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Abstract free PAC learning model of Valiant required that oty dis-

tribution D over the domain of examples (which throughout
We give an algorithm that learns any monotone Boolean this paper is{—1,1}"), the learning algorithm must with
functionf: {—1,1}" — {—1, 1} to any constant accuracy, high probability succeed in generating a hypothesis for the
under the uniform distribution, in time polynomialsnand unknown target function which is highly accurate relative t
in the decision tree size gt This is the first algorithm that ~ D. Despite much effort over a twenty year span, very few
can learn arbitrary monotone Boolean functions to high ac- efficient learning algorithms have been obtained in this de-
curacy, using random examples only, in time polynomial in manding model. Thus the focus of much work has shifted
a reasonable measure of the complexityfofA key ingre- to the naturauniform distributionPAC learning model, in
dient of the result is a new bound showing that the averagewhich the examples used for learning are uniformly dis-
sensitivity of any monotone function computed by a deci-tributed over{—1, 1}" (we give a precise definition of this
sion tree of size& must be at mos{/log s. This bound has learning model in Section 2).
already proved to be of independent utility in the study of  An easy information-theoretic argument shows that no
decision tree complexity [27]. poly(n)-time algorithm can learn arbitrary Boolean func-
We generalize the basic inequality and learning result tions f : {—1,1}" — {-1,1} to accuracy nonnegligi-
described above in various ways; specifically, to partition ply better than1/2. Consequently, the most ambitious
size (a stronger complexity measure than decision treg size conceivable goal in uniform distribution learning is to ob-
p-biased measures over the Boolean cube (rather than justtain an algorithm that can learn any Boolean functjon
the uniform distribution), and real-valued (rather tharsfu ~ {—1,1}» — {—1,1} in time polynomial inn and in a rea-
Boolean-valued) functions. sonable measure of the “size” or complexityfofDifferent
complexity measures for Boolean functions thus give rise
to different notions of efficient learnability; for example
1. Introduction one might hope for an algorithm that can learn any Boolean
function f in time polynomial inn and DT'( f), the number
of leaves in the smallest Boolean decision tree that com-
putesf (this is the well-studied — and notoriously difficult
— problem of “learning decision trees under the uniform
distribution”). A more ambitious goal would be to learn
In the two decades since Valiant introduced the Probably i time polynomial iNDNF(f), the number of terms in the
Approximately Correct (PAC) learning model [32], a major - smallest disjunctive normal form formula fg or ACY(f),
goal in computational learning theory has been the design ofihe size of the smallest depthAND/OR/NOT circuit for f.
computationally efficient algorithms for learning Boolean Unfortunately, learning arbitrary Boolean functions in

functions from random examples. The original distribution polynomial time in this sense has proved to be intractably
*Some of this work was done while at the Institute for Advancedi$ difficult for all “reason_able" Slze measures. ) FO!‘ the
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1.1. Computationally efficient learning from
random examples.




of f. This negative result was strengthened by Kharitonov stronger measure of complexity than decision tree size; i.e
[20], who showed that (under a strong but plausible assump-P(f) < DT(f). Our main learning result is the following:
tion on the hardness of integer factorization) no uniforss di

tribution algorithm can learn everf/in time polynomial in ~ Theorem 1 There is an algorithm that (with confidence
ACY(f) for some fixed constant. In fact, despite inten- 1 — &) can learn any monotone Boolean functigh :
sive research, no algorithm is currently known that learns {—1,1}" — {—1,1} to accuracye, given uniform random
arbitrary Boolean functions in time polynomial &my rea- examplegz, f(z)), in time polyn, P(f)Y/<") -log(1/4).
sonable size measure; such an algorithm would constitute a

tremendous breakthrough in computational learning theory For any constant accuraey= ©(1), the algorithm runs in
see e.g. [1]. (We stress that simple arguments such as thoséme polynomial in the partition size of, and hence also

in [5] show that there is ninformation-theoretidmpedi- in the decision tree size gf. We feel that this constitutes
ment to learning from a polynomial number of examples; significant progress towards learning monotone functions
the apparent difficulty is in designingplynomial-timeal- in time polynomial in their DNF size, an outstanding open
gorithm.) problem in computational learning theory (see e.g. the open

guestions posed in [15], [3] and [2]).
1.2. Background: learning monotone func-
tions. 1.4. The approach: bounding average sen-
sitivity of monotone functions.
Confronted with the difficulties described above, re-
searchers have tried to learn various restricted classes of The main ingredient of our learning algorithm is a new
Boolean functions. The most natural and intensively stud- inequality bounding the average sensitivity (sum of influ-

ied such class is the class of aflonotonefunctions f : ences of all coordinates) of monotone Boolean functions.
{-1,1}" — {-1,1}, i.e. functions that satisfy/(x) > We give here a simplified version of the theorem (the full
f(y) whenever: > y in the partial order oq—1,1}". result is given in Theorem 3):

Many partial results on learning restricted subclasses of _
monotone functions under the uniform distribution have Theorem 2 Every monotone Boollean functighhas aver-
been obtained. Sakai and Maruoka [28] gave a poly ~ age sensitivity at mosy/log P(f).
time algorithm that can learn any monotone sizgeg n) ) ) . . ) ) )
DNF under uniform; this result was subsequently gener- 1 NiS edge-isoperimetric-type result is of independererint
alized by Bshouty [6] to a somewhat broader class than©St: indeed, our most general version of it, Theorem 7, re-
O(logn)-term DNF. The main result of Bshouty and Ta- cently played a critical role in a new lower bound on the ran-
mon in [7] is a proof that any monotone function can be domized decision tree complexity of monotone graph prop-

learned to accuracy in 2°(V7/<) time; they used this re- SIS —Ssee [27].

sult to obtain a pol§n)-time algorithm (fore constant) _C(;)mbmlngh this ner\]/v meqluallt); W't.h a Tehsf't of
that can learn a class of functions that includes monotoneFrle gut [8] that says that Boolean functions with low av-

O(log? n/(log log n)?)-term DNF. More recently, Servedio erage sensitjvity essentially depend on pnly a s_maII num-
[30] showed that monoton2®VFE™_term DNF can be ber of coordinates, we can show that: (i) there is a set of

O(l/ﬁz) . . . . .
learned to constant accuraeyin poly(n) time. Other re- P(f) many Fourier coefficients of which contain

searchers have also studied the problem of learning mono—alII but ¢ of the "Fourier weight” off; and (ii) this set of

tone functions under uniform (see e.qg. [18, 3, 34, 12, 21]), ;?xlf;n%%eﬂlgf:rf ﬁjsno?ﬁ eZ|C|e|nitrI]y ftz?]t(;f;g rf]:(;r:hil;rg;
but prior to the current work no algorithms were known for P Y- APPIYING y

. . . o ._on approximating Boolean functions via their Fourier rep-
learning arbitrary monotone functions in time polynomial . .
. . resentations, we obtain Theorem 1.
in a reasonable size measure.

Our approach seems quite robust. We generalize the ba-
sic scenario described above by: (i) considerigay-valued
monotone functions that map-1,1}" into the continu-
ous interval[—1, 1] rather than the discrete range 1, 1};
and (ii) considering generatbiased product measures over
{—1, 1}" rather than the uniform distribution. We show that
suitable variants of all of our intermediate results hots]
that our main learning result holds exactly as before (i.e.,
runs in timeP( £)°(1/<")) in these generalized scenarios.

1.3. The main learning result.

We give the first algorithm that learns any monotone
Boolean functionf, under the uniform distribution, in time
polynomial in a reasonable measure of the siz¢.dbiven
a Boolean functionf : {—1,1}" — {-1,1}, the parti-
tion size P(f) of f is the minimum size partition of the
Boolean cubg—1,1}™ into disjoint subcubes such thgt
is constant on each subcube. Note that this is a strictly Here and throughout the pager denotes logarithm to the base two.




2. Preliminaries

2.1. Boolean functions and complexity mea-
sures.

As is standard in complexity theory and learning theory,
we will be interested in complexity measures for Boolean
functionsyf given by the syntactic size of the smallest repre-
sentation off under various natural representation schemes.
We will chiefly be concerned with partition size and deci-

sion tree size, two complexity measures that we now define.

Given a Boolean functiorf : {-1,1}" — {-1,1},
the decision tree sizef f, denotedDT'(f), is the number
of leaves in the smallest Boolean decision tree (with vari-
ablesz, ..., z, atthe internal nodes and bitsl, 1 at the
leaves) that computep. The partition size P(f) of f is
the minimum number of disjoint subcubes that the Boolean
cube{—1,1}" can be partitioned into such thgtis con-
stant on each subcube. Since anleaf decision tree in-
duces a partition of—1, 1}" into s disjoint subcubes (cor-
responding to the root-to-leaf paths in the tree), we have
that P(f) < DT(f) for all f. In fact, P(-) is known to
be a superpolynomially stronger measure thaF(-) even
for monotone functions; Savigk[29] has given a mono-
tone Boolean functiog : {—1,1}" — {—1,1} which has
P(g) = poly(n) and DT (g) = 22" **(n))
2.2.

Background: uniform distribution

learning.

A concept classF is a collectionJ,,>1 F,, of Boolean
functions where eaclfi € F, is a function from{—1,1}"
to {—1, 1}. Throughout this paper we consider the concept
class consisting of all monotone Boolean functions.

The uniform distribution Probably Approximately Cor-
rect (PAC) learning model has been studied by many au-
thors; see e.g. [4, 7, 13, 14, 20, 22, 24, 28, 30, 33]. In this
framework a learning algorithm has access toeaample
oracle EX(f), wheref € F, is the unknowrtarget func-
tion the algorithm is trying to learn. The oracleX (f)
takes no inputs and, when queried, outputs a labelled exam
ple (z, f(z)), wherez is drawn from the uniform distribu-
tionU over{—1,1}".

We say that a Boolean functidn {-1,1}" — {-1,1}
is an e-approximator for f if it satisfies Pr cy[h(z) =
f(z)] > 1 — e The goal of a uniform distribution PAC
learning algorithm is to generate amapproximator for the
unknown target functiorf. More precisely, an algorithm
is alearning algorithm for concept clas§ if the follow-
ing condition holds: for aln > 1, all f € F,, and all
0 <¢6 < 1,if Ais givene andé as input and has access
to EX(f), then with probability at least — ¢ algorithm A
outputs are-approximator forf. We further say thatt PAC

learns F in time ¢ if A runs for at most time steps and
outputs a hypothesis which can be evaluated on any point
x € {=1,1}" in time ¢t. Heret will depend on the dimen-
sionn and the size of f under some complexity measure,
as well as orx andd.

2.3. Fourier representation.

Fourier techniques have proven to be a powerful tool for
obtaining uniform distribution learning algorithms; sée t
survey of Mansour [23] for an overview.

Except in Section 5, we will always viey—1,1}™ as a
probability space under the uniform distribution which we
denote by/. Let f : {—1,1}" — R be a real-valued func-
tion. Recall that théourier expansiorof f is

f@)= > f(S)xs(z),

SC[n]

where xg(z) denotes [[,.qz; and f(S) denotes
E.culf(z)xs(x)]. It is well known that everyf
has a unique Fourier expansion. Pareseval's theo-
rem states that for any : {-1,1}" — R we have
> sCln] f(S)? = E.culf(2)?], which is clearlyl if f's
range is{—1, 1}.

For Boolean-valued functiong: {—1,1}" — {-1,1},
the influence of coordinate on f is defined adnf;(f) =
Proculf(z) # f(z(®D)], wherez(®) denotest with the
ith bit flipped. In general we havef,(f) = 3., £(5)?;
it is also well known (see e.g. [17]) that ff is monotone
thenInf;(f) = f({i}). For notational ease we will hence-
forth write f(i) in place of f({i}). Theaverage sensitivity
of a Boolean functionf is I(f) = >, Inf;(f); this is
the expected number of sensitive coordinates for a random
inputz € {—1,1}". Note thafl(f) = 3", f(i) for mono-
tonef.

3. The average sensitivity of monotone func-
tions

A well known, folkloric edge-isoperimetric inequality
for the Boolean cube states that for any monotone func-
tion f: {—1,1}" — {—1,1}, we havel(f) < I(Maj,) =
©(y/n). (This follows from, e.g., the Kruskal-Katona the-
orem; see [9] for an explicit proof.) This bourddf) <
O(4/n) is the key to the main result of [7] that any mono-
tone Boolean function can be learned to accuraitytime
20(vn/e).

In this section we give a more refined boundI¢fi) that
depends orP(f), the partition size off. Our new bound
states thal(f) < +/log P(f) for any monotonef. This
yields the usual isoperimetric inequality mentioned asea sp
cial case but is much stronger for functiofisvhich have
partition sizeP(f) = 2°(").



3.1. Subcube partitions.

Let f: {-1,1}" — {-1,1} be a Boolean function and
let C = {C',...,C*} be a subcube partition fof, so
C',...,C* partition {—1,1}" into s subcubes on each of
which f is constant. By abuse of notation we will also iden-
tify a cubeC* with a lengthn vector over{—1,0, 1} in the
obvious way; i.e. théth coordinate of the string" is

1 if z; =1forallz € Ct,
-1 ifz; =—1forallz e Ct,
0 otherwise.

(C")i =

Let us also introduce notation for the sets of coordinates

which cubes fix:
pluses(C') = {i : (C"); = 1},

minuses(C?) = {i : (C"); = —1},
fixed(C") = pluses(C") U minuses(C").

Given an inputr € {—1,1}", we writeC(z) to denote
the subcube&”? in C to whichx belongs. We also writé;
to denotePr, ¢y [i € fixed(C(z))], the probability that the
subcube partition “queriest;. Note thatd_"_, d; equals
E.cullfixed(C(z))|], the average number of coordinates
“queries”.

When we drawz € U, this determines’(z). How-
ever, we can equally well view the random determination
of (z,C(z)) the other way around. Indeed, we will almost
always consider choosing a uniformly random strings
follows:

1. Pick a random subculié from C by choosing each®
with probability2~ixed(C*)1 |n general we will write
R € Cto indicate that? is a random variable given by
choosing a subcube from amony, ..., C* accord-
ing to this natural probability distribution on subcubes.

. Now chooser uniformly at random from the strings in
R. We will write z € R to indicate thatr is chosen
randomly in this way.

After this procedurey indeed has the uniform distribution.
Furthermore, note that the valyi¢z) is determined as soon
asR is chosen; thus we may abuse notation and wf{te)
for this quantity.

We will require the following very easy lemmas:

Lemma 1 Let R be any subcube and lét# j be in[n].
ThenEzeR[{Ei] = Rz andEmeR[l‘i(L’j] = RZRJ

Proof: Immediate from the definitions. [ |

where in the last step we used Lemma 1.

Lemma 2 Leti # j be in[n]. ThenEgr[R;] = 0 and

EReC[RiRj] = 0.

Proof: We prove the second statement, with the first being
even easier:

0= E [.%‘ziljj] = E E [mixj]

= E [R;Rj],
zeU ReC zeR ReC

3.2. Proof of the main inequality.

The proof requires one basic lemma:

Lemma3 Letf: {—1,1}" — {—1,1} be a Boolean func-
tion with a subcube partitior = {C',...,C*}. Then

Z?:l f(Z) =Epec [f(R) : Z?:l Ri}

Proof: We have

; £()

where in the last step we used Lemma 1. ]

With this lemma in hand we can give the proof that

I(f) < \/log P(f) for monotoney:
Theorem 3 Let f: {-1,1}" — {-1,1} be a Boolean

function with a subcube partitiof = {C*,...,C*}. Then
we have

> f(i) <42 6 < logs,
1=1 1=1
and if f is monotone we may thus write

I(f) < /logs.

Proof: Sincef is +1-valued, from Lemma 3 we have

ReCll;

} )

with equality iff f(z) sgn(>_1, C(x);) for all z,
i.e. f(z) is the majority of the bits that are set @(x).



Applying Cauchy-Schwarz, we have

ElSe] < B [(5n)]
- \/E _in—&—QZRZRJ}
Recli=1 i<j
= JE |ﬁxed(R)|} @)
ReC

\/mGZ/{ L

where (2) uses Lemma 2.

This proves the first inequality; to finish the proof we
must show thap """ | §; < log s. We have

S8 = B [fixed(R)]
= ReC
— 30 9 Ixed(©)] L fied (1]
t=1
= H(R),

whereH (R) denotes the binary entropy of the random vari-
able R € C. SinceC, the support ofR, is of cardinalitys,
this entropy is at modbg s. |

Remarks:

1. We note that our proof can easily be used to recover the

standard bound(f) < I(Maj,) ~ \/g\/ﬁ for arbi-
trary monotone Boolean functions arvariables. This
is because in upper-boundiMrcc[| >, Ri|], we

may assume without loss of generality that each sub-

cubeC" ¢ C fixes exactlyn bits. (To see this, suppose
thatC* fixesn’ < n bits and we subdivid€™ into two
subcubes each fixing one more bit 3", (C*); # 0
then the contribution of* to E (| >, Ri|] is un-
changed by this subdivision, and ¥, (C*); = 0

then the contribution increases.) But now observe that

equality occurs in inequality (1), as noted above, if
f(z) always equals the majority of the bits setiifx),
i.e.if f(z) = Maj,, () for all x.

2. The bound(f) < 4/log P(f) need not hold for non-

4. Learning monotone Boolean functions
4.1. Spectral concentration.

In this subsection we show that any monotone Boolean
function has all but of its Fourier spectrum concentrated
on a set ofP( £)°(1/<*) many Fourier coefficients.

In [8] Friedgut showed that any Boolean function with
“low” average sensitivity is well approximated by a func-
tion that depends only on a “small” number of coordinates.
In particular, the proof of Corollary 3.2 in [8] yields thelfo
lowing:

Theorem 4 There is a universal constagt < oo such that
forall f: {-1,1}" — {—1,1} ande > 0, if

t=2I(f)/e, J={i:Inf;(f)>C""},

and
S={5: SCJ |S| <t},

thenY g s F(5)? <e.

Combining this result with Theorem 3, we obtain:

Theorem5 Let f: {—1,1}" — {—1,1} be a monotone

function,e > 0, andt 2y/log P(f)/e. LetJ and
S be as in Theorem 4. Thels| = P(f)°1/<) and

ngs f(S)Q S e

Proof: The second part of the conclusion follows imme-
diately from combining Theorems 3 and 4. As for bound-
ing |S|, we havelS| = S'_, (/1) < O(]J]"). But we

also havelJ| < I(f)Ct < tC* using Theorem 3, and so
|J|t < 20(%) = p(f)0(/<)  as claimed. [ |

4.2. Approximating Boolean functions with
spectral concentration.

The following proposition is a straightforward general-
ization of the “low-degree” algorithm of Linial, Mansour,
and Nisan [22].

Proposition 4 There is an algorithmA with the follow-
ing property: Let f {-1,1}" — [-1,1] and let
S C 2"l be a collection of subsets ¢f] with the prop-
erty that Y g s f(S)? > 1 — e Then if A is givens,
access toEX(f), and parameters),# > 0, it runs in
poly(n,|S|,1/6) - log(1/6§) time and with probabilityl — §
outputs a real-valued functiop : {—1,1}" — R of the

monotonef; an easy example is the parity functionon form g(z) = S ses csxs(r) such thatE,« [(f(z) —

n variables for whichl (f) = log P(f) = n.

9(x))*] < e+ 6.



Proof sketch: Algorithm A draws a sample of: labelled
examples fromE X (f) and uses them to empirically esti-
mate each of the Fourier coefficientss) for S € S, us-
ing the fact thatf(S) = E[f(z)xs(z)]; the coefficients

plluses(a)lgIminuses(=)| {0 the input @ € {—1,1}"
(Here and throughoug denotesl — p). We will write
{-1,1}{,, to indicate that{—1,1}" is endowed with the
p-biased measure and writer,[-] and E,[-] to denote

cg are the empirical estimates thus obtained. A standardprobabilities and expectations over {—1, 1}”p .

analysis (see e.g. Theorem 4.3 of [23]) shows that=
poly(|S],1/6) -log(1/6) suffices to give the propositioll

We remark that iff : {—1,1}"* — {—1,1} is Boolean-
valued, andg : {—1,1}" — R satisfiesE ¢, [(f(x) —
g(z))?] < €, then definingh : {-1,1}" — {-1,1} by
h(z) = sgn(g(x)), it is easily seen thaPr,cy[h(x) #
f(@)] < € (see e.qg. [22, 23)).

4.3. Learning monotone Boolean functions
in polynomial time.

We now give the proof of Theorem 1. Given Theorem 5

and Proposition 4, the idea behind our main learning al-

gorithm is obvious: Given uniform examples from a target
function f, identify all coordinates with influence at least

2-0(Wlog P(f)/€) ' and then run the algorithm from Propo-

sition 4 using the sef from Theorem 5. (We note that a

similar algorithm is used by Servedio in [30], though the
analysis is completely different.)

By a standard doubling argument, we may assume the

partition sizeP( f) is known to the learner (see Exercise 1.5
of [19]). We now show that the learner can actually iden-
tify the sufficiently influential coordinates. This is be-
causef is monotone, and consequentlyf;( f) f(i) =
E,culf(z)z;]. Since the learner can empirically estimate
this latter quantity to withint6 in time poly(n,1/6) -
log(1/6) (with confidencel — §) by sampling, the learner
can determine each influendef;(f) of f to within an

additive2~ (V1o P(f)/) in poly(n, 20(V1ee P(£)/)) time

steps, and it's easy to see this is sufficient to maintain cor-

We use standard notions of PAC learning for functions
[ A{=1,1}(,, — [=1,1]. This only involves slightly al-
tering the deginitions from Section 2.2. Specifically, exam-
ples are now from the-biased distributio{ —1, 1}, , in-

stead of the uniform distributiénand, the definition of an
e-approximator is a functioh : {-1,1} ) — R satisfying
E,[(h — f)?] < € (note that we use the “square loss” as
is common in learning or approximating real-valued func-
tions). For other work studying PAC learning under the
biased distribution see e.g. [10, 12, 25, 30].

Our main learning theorem completely extends togthe
biased, real-valued case, as follows:

Theorem 6 There is an algorithm that (with confidence
1 — 4) can learn any monotone Boolean functighn :
{-1, 1}?})) — [—1, 1] to accuracy, givenp-biased random

examplegz, f(x)), in time polyn, P(f)¥/<") - 1og(1/6).

Again, note that for any constant accuracy= (1), the
algorithm runs in polynomial time in the partition size fof
Further note that unlike somebiased PAC learning algo-
rithms such as [10, 30], our algorithm’s running time has
no dependence gmand thus we have the claimed runtime
bound even i depends om or P(f), such ap = 1//n.

5.1. Background: Fourier analysis under p-
biased measures.

Given two functionsf, g : {—1, 1}&) — R, thep-biased
inner product is defined a&,g), = E,[f(x)g(z)]. For
S C [n] the functiongs(z) : {-1,1}{,) — R is defined

rectness and the same time bounds. Complete details can bRy

found in a more general setting in Appendix B.

5. Generalizations: real-valued functions and
p-biased measures

In this section we extend our learning result to real-
valued functionsf : {—1,1}" — [-1,1] on thep-biased

¢s(z) = [ o),

€S
where
q/p if x; =1,
P(z;) = { / ; _
—/p/q ifax;=-1.

The functions{¢s} scp,,) form an orthonormal basis with
respect to(-,-),. The p-biased Fourier expansionf f :

discrete cube. As in the Boolean case, we say a real-valuec%il 1y, — Ris f(z) = Vg, ]f(5)¢s($) where

function f is monotone iff(x) > f(y) wheneverr > y.
The partition sizeP(f) of f : {—1,1}" — [—1,1] is still

(p)
f(S) = Zi:'}p[f(ac)(bs(oc)]; note that we writef rather than

defined as the minimum number of disjoint subcubes that./ t0 denotep-biased Fourier coefficients. Parseval's iden-

{—1,1}"™ can be partitioned into such thétis constant on
each subcube.

The p-biased measure
probability distribution

is the
probability

on{-1,1}"
assigning

tity continues to holdE,, [f?] = 3" f(S)2.

2There is a question as to whether or not the learning algorith
“knows” the value ofp in advance. We show in Appendix B that we may
assume without loss of generality that the learning algorimowsp.



We define the operatorD; on functions f
(-1}, — R by (Dif)(2) = pa(f=l=h) -
f(z(=-1), where (=Y denotesz with the ith bit
set to b. It is not difficult to verify that (D, f)(z) =
Y95 f(S)ngS\i(x). We now give the definition gf-biased
influence:

Definition 1 The p-biased influence of théth coordinate
onf:{-1,1}{,) — Ris

mf? (f) = E,[(Dif)?] = X £(5)%

S3i

Note that if f : {-1,1}{,) — {-1,1} thenInf'” (£)
4paPry[f(x) # ().

(We remark that this definition differs from the onesin [8, 9]
by a multiplicative factor oflpg.) We define thep-biased
average sensitivityo be I?)(f) = Y Inf®(f) =
> scn [S1F(S)?. Note that in the case when=1/2 and
f's range is{—1, 1}, these definitions agree with the stan-
dard uniform-distribution definitions from Section 2.3.

We conclude this section with a useful relationship in the
p-biased case between influences of monotone real-value
functions and singleton Fourier coefficients:

Fact5 For any monotong : {—1,1}" — [—1, 1] we have

f” (f) < 2y/pq - f(i),

with equality iff the range of is {—1,1}.

Proof. We haveInf” (f) = E,[(D;f)?. Sincef is
monotone and has rangel, 1] it is easy to see thdt <

(Dif)(x) < 2y/pq for all z. Thus(D;f)?> < 2,/pq -
(D; f) with equality iff f’s range is{—1,1}, and hence

Wf®) (f) < 2./57 - By[Dif] = 25 - £(0). -

5.2. Bounding influence in monotone real-
valued functions under p-biased mea-
sures.

In this section we describe our analogue of Theorem
for real functions undep-biased measures. We first set
up somep-biased preliminaries before proving the theorem.
LetC = {C1,...,C?} be a subcube partition ¢f-1,1}".

We now identify theC*'s with length« vectors in a way
compatible with thes-basis, i.e.

o(1) =+/q/p if z; =1forallz € C*,
(CHi =L ¢(=1) = —/p/q fz;=—1forallz e Ct,
0 otherwise.

The definitions obluses(C?), minuses(C*) andfixed(C?)

are as before. We now defiﬁg) to be thep-biased version
of §;:
5(?) —

Pr

ce{-1,1}7,,

[i € fixed(C(x))].

The observation that choosinge {1, 1}&) and con-
sidering(z, C(z)) can be viewed as choosidg € C and
thenz € R still holds with the obvioug-biased interpreta-
tion. Specifically, the random choide € C means select-
ing the cubeC with probability plPluses(C*)| glminuses(C*)]
then the choice: € R means picking the unfixed coordi-
nates according to thebiased distribution.

The analogue of Lemma 2 and the analogue of Lemma 3
(for functions f : {—1,1}&) — R) now hold with no
changes in the statements. To prove them we simply repeat
their proofs and also the statement and proof of Lemma 1,
everywhere replacing; andz; with ¢(x;) andé(x;). As
a consequence, we have the following additional lemma:

Lemma 6 Given o, € R, the quantity Ercclo -
pluses(R) + § - minuses(R)] depends only opa + ¢f5.

Proof: Sum the first statement of thebiased analogue of
é_emma 2 over all, and then expand the definition &;
one gets:

{\/qu -pluses(R) — \/p/q - minuses(R)} =0.

= E [minuses(R)] = (¢/p) - E [pluses(R)].
ReC ReC

E
ReC

So substituting this in we get

E [« - pluses(R) + (- minuses(R)]
ReC

B - pluses(R) + (¢/p) 3 - pluses(R)]

(1/p) REC[(pa + ¢f3) - pluses(R)],

completing the proof. |

With this preparation in hand, we now give qubiased,
real-valued generalization of Theorem 3:

Theorem 7 Let f : {-1,1}{,) — R be a function with

5 subcube partitio® = {C", ..., C*}. Then we have

§m>swmdgw
< fll2- Viegs/VE®D),

whereH (p) = plog(1/p)+qlog(1/q). If f : {—1,1}{},) —
[—1, 1] is monotone then by Fact 5 we may write

1®)(f) < \/4pq/H (p)+/log s.



Proof: Applying Cauchy-Schwarz directly to the analogue
of Lemma 3, we have

Ll e [(ER)]
Il B[ 72,

where we used thg-biased analogue of the second state-
ment of Lemma 2 in the equality, just as in the proof of
Theorem 3. Let us now consider the quantity inside the
square root. By definition,

<

; £(i)

A

Xn: Rﬂ = E {(q/p)-pluses(R)+(p/q)~minuses(R)}.
ReC ReC

1=1
3)
Now p(q/p)+q(p/q) = q+p = p-1+q-1,s0 by Lemma 6,

E [(q/p) - pluses(R) + (p/q) - minuses(R)]
ReC

E [pluses(R) + minuses(R)]

ReC

E [|fixed(R)]
ReC

i=1

completing the proof of the first inequality. As for the sec-
ond inequality, note that the binary entrop§(R) of the
random variable? € C is

H(R) = B [log(1/ Pr[R])|

E [log(l/p) - pluses(R)
RecC

+log(1/q) - minuses(R)]
log(1/p)
H(p)

log(1/q)
H(p)

H(p) - pluses(R)

EA

. minuses(R)] .

But sinceploﬂ(lg)p) +gq

Lemma 6 again yields

log(1/q)
H(p)

1 as well, applying

(3) = H(R)/H (p).

But H(R) < log s as observed in the proof of Theorem 3,
and the proof is complete. ]

Using the boungyq log(1/pq) < H(p), we have the fol-
lowing corollary:

Corollary 7 If f : {-1, 1}&) — [-1,1] is monotone then
10)(f) < 2y/log P(f)/+/log(1/pg).

5.3. Spectral concentration under p-biased
measures.

We now need to extend Friedgut’s result to thkeiased,
real-valued case. There are some difficulties involved.
In [8], Friedgut gave a-biased version of Theorem 4; how-
ever, he left the quantitative details of the dependence on
unspecified. More seriously, Friedgut's theorem is simply
not true for[—1, 1]-valued functions, even in the = 1/2
case. (See Appendix A for an example demonstrating this.)

However, we are able to circumvent this problem. The
necessary insight is the following: A real-valued function
with small average sensitivity depends on only a small num-
ber of coordinates its range is sufficiently “discrete” And
for the purposes of learning an unknown function to some
prescribed accuracy, we don'’t lose much by “rounding” the
function’s values to a discrete range.

For~ > 0, letvZ denote the set of real numbers of the
form ym, where m is an integer. By making some small
changes to Friedgut’s proof we can derive the following re-
sult (the proof is in Appendix A):

Theorem 8 There is a universal constant < oo such that
forall0 <€y <1/2andall f: {-1,1}, — [-1,1] N

(vZ), i

and
J={i:IfP(f)>7}, S={S: SCJ |S| <t}

theny" g5 f(S)? <e.

We now combine Theorem 8 with Corollary 7, exactly in
the manner of Theorem 5. Thelog(1/pq) saved in Corol-
lary 7 cancels with thgq paid in ther from Theorem 8, and
the factor ofy°(1) becomes negligible if we take = ¢ (in-
deed, eveny = 2-°01/¢) would be negligible). We get:

Theorem 9 Lete > 0, f : {—1,1},) — [-1,1] N (eZ) be
a monotone function, and let

t = 4y/log P(f)/(ey/10g(1/pg)).

Let
J = {i:Inf;(f) > (C")~tlost/pa)}

whereC’ < oo is a universal constant, and let
S={S: SCJ |5 <t}

Then|S| = P(£)°0/<) and Y5 f(S5)? < e.



5.4. Learning monotone real-valued func-
tions under p-biased measures.

With Theorem 9 in hand, the proof of our main learning
result Theorem 6 is now not very difficult. Given an un-
known target functiory : {—1, 1}&) — [=1,1] ande > 0,
let f. denotef with its values “rounded” to the nearest inte-
ger multiples ofe. Clearly given examples frov X (f, p)
we can simulate examples froB\X ( f., p). We now simply
try to learnf.. Itis easy to check that anapproximator hy-
pothesis forf. is also anD(e)-approximator forf. Further,
we haveP(f.) < P(f) so aP(f.)°1/<) runtime is also
P(f)°1/<*) as desired. The-biased analogue of Propo-
sition 4 holds with essentially the same proof. The only
new difficulty is that we cannot exactly estimate the quan-
tities Inf;(f.). However from Fact 5, the quantitie&)

— which we can estimate empirically — are upper bounds
on the influences; so by taking all the coordinatesith
f(z’) > 7, we get all the sufficiently influential coordinates.
There cannot be too many coordinates with lafgg, since
Y f@)? <1

For completeness, we give all the details of the proof of
Theorem 6 in Appendix B.

6. Extension to stronger complexity measures?

It is natural to wonder whether our results can be ex-

monotone function to high accuracy in time polynomial in
the function’s decision tree or partition size.

A natural goal for future work is to obtain even stronger
learning results for monotone functions. Can the boosting
methods used by Jackson in his Harmonic Sieve algorithm
[13] be applied here? We note that while the Harmonic
Sieve algorithm makes essential use of membership queries,
related algorithms that combine boosting with Fourier tech
nigues have been successfully developed for the framework
of learning from random examples only [14].
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A. Proof of Theorem 8 and a counterexample

Proof of Theorem 8: Recall that we have

Dif(x) = \/]Tq(f(x(izl))_f(x(izfl)))
= Y fS)sle)
S:ieS
and thatlnfgp)(f) _ Ep[(Dif)2] _ Hle”%, where

throughout this sectiofj - || denotes the norm induced by
thep-biased measure.

Sincel® (f) = S°4 15| £(S)?, Markov’s inequality im-
mediately gives tha}_. g f(9)? < €/2. Let.J’
[n] \ J. It now suffices to show that

> F(8)* <e/2. 4
5: SNJ'#D,|S|<t
Certainly the left side of (4) is at most
Yoo fP = YD
i€J’ S:ieS,|S5|<t ieJ’
= D (D= Dif). ()
i€’

where we use the notatiofi=* to denote the function
f=1 (@) = 32 51<: f(S)bs. Now we have:
(Dif=',D;) < |Dif<" |4 | Difllays (6)
< (1RO IDif= 2 1Dif llays
)
(1/pa)! " (f)!/2 BID: fH°]1
©)

Here (6) is Hlder’s inequality, inequality (7) follows from

IN

Thus to ensure (4) holds we only need
t(1/pg) T/t 42 1 <1y

upper-bounding(1/pq) /4 by (1/pq)°") (acceptable for
all t > 0), we see that = v°() (pq)°®) suffices. Thus the
choice ofr given in the definition of Theorem 8 suffices and
the proof of this theorem is complete. ]

We now justify the remark from Section 5.3 indicating
that Friedgut’s theorem does not in general hold for real-
valued functions; in other words, the condition thés
range is contained inZ cannot be removed.

To see this, consider (in the uniform measure case) the
functionf : {—1,1}"™ — [-1, 1] defined by

fay = [EEL ) WIS @] > Vn
A\ mEThw XL ml < Vo

Itis easy to see that forea¢h- 1,...,n, D, f(z) is always
either0 or1//n, andisl/y/n fora®(1) fraction of allz’s.
Consequently we havieif;(f) = ©(1/n) and thud(f) =
O(1). In addition, it’s clear that botlE[f(x)] = 0 and that
|f(z)| > 1/2 for a©®(1) fraction of allz’s; hence we have
218150 f(S)? > Q(1). But now if we takee to be any
constant smaller than thi3(1) then we get a contradiction,
since the choice of in Theorem 8 will be a constant and so
J and henceS will be empty (for alln sufficiently large).

B. Technical details for learning

We begin with some basic learning details for the
biased measure. First, as mentioned earlier, we may as-
sume without loss of generality that the learning algorithm

ap-biased version of Bonami-Beckner (here with the best «xnows” p. The proof is quite similar to the proof that a
bounds provided by [26]), and inequality (8) uses the gener-pgjse-tolerant learning algorithm can be assumed to know

ous bound1+1/,/pq)'/? < (1/pq) and alsd|D; f<t|» <
IDifll2 = Int{” ()12,

We now observe that by virtue of the assumption ifiat
range is contained inZ, we have thatD; f (z)| is always
either O or at least,/pg. This implies that (8) is at most

(1/pg)* Wt (F)V/2 B, [(yy/Ba)~>/3 - | D, fI?3/*
_ (1/pq)t+1/4 W_l/Q Infgp)(f)5/4

< (1/pg)ttVA A2 IfP (f) 714 )

where we have used the definitionsIﬁfZ(.p)(f) andr. Us-

ing the fact thad ", . Inf”(f) < 1®)(f), we can sum (9)
and conclude that (5) is at most

(1/pg)" T4 A= /2 10 () 714,

the exact noise rate (see [19]). The basic idea is that we can
run the learning algorithm repeatedly using successively
finer estimates (easily obtained from sampling) for the@alu
of p. If the original algorithm runs fof” time steps, then if
the guessed value feris within A /T of the true value, the
statistical distance between the algorithm’s output wien r
with the guessed value versus the true value will be at most
A. It can be shown that at most a polynomial factor run-
time overhead is incurred in coming up with a sufficiently
accurate guess; we give the details in the full version.

Next, we remark that low-degree algorithm of Linial,
Mansour, and Nisan, Proposition 4, easily carries overdo th
real-valuedp-biased case with essentially the same proof:

Proposition 8 There is an algorithmA with the following
property: Letf : {~1,1}{, — [~1,1] and letS C 2"



be a collection of subsets ¢f] with the property that ~ C. Proof of Theorem 10
Ys.s¢s [(S)? < e ThenifAis givenp, S, access to
a sourceEX (f,p) c_>f p-bias_;ed random examples, and pa- Letn = 4%, Let f, (a, b, ¢, d) be the “AND-OR” function
rametersd, ¢ > 0, it runs in poly(n, [S],1/6) - log(1/d) on four Boolean variableg; (a, b, c,d) = (a Ab) V (c Ad).
t!me and with probabilityl — ¢ outputs a real-valued func- 5, important property off; is that if each of its four
tiong: {—1,1}" — Rofthe formg(z) = 3 gcs¢s0s()  arguments is independently set to betrue) with prob-
such thats,[(f — g)?] < e+ 7. ability p, then Pr[f; = 1] equals2p® — p*. Fori =
We now proceed to discuss the proof of Theorem 6. Let 2,3, ..., we define the functiory; on 4 variables to be
£+ {=1,1}{,, = [-1,1] be the target function. Given> fi= h(fiq f2q, £, £1) where the superscripts in-
0, let f. denote the “rounded” version gf in which each dicate distinct copies of;_; on disjoint sets of variables.
of its values is rounded to the nearest integer multiple of ~ Thus f is a function onn variables computed by a read-
It is clear that given access X (p, f) we can simulate ~ once Boolean formula that is a tree of ANDs and ORs at

access toE X (p, f.). Our algorithm will useEX (p, f.)to  alternating levels.

learn f. in time poly(n, P(fe)ou/e?)) -log(1/5). This is We now def_ine distributior@l, e ,Z_Dk over monotone
sufficient for learningf in the same time bound, because Boolean functions, wher®; is a distribution over func-
P(f.) < P(f) and because E,[(h — f.)?] < e then tions frqm {—1,1}4 to {-1,1}. The distributionD; is
defined in the following way: a random draw frof;
E [(h—1)?] = E)((h—fo)+(fe— ) is obtained by independently substitutingfor each of
< 2E,[(h— f)? + 2E,[(fe — 2] the 4* Boolean arguments t@; with probability o, where
< 24 é)2 a = 5 —2 ~ 0.236. (This construction and some of

0 the subsequent analysis is reminiscent of [31].) Note that
(e). for a randony drawn fromD; and a randonx: drawn uni-
Our goal is now essentially to use Proposition 8 given formly from {—1,1}*, we have that each of the four argu-
Theorem 9. As mentioned in Section 5.4, unlike in the algo- Ments tof: is independently 1 with probability + § =
rithm for Boolean-valued functions we cannot estimate the @—1; we denote this value by. Consequently we have
influences off. directly since the relationshhfz(p)(fé) = Pryep, wef—1,134[9(x) = 1] = 2p* — p*, but this is easily
fe(i) does not hold in the real-valued case. We may, how- seen to equal. It follows from the recursive definition of;
ever, use Fact 5 which says thati) — a quantity we can  thatforalli =1,2,... we havePr ., . ;34 [g(x) =

empirically estimate — is an upper bound brfl(p) (fe)- 1] =p.

We now describe the algorithm to learfi using It is not difficult to show (see Theorem 2.4 of [16])
EX(p, f.). As in Section 4.3 we may assume that the par- that CDNF'(f;,) < 22"+1: as an immediate conse-
tition size P(f.) is known. The algorithm is as follows: quence we have thalDNF(g) < 92" +1 (and thus

1. Fori = 1,...,n empirically estimatef.(i) = .\/m = 0(2"/2) = O(n'/")) for everyg that

E, [f.(2)¢:(x)] to within an additivetr/4 (with con- is in the support ofD,. But by Lemma 9 below we have

that Eyep, [I(9)] = ©((6 — 2v/5)%); clearly this implies
that there is some in the support ofD;, for which I(g)
is Q((6 — 2v/5)%) = Q(nl84(6-2V5)) This proves Theo-
rem 10. ]

fidencel — 0), wherer = (C’)~t1°s(1/ra) andt is
defined in Theorem 9. Lef C [n] be the set of those
i for which the obtained estimate is greater thda.

2. Now run algorithmA from Proposition 8 withS =
{§: 8§ C J |5 <t}andf = e, outputting its
hypothesig;.

Let us first confirm the running time of this algo- Lemma9 Fori = 1,2,... we haveEep,[I(g)] = (3 —
rithm. In step (1), standard sampling bounds ensure thatv'5)(6 — 2v/5)".

poly(n,1/7) -log(1/6) samples suffice. We may then con- ,
clude that|J| < O(1/72), since Y7, f.(S)? < 1. It Proof: It is clear from symmetry thaE,cp,[I(g)] = 4° -
follows that |S| < pOly(l/Tt) _ P(fe)o(l/EQ), as nec- E,cp,Infi(g)]. We have thaE ¢ p, [Inf; (g)] equals
essary to bound the running time. Finally, we still have

Y sgs Je(9)? < € because (with confidence— 6) the J Ego[Prlg(l, 22, 200) # g(=1,22, .. 245)]

the algorithm finds is a superset of thiérom Theorem 9.
Hence the algorithm correctly gives@(e)-approximator
hypothesisg with confidencel — O(4), and the proof of ‘ »
Theorem 6 is complete. geDi,zle:){rfl,l}“ [9(L, 2, ..., m4i) # g(=1, 20, ..., 34i)].

which in turn equals



From the definition ofD;, we have that with probabil-
ity « = /5 — 2 the constantl is substituted for the
first argument of f; in g; if this occurs then clearly
g(1,29,...,24) = g(—1,29,...,24) for all z sinceyg
does not depend on its first argument. If this does not oc-
cur, then we have (for a random € D; and a uniform
x € {—1,1}*) that each of the othef~! arguments tgf;
independently takes value 1 with probability= @

Under the distribution on inputs t@; described in the
previous paragraph, if = 1 it is easy to see that flipping
the first argument of; flips the value off; if and only if
the second argument is 1 (probabiljty and the AND of
the third and fourth arguments is O (probability— p?).
Thus flipping the first argument of; flips the value off;
with probability precisely (1 — p?) which is easily seen to
equall — p, using the fact thakp? — p* = p. Similarly, if
1 = 2, then flipping the first of the 16 arguments fp =
f(fL, f2, £, 1) (again under the distribution of inputs to
fi described above) will flip the value d¢f if and only if
the value off; flips (probabilityl — p as shown above):?
equals 1 (probability), and f{ A f equals O (probability
1 — p?). We thus have that flipping the first argumentfef
flips the value off, with probability (1 — p)p(1 — p?) =
(1—p)2. An easy induction in this fashion shows that for all
i, under the distribution of inputs described above flipping
the first argument off; causesf; to flip with probability
(1—p)".

We thus have that

Pr [9(1,za, ..., x4i) # g(—1,29,...,24)]

gED; xe{—1,1}4 )
= (1-a)(1-p)' =(3-V5) <3_2ﬁ> ’

which proves the lemma. ]



