle to obtain 〈x′, β〉. If y = b = 0 then D′ out-
puts 〈(x′, i, b, y, z), β〉. If y = 0 but b = 1 then D′ outputs 〈(x′, i, b, y, z), β ⊕
rℓ[i]〉. If y = 1 then D′ outputs 〈(x′, i, b, y, z), frℓ

(x)〉.
– If α(z) > ℓ, D′ outputs the labelled example 〈(x, i, b, y, z), r(x)〉 where r(x)

is a fresh random bit for each x. (The pairs (x, r(x)) are stored, and if any
k-bit string x is drawn twice – which is exponentially unlikely in a sequence
of poly(n) many draws – D′ uses the same bit r(x) as before.)

It is straightforward to check that if D′’s oracle is EXU (fs) for a random fs ∈ F ,
then D′ simulates an oracle EXU (hr1,...,rℓ+1

) for D, where hr1,...,rℓ+1
is drawn

uniformly from H(ℓ + 1). On the other hand, we claim that if D′’s oracle is
EXU (f) for a random f ∈ Rk, then D′ simulates an oracle that is indistinguish-
able from EXU (hr1,...,rℓ

) for D, where hr1,...,rℓ
is drawn uniformly from H(ℓ).

Clearly the oracle D′ simulates is identical to EXU (hr1,...,rℓ
) for α(z) 6= ℓ. For

α(z) = ℓ, D′ simulates the function hrl
as in Equation 2 in the proof of Lemma 1,

which is indistinguishable from a truly random function as proved in the lemma.
Thus the success probability of the distinguisher D′ is the same as the prob-

ability that D succeeds in distinguishing H(ℓ+1) from H(ℓ). Recall that H(ℓ) is

indistinguishable from a truly random function, and that D succeeds in distin-
guishing H(ℓ + 1) from a truly random function with probability at least 1

2 + ǫ
by assumption. This implies that D′ succeeds in distinguishing a randomly cho-
sen fs ∈ F from a randomly chosen function f ∈ Rk with probability at least
1
2 + ǫ − 1

ω(poly(n)) , but this contradicts the pseudorandomness of F .

Finally, we claim that for any p.p.t. algorithm, having oracle access to a
random function from H(k) is indistinguishable from having oracle access to
a random function from G′. To see this, note that the functions hr1,...,rℓ;f and
g′r1,...,rℓ

differ only on inputs (x, i, b, y, z) that have α(z) = k, i.e. z = 0k−1 (on
such inputs the function gr1,...,rℓ

will output frk
(x) whereas hr1,...,rℓ;f will output

f(x)). But such inputs are only a 1
2Ω(n) fraction of all possible inputs, so with

overwhelmingly high probability a p.p.t. algorithm will never receive such an
example. ¥

4.3 Random Walk Algorithms Can Learn G′

The following lemma completes the proof of our main result, Theorem 1.

Lemma 4. There is an algorithm B with the following property: for any ǫ, δ > 0,
and any concept gr1,...,rk

∈ G′, if B is given access to a Random Walk oracle
EXRW (gr1,...,rk

), then B runs in time poly(n, log(1/δ), 1/ǫ) and can with proba-
bility at least 1 − δ output a hypothesis h such that PrU [h(x) 6= gr1,...,rk

(x)] ≤ ǫ.

Proof. The proof is similar to that of Lemma 2. Again, for convenience we will
assume that we have an updating Random Walk oracle EXURW (gr1,...,rk

). Recall
from Lemma 2 that there is an algorithm A that can obtain the string rj with
probability at least 1 − δ′ given t′ = O(nk · log(n/δ′)) independent pairs of
successive random walk examples

(

〈w, grj ,rj+1
(w)〉, 〈w′, grj ,rj+1

(w′)〉
)

.

Algorithm B works in a sequence of v stages. In stage j, the algorithm sim-
ply tries to obtain t′ independent example pairs for grj ,rj+1

and then uses Algo-
rithm A. Assuming the algorithm succeeds in each stage, after stage v algorithm
B has obtained r1, . . . , rv. It follows directly from the definition of G′ that given
r1, . . . , rv, Algorithm B can construct a hypothesis that has error at most 3

2v+2

(see Figure 1) so we may take v = log 1
ǫ

+ 1 to obtain error at most ǫ. (Note
that this implicitly assumes that log 1

ǫ
+ 1 is at most k; we deal with the case

log 1
ǫ

+ 1 > k at the end of the proof.)
If the learner fails to obtain r1, . . . , rv, then either:

1. Independence was not achieved between every pair of examples;
2. Algorithm B fails to acquire t′ pairs of examples for grj ,rj+1

in some stage
j; or

3. Algorithm B acquires t′ pairs of examples for grj ,rj+1
but Algorithm A fails

to obtain rj in some stage j.

r1 r2

gr1,r2

r2 r3

gr2,r3

r3 r4

gr3,r4

r1 r2

gr1,r2

r2 r3

gr2,r3

r3 r4

gr3,r4

r1 r2

gr1,r2

r2 r3

gr2,r3

r3 r4

gr3,r4

Fig. 1. Stages 1, 2 and 3 of Algorithm B. Each row represents the output values
of g′

r1,...,rk
. After stage j the algorithm “knows” r1, . . . , rj and can achieve perfect

accuracy on the shaded region.

We choose the total number of examples so that each of these probabilities
is bounded by δ/3 to achieve an overall failure probability of at most δ.

As will be clear from the analysis of cases (2) and (3) below, in total Algo-
rithm B will use 4·2v+1t′ pairs of examples in stages 1 through v, where t′ will be
bounded later. Each pair of examples is obtained by using the first two examples
from a block of s = O(n log(v · 2v+1t′n/δ)) many consecutive examples from the
updating Random Walk oracle. With this choice of s, the same argument as in
the proof of Lemma 2 shows that the total failure probability for independence
is at most δ

3 .

We bound (2) assuming full independence between all pairs of examples. In
stage j, Algorithm B uses 4 · 2jt′ pairs of examples. Observe that each pair of
examples has both examples from grj ,rj+1

with probability at least 2−(j+1). By
a Chernoff bound, the probability that less than t′ of the example pairs in stage

j are from grj ,rj+1
is at most e−

t′

8 . Thus the overall probability of failure from

condition (2) is at most ve−
t′

8 which is at most δ/3 for t′ ≥ ln(3v/δ).

We bound (3) assuming full independence between all pairs of examples as
well. In stage j, we know by Fact 4 that after seeing t′ = O(nk log(3vk/δ)) pairs

of examples for grj ,rj+1
, the probability of failing to obtain rj is at most δ/3v.

Hence the overall failure probability from condition (3) is at most δ
3 .

We thus may take t′ = O(nk log(3vk/δ)) and achieve an overall failure prob-
ability of δ for obtaining r1, . . . , rv. It follows that the overall number of ex-
amples required from the updating Random Walk oracle is poly(2v, n, log 1

δ
) =

poly(n, 1
ǫ
, log 1

δ
), which is what we required.

Finally, we observe that if log 1
ǫ

+ 1 > k, since k = n
2 − O(log n) a poly(1

ǫ
)-

time algorithm may run for, say, 22n time steps and thus build an explicit truth
table for the function. Such a table can be used to exactly identify each seed
r1, . . . , rk and output an exact representation of the target concept. ¥

5 Acknowledgements

We warmly thank Tal Malkin for helpful discussions.

References

[1] D. Aldous and U. Vazirani. A Markovian extension of Valiant’s learning model. In
Proceedings of the Thirty-First Symposium on Foundations of Computer Science,
pages 392–396, 1990.

[2] P. Bartlett, P. Fischer, and K.U. Höffgen. Exploiting random walks for learning.
Information and Computation, 176(2):121–135, 2002.

[3] A. Blum. Learning a function of r relevant variables (open problem). In Proceed-

ings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop,
pages 731–733, 2003.

[4] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly
learning DNF and characterizing statistical query learning using Fourier analysis.
In Proceedings of the Twenty-Sixth Annual Symposium on Theory of Computing,
pages 253–262, 1994.

[5] N. Bshouty, J. Jackson, and C. Tamon. More efficient PAC learning of DNF with
membership queries under the uniform distribution. In Proceedings of the Twelfth

Annual Conference on Computational Learning Theory, pages 286–295, 1999.

[6] N. Bshouty, E. Mossel, R. O’Donnell, and R. Servedio. Learning DNF from Ran-
dom Walks. In Proceedings of the 44th IEEE Symposium on Foundations on

Computer Science, pages 189–198, 2003.

[7] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions.
Journal of the ACM, 43(4):747–770, 1996.

[8] D. Gamarnik. Extension of the PAC framework to finite and countable Markov
chains. In Proceedings of the 12th Annual Conference on Computational Learning

Theory, pages 308–317, 1999.

[9] O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, New York, 2001.

[10] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the Association for Computing Machinery, 33(4):792–807, 1986.

[11] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[12] J. Jackson. An efficient membership-query algorithm for learning DNF with re-
spect to the uniform distribution. Journal of Computer and System Sciences,
55:414–440, 1997.

[13] J. Jackson, A. Klivans, and R. Servedio. Learnability beyond AC0. In Proceedings

of the 34th ACM Symposium on Theory of Computing, 2002.
[14] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In Pro-

ceedings of the Twenty-Fifth Annual Symposium on Theory of Computing, pages
372–381, 1993.

[15] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform
and learnability. Journal of the ACM, 40(3):607–620, 1993.

[16] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[17] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial
time. In Proceedings of the Third Annual Workshop on Computational Learning

Theory, pages 314–326, 1990.

