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Abstract

We give an algorithm that learns any monotone Boolean
functionf : {−1, 1}n → {−1, 1} to any constant accuracy,
under the uniform distribution, in time polynomial inn and
in the decision tree size off. This is the first algorithm that
can learn arbitrary monotone Boolean functions to high ac-
curacy, using random examples only, in time polynomial in
a reasonable measure of the complexity off. A key ingre-
dient of the result is a new bound showing that the average
sensitivity of any monotone function computed by a deci-
sion tree of sizes must be at most

√
log s. This bound has

already proved to be of independent utility in the study of
decision tree complexity [27].

We generalize the basic inequality and learning result
described above in various ways; specifically, to partition
size (a stronger complexity measure than decision tree size),
p-biased measures over the Boolean cube (rather than just
the uniform distribution), and real-valued (rather than just
Boolean-valued) functions.

1. Introduction

1.1. Computationally efficient learning from
random examples.

In the two decades since Valiant introduced the Probably
Approximately Correct (PAC) learning model [32], a major
goal in computational learning theory has been the design of
computationally efficient algorithms for learning Boolean
functions from random examples. The original distribution-
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free PAC learning model of Valiant required that foranydis-
tributionD over the domain of examples (which throughout
this paper is{−1, 1}n), the learning algorithm must with
high probability succeed in generating a hypothesis for the
unknown target function which is highly accurate relative to
D. Despite much effort over a twenty year span, very few
efficient learning algorithms have been obtained in this de-
manding model. Thus the focus of much work has shifted
to the naturaluniform distributionPAC learning model, in
which the examples used for learning are uniformly dis-
tributed over{−1, 1}n (we give a precise definition of this
learning model in Section 2).

An easy information-theoretic argument shows that no
poly(n)-time algorithm can learn arbitrary Boolean func-
tions f : {−1, 1}n → {−1, 1} to accuracy nonnegligi-
bly better than1/2. Consequently, the most ambitious
conceivable goal in uniform distribution learning is to ob-
tain an algorithm that can learn any Boolean functionf :
{−1, 1}n → {−1, 1} in time polynomial inn and in a rea-
sonable measure of the “size” or complexity off . Different
complexity measures for Boolean functions thus give rise
to different notions of efficient learnability; for example,
one might hope for an algorithm that can learn any Boolean
functionf in time polynomial inn andDT (f), the number
of leaves in the smallest Boolean decision tree that com-
putesf (this is the well-studied — and notoriously difficult
— problem of “learning decision trees under the uniform
distribution”). A more ambitious goal would be to learn
in time polynomial inDNF (f), the number of terms in the
smallest disjunctive normal form formula forf , orAC0

d(f),
the size of the smallest depth-d AND/OR/NOT circuit forf.

Unfortunately, learning arbitrary Boolean functions in
polynomial time in this sense has proved to be intractably
difficult for all “reasonable” size measures. For the
strongest reasonable size measure (Boolean circuit size),
Valiant already observed in [32] that the existence of crypto-
graphic pseudorandom functions [11] implies the nonexis-
tence of uniform distribution algorithms that can learn any
function f in time polynomial in the Boolean circuit size



of f. This negative result was strengthened by Kharitonov
[20], who showed that (under a strong but plausible assump-
tion on the hardness of integer factorization) no uniform dis-
tribution algorithm can learn everyf in time polynomial in
AC0

d(f) for some fixed constantd. In fact, despite inten-
sive research, no algorithm is currently known that learns
arbitrary Boolean functions in time polynomial inany rea-
sonable size measure; such an algorithm would constitute a
tremendous breakthrough in computational learning theory,
see e.g. [1]. (We stress that simple arguments such as those
in [5] show that there is noinformation-theoreticimpedi-
ment to learning from a polynomial number of examples;
the apparent difficulty is in designing apolynomial-timeal-
gorithm.)

1.2. Background: learning monotone func-
tions.

Confronted with the difficulties described above, re-
searchers have tried to learn various restricted classes of
Boolean functions. The most natural and intensively stud-
ied such class is the class of allmonotonefunctionsf :
{−1, 1}n → {−1, 1}, i.e. functions that satisfyf(x) ≥
f(y) wheneverx ≥ y in the partial order on{−1, 1}n.

Many partial results on learning restricted subclasses of
monotone functions under the uniform distribution have
been obtained. Sakai and Maruoka [28] gave a poly(n)-
time algorithm that can learn any monotone size-O(log n)
DNF under uniform; this result was subsequently gener-
alized by Bshouty [6] to a somewhat broader class than
O(log n)-term DNF. The main result of Bshouty and Ta-
mon in [7] is a proof that any monotone function can be
learned to accuracyǫ in 2Õ(

√
n/ǫ) time; they used this re-

sult to obtain a poly(n)-time algorithm (for ǫ constant)
that can learn a class of functions that includes monotone
O(log2 n/(log log n)3)-term DNF. More recently, Servedio
[30] showed that monotone2O(

√
log n)-term DNF can be

learned to constant accuracyǫ in poly(n) time. Other re-
searchers have also studied the problem of learning mono-
tone functions under uniform (see e.g. [18, 3, 34, 12, 21]),
but prior to the current work no algorithms were known for
learning arbitrary monotone functions in time polynomial
in a reasonable size measure.

1.3. The main learning result.

We give the first algorithm that learns any monotone
Boolean functionf , under the uniform distribution, in time
polynomial in a reasonable measure of the size off . Given
a Boolean functionf : {−1, 1}n → {−1, 1}, the parti-
tion sizeP (f) of f is the minimum size partition of the
Boolean cube{−1, 1}n into disjoint subcubes such thatf
is constant on each subcube. Note that this is a strictly

stronger measure of complexity than decision tree size; i.e.,
P (f) ≤ DT (f). Our main learning result is the following:

Theorem 1 There is an algorithm that (with confidence
1 − δ) can learn any monotone Boolean functionf :
{−1, 1}n → {−1, 1} to accuracyǫ, given uniform random
examples(x, f(x)), in time poly(n, P (f)1/ǫ2) · log(1/δ).

For any constant accuracyǫ = Θ(1), the algorithm runs in
time polynomial in the partition size off , and hence also
in the decision tree size off . We feel that this constitutes
significant progress towards learning monotone functions
in time polynomial in their DNF size, an outstanding open
problem in computational learning theory (see e.g. the open
questions posed in [15], [3] and [2]).

1.4. The approach: bounding average sen-
sitivity of monotone functions.

The main ingredient of our learning algorithm is a new
inequality bounding the average sensitivity (sum of influ-
ences of all coordinates) of monotone Boolean functions.
We give here a simplified version of the theorem (the full
result is given in Theorem 3):

Theorem 2 Every monotone Boolean functionf has aver-
age sensitivity at most

√

log P (f). 1

This edge-isoperimetric-type result is of independent inter-
est; indeed, our most general version of it, Theorem 7, re-
cently played a critical role in a new lower bound on the ran-
domized decision tree complexity of monotone graph prop-
erties — see [27].

Combining this new inequality with a result of
Friedgut [8] that says that Boolean functions with low av-
erage sensitivity essentially depend on only a small num-
ber of coordinates, we can show that: (i) there is a set of
P (f)O(1/ǫ2) many Fourier coefficients off which contain
all but ǫ of the “Fourier weight” off ; and (ii) this set of
Fourier coefficients can be efficiently identified from uni-
form random examples only. Applying standard machinery
on approximating Boolean functions via their Fourier rep-
resentations, we obtain Theorem 1.

Our approach seems quite robust. We generalize the ba-
sic scenario described above by: (i) consideringreal-valued
monotone functions that map{−1, 1}n into the continu-
ous interval[−1, 1] rather than the discrete range{−1, 1};
and (ii) considering generalp-biased product measures over
{−1, 1}n rather than the uniform distribution. We show that
suitable variants of all of our intermediate results holds,and
that our main learning result holds exactly as before (i.e.,
runs in timeP (f)O(1/ǫ2)) in these generalized scenarios.

1Here and throughout the paperlog denotes logarithm to the base two.



2. Preliminaries

2.1. Boolean functions and complexity mea-
sures.

As is standard in complexity theory and learning theory,
we will be interested in complexity measures for Boolean
functionsf given by the syntactic size of the smallest repre-
sentation off under various natural representation schemes.
We will chiefly be concerned with partition size and deci-
sion tree size, two complexity measures that we now define.

Given a Boolean functionf : {−1, 1}n → {−1, 1},
the decision tree sizeof f , denotedDT (f), is the number
of leaves in the smallest Boolean decision tree (with vari-
ablesx1, . . . , xn at the internal nodes and bits−1, 1 at the
leaves) that computesf . The partition sizeP (f) of f is
the minimum number of disjoint subcubes that the Boolean
cube{−1, 1}n can be partitioned into such thatf is con-
stant on each subcube. Since anys-leaf decision tree in-
duces a partition of{−1, 1}n into s disjoint subcubes (cor-
responding to the root-to-leaf paths in the tree), we have
that P (f) ≤ DT (f) for all f. In fact, P (·) is known to
be a superpolynomially stronger measure thanDT (·) even
for monotone functions; Savický [29] has given a mono-
tone Boolean functiong : {−1, 1}n → {−1, 1} which has
P (g) = poly(n) andDT (g) = 2Ω(log1.26(n)).

2.2. Background: uniform distribution
learning.

A concept classF is a collection∪n≥1Fn of Boolean
functions where eachf ∈ Fn is a function from{−1, 1}n

to {−1, 1}. Throughout this paper we consider the concept
class consisting of all monotone Boolean functions.

The uniform distribution Probably Approximately Cor-
rect (PAC) learning model has been studied by many au-
thors; see e.g. [4, 7, 13, 14, 20, 22, 24, 28, 30, 33]. In this
framework a learning algorithm has access to anexample
oracleEX(f), wheref ∈ Fn is the unknowntarget func-
tion the algorithm is trying to learn. The oracleEX(f)
takes no inputs and, when queried, outputs a labelled exam-
ple (x, f(x)), wherex is drawn from the uniform distribu-
tion U over{−1, 1}n.

We say that a Boolean functionh : {−1, 1}n → {−1, 1}
is an ǫ-approximator forf if it satisfies Prx∈U [h(x) =
f(x)] ≥ 1 − ǫ. The goal of a uniform distribution PAC
learning algorithm is to generate anǫ-approximator for the
unknown target functionf. More precisely, an algorithmA
is a learning algorithm for concept classF if the follow-
ing condition holds: for alln ≥ 1, all f ∈ Fn, and all
0 < ǫ, δ < 1, if A is givenǫ andδ as input and has access
to EX(f), then with probability at least1 − δ algorithmA
outputs anǫ-approximator forf . We further say thatA PAC

learnsF in time t if A runs for at mostt time steps and
outputs a hypothesish which can be evaluated on any point
x ∈ {−1, 1}n in time t. Heret will depend on the dimen-
sionn and the sizes of f under some complexity measure,
as well as onǫ andδ.

2.3. Fourier representation.

Fourier techniques have proven to be a powerful tool for
obtaining uniform distribution learning algorithms; see the
survey of Mansour [23] for an overview.

Except in Section 5, we will always view{−1, 1}n as a
probability space under the uniform distribution which we
denote byU . Let f : {−1, 1}n → R be a real-valued func-
tion. Recall that theFourier expansionof f is

f(x) =
∑

S⊆[n]

f̂(S)χS(x),

where χS(x) denotes
∏

i∈S xi and f̂(S) denotes
Ex∈U [f(x)χS(x)]. It is well known that everyf
has a unique Fourier expansion. Pareseval’s theo-
rem states that for anyf : {−1, 1}n → R we have
∑

S⊆[n] f̂(S)2 = Ex∈U [f(x)2], which is clearly1 if f ’s
range is{−1, 1}.

For Boolean-valued functionsf : {−1, 1}n → {−1, 1},
the influence of coordinatei on f is defined asInfi(f) =
Prx∈U [f(x) 6= f(x(⊕i))], wherex(⊕i) denotesx with the
ith bit flipped. In general we haveInfi(f) =

∑

S∋i f̂(S)2;
it is also well known (see e.g. [17]) that iff is monotone
thenInfi(f) = f̂({i}). For notational ease we will hence-
forth write f̂(i) in place off̂({i}). Theaverage sensitivity
of a Boolean functionf is I(f) =

∑n
i=1 Infi(f); this is

the expected number of sensitive coordinates for a random
inputx ∈ {−1, 1}n. Note thatI(f) =

∑n
i=1 f̂(i) for mono-

tonef.

3. The average sensitivity of monotone func-
tions

A well known, folkloric edge-isoperimetric inequality
for the Boolean cube states that for any monotone func-
tion f : {−1, 1}n → {−1, 1}, we haveI(f) ≤ I(Majn) =
Θ(

√
n). (This follows from, e.g., the Kruskal-Katona the-

orem; see [9] for an explicit proof.) This boundI(f) ≤
O(

√
n) is the key to the main result of [7] that any mono-

tone Boolean function can be learned to accuracyǫ in time
2Õ(

√
n/ǫ).

In this section we give a more refined bound onI(f) that
depends onP (f), the partition size off . Our new bound
states thatI(f) ≤

√

log P (f) for any monotonef . This
yields the usual isoperimetric inequality mentioned as a spe-
cial case but is much stronger for functionsf which have
partition sizeP (f) = 2o(n).



3.1. Subcube partitions.

Let f : {−1, 1}n → {−1, 1} be a Boolean function and
let C = {C1, . . . , Cs} be a subcube partition forf , so
C1, . . . , Cs partition{−1, 1}n into s subcubes on each of
whichf is constant. By abuse of notation we will also iden-
tify a cubeCt with a length-n vector over{−1, 0, 1} in the
obvious way; i.e. theith coordinate of the stringCt is

(Ct)i =











1 if xi = 1 for all x ∈ Ct,

−1 if xi = −1 for all x ∈ Ct,

0 otherwise.

Let us also introduce notation for the sets of coordinates
which cubes fix:

pluses(Ct) = {i : (Ct)i = 1},

minuses(Ct) = {i : (Ct)i = −1},
fixed(Ct) = pluses(Ct) ∪ minuses(Ct).

Given an inputx ∈ {−1, 1}n, we writeC(x) to denote
the subcubeCt in C to whichx belongs. We also writeδi

to denotePrx∈U [i ∈ fixed(C(x))], the probability that the
subcube partition “queries”xi. Note that

∑n
i=1 δi equals

Ex∈U [|fixed(C(x))|], the average number of coordinatesC
“queries”.

When we drawx ∈ U , this determinesC(x). How-
ever, we can equally well view the random determination
of (x,C(x)) the other way around. Indeed, we will almost
always consider choosing a uniformly random stringx as
follows:

1. Pick a random subcubeR from C by choosing eachCt

with probability2−|fixed(Ct)|. In general we will write
R ∈ C to indicate thatR is a random variable given by
choosing a subcube from amongC1, . . . , Cs accord-
ing to this natural probability distribution on subcubes.

2. Now choosex uniformly at random from the strings in
R. We will write x ∈ R to indicate thatx is chosen
randomly in this way.

After this procedure,x indeed has the uniform distribution.
Furthermore, note that the valuef(x) is determined as soon
asR is chosen; thus we may abuse notation and writef(R)
for this quantity.

We will require the following very easy lemmas:

Lemma 1 Let R be any subcube and leti 6= j be in [n].
ThenEx∈R[xi] = Ri andEx∈R[xixj ] = RiRj .

Proof: Immediate from the definitions.

Lemma 2 Let i 6= j be in [n]. ThenER∈C [Ri] = 0 and
ER∈C [RiRj ] = 0.

Proof: We prove the second statement, with the first being
even easier:

0 = E
x∈U

[xixj ] = E
R∈C

E
x∈R

[xixj ] = E
R∈C

[RiRj ],

where in the last step we used Lemma 1.

3.2. Proof of the main inequality.

The proof requires one basic lemma:

Lemma 3 Letf : {−1, 1}n → {−1, 1} be a Boolean func-
tion with a subcube partitionC = {C1, . . . , Cs}. Then
∑n

i=1 f̂(i) = ER∈C
[

f(R) ·
∑n

i=1 Ri

]

.

Proof: We have

n
∑

i=1

f̂(i) =
n
∑

i=1

E
x∈U

[f(x)xi] = E
R∈C

E
x∈R

[

f(x)
n
∑

i=1

xi

]

= E
R∈C

[

f(R)
n
∑

i=1

E
x∈R

[xi]

]

= E
R∈C

[

f(R)
∑

i∈n

Ri

]

,

where in the last step we used Lemma 1.

With this lemma in hand we can give the proof that
I(f) ≤

√

log P (f) for monotonef :

Theorem 3 Let f : {−1, 1}n → {−1, 1} be a Boolean
function with a subcube partitionC = {C1, . . . , Cs}. Then
we have

n
∑

i=1

f̂(i) ≤
√

n
∑

i=1

δi ≤
√

log s,

and iff is monotone we may thus write

I(f) ≤
√

log s.

Proof: Sincef is ±1-valued, from Lemma 3 we have

n
∑

i=1

f̂(i) ≤ E
R∈C

[∣

∣

∣

n
∑

i=1

Ri

∣

∣

∣

]

(1)

with equality iff f(x) = sgn(
∑n

i=1 C(x)i) for all x,
i.e. f(x) is the majority of the bits that are set inC(x).



Applying Cauchy-Schwarz, we have

E
R∈C

[
∣

∣

∣

n
∑

i=1

Ri

∣

∣

∣

]

≤
√

E
R∈C

[( n
∑

i=1

Ri

)2]

=

√

E
R∈C

[ n
∑

i=1

R2
i + 2

∑

i<j

RiRj

]

=

√

E
R∈C

[

|fixed(R)|
]

(2)

=

√

E
x∈U

[

|fixed(C(x))|
]

=

√

n
∑

i=1

δi,

where (2) uses Lemma 2.
This proves the first inequality; to finish the proof we

must show that
∑n

i=1 δi ≤ log s. We have

n
∑

i=1

δi = E
R∈C

[|fixed(R)|]

=
s

∑

t=1
2−|fixed(Ct)| · |fixed(Ct)|

= H(R),

whereH(R) denotes the binary entropy of the random vari-
ableR ∈ C. SinceC, the support ofR, is of cardinalitys,
this entropy is at mostlog s.

Remarks:

1. We note that our proof can easily be used to recover the

standard boundI(f) ≤ I(Majn) ∼
√

2
π

√
n for arbi-

trary monotone Boolean functions onn variables. This
is because in upper-boundingER∈C [|∑n

i=1 Ri|], we
may assume without loss of generality that each sub-
cubeCt ∈ C fixes exactlyn bits. (To see this, suppose
thatCt fixesn′ < n bits and we subdivideCt into two
subcubes each fixing one more bit. If

∑n
i=1(C

t)i 6= 0
then the contribution ofCt toER∈C [|∑n

i=1 Ri|] is un-
changed by this subdivision, and if

∑n
i=1(C

t)i = 0
then the contribution increases.) But now observe that
equality occurs in inequality (1), as noted above, if
f(x) always equals the majority of the bits set inC(x),
i.e. if f(x) = Majn(x) for all x.

2. The boundI(f) ≤
√

log P (f) need not hold for non-
monotonef ; an easy example is the parity function on
n variables for whichI(f) = log P (f) = n.

4. Learning monotone Boolean functions

4.1. Spectral concentration.

In this subsection we show that any monotone Boolean
function has all butǫ of its Fourier spectrum concentrated
on a set ofP (f)O(1/ǫ2) many Fourier coefficients.

In [8] Friedgut showed that any Boolean function with
“low” average sensitivity is well approximated by a func-
tion that depends only on a “small” number of coordinates.
In particular, the proof of Corollary 3.2 in [8] yields the fol-
lowing:

Theorem 4 There is a universal constantC < ∞ such that
for all f : {−1, 1}n → {−1, 1} andǫ > 0, if

t = 2I(f)/ǫ, J = {i : Infi(f) ≥ C−t},

and
S = {S : S ⊆ J, |S| ≤ t},

then
∑

S 6∈S f̂(S)2 ≤ ǫ.

Combining this result with Theorem 3, we obtain:

Theorem 5 Let f : {−1, 1}n → {−1, 1} be a monotone
function, ǫ > 0, and t = 2

√

log P (f)/ǫ. Let J and

S be as in Theorem 4. Then|S| = P (f)O(1/ǫ2) and
∑

S 6∈S f̂(S)2 ≤ ǫ.

Proof: The second part of the conclusion follows imme-
diately from combining Theorems 3 and 4. As for bound-
ing |S|, we have|S| =

∑t
i=0

(|J|
i

)

≤ O(|J |t). But we
also have|J | ≤ I(f)Ct ≤ tCt using Theorem 3, and so
|J |t ≤ 2O(t2) = P (f)O(1/ǫ2), as claimed.

4.2. Approximating Boolean functions with
spectral concentration.

The following proposition is a straightforward general-
ization of the “low-degree” algorithm of Linial, Mansour,
and Nisan [22].

Proposition 4 There is an algorithmA with the follow-
ing property: Let f : {−1, 1}n → [−1, 1] and let
S ⊆ 2[n] be a collection of subsets of[n] with the prop-
erty that

∑

S∈S f̂(S)2 ≥ 1 − ǫ. Then if A is givenS,
access toEX(f), and parametersδ, θ > 0, it runs in
poly(n, |S|, 1/θ) · log(1/δ) time and with probability1− δ
outputs a real-valued functiong : {−1, 1}n → R of the
form g(x) =

∑

S∈S cSχS(x) such thatEx∈U [(f(x) −
g(x))2] ≤ ǫ + θ.



Proof sketch: Algorithm A draws a sample ofm labelled
examples fromEX(f) and uses them to empirically esti-
mate each of the Fourier coefficientŝf(S) for S ∈ S, us-
ing the fact thatf̂(S) = E[f(x)χS(x)]; the coefficients
cS are the empirical estimates thus obtained. A standard
analysis (see e.g. Theorem 4.3 of [23]) shows thatm =
poly(|S|, 1/θ) · log(1/δ) suffices to give the proposition.

We remark that iff : {−1, 1}n → {−1, 1} is Boolean-
valued, andg : {−1, 1}n → R satisfiesEx∈U [(f(x) −
g(x))2] ≤ ǫ′, then definingh : {−1, 1}n → {−1, 1} by
h(x) = sgn(g(x)), it is easily seen thatPrx∈U [h(x) 6=
f(x)] ≤ ǫ′ (see e.g. [22, 23]).

4.3. Learning monotone Boolean functions
in polynomial time.

We now give the proof of Theorem 1. Given Theorem 5
and Proposition 4, the idea behind our main learning al-
gorithm is obvious: Given uniform examples from a target
function f , identify all coordinates with influence at least

2−O(
√

log P (f)/ǫ), and then run the algorithm from Propo-
sition 4 using the setS from Theorem 5. (We note that a
similar algorithm is used by Servedio in [30], though the
analysis is completely different.)

By a standard doubling argument, we may assume the
partition sizeP (f) is known to the learner (see Exercise 1.5
of [19]). We now show that the learner can actually iden-
tify the sufficiently influential coordinates. This is be-
causef is monotone, and consequentlyInfi(f) = f̂(i) =
Ex∈U [f(x)xi]. Since the learner can empirically estimate
this latter quantity to within±θ in time poly(n, 1/θ) ·
log(1/δ) (with confidence1 − δ) by sampling, the learner
can determine each influenceInfi(f) of f to within an

additive2−O(
√

log P (f)/ǫ) in poly(n, 2O(
√

log P (f)/ǫ)) time
steps, and it’s easy to see this is sufficient to maintain cor-
rectness and the same time bounds. Complete details can be
found in a more general setting in Appendix B.

5. Generalizations: real-valued functions and
p-biased measures

In this section we extend our learning result to real-
valued functionsf : {−1, 1}n → [−1, 1] on thep-biased
discrete cube. As in the Boolean case, we say a real-valued
function f is monotone iff(x) ≥ f(y) wheneverx ≥ y.
The partition sizeP (f) of f : {−1, 1}n → [−1, 1] is still
defined as the minimum number of disjoint subcubes that
{−1, 1}n can be partitioned into such thatf is constant on
each subcube.

The p-biased measure on {−1, 1}n is the
probability distribution assigning probability

p|pluses(x)|q|minuses(x)| to the input x ∈ {−1, 1}n.
(Here and throughoutq denotes1 − p). We will write
{−1, 1}n

(p) to indicate that{−1, 1}n is endowed with the
p-biased measure and writePrp[·] and Ep[·] to denote
probabilities and expectations overx ∈ {−1, 1}n

(p).
We use standard notions of PAC learning for functions

f : {−1, 1}n
(p) → [−1, 1]. This only involves slightly al-

tering the definitions from Section 2.2. Specifically, exam-
ples are now from thep-biased distribution{−1, 1}n

(p) in-

stead of the uniform distribution2; and, the definition of an
ǫ-approximator is a functionh : {−1, 1}n

(p) → R satisfying

Ep[(h − f)2] ≤ ǫ (note that we use the “square loss” as
is common in learning or approximating real-valued func-
tions). For other work studying PAC learning under thep-
biased distribution see e.g. [10, 12, 25, 30].

Our main learning theorem completely extends to thep-
biased, real-valued case, as follows:

Theorem 6 There is an algorithm that (with confidence
1 − δ) can learn any monotone Boolean functionf :
{−1, 1}n

(p) → [−1, 1] to accuracyǫ, givenp-biased random

examples(x, f(x)), in time poly(n, P (f)1/ǫ2) · log(1/δ).

Again, note that for any constant accuracyǫ = Θ(1), the
algorithm runs in polynomial time in the partition size off .
Further note that unlike somep-biased PAC learning algo-
rithms such as [10, 30], our algorithm’s running time has
no dependence onp and thus we have the claimed runtime
bound even ifp depends onn or P (f), such asp = 1/

√
n.

5.1. Background: Fourier analysis under p-
biased measures.

Given two functionsf, g : {−1, 1}n
(p) → R, thep-biased

inner product is defined as〈f, g〉p = Ep[f(x)g(x)]. For
S ⊆ [n] the functionφS(x) : {−1, 1}n

(p) → R is defined
by

φS(x) =
∏

i∈S

φ(xi),

where

φ(xi) =

{

√

q/p if xi = 1,

−
√

p/q if xi = −1.

The functions{φS}S⊆[n] form an orthonormal basis with
respect to〈·, ·〉p. The p-biased Fourier expansionof f :

{−1, 1}n
(p) → R is f(x) =

∑

S⊆[n] f̃(S)φS(x) where

f̃(S) = Ep[f(x)φS(x)]; note that we writef̃ rather than
f̂ to denotep-biased Fourier coefficients. Parseval’s iden-
tity continues to hold,Ep[f

2] =
∑

S f̃(S)2.

2There is a question as to whether or not the learning algorithm
“knows” the value ofp in advance. We show in Appendix B that we may
assume without loss of generality that the learning algorithm knowsp.



We define the operatorDi on functions f :
{−1, 1}n

(p) → R by (Dif)(x) =
√

pq(f(x(i=1)) −
f(x(i=−1)), where x(i=b) denotesx with the ith bit
set to b. It is not difficult to verify that (Dif)(x) =
∑

S∋i f̃(S)φS\i(x). We now give the definition ofp-biased
influence:

Definition 1 The p-biased influence of theith coordinate
onf : {−1, 1}n

(p) → R is

Inf
(p)
i (f) = Ep[(Dif)2] =

∑

S∋i

f̃(S)2.

Note that iff : {−1, 1}n
(p) → {−1, 1} then Inf

(p)
i (f) =

4pq Prp[f(x) 6= f(x⊕i)].

(We remark that this definition differs from the ones in [8, 9]
by a multiplicative factor of4pq.) We define thep-biased
average sensitivityto be I(p)(f) =

∑n
i=1 Inf

(p)
i (f) =

∑

S⊆[n] |S|f̃(S)2. Note that in the case whenp = 1/2 and
f ’s range is{−1, 1}, these definitions agree with the stan-
dard uniform-distribution definitions from Section 2.3.

We conclude this section with a useful relationship in the
p-biased case between influences of monotone real-valued
functions and singleton Fourier coefficients:

Fact 5 For any monotonef : {−1, 1}n → [−1, 1] we have

Inf
(p)
i (f) ≤ 2

√
pq · f̃(i),

with equality iff the range off is {−1, 1}.

Proof: We haveInf
(p)
i (f) = Ep[(Dif)2]. Since f is

monotone and has range[−1, 1] it is easy to see that0 ≤
(Dif)(x) ≤ 2

√
pq for all x. Thus (Dif)2 ≤ 2

√
pq ·

(Dif) with equality iff f ’s range is{−1, 1}, and hence
Inf

(p)
i (f) ≤ 2

√
pq · Ep[Dif ] = 2

√
pq · f̃(i).

5.2. Bounding influence in monotone real-
valued functions under p-biased mea-
sures.

In this section we describe our analogue of Theorem 3
for real functions underp-biased measures. We first set
up somep-biased preliminaries before proving the theorem.
Let C = {C1, . . . , Cs} be a subcube partition of{−1, 1}n.
We now identify theCt’s with length-n vectors in a way
compatible with theφ-basis, i.e.

(Ct)i =











φ(1) =
√

q/p if xi = 1 for all x ∈ Ct,

φ(−1) = −
√

p/q if xi = −1 for all x ∈ Ct,

0 otherwise.

The definitions ofpluses(Ct), minuses(Ct) andfixed(Ct)

are as before. We now defineδ(p)
i to be thep-biased version

of δi:
δ
(p)
i = Pr

x∈{−1,1}n
(p)

[i ∈ fixed(C(x))].

The observation that choosingx ∈ {−1, 1}n
(p) and con-

sidering(x,C(x)) can be viewed as choosingR ∈ C and
thenx ∈ R still holds with the obviousp-biased interpreta-
tion. Specifically, the random choiceR ∈ C means select-
ing the cubeCt with probabilityp|pluses(Ct)|q|minuses(Ct)|;
then the choicex ∈ R means picking the unfixed coordi-
nates according to thep-biased distribution.

The analogue of Lemma 2 and the analogue of Lemma 3
(for functionsf : {−1, 1}n

(p) → R) now hold with no
changes in the statements. To prove them we simply repeat
their proofs and also the statement and proof of Lemma 1,
everywhere replacingxi andxj with φ(xi) andφ(xj). As
a consequence, we have the following additional lemma:

Lemma 6 Given α, β ∈ R, the quantity ER∈C [α ·
pluses(R) + β · minuses(R)] depends only onpα + qβ.

Proof: Sum the first statement of thep-biased analogue of
Lemma 2 over alli, and then expand the definition ofRi;
one gets:

E
R∈C

[

√

q/p · pluses(R) −
√

p/q · minuses(R)
]

= 0.

⇒ E
R∈C

[minuses(R)] = (q/p) · E
R∈C

[pluses(R)].

So substituting this in we get

E
R∈C

[α · pluses(R) + β · minuses(R)]

= E
R∈C

[α · pluses(R) + (q/p)β · pluses(R)]

= (1/p) E
R∈C

[(pα + qβ) · pluses(R)],

completing the proof.

With this preparation in hand, we now give ourp-biased,
real-valued generalization of Theorem 3:

Theorem 7 Let f : {−1, 1}n
(p) → R be a function with

subcube partitionC = {C1, . . . , Cs}. Then we have

n
∑

i=1

f̃(i) ≤ ‖f‖2 ·
√

n
∑

i=1

δ
(p)
i

≤ ‖f‖2 ·
√

log s/
√

H(p),

whereH(p) = p log(1/p)+q log(1/q). If f : {−1, 1}n
(p) →

[−1, 1] is monotone then by Fact 5 we may write

I(p)(f) ≤
√

4pq/H(p)
√

log s.



Proof: Applying Cauchy-Schwarz directly to the analogue
of Lemma 3, we have

n
∑

i=1

f̃(i) ≤
√

E
R∈C

[

f(R)2
]

·
√

E
R∈C

[( n
∑

i=1

Ri

)2]

= ‖f‖2 ·
√

E
R∈C

[ n
∑

i=1

R2
i

]

,

where we used thep-biased analogue of the second state-
ment of Lemma 2 in the equality, just as in the proof of
Theorem 3. Let us now consider the quantity inside the
square root. By definition,

E
R∈C

[ n
∑

i=1

R2
i

]

= E
R∈C

[

(q/p)·pluses(R)+(p/q)·minuses(R)
]

.

(3)
Now p(q/p)+q(p/q) = q+p = p·1+q ·1, so by Lemma 6,

E
R∈C

[

(q/p) · pluses(R) + (p/q) · minuses(R)
]

= E
R∈C

[pluses(R) + minuses(R)]

= E
R∈C

[|fixed(R)|]

=
n
∑

i=1

δ
(p)
i ,

completing the proof of the first inequality. As for the sec-
ond inequality, note that the binary entropyH(R) of the
random variableR ∈ C is

H(R) = E
R∈C

[

log(1/Pr[R])
]

= E
R∈C

[

log(1/p) · pluses(R)

+ log(1/q) · minuses(R)
]

= H(p) · E
R∈C

[ log(1/p)

H(p)
· pluses(R)

+
log(1/q)

H(p)
· minuses(R)

]

.

But sincep log(1/p)
H(p) + q log(1/q)

H(p) = 1 as well, applying
Lemma 6 again yields

(3) = H(R)/H(p).

But H(R) ≤ log s as observed in the proof of Theorem 3,
and the proof is complete.

Using the boundpq log(1/pq) ≤ H(p), we have the fol-
lowing corollary:

Corollary 7 If f : {−1, 1}n
(p) → [−1, 1] is monotone then

I(p)(f) ≤ 2
√

log P (f)/
√

log(1/pq).

5.3. Spectral concentration under p-biased
measures.

We now need to extend Friedgut’s result to thep-biased,
real-valued case. There are some difficulties involved.
In [8], Friedgut gave ap-biased version of Theorem 4; how-
ever, he left the quantitative details of the dependence onp
unspecified. More seriously, Friedgut’s theorem is simply
not true for[−1, 1]-valued functions, even in thep = 1/2
case. (See Appendix A for an example demonstrating this.)

However, we are able to circumvent this problem. The
necessary insight is the following: A real-valued function
with small average sensitivity depends on only a small num-
ber of coordinatesif its range is sufficiently “discrete”. And
for the purposes of learning an unknown function to some
prescribed accuracy, we don’t lose much by “rounding” the
function’s values to a discrete range.

For γ > 0, let γZ denote the set of real numbers of the
form γm, where m is an integer. By making some small
changes to Friedgut’s proof we can derive the following re-
sult (the proof is in Appendix A):

Theorem 8 There is a universal constantC < ∞ such that
for all 0 < ǫ, γ < 1/2 and all f : {−1, 1}n

(p) → [−1, 1] ∩
(γZ), if

t = 2I(p)(f)/ǫ, τ = γC(pq)Ct,

and

J = {i : Inf
(p)
i (f) ≥ τ}, S = {S : S ⊆ J, |S| ≤ t},

then
∑

S 6∈S f̃(S)2 ≤ ǫ.

We now combine Theorem 8 with Corollary 7, exactly in
the manner of Theorem 5. The

√

log(1/pq) saved in Corol-
lary 7 cancels with thepq paid in theτ from Theorem 8, and
the factor ofγO(1) becomes negligible if we takeγ = ǫ (in-
deed, evenγ = 2−O(1/ǫ) would be negligible). We get:

Theorem 9 Let ǫ > 0, f : {−1, 1}n
(p) → [−1, 1] ∩ (ǫZ) be

a monotone function, and let

t = 4
√

log P (f)/(ǫ
√

log(1/pq)).

Let

J = {i : Infi(f) ≥ (C ′)−t log(1/pq)},

whereC ′ < ∞ is a universal constant, and let

S = {S : S ⊆ J, |S| ≤ t}.

Then|S| = P (f)O(1/ǫ2) and
∑

S 6∈S f̃(S)2 ≤ ǫ.



5.4. Learning monotone real-valued func-
tions under p-biased measures.

With Theorem 9 in hand, the proof of our main learning
result Theorem 6 is now not very difficult. Given an un-
known target functionf : {−1, 1}n

(p) → [−1, 1] andǫ > 0,
let fǫ denotef with its values “rounded” to the nearest inte-
ger multiples ofǫ. Clearly given examples fromEX(f, p)
we can simulate examples fromEX(fǫ, p). We now simply
try to learnfǫ. It is easy to check that anǫ-approximator hy-
pothesis forfǫ is also anO(ǫ)-approximator forf . Further,
we haveP (fǫ) ≤ P (f) so aP (fǫ)

O(1/ǫ2) runtime is also
P (f)O(1/ǫ2) as desired. Thep-biased analogue of Propo-
sition 4 holds with essentially the same proof. The only
new difficulty is that we cannot exactly estimate the quan-
tities Infi(fǫ). However from Fact 5, the quantities̃f(i)
— which we can estimate empirically — are upper bounds
on the influences; so by taking all the coordinatesi with
f̃(i) ≥ τ , we get all the sufficiently influential coordinates.
There cannot be too many coordinates with largef̃(i), since
∑n

i=1 f̃(i)2 ≤ 1.
For completeness, we give all the details of the proof of

Theorem 6 in Appendix B.

6. Extension to stronger complexity measures?

It is natural to wonder whether our results can be ex-
tended to stronger complexity measures than decision tree
size and partition size. An obvious next complexity mea-
sure to consider is the minimum number of (not necessarily
disjoint) subcubes that cover{−1, 1}n and are such thatf
is constant on each subcube. We refer to this as thesubcube
covering complexityof f and denote it byCDNF (f), since
it is equal to the minimum number of terms in any DNF for-
mula forf plus the minimum number of clauses in any CNF
formula forf .

The following theorem shows that Theorem 3 does not
hold for subcube covering complexity:

Theorem 10 There is a monotone Boolean functiong :

{−1, 1}n → {−1, 1} for whichI(g) = Ω(nlog4(6−2
√

5)) =
Ω(n0.305) but

√

log CDNF (g) = O(n1/4).

The proof is by the probabilistic method. We define a
distributionD over monotone Boolean functions and show
that some functiong that is assigned nonzero weight under
D must satisfy the bounds of the theorem. See Appendix C.

7. Conclusion

In this paper we established a new bound on average sen-
sitivity of monotone functions, and used this bound to give
the first algorithm that uses random examples to learn any

monotone function to high accuracy in time polynomial in
the function’s decision tree or partition size.

A natural goal for future work is to obtain even stronger
learning results for monotone functions. Can the boosting
methods used by Jackson in his Harmonic Sieve algorithm
[13] be applied here? We note that while the Harmonic
Sieve algorithm makes essential use of membership queries,
related algorithms that combine boosting with Fourier tech-
niques have been successfully developed for the framework
of learning from random examples only [14].
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A. Proof of Theorem 8 and a counterexample

Proof of Theorem 8: Recall that we have

Dif(x) =
√

pq(f(x(i=1)) − f(x(i=−1)))

=
∑

S: i∈S

f̃(S)φS\i(x)

and that Inf
(p)
i (f) = Ep[(Dif)2] = ‖Dif‖2

2, where
throughout this section‖ · ‖ denotes the norm induced by
thep-biased measure.

SinceI(p)(f) =
∑

S |S|f̃(S)2, Markov’s inequality im-
mediately gives that

∑

S: |S|>t f̃(S)2 < ǫ/2. Let J ′ =

[n] \ J . It now suffices to show that
∑

S: S∩J ′ 6=∅,|S|≤t

f̃(S)2 ≤ ǫ/2. (4)

Certainly the left side of (4) is at most
∑

i∈J ′

∑

S: i∈S,|S|≤t

f̃(S)2 =
∑

i∈J ′

‖Dif
≤t‖2

2

=
∑

i∈J ′

〈Dif
≤t,Dif〉, (5)

where we use the notationf≤t to denote the function
f≤t(x) =

∑

|S|≤t f̃(S)φS . Now we have:

〈Dif
≤t,Di〉 ≤ ‖Dif

≤t‖4 ‖Dif‖4/3 (6)

≤ (1 + 1/
√

pq)t/2 ‖Dif
≤t‖2 ‖Dif‖4/3

(7)

≤ (1/pq)t Inf
(p)
i (f)1/2 E[|Dif |4/3]3/4.

(8)

Here (6) is Ḧolder’s inequality, inequality (7) follows from
a p-biased version of Bonami-Beckner (here with the best
bounds provided by [26]), and inequality (8) uses the gener-
ous bound(1+1/

√
pq)1/2 < (1/pq) and also‖Dif

≤t‖2 ≤
‖Dif‖2 = Inf

(p)
i (f)1/2.

We now observe that by virtue of the assumption thatf ’s
range is contained inγZ, we have that|Dif(x)| is always
either 0 or at leastγ

√
pq. This implies that (8) is at most

(1/pq)t Inf
(p)
i (f)1/2 Ep[(γ

√
pq)−2/3 · |Dif |2]3/4

= (1/pq)t+1/4 γ−1/2 Inf
(p)
i (f)5/4

≤ (1/pq)t+1/4 γ−1/2 Inf
(p)
i (f) τ1/4, (9)

where we have used the definitions ofInf
(p)
i (f) andτ . Us-

ing the fact that
∑

i∈J ′ Inf
(p)
i (f) ≤ I(p)(f), we can sum (9)

and conclude that (5) is at most

(1/pq)t+1/4 γ−1/2 I(p)(f) τ1/4.

Thus to ensure (4) holds we only need

t(1/pq)t+1/4 γ−1/2 τ1/4 ≤ 1;

upper-boundingt(1/pq)t+1/4 by (1/pq)O(t) (acceptable for
all t ≥ 0), we see thatτ = γO(1)(pq)O(t) suffices. Thus the
choice ofτ given in the definition of Theorem 8 suffices and
the proof of this theorem is complete.

We now justify the remark from Section 5.3 indicating
that Friedgut’s theorem does not in general hold for real-
valued functions; in other words, the condition thatf ’s
range is contained inγZ cannot be removed.

To see this, consider (in the uniform measure case) the
functionf : {−1, 1}n → [−1, 1] defined by

f(x) =

{

sgn(
∑n

i=1 xi) if |∑n
i=1 xi| >

√
n

1√
n

∑n
i=1 xi if |∑n

i=1 xi| ≤
√

n.

It is easy to see that for eachi = 1, . . . , n, Dif(x) is always
either0 or 1/

√
n, and is1/

√
n for aΘ(1) fraction of allx’s.

Consequently we haveInfi(f) = Θ(1/n) and thusI(f) =
Θ(1). In addition, it’s clear that bothE[f(x)] = 0 and that
|f(x)| ≥ 1/2 for a Θ(1) fraction of allx’s; hence we have
∑

|S|>0 f̂(S)2 ≥ Ω(1). But now if we takeǫ to be any
constant smaller than thisΩ(1) then we get a contradiction,
since the choice ofτ in Theorem 8 will be a constant and so
J and henceS will be empty (for alln sufficiently large).

B. Technical details for learning

We begin with some basic learning details for thep-
biased measure. First, as mentioned earlier, we may as-
sume without loss of generality that the learning algorithm
“knows” p. The proof is quite similar to the proof that a
noise-tolerant learning algorithm can be assumed to know
the exact noise rate (see [19]). The basic idea is that we can
run the learning algorithm repeatedly using successively
finer estimates (easily obtained from sampling) for the value
of p. If the original algorithm runs forT time steps, then if
the guessed value forp is within ∆/T of the true value, the
statistical distance between the algorithm’s output when run
with the guessed value versus the true value will be at most
∆. It can be shown that at most a polynomial factor run-
time overhead is incurred in coming up with a sufficiently
accurate guess; we give the details in the full version.

Next, we remark that low-degree algorithm of Linial,
Mansour, and Nisan, Proposition 4, easily carries over to the
real-valuedp-biased case with essentially the same proof:

Proposition 8 There is an algorithmA with the following
property: Letf : {−1, 1}n

(p) → [−1, 1] and letS ⊆ 2[n]



be a collection of subsets of[n] with the property that
∑

S:S /∈S f̃(S)2 ≤ ǫ. Then ifA is givenp, S, access to
a sourceEX(f, p) of p-biased random examples, and pa-
rametersδ, θ > 0, it runs in poly(n, |S|, 1/θ) · log(1/δ)
time and with probability1 − δ outputs a real-valued func-
tion g : {−1, 1}n → R of the formg(x) =

∑

S∈S cSφS(x)
such thatEp[(f − g)2] ≤ ǫ + τ .

We now proceed to discuss the proof of Theorem 6. Let
f : {−1, 1}n

(p) → [−1, 1] be the target function. Givenǫ >
0, let fǫ denote the “rounded” version off in which each
of its values is rounded to the nearest integer multiple ofǫ.
It is clear that given access toEX(p, f) we can simulate
access toEX(p, fǫ). Our algorithm will useEX(p, fǫ) to
learnfǫ in time poly(n, P (fǫ)

O(1/ǫ2)) · log(1/δ). This is
sufficient for learningf in the same time bound, because
P (fǫ) ≤ P (f) and because ifEp[(h − fǫ)

2] ≤ ǫ then

Ep[(h − f)2] = Ep[((h − fǫ) + (fǫ − f))2]

≤ 2Ep[(h − fǫ)
2] + 2Ep[(fǫ − f)2]

≤ 2ǫ + ǫ2/2

= O(ǫ).

Our goal is now essentially to use Proposition 8 given
Theorem 9. As mentioned in Section 5.4, unlike in the algo-
rithm for Boolean-valued functions we cannot estimate the
influences offǫ directly since the relationshipInf

(p)
i (fǫ) =

f̃ǫ(i) does not hold in the real-valued case. We may, how-
ever, use Fact 5 which says thatf̃ǫ(i) — a quantity we can
empirically estimate — is an upper bound onInf

(p)
i (fǫ).

We now describe the algorithm to learnfǫ using
EX(p, fǫ). As in Section 4.3 we may assume that the par-
tition sizeP (fǫ) is known. The algorithm is as follows:

1. For i = 1, . . . , n empirically estimatef̃ǫ(i) =
Ep[fǫ(x)φi(x)] to within an additive±τ/4 (with con-
fidence1 − δ), whereτ = (C ′)−t log(1/pq) and t is
defined in Theorem 9. LetJ ⊆ [n] be the set of those
i for which the obtained estimate is greater thanτ/2.

2. Now run algorithmA from Proposition 8 withS =
{S : S ⊆ J, |S| ≤ t} and θ = ǫ, outputting its
hypothesisg.

Let us first confirm the running time of this algo-
rithm. In step (1), standard sampling bounds ensure that
poly(n, 1/τ) · log(1/δ) samples suffice. We may then con-
clude that|J | ≤ O(1/τ2), since

∑n
i=1 f̃ǫ(S)2 ≤ 1. It

follows that |S| ≤ poly(1/τ t) = P (fǫ)
O(1/ǫ2), as nec-

essary to bound the running time. Finally, we still have
∑

S 6∈S f̃ǫ(S)2 ≤ ǫ because (with confidence1 − δ) the J
the algorithm finds is a superset of theJ from Theorem 9.
Hence the algorithm correctly gives aO(ǫ)-approximator
hypothesisg with confidence1 − O(δ), and the proof of
Theorem 6 is complete.

C. Proof of Theorem 10

Letn = 4k. Letf1(a, b, c, d) be the “AND-OR” function
on four Boolean variablesf1(a, b, c, d) = (a∧ b)∨ (c∧ d).
An important property off1 is that if each of its four
arguments is independently set to be1 (true) with prob-
ability p, then Pr[f1 = 1] equals2p2 − p4. For i =
2, 3, . . . , we define the functionfi on 4i variables to be
fi = f1(f

1
i−1, f

2
i−1, f

3
i−1, f

4
i−1) where the superscripts in-

dicate distinct copies offi−1 on disjoint sets of variables.
Thusfk is a function onn variables computed by a read-
once Boolean formula that is a tree of ANDs and ORs at
alternating levels.

We now define distributionsD1, . . . ,Dk over monotone
Boolean functions, whereDi is a distribution over func-
tions from {−1, 1}4i

to {−1, 1}. The distributionDi is
defined in the following way: a random draw fromDi

is obtained by independently substituting1 for each of
the 4i Boolean arguments tofi with probability α, where
α =

√
5 − 2 ≈ 0.236. (This construction and some of

the subsequent analysis is reminiscent of [31].) Note that
for a randomg drawn fromD1 and a randomx drawn uni-
formly from {−1, 1}4, we have that each of the four argu-
ments tof1 is independently 1 with probability12 + α

2 =√
5−1
2 ; we denote this value byρ. Consequently we have

Prg∈D1,x∈{−1,1}4 [g(x) = 1] = 2ρ2 − ρ4, but this is easily
seen to equalρ. It follows from the recursive definition offi

that for alli = 1, 2, . . . we havePrg∈Di,x∈{−1,1}4i [g(x) =

1] = ρ.

It is not difficult to show (see Theorem 2.4 of [16])
that CDNF (fk) ≤ 22k+1; as an immediate conse-
quence we have thatCDNF (g) ≤ 22k+1 (and thus
√

log CDNF (g) = O(2k/2) = O(n1/4)) for everyg that
is in the support ofDk. But by Lemma 9 below we have
that Eg∈Dk

[I(g)] = Θ((6 − 2
√

5)k); clearly this implies
that there is someg in the support ofDk for which I(g)

is Ω((6 − 2
√

5)k) = Ω(nlog4(6−2
√

5)). This proves Theo-
rem 10.

Lemma 9 For i = 1, 2, . . . we haveEg∈Di
[I(g)] = (3 −√

5)(6 − 2
√

5)i.

Proof: It is clear from symmetry thatEg∈Di
[I(g)] = 4i ·

Eg∈Di
[Inf1(g)]. We have thatEg∈Di

[Inf1(g)] equals

Eg,x[Pr[g(1, x2, . . . , x4i) 6= g(−1, x2, . . . , x4i)]

which in turn equals

Pr
g∈Di,x∈{−1,1}4i

[g(1, x2, . . . , x4i) 6= g(−1, x2, . . . , x4i)].



From the definition ofDi, we have that with probabil-
ity α =

√
5 − 2 the constant1 is substituted for the

first argument offi in g; if this occurs then clearly
g(1, x2, . . . , x4i) = g(−1, x2, . . . , x4i) for all x sinceg
does not depend on its first argument. If this does not oc-
cur, then we have (for a randomg ∈ Di and a uniform
x ∈ {−1, 1}4i

) that each of the other4i−1 arguments tofi

independently takes value 1 with probabilityρ =
√

5−1
2 .

Under the distribution on inputs tofi described in the
previous paragraph, ifi = 1 it is easy to see that flipping
the first argument off1 flips the value off1 if and only if
the second argument is 1 (probabilityρ) and the AND of
the third and fourth arguments is 0 (probability1 − ρ2).
Thus flipping the first argument off1 flips the value off1

with probability preciselyρ(1 − ρ2) which is easily seen to
equal1 − ρ, using the fact that2ρ2 − ρ4 = ρ. Similarly, if
i = 2, then flipping the first of the 16 arguments tof2 =
f1(f

1
1 , f2

1 , f3
1 , f4

1 ) (again under the distribution of inputs to
fi described above) will flip the value off2 if and only if
the value off1

1 flips (probability1− ρ as shown above),f2
1

equals 1 (probabilityρ), andf3
1 ∧ f4

1 equals 0 (probability
1 − ρ2). We thus have that flipping the first argument off2

flips the value off2 with probability (1 − ρ)ρ(1 − ρ2) =
(1−ρ)2. An easy induction in this fashion shows that for all
i, under the distribution of inputs described above flipping
the first argument offi causesfi to flip with probability
(1 − ρ)i.

We thus have that

Pr
g∈Di,x∈{−1,1}4i

[g(1, x2, . . . , x4i) 6= g(−1, x2, . . . , x4i)]

= (1 − α)(1 − ρ)i = (3 −
√

5)

(

3 −
√

5

2

)i

,

which proves the lemma.


