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Abstract

We study the learnability of sets inRn under the Gaussian distribution, taking Gaussiansurface area
as the “complexity measure” of the sets being learned. LetCS denote the class of all (measurable) sets
with surface area at mostS. We first show that the classCS is learnable to any constant accuracy in
timenO(S2), even in the arbitrary noise (“agnostic”) model. Complementing this, we also show that any
learning algorithm forCS information-theoretically requires2Ω(S2) examples for learning to constant
accuracy. These results together show that Gaussian surface area essentially characterizes the computa-
tional complexity of learning under the Gaussian distribution.

Our approach yields several new learning results, including the following (all bounds are for learning
to any constant accuracy):

• The class ofall convex sets can be agnostically learned in time2Õ(
√

n) (and we prove a2Ω(
√

n)

lower bound for noise-free learning). This is the first subexponential time algorithm for learning
general convex sets even in the noise-free (PAC) model.

• Intersections ofk halfspaces can be agnostically learned in timenO(log k) (cf. Vempala’snO(k)

time algorithm for learning in the noise-free model [Vem04]).

• Arbitrary cones (with apex centered at the origin), and spheres with arbitrary radius and center,
can be agnostically learned in timepoly(n).

∗Supported in part by NSF award CCF-0347282 and by NSF award CCF-0523664.
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1 Introduction
1.1 Motivation: What is the right measure of complexity for learning? The primary goal of compu-
tational learning theory is to understand how the resourcesrequired by learning algorithms (running time,
number of examples, etc.) scale with the complexity of the functions being learned. For sample complexity
our understanding is quite good: it has been known for nearly20 years that for any classC of Boolean
functions, the Vapnik-Chervonenkis dimension ofC gives essentially matching upper and lower bounds on
the number of examples needed for learningC with respect to an arbitrary (unknown) probability distribu-
tion over the space of examples [BEHW89, EHKV89]. Unfortunately, it has proved much more difficult
to characterize thecomputationalcomplexity of learning problems. This difficulty is particularly acute in
distribution-independent learning models such as Valiant’s original PAC learning model [Val84]; as one
example of this, our current state of knowledge is consistent both with the possibility that learning an inter-
section of twon-dimensional halfspaces (under arbitrary distributions)can be done inO(n2) time, and with
the possibility that this learning problem requires time2Ω(n). In general, research progress on computation-
ally efficient distribution-independent learning has beenrelatively slow, and for this reason many researchers
have considered learning with respect to specific natural distributions such as the uniform distribution on the
n-dimensional Boolean hypercube and the uniform distribution on the unit Euclidean sphere inR

n.
In this work we consider learning with respect to the standard Gaussian distribution onRn. This is

arguably one of the most natural, and certainly one of the most studied, distributions onRn. We note that
the commonly studied scenario of learning with respect to the uniform distribution on then-dimensional
Euclidean sphere (see e.g. [BK97, Vem04, Lon94, Lon95, KKMS05]) is essentially equivalent to learning
under the standard Gaussian distribution whenn is large. (As we shall see in Section 4.5, almost all of our
learning results actually hold for arbitrary Gaussian distributions onR

n).
As our main contribution, we propose a new and very natural complexity measure for geometric con-

ceptsA ⊂ R
n, their Gaussian surface area, and show that this measure characterizes the computational

complexity of learning with respect to the Gaussian distribution in a rather strong sense. We do this by giv-
ing essentially matching upper bounds (via an explicit algorithm) and lower bounds (information-theoretic)
on the running time of algorithms for learning setsA ⊂ R

n in terms of their Gaussian surface area. Further-
more (and perhaps most importantly), this approach yields striking new applications for learning important
concept classes such as arbitrary convex sets and intersections of halfspaces.

1.2 The new complexity measure: Gaussian Surface Area.The formal definition of Gaussian surface
area is as follows:

Definition 1. For a Borel setA ⊂ R
n, its Gaussian surface areais

Γ(A)
def
= lim inf

δ→0

vol(Aδ \ A)

δ
.

HereAδ denotes theδ-neighborhood ofA, {x : dist(x,K) ≤ δ}, andvol(A) denotes the probability mass
of A with respect to the standard Gaussian distribution onR

n.

This is very similar to the usual formal definition of surfacearea, except that Gaussian measure replaces
Lebesgue measure. For most “nice” setsA we can take an equivalent definition (see [Naz03b]):

Definition 2. If A ⊂ R
n is sufficiently regular — e.g., has smooth boundary or is convex — then we have

Γ(A) =

∫

∂A
ϕn(x) dσ(x), (1)

wheredσ(x) is the standard surface measure inR
n and

ϕn(x)
def
=

n∏

i=1

ϕ(xi), whereϕ(x) = ϕ1(x)
def
=

1√
2π

exp(−x2/2),
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is the standardn-dimensional Gaussian density function.

It is straightforward to see from Definition 1 that the Gaussian surface area of a set is smaller than its
usual surface area by at least an exponential factor:

Fact 3. If A ⊂ R
n is any measurable set andsurf(A) denotes its usual surface area, thenΓ(A) ≤

1
(2π)n/2 surf(A).

In fact, the Gaussian surface area ofA is often far smaller even than this; many natural setsA haveinfinite
surf(A) but small finite Gaussian surface areaΓ(A). The most notable example is that of halfspaces:

Fact 4. Every halfspace inRn has Gaussian surface area at mostϕ(0) =
√

2/π ≈ 0.8.

This is a classical fact because of the “Gaussian isoperimetric inequality” [Bor75, ST78] (see also [Bob97]),
which states that halfspaces minimizeΓ(A) among all setsA with fixed Gaussian volume.

In the remainder of this paper we will use the phrase “surfacearea” exclusively to mean Gaussian
surface area,Γ. The following table gives the surface area of some basic geometric sets:

Sets (Gaussian) Surface area upper bound Source

Halfspaces
√

2/π direct computation
Intersections ofk halfspaces O(

√
log k) Nazarov [Naz03a] (see Section 4)

Arbitrary convex sets O(n1/4) K. Ball [Bal93]
Balls 1 Section 4

Cones with apex at the origin 1 Section 4

We believe that surface area is a very natural complexity measure for sets inRn. First, it is a universal
measure: it assigns a complexity to all sets. Second, is a natural geometric notion befitting geometric sets.
Third, surface area seems to address the difficulty of learning sets in a fair way: if a set’s boundary is very
“wiggly”, it is reasonable that many examples will be neededto accurately delineate it. Finally, it is a very
stringent measure: as discussed above Gaussian surface area is in general very low.

1.3 Our main results. We give upper and lower bounds for learning sets of surface area S under the
Gaussian distribution onRn. Our algorithmic result is an agnostic learning algorithm running in timenO(S2).
More precisely, the time isnO(S2/ǫ4) for agnostic learning to accuracyǫ and timenO(S2/ǫ2) for PAC learning.
(Agnostic learning may be thought of as a challenging model of learning in the presence of noise.) We give
precise definitions of the learning models in Section 2.2, and precise statements of the algorithmic results as
Theorem 25 in Section 4.5.

Our lower bound is information-theoretic and applies even to PAC learning algorithms under the Gaus-
sian distribution (no noise) which have membership query access to the function being learned. We show
that there is a universal constantǫ0 > 0 such that any algorithm for learning sets of surface area at mostS to
accuracyǫ0 requires at least2Ω(S2) examples. This holds for any

√
log n/ǫ0 ≤ S ≤ ǫ0n

1/4, and is true even
if the sets are promised to be intersections of2Θ(S2) halfspaces. We give this lower bound in Section 5.

We believe the main applications of our results are the following two algorithmic consequences, Theo-
rems 5 and 6:

Theorem 5. The class of all convex sets is agnostically learnable underanyGaussian distribution onRn in
subexponential time:2Õ(n1/2/ǫ4). Further,2Ω(n1/2) examples and hence time is necessary.

We view Theorem 5 as somewhat surprising, since the general class of convex sets is extremely broad.
(We recall that simple VC-dimension arguments can be used toshow that for distribution-independent learn-
ing, no a priori running time bound —2n, 22n

, etc. — can be given for learning arbitrary convex sets, see
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e.g. Chapter 4 of [KV94].) Theorem 5 is the first subexponential time algorithm for either agnostically or
PAC learning arbitrary convex sets with respect to a non-trivial class of high-dimensional distributions. We
note that Theorem 5 can be extended to learnnon-convexconcepts such as finite unions of convex sets; we
defer statements of these results to Section 4.

Theorem 6. Intersections ofk halfspaces are agnostically learnable underany Gaussian distribution on
R

n in timenO(log k/ǫ4).

Theorem 6 should be compared with Vempala’s(n/ǫ)O(k) time PAC learning algorithm (under nearly-
uniform distributions on the sphere). Vempala’s dependence onǫ is better than ours iflog(1/ǫ) ≫ log k,
but otherwise our algorithm has a much better dependence onn, and also works in the agnostic setting.

The fact that Theorems 5 and 6 hold for any Gaussian distribution, as opposed to just the standard one,
is an immediate easy consequence of the fact that convex setsand intersections ofk halfspaces are closed
under linear transformations; see Section C. We give several other new learning results in Section 4 as well.

Uniform Distribution over {−1, 1}n. It is natural to ask whether our approach can be translated tothe
Boolean setting with respect to the uniform distribution onthe hypercube. We establish a general connection
between Boolean perimeter and learnability, and give tightbounds on the perimeter of Boolean halfspaces
(e.g., we show that Boolean halfspaces have Boolean perimeter Θ(

√
log n)). At this stage, however, this

approach does not (yet) lead to new learning results for any well-studied concept classes, so we defer this
discussion to Appendix E.

1.4 Our techniques.To broadly outline the proof of our main results, we begin with the result of Kalai et
al. [KKMS05], which uses a type of polynomial regression to give an agnostic learning algorithm for func-
tions that can be approximated well by low-degree polynomials. To use this result, we need to understand
how well sets inRn can be approximated (inℓ2) by polynomials with respect to the Gaussian distribution.
This task can be separated into two parts:

First, we establish a new connection between the Hermite concentration of the characteristic function
of a set (which captures the approximability by low-degree polynomials) and the set’s Gaussian surface
area. This reduction from learning to bounding surface areamakes use of some powerful tools in geometry;
especially, the use of semigroup tools in the study of isoperimetry.

Secondly, with this reduction in hand, we can translate bounds on Gaussian surface area to learning
results. For example, K. Ball [Bal93] (and subsequently F. Nazarov [Naz03b]) has shown that the surface
area ofanyconvex set inn dimensions is at mostO(n1/4). Ball’s result, combined with Theorem 25, gives
us Theorem 5. We also prove new results on Gaussian surface area for various classes (see the table above)
and obtain corresponding learning results for those classes.

Our lower bound is proved by analyzing geometric propertiesof intersections of randomly chosen half-
spaces via concentration inequalities and may be of independent interest.

1.5 Relationship with Fourier-Based Learning. Our main result can be viewed as a statement regarding
the approximability of characteristic functions of sets via low-degree orthogonal (Hermite) polynomials with
respect to Gaussian distributions. More specifically, we prove that every indicator function of a (Borel) set
with surface areaS can be approximated (inℓ2) by a multivariate polynomial of degreeO(S2).

Since we are considering approximability inℓ2 with respect to a family of orthogonal polynomials, our
algorithm can be viewed as a Fourier-type algorithm overR

n. A relevant paper for comparison is the work
of Klivans et al. [KOS04], which also learned intersectionsof halfspaces– although with respect to the
uniform distribution over{−1, 1}n– by showing that these concepts can be approximated well (inℓ2) over
{−1, 1}n by low-degree polynomials.
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The Klivans et al. result [KOS04] bounds the Fourier concentration of a Boolean function (approxima-
bility by low-degree polynomials) in terms of the noise stability of that function. They then apply (simple)
bounds on the Boolean noise stability of halfspaces to obtain their main algorithmic results.

Similar to the strategy of Klivans et al., as one part of our framework here we bound the Hermite
concentration of the characteristic function of a set inR

n in terms of that function’s Gaussian noise stability.
In this work, however, we then face a significant stumbling block: we do not know how to directly bound
the Gaussian noise stability of any interesting classes of sets in R

n. (In contrast, [KOS04] gives direct
and elementary proofs of upper bounds on the Boolean noise stability of halfspaces and intersections of
halfspaces.) To get around this, we must appeal to deep theorems in convex geometry to show that the
Gaussian noise stability of a set’s characteristic function can in fact be bounded by the set’s Gaussian surface
area. Moreover, some of the actual bounds on Gaussian surface area that we subsequently use are highly
non-trivial (e.g. [Bal93]). While we do not establish deep technical results in convex geometry in this paper,
we do give the first bounds on Gaussian surface area for simpleconcept classes, such as balls, that may
be of independent interest. We also believe that the link we establish between Gaussian surface area and
learnability will likely lead to further algorithmic learning results beyond those presented in this paper.

1.6 Comparison with Previous Work. Let us briefly discuss prior algorithmic results for the specific
learning problems we address. We note that learning intersections of halfspaces is one of the most well-
studied problems in computational learning theory, see e.g. [Bau90a, BK97, KP98, KOS04, KS04, KS06,
Vem04]. In particular, the work of Blum and Kannan [BK97] andsubsequently Vempala [Vem04] specifi-
cally addressed the problem of PAC learning an intersectionof k halfspaces to accuracyǫ under the uniform
distribution on then-dimensional Euclidean sphere (very similar to the spherical Gaussian distribution).
The algorithms of [BK97], [Vem04] are not known to work in theagnostic setting. Kalai et al. [KKMS05]
gave the first polynomial-time algorithm for agnostically learning a single halfspace with respect to any
Gaussian distribution inRn. We note here that the Kalai et al. result follows easily fromour framework and
the classicalO(1) bound on the Gaussian surface area of a halfspace.

Learning general convex sets is well known to be a broad and difficult problem, and we are not aware of
any prior positive results for learning arbitrary convex sets inR

n. As far as we can tell, our result is the first
non-trivial algorithm for learning convex sets with respect to an interesting distribution. Baum [Bau90b]
gave a simple algorithm for learning convex subsets of the unit square[0, 1]2 under the uniform distribution
based on “gridding”; it is possible to extend this to an algorithm for learning convex subsets of[0, 1]n under
the uniform distribution, but the resulting algorithm has running time at least2n.

It is straightforward to see that arbitrary balls (or even ellipsoids) inn dimensions can be PAC learned in
polynomial time. The problem of agnostically learning balls, however, is known to be NP-hard if the output
hypothesis must also be a ball (that is, the proper agnostic learning problem is NP-hard) [BDEL03, BB05].
We give the first polynomial-time algorithm for agnostically learning balls (of arbitrary radius and center);
our output hypothesis is the sign of a low-degree polynomial.

1.7 Organization. In Section 2 we review Fourier and Hermite analysis, learning models, and Gaussian
surface area. In Section 3 we establish a connection betweenHermite concentration and Gaussian surface
area. In Section 4, we show how to bound the surface area of various convex sets and state our new learning
results. In Section 4.5 we extend our results to non-spherical Gaussians, and state our most general positive
result establishing agnostic learnability of a class of functions in terms of the surface area of the correspond-
ing sets. In Section 5, we prove our main lower bound which shows that several of our positive results are
essentially optimal. We give results on the Boolean settingin Appendix E.

2 Preliminaries
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2.1 Gaussian distributions, Hermite analysis, Ornstein-Uhlenbeck, Perimeter

Gaussian distributions. We will be working with Gaussian probability distributionsonR
n. For the most

part we will restrict attention to the standardn-dimensional Gaussian distribution,N (0, In), with mean0
and independent, variance-1 coordinates. This has density functionϕn(x) as defined in Section 1.2. As
discussed in Section 4.5, most of our results generalize toarbitrary n-variate Gaussian distributions, even
with singular covariance matrices. Unless otherwise specified, though, all integrals and expectations in this
paper are with respect to the standard distribution, which we abbreviate byN n.

Hermite analysis. We will work within L2(Rn,N n), the vector space of all functionsf : R
n → R such

thatE[f2] < ∞. This is an inner product space under the inner product〈f, g〉 = Ex∼Nn [f(x)g(x)]. This
inner product space has a complete orthonormal basis given by theHermite polynomials. In the casen = 1,
these are the polynomialsh0(x) = 1, h1(x) = x, h2(x) = x2−1√

2
, h3(x) = x3−3x√

6
, . . .

For generaln, the basis forL2(Rn,N n) is formed by all products of these polynomials, one for each
coordinate. I.e., for eachn-tuple S ∈ N

n we define then-variate Hermite polynomialHS : R
n → R

by HS(x) =
∏n

i=1 hSi(xi); then the collection(HS)S∈Nn is a complete orthonormal basis for the inner
product space. All of the “standard” facts of Fourier analysis hold here: every functionf ∈ L2 can be

written uniquely as
∑

S∈Nn f̂(S)HS(x) and we havelimd→∞ E

[(
f(x) −∑|S|≤d f̂(S)HS(x)

)2
]

= 0

(here|S| =
∑

i Si is the total degree ofHS(x) as a polynomial). Each coefficient,̂f(S), is the Fourier
or Hermitecoefficient off and is equal toEx∼Nn [f(x)HS(x)]. We also have Parseval’s and Plancherel’s
identity. For a few more details see Appendix A.

Ornstein-Uhlenbeck. For each0 ≤ t ≤ ∞ one can define a (bounded) linear operatorPt onL2(Rn,N n),
the Ornstein-Uhlenbeckoperator. These operators map a functionf : R

n → R to another functionPtf :
R

n → R via
(Ptf)(x)

def
= Ey∼Nn [f(e−tx +

√
1 − e−2ty)].

The parameterization here withe−t is traditionally chosen so that the operators form a semigroup: Pt1 ◦
Pt2 = Pt1+t2 . Since we will not use this property, we prefer to redefine theoperators as follows: For
ρ ∈ [0, 1],

(Tρf)(x)
def
= Ey∼Nn [f(ρx +

√
1 − ρ2y)].

We thus havePt = Te−r . Alternately stated,Tρf(x) is the average value off under the shifted and scaled
Gaussian distributionN (ρx,

√
1 − ρ2In). The fact thatTρ is a linear operator — i.e.,Tρ(f+g) = Tρf+Tρg

— follows immediately from linearity of expectation.
A key property ofTρ that we will use is how it operates with respect to the Hermiteexpansion. Specifi-

cally, it can be shown thatTρHS = ρ|S|HS, and hence (by linearity)

Tρf =
∑

S∈Nn

ρ|S|f̂(S)HS . (2)

For proofs and more details on Hermite analysis and the Ornstein-Uhlenbeck operators, the reader may
consult the books of Bakry [Bak94], Janson [Jan97] or Ledouxand Talagrand [LT91].

Gaussian surface area. Given a (Borel) setK ⊆ R
n, the Gaussianvolumeof K is defined to be simply

vol(K) = Pr
x∼Nn

[x ∈ K] = E
x∼Nn

[1x∈K ].

We will be especially interested in the Gaussian surface area of K, sometimes referred to asGaussian
perimeter, which was defined in Section 1.2. In this paper we will work exclusively with setsK satisfying
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vol(∂K) = 0, where∂K denotes the boundary ofK. We may then make the convenient assumption that
our setsK are also always closed; this is no restriction sinceK andK have the same boundary and hence
surface area.

2.2 Learning Models We now describe the framework of agnostically learning a classC with respect to a
fixed distributionD overRn. In this scenario there is an unknown distributionD′ overRn ×{−1, 1} whose

marginal distribution overRn is D. Let opt
def
= inff∈C Pr(x,y)∼D′ [f(x) 6= y]; i.e. opt is the minimum error

of any function fromC in predicting the labelsy. The learner must output a hypothesis whose error is within
ǫ of opt:

Definition 7. LetD′ be an arbitrary distribution onRn × {−1, 1} whose marginal overRn is D, and let
C be a class of Boolean functionsf : R

n → {−1, 1}. We say that algorithmB is an agnostic learning
algorithm forC with respect toD if the following holds: for anyD′ as described above, ifB is given access
to a set of labeled examples(x, y) drawn fromD′, then with probability at least1 − δ algorithmB outputs
a hypothesish : R

n → {−1, 1} such thatPr(x,y)∼D′ [h(x) 6= y] ≤ opt + ǫ.

Agnostic learning is a challenging model for which, until recently, few nontrivial learning algorithms
were known. Intuitively one can think of the unknown distribution D′ over labeled examples as corre-
sponding to an unknown functionf ∈ C whose outputs are adversarially corrupted with overall probability
opt.

The usual (noise-free) model of PAC learning with respect toa distributionD is the special case of the
above definition in which we require thatopt = 0, i.e. there is an unknown target functionf ∈ C such that
all examples are labeled according tof.

Agnostic Learning via Hermite Concentration. Here we explain how to learn concept classes that can
be approximated well by low-degree polynomials.

Definition 8. Let α(ǫ, n) be a functionα : (0, 1/2) × N → N. We say that a class of functionsC overR
n

has aHermite concentration boundof α(ǫ, n) if, for all n ≥ 1, all 0 < ǫ < 1
2 , and all f ∈ C we have∑

|S|≥α(ǫ,n) f̂(S)2 ≤ ǫ.

Our main tool for agnostic learning underN n is theL1 polynomial regression algorithm of Kalai et
al. [KKMS05]. To agnostically learn a concept classC, their algorithm approximately minimizesE(x,y)∼D[|p(x)−
y|] over all multivariate polynomialsp of degreed and outputs a thresholded polynomial as its hypothesis.
The algorithm runs in timenO(d) whered is chosen according to the Hermite concentration of the concept
classC:

Theorem 9([KKMS05]). LetC be a class of functions overR
n with Hermite concentration boundα(ǫ, n).

TheL1 polynomial regression algorithm is an agnostic learning algorithm forC with respect toN n. It runs
in timepoly(nα(ǫ2/2,n), 1

ǫ , log
1
δ ) to learn to accuracyǫ with confidence1 − δ.

PAC Learning via Hermite Concentration. The following theorem is implicit in [KKMS05]:

Theorem 10. Let C be a class of±1-valued functions overRn with Hermite concentration boundα(ǫ, n).
Then there exists an algorithm for learningC given data labeled according tof and drawn from the standard
Gaussian distributionN n on R

n that runs in timepoly(nα(ǫ/2,n), 1
ǫ , log

1
δ ) and outputs, with probability at

least1 − δ, a polynomialp of degree at mostα(ǫ/2, n) such thatPrx∼Nn [sgn(p(x)) 6= f(x)] ≤ ǫ.

The algorithm of this theorem performsL2 polynomial regression, i.e. it approximately minimizes
E(x,y)∼D[(p(x)−y)2] over all multivariate polynomialsp of degreed and outputs a thresholded polynomial
as its hypothesis.

To summarize, a concept classC can be both PAC and agnostically learned in time exponentialin the
Hermite concentration boundsα(ǫ/2, n) andα(ǫ2/2, n) respectively.

6



3 Bounding Hermite Concentration in Terms of Surface Area
In this section we give our main connection between Hermite concentration and Surface Area.

Definition 11. We defineSρ(f, g)
def
= 〈f, Tρg〉 = 〈Tρf, g〉. In the special casef = g we writeSρ(f)

def
=

〈f, Tρf〉 and call this the “noise stability off at ρ.”

It is easy to check that the above definition is symmetric inf andg; i.e., Sρ(f, g) = Sρ(g, f). Further,
by combining (2) with Plancherel’s identity, we have

Sρ(f, g) =
∑

S∈Nn

ρ|S|f̂(S)ĝ(S). (3)

We are particularly interested in functions which are indicators of setsK ⊆ R
n; as is usual in learning

theory, we use±1 indicators. For notational simplicity, we identify a set with its indicator; i.e.,

K(x)
def
=

{
+1 if x ∈ K, the “positive region”,

−1 if x ∈ Kc, the “negative region”.

In this case, we define:

Definition 12. GivenK ⊆ R
n, the “noise sensitivity ofK at δ ∈ [0, 1]” is

NSδ(K)
def
= 1

2 − 1
2〈K,T1−δK〉 = 1

2 − 1
2S1−δ(K).

By definition ofT1−δ, we have that

NSδ(K) = 1
2 − 1

2〈K,T1−δK〉
= 1

2 − 1
2 E

x,z∼Nn
[K(x)K(y)], wherey

def
= (1 − δ)x +

√
2δ − δ2 z

= Pr
x,z

[K(x) 6= K(y)]; (4)

i.e.,NSδ(K) is the probability that two “(1− δ)-correlated” Gaussians land on opposite “sides” ofK. From
this interpretation, it is intuitive that, at least for small δ, the quantityNSδ(K) should be in some way
comparable to the Gaussian surface area ofK. The critical theorem we need in this regard was proven by
Ledoux [Led94] (who mentioned it was implicitly proven by Pisier [Pis86]):

Theorem 13(Ledoux-Pisier). LetK ⊆ R be a set with smooth1 boundary, and lett ≥ 0. Then

〈1K , Pt1Kc〉 ≤ arccos(e−t)√
2π

Γ(K).

We now manipulate Theorem 13 slightly to state it in terms of noise sensitivity. First, we replace
Pt by T1−δ and use the fact thatarccos(1 − δ) ≤ π

2
√

2

√
δ. Next, we compute easily by linearity that

〈1K , T1−δ1Kc〉 = 1
2NSδ(K). Putting these together we conclude:

Corollary 14. LetK ⊆ R
n be a Borel set, and letδ ≥ 0. ThenNSδ(K) ≤ √

π
√

δ · Γ(K).

1A technical remark: We would like to apply Theorem 13 to general convex sets, which need not have smooth boundary.
However the arguments in [BH97, proof of “Theorem 1.1, (b)⇒ (a)”] straightforwardly imply that Theorem 13 extends to all Borel
sets (and hence convex sets) [Led06].
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Next, using (3) we have the formulaNSδ(K) = 1
2 − 1

2

∑
S∈Nn(1 − δ)|S|K̂(S)2. Using this, and∑

S K̂(S)2 = 1 (by Parseval), it is easy to check (see Proposition 16 of [KOS04]) that

∑

|S|≥1/δ

K̂(S)2 ≤ 2

1 − 1/e2
NSδ(f).

Combining this with Corollary 14 we obtain
∑

|S|≥1/δ

K̂(S)2 ≤ 5 ·
√

δ · Γ(K),

and hence we conclude our main Hermite concentration bound based on surface area:

Theorem 15. LetK ⊆ R
n be a Borel set. Then the±1 indicator function ofK has Hermite concentration

boundα(ǫ, n) = O(Γ(K)2/ǫ2).

4 Gaussian Surface Area Calculations and New Learning Results
Theorems 9, 10 and 15 reduce the problem of PAC and agnostically learning a concept class under the
standard Gaussian distribution to the problem of bounding the surface area of the corresponding sets. The
specific surface area upper bounds stated in this section fordifferent classes of sets yield a wealth of efficient
learning results for the corresponding function classes.

Up through Section 4.4 we consider only the standard spherical Gaussian distribution. In Section 4.5 we
show how our learning results for the standard Gaussian distribution extend to arbitrary Gaussian distribu-
tions, and state our most general learning results.

We begin by stating a few basic facts about perimeter and recalling the classical example of halfspaces.

4.1 Basic Facts and Examples
Convex sets not containing the origin. In order to upper bound the Gaussian surface area of a convex
set, we can always assume it contains the origin, via the following observation (see [Naz03b]):

Fact 16. SupposeK ⊆ R
n is a convex set not containing the origin. Then it possible totranslateK in such

a way that (a) the origin is on the boundary ofK, and (b) each point on the boundary ofK (in fact, each
point in K) moves closer to the origin. Sinceϕn(y) is a decreasing function of‖y‖, this translation only
increases the surface area ofK (see formula(1)).

Intersections, unions, etc.

Fact 17. Given setsK1,K2 we haveΓ(K1 ∩ K2),Γ(K1 ∪ K2) ≤ Γ(K1) + Γ(K2).

This follows from the simple observation that both∂(K1 ∩ K2) and∂(K1 ∪ K2) are subsets of∂K1 ∪
∂K2. More generally, givenK1, . . . ,Kt, if K(x) = f(K1, . . . ,Kt) for any Booleanf : {−1, 1}t →
{−1, 1}, thenΓ(K) ≤∑t

i=1 Γ(Ki).

Halfspaces. This is the main classical example. LetK ⊆ R
n be a halfspace whose boundary is at distance

t from the origin. By rotational symmetry of the Gaussian distribution, we may assume thatK is the
halfspace whose boundary∂K is the planex1 = t. This reduces the calculation to a one-dimensional
problem, and we immediately obtainΓ(K) = ϕ(t). In particular,Γ(K) ≤ 1/

√
2π ≤ O(1) for every

halfspaceK. The well-known “Gaussian isoperimetric inequality” [Bor75, ST78] (see also [Bob97]) states
that among all setsK with vol(K) fixed, halfspacesminimizeΓ(K).

Applying Theorem 15 and Theorem 9 with the above bound on the surface area of a halfspace, we
immediately obtain one of the main results of Kalai et al. [KKMS05], namely that a single halfspace can be
agnostically learned with respect toN n in timenO(1/ǫ4).
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4.2 General Convex Sets.Ball gave the following fundamental bound on the surface area of convex sets,
solving the “reverse Gaussian isoperimetric inequality”:

Theorem 18. [Bal93] The Gaussian surface area of any convex set inR
n is at most4n1/4.

By applying the above bound with Theorem 15 and Theorem 9 we obtain our main result for learning
arbitrary convex sets:

Corollary 19. The clas of all convex sets inRn is PAC learnable in timenO(
√

n)/ǫ2 and agnostically learn-
able in timenO(

√
n)/ǫ4 underN n. The same bound holds for learning any union ofO(1) many convex

sets.

As we describe in Section 5, Nazarov [Naz03b] later showed that the bound in Theorem 18 is tight (up
to a constant factor) by considering the intersection of roughly exp(

√
n) randomly chosen halfspaces with

boundary at distancen1/4 from the origin.

4.3 Intersections ofk halfspaces.In addition to showing that Ball’s estimate is tight, Nazarov also gave a
different proof of Ball’s upper bound result (with a better constant), and in doing so he proved an inequality
that is useful for bounding the Gaussian surface area of convex sets.

To state this bound we introduce some notation from [Naz03b]. Let K ⊆ R
n be a convex set containing

the origin, and lety ∈ ∂K. We writeνy for the unit normal vector to∂K aty (which is well-defined except
on a set of(n − 2)-dimensional measure0) We also writeα(y) for cos(y · νy), andh(y) for ‖y‖α(y); in
other words,h(y) is the distance from the origin of the tangent (toK) hyperplane containingy. Nazarov’s
bound is

∫

∂K

(
1

h(y) + 1

)
· ϕn(y) dσ(y) ≤ 1 − vol(K) ≤ 1. (5)

Recalling thatΓ(K) =
∫
∂K ϕn(y) dσ(y), for convex setsK, this bound implies that there is little contribu-

tion toΓ(K) from pointsy where the tangent hyperplane is near to the origin.
This formula is useful for bounding the Gaussian surface area of intersections of halfspaces. In particu-

lar, the following bound on the surface area of the intersection of k halfspaces and proof was communicated
to us by Nazarov [Naz03a]:

Theorem 20.LetK ⊆ R
n be an intersection of up tok halfspaces. ThenΓ(K) ≤

√
2 ln k+2 ≤ O(

√
log k).

To prove this, one first observes thatK can be assumed to contain the origin. Then one splits up
Γ(K) =

∫
∂K ϕn(y) dσ(y) into the contribution from thosey whereh(y) >

√
2 ln k and thosey where

h(y) ≤
√

2 ln k. The former parts contribute at mostk · ϕ(
√

2 ln k) ≤ 1. The latter parts contribute at
most

√
2 ln k + 1, using (5). In particular, Theorem 20 implies that any box orparallelopiped inRn, in any

orientation, has Gaussian surface area at mostO(
√

log n). Ball made a similar observation earlier for boxes.
Applying our machinery relating learning to surface area, we obtain

Corollary 21. Any intersection of up tok halfspaces inRn is PAC learnable in timenO(log k)/ǫ2 and agnos-
tically learnable in timenO(log k)/ǫ4 underN n.

As noted in the introduction, compared with Vempala’s(n/ǫ)O(k)-time PAC learning algorithm (with
respect to nearly-uniform distributions on the sphere)2, his dependence onǫ is better iflog(1/ǫ) ≫ log k,
but otherwise our algorithm has a much better dependence onn and works in the agnostic setting.

We can also use Nazarov’s inequality to bound the Gaussian surface area of certain cones:

2Vempala [Vem97] claims a running time ofpoly(n)kk( 1
ǫ
)k for the algorithm but this was amended to(n/ǫ)O(k) in [Vem04].
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Theorem 22. Let K be a cone with apex at the origin (i.e. an intersection of arbitrarily many halfspaces
all of whose boundaries contain the origin). ThenK has Gaussian surface area at most 1.

This follows immediately from Equation (5) since ifK is a cone as described then we haveh(y) = 0
for everyy ∈ ∂K. As a corollary we have that cones with an apex at the origin are PAC and agnostically
learnable with respect toNn in timenO(1/ǫ2) andnO(1/ǫ4), respectively.

4.4 Balls. Let Bn
r denote the ball of radiusr in R

n, centered at the origin. Ball [Bal93] gave the formula
Γ(Bn

r ) = rn−1

2n/2−1Γ(n/2)er2/2
. He noted that this is maximized atr =

√
n − 1 where the surface area is

asymptotic to1/
√

π.
It is tempting to believe that the origin-centered ball has maximum surface area for any radiusr, but this

is not always true; consider, for example, a ball of radiusr(n), wherer(n) grows very rapidly relative to
n. If such a ball is centered at the origin, its surface area will approach 0 very rapidly (exponentially fast in
r(n)2). But, if the ball is displaced so that the origin lies on its surface, then the Gaussian surface area will
be nearly that of an origin-centered halfspace, which is an absolute constant1/

√
2π independent ofn.

Since Ball’s argument uses the radial symmetry of the Gaussian and explicitly computes the integral of
the Gaussian density over the surface of the ball, it is not clear how to extend the argument to non-origin
centered balls. In Appendix B we give an alternate proof of Ball’s result for origin-centered balls that does
not rely on computing surface integrals. Instead, we maximize a corresponding probability density function;
this approach allows us to show that any ball, origin-centered or not, has surface area at most a constant:

Theorem 23. The Gaussian surface area of any ball inR
n is at most1.

Applying Theorem 15 and Theorem 9 we have the following corollary:

Corollary 24. The class of balls inRn is agnostically learnable in timenO(1/ǫ4) with respect toN n.
Again we remark that the same time bound holds even for unionsof a constant number of balls.

4.5 Learning under Arbitrary Gaussian Distributions. We can show that (almost all of) our learning
results extend to arbitrary Gaussian distributions. The arguments of this section, together with Theorems 15,
10, and 9, give Theorem 25, our most general learning result:

Theorem 25. Let C be a class of Borel sets inRn, each of which has Gaussian surface area at mosts.
Assume thatC is closed with respect to affine transformations. ThenC is PAC learnable to accuracyǫ with
respect to any Gaussian distribution onRn (with nonsingular covariance matrix3) in time nO(s2/ǫ2) and
agnostically learnable in timenO(s2/ǫ4).

Due to space considerations we defer this section to Appendix C.

5 Lower Bounds for Learning under Gaussian Distributions
In this section we prove a sample complexity lower bound for learning intersections of2ℓ halfspaces under
the standardn-dimensional Gaussian distributionN n (recall that by Theorem 20, any such intersection of
2ℓ halfspaces has Gaussian surface areaO(

√
ℓ)).

Theorem 26. There is a fixed constantǫ0 > 0 such that the following holds:
Letℓ = ℓ(n) be such thatlog n ≤ ℓ ≤ n1/2ǫ2

0. LetHℓ be the class of all intersections of2O(ℓ) halfspaces
overR

n. Let A be any algorithm which learnsHℓ to confidenceδ = 1/2 and accuracyǫ0 with respect to
N n. ThenA must use2Ω(ℓ) examples. This lower bound holds even for algorithms which may make black-
box queries to the target functionf and suffer no noise.

3As discusssed in Section 4.5, if the classC is closed under intersections with lower-dimensional subspaces then we can drop
the requirement that the covariance matrix be nonsingular.
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Discussion.This theorem implies that for a wide range of parameters, ouralgorithm of Corollary 21,
which can learn intersections of2ℓ halfspaces to constant accuracyǫ in timenO(ℓ/ǫ2), is essentially optimal
in its dependence on the number of halfspaces. The theorem similarly implies that our positive results
for learning general convex sets and learning sets with bounded Gaussian surface area are also essentially
optimal. We remind the reader that while the lower bound holds even for learning under the standard
Gaussian distribution with membership queries, our positive results for these classes all hold for learning
from random examples generated from any Gaussian distribution, without using queries.

We briefly sketch the approach. Given two functionsf, g : R
n → {0, 1} we write d(f, g) to denote

PrX∼Nn [f(X) 6= g(X)]; we extend the notion to subsetsA,B of R
n, writing d(A,B) = d(1A,1B). We

prove Theorem 26 by establishing the following:

Theorem 27. Let ℓ, ǫ0 be as in Theorem 26. There exists a setCℓ = {f1, . . . , fM} of M = 22Ω(ℓ)
many

functionsfi ∈ Hℓ such that for any1 ≤ i < j ≤ M , we haved(fi, fj) ≥ 2ǫ0.

By results of Benedek and Itai [BI88], this implies that any algorithm (even allowing membership
queries) for learning the classCℓ under distributionN n with confidence parameterδ = 1/2 and accuracy
parameterǫ0 must have sample complexity at leastlog M = 2Ω(ℓ). To prove Theorem 26 it thus suffices to
prove Theorem 27.

We prove Theorem 27 using the probabilistic method. The ideais to consider an intersection ofN
halfspaces (we specifyN later) in which each halfspace is chosen uniformly at randomfrom all halfspaces
tangent to an origin-centered ball of a certain radius, chosen so that the resulting convex body is likely to have
Gaussian volume bounded away from 0 and 1 by a constant.4 Using the “method of bounded differences”
we show that that two convex bodies that are independently generated in this way are extremely likely to be
far from each other; together with a union bound, this gives Theorem 27. The proof is given in Appendix D.

6 Acknowledgements
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discussion about the conditions required for Theorem 13.
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A Review of Hermite Analysis
We will work within L2(Rn,N n), the vector space of all functionsf : R

n → R such thatE[f2] < ∞. This
is an inner product space under the inner product

〈f, g〉 = E
x∼Nn

[f(x)g(x)].

This inner product space has a complete orthonormal basis given by theHermite polynomials. In the case
n = 1, this basis is the sequence of polynomials

h0(x) = 1, h1(x) = x, h2(x) =
x2 − 1√

2
, h3(x) =

x3 − 3x√
6

, . . .

There are several equivalent ways to define this sequence:

exp(λx − λ2/2) =:

∞∑

j=0

λd

√
d!

hj(x);

hj(x) =
(−1)d√
d! ϕ(x)

· dj

dxj
ϕ(x);

hj(x) =

√
j!

(j − 0)!0!20
xj −

√
j!

(j − 2)!1!21
xj−2 +

√
j!

(j − 4)!2!22
xj−4 −

√
j!

(j − 6)!3!23
xj−6 + · · ·

For generaln, the basis forL2(Rn,N n) is formed by all products of these polynomials, one for each
coordinate. I.e., for eachn-tupleS ∈ N

n we define then-variate Hermite polynomialHS : R
n → R by

HS(x) =
n∏

i=1

hSi(xi);

then the collection(HS)S∈Nn is a complete orthonormal basis for the inner product space.By orthonormal
we mean that

〈HS ,HT 〉 =

{
1 if S = T ,

0 if S 6= T .

By complete, we mean that every functionf ∈ L2 can be uniquely expressed as

f(x) =
∑

S∈Nn

cSHS(x),

where the coefficientscS are real numbers and the infinite sum converges in the sense that

lim
d→∞

E







f(x) −
∑

|S|≤d

cSHS(x)




2

 = 0;
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here we have used the notation

|S| =
n∑

i=1

Si,

which is also the total degree ofHS(x) as a polynomial.

Givenf , instead ofcS , we will write f̂(S), and call this theS Hermite coefficient off . By orthonormal-
ity of the basis(HS)S∈Nn , we have the following:

f̂(S) = 〈f,HS〉 = E[f(x)HS(x)];

‖f‖2
2

def
= 〈f, f〉 =

∑

S∈Nn

f̂(S)2 (“Parseval’s identity”);

〈f, g〉 =
∑

S∈Nn

f̂(S)ĝ(S) (“Plancherel’s identity”).

In particular, iff : R
n → {−1, 1}, then

∑
f̂(S)2 = 1 (when no range for a sum overS is specified, we

assumeNn).

B Bounding the Gaussian surface area of an arbitrary ball
Our approach to bounding the Gaussian surface area of a ball is by analyzing an appropriate probability
density function.

Recall thechi-square distribution withk degrees of freedom:

χ2
k =

k∑

i=1

X2
i

where eachXi is a random variable distributed according toN (0, 1). Notice that for an origin-centered ball
K of radiusr, the Gaussian volume ofK is equal to

Pr[χ2
n ≤ r2].

Since theδ-neighborhood of a ball of radiusr is a ball of radiusr + δ, by the definition of Gaussian surface
area we have that the Gaussian surface area of a ball of radiusr is equal to

lim
δ→0

Pr[χ2
n ≤ (r + δ)2] − Pr[χ2

n ≤ r2]

δ
.

Consequently, differentiating the cdf and applying the chain rule, we have that the Gaussian surface area of
an origin-centered ball is equal to2r · fn(r2) wherefn is the pdf ofχ2

n. It is well known [Fel68] that the pdf
of χ2

n is given by

fn(x) =
xn/2−1

Γ(n/2)2n/2ex/2
.

It is straightforward to verify that2r · fn(r2) agrees with Ball’s formula for the surface area of an origin-
centered ball of radiusr.

To bound the surface area of non-origin-centered balls, we will need to consider thenon-central chi-
square distribution:
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Definition 28. We say thatQ(n,λ) is a non-central chi-square distribution withn degrees of freedom and
non-centrality parameterλ if Q(n,λ) =

∑n
i=1 Y 2

i where eachYi is an independentN (ai, 1) Gaussian and
λ =

∑n
i=1 a2

i .

To compute the surface area of a ball, we can first assume without loss of generality (due to the rotational
symmetry of the Gaussian) that the ball is centered on thex-axis. Next we observe that the Gaussian volume
of a ball of radiusr centered at distanced from the origin is given by

Pr[Q(n,d2) ≤ r2].

Let g(n,d2) denote the pdf of the random variableQ(n,d2). Although there is no simple closed form for
g(n,d2), Patnaik [Pat49] has observed that

g(n,λ) =

∞∑

j=0

1
2λj

j!
exp(−λ/2)fn+2j (6)

where eachfn+2j is the pdf ofχ2
n+2j. This means that the non-central chi-square distribution is a convex

combination of standard chi-square distributions, since the weights in the above formula are exactly the
probabilities of a Poisson distribution with expected value λ/2.

We can now bound the surface area of a non-origin-centered ball as follows. From the above discussion
it suffices to show that for anyr the quantity2r · g(n,d2)(r

2) is at most1. From Equation (6), we see that the
function2r · g(n,d2)(r

2) is a convex combination of functions of the form2r · fj(r
2) across different values

of j. It is not difficult to verify that that for allj, the value of2r · fj(r
2) is always at most 1 (recall that for

a givenj the maximum is atr =
√

j − 1). Thus,2r · g(n,d2)(r
2) is at most1 as well.

C Learning with Respect to Arbitrary Gaussians
Here we sketch how (almost all of) our learning results can beextended to arbitrary Gaussian distributions.

Recall that an arbitrary Gaussian distributionD overRn can be generated by first drawingx ∼ N n and
then outputtingµ + Bx, whereµ is a fixed vector (the mean ofD) andB is a fixed square matrix, possibly
not of full rank (the matrix square-root of the covariance matrix). Let T denote the affine transformation
x 7→ µ + Bx.

Let us assume for a moment that the matrixB has full rank so thatT is invertible. Given a setK ⊆ R
n,

let K ′ denote the setT−1K. Now if there is a polynomialp′ overRn with degree at mostd satisfying

E
x∼Nn

[(p′(x) − K ′(x))2] ≤ ǫ

(again we identifyK ′ with its±1 indicator function), then we immediately have

E
y∼D

[((p′ ◦ T−1)(y) − K(y))2] ≤ ǫ

But T−1 is an affine transformation, sop = p′ ◦T−1 also has degree at mostd. In other words, the existence
of a good approximating polynomialp′ for K ′ implies the existence of a good approximating polynomialp
for K. It follows that our learning algorithms in Section 2.2 willwork at least as well when run onK under
D as they do when run onK ′ underN n. (Note that we do not have to assume the learning algorithm knows
the parameters of the Gaussian distributionD; it always runs the same polynomial regression algorithm.)

In the case whenB is not invertible, the distributionD is equivalent to a nonsingular Gaussian distribu-
tion E supported on an affine subspaceH. It is easy to see that the above argument lets us derive approxi-
mating polynomials forK underD that are at least as good as approximating polynomials forK ∩H under
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E (which in turn are at least as good as approximating polynomials for some affine transformation ofK ∩H
underNm for m = dim(H)).

We now observe that many classesC of subsets ofRn that we have considered for learning are closed
under taking affine transformations and intersections withaffine subspaces. For instance, the class of convex
sets has this property, as does the class of intersections ofk halfspaces. Thus our learning results for these
classes immediately extend to all Gaussian distributions.Cones are closed under linear transformations and
intersections with subspaces, and thus our learning results for cones extend to all Gaussian distributions so
long as the cones have their apex at the Gaussian’s mean.

Unfortunately, the class of balls is not closed under lineartransformations. We strongly believe that all
ellipsoids inR

n have Gaussian surface areaO(1); however we have not yet proved this. If this holds then
our learning results for balls would also generalize to all Gaussian distributions.

D Proof of Theorem 27
Let us state Theorem 27 a bit more precisely, revealing the bound onǫ0:

Theorem 27.Fix ǫ0 to be any constant between 0 and1/44000. Let ℓ be as in Theorem 26. There exists a
setCℓ = {f1, . . . , fM} of M = 22Ω(ℓ)

many functionsfi ∈ Hℓ such that for any1 ≤ i < j ≤ M , we have

d(fi, fj) ≥ 2ǫ0. (27)

Let Z1, Z2, . . . be independent uniformly distributed random vectors drawnfrom the unit ballSn−1 =
{x ∈ R

n : ‖x‖ = 1}. Let ρ = ℓ1/2/ǫ0; observe that by the assumptions onℓ, ǫ we haveρ ≤ n1/4. Let
A(Z1, . . . , ZN ) denote the intersection ofN halfspaces

A(Z1, . . . , Zn)
def
= {x ∈ R

n : x · Zi ≤ ρ for all i = 1, . . . , N}
(we will specify N soon). Theorem 27 is proved by showing that if{Zi,t}1≤i≤M,1≤t≤N areMN inde-
pendent uniform random unit vectors as described above, then with nonzero probability, for every1 ≤
i < j ≤ M the functionsfi andfj satisfy (27), wherefi(x) is defined to be the indicator function of
A(Zi,1, . . . , Zi,N ). We do this by showing that for each pair(i, j) the functionsfi, fj satisfy (27) with
probability at least1 − 1/M2. Since there are fewer thanM2 distinct pairs, a union bound then gives The-
orem 27.

So letf1 be the indicator function ofA(Z1,1, . . . , Z1,N ) andf2 be the indicator function ofA(Z2,1, . . . , Z2,N )
for randomZ1,1, . . . , Z2,N as described above. The key to showing thatf1 andf2 are w.v.h.p. at least2ǫ0-far
apart is the following lemma showing that theexpecteddistance betweenf1 andf2 is large (the expectation
is taken over the random choice ofZ1,1, . . . , Z2,N ):

Lemma 29. E[d(f1, f2)] ≥ 1
11000 .

We will prove this lemma later. Now we show how this lower bound on expectation may be combined
with the “method of bounded differences” to show thatd(f1, f2) < 2ǫ0 holds with probability at most
1/M2. Recall McDiarmid’s inequality:

McDiarmid bound [McD89]: Let X1, . . . Xm be independent random variables taking values in a setΩ.
LetF : Ωm → R be such that for alli ∈ [m] we have

|F (x1, . . . , xm) − F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ci

for all x1, . . . , xm andx′
i in Ω. Letµ = E[F (X1, . . . ,Xm)]. Then for allτ > 0,

Pr [F (X1, . . . ,Xm) < µ − τ ] < exp

(
− τ2

∑m
i=1 c2

i

)
.
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We let the2N independent random uniform vectorsZ1,1, . . . , Z2,N play the role ofX1, . . . ,Xm in
McDiarmid’s bound, and we let the functiond(f1, f2) play the role ofF (X1, . . . ,Xm). Given any fixed
setting ofZ1,1, . . . , Z2,N , the change in magnitude ind(f1, f2) that results from replacing someZi,t by any
other unit vectorZ ′ ∈ Sn−1 is at most

PrX∼Nn [X · u1 ≥ ρ] + PrX∼Nn [X · u2 ≥ ρ] = 2PrX1∼N(0,1)[X1 ≥ ρ] (7)

≤ 2ϕ(ρ)/ρ =
√

2/π · ρ−1 · e−ρ2/2 (8)

In (7) the vectorsu1 andu2 are arbitrary fixed unit vectors, and the equality holds by the spherical symmetry
of N n. The bound (8) follows from the standard bound1−Φ(t) ≤ ϕ(t)/t, which holds fort > 0 whereΦ(t)
is the c.d.f. andϕ(t) = 1√

2π
exp(−t2/2) is the p.d.f. ofN(0, 1). We thus may take eachci in McDiarmid’s

bound to be the bound (8) above. The meanE[d(f1, f2)] is at least 1
11000 by Lemma 29. As we show in (16)

below, we haveN ≤ 12(n1/2/ρ)eρ2/2. Takingτ = 1
22000 in McDiarmid’s bound, we thus have

Pr[d(f1, f2) < 2ǫ0] ≤ Pr[d(f1, f2) <
1

22000
]

< exp

(
−(1/22000)2

24(n1/2/ρ)eρ2/2 · (
√

2/π · ρ−1 · e−ρ2/2)2

)

= exp
(
−Θ(1) · (ρ3/n1/2) · eρ2/2

)
(9)

We defineM to be such that1/M2 def
= (9). Sinceρ2 = ℓ/ǫ2

0 ≫ 2 log n by our assumptions onℓ andρ,

we have that(9) ≤ exp(−2Ω(ρ2)), and henceM = 22Ω(ℓ)
. It remains only to prove Lemma 29.

D.1 Proof of Lemma 29 First some notation. We writeA1 to denoteA(Z1,1, . . . , Z1,N ) andA2 to denote
A(Z2,1, . . . , Z2,N ). Recall thatϕn(x) denotes the density function of the standardn-dimensional Gaussian
distribution. Let us write “Z ∼ S” to indicate thatZ is a random unit vector distributed uniformly over the
unit ballSn−1 in R

n. Givenx ∈ R
n, let us writeb(x) to denote

b(x)
def
= PrZ∼S [x · Z ≤ ρ].

Let an−1 denote the surface area of the unit sphereSn−1. It is well known thatan−2/an−1 = Θ(n1/2);
for conciseness we writern to denotean−2/an−1. Forn ≥ 3, for any fixed unit vectoru ∈ Sn−1, we have

PrZ∼S [α ≤ u · Z ≤ β] = rn

∫ β

α

(√
1 − z2

)n−3
dz.

Let us writecap(t) to denote the fractional surface area of the spherical capSn−1 ∩ {x : x1 ≥ t}:

cap(t)
def
= PrZ∼S [Z1 ≥ t] = rn

∫ 1

t

(√
1 − z2

)n−3
dz. (10)

Consequently for all0 6= x ∈ R
n, we have

b(x) = 1 − PrZ∼S

[
x

‖x‖ · Z ≥ ρ

‖x‖

]
= 1 − cap(ρ/‖x‖) = 1 − rn

∫ 1

ρ
‖x‖

(√
1 − z2

)n−3
dz. (11)
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Now we turn to the proof of Lemma 29. We have the following (allexpectations are taken over the
random choice ofZ1,1, . . . , Z2,N ):

E[PrX∼Nn [f1(X) 6= f2(X)]] = 2E[PrX∼Nn [X ∈ (A1 \ A2)]

= E

[∫

x∈Rn

1x∈(A1\A2)ϕn(x)dx

]

(Fubini)
=

∫

x∈Rn

E[1x∈(A1\A2)]ϕn(x)dx

=

∫

x∈Rn

Pr[x ∈ A1](1 − Pr[x ∈ A2])ϕn(x)dx (12)

=

∫

x∈Rn

(b(x))N (1 − (b(x))N )ϕn(x)dx. (13)

Here equations (12) and (13) are by the independence of the randomly chosen vectorsZ1,1, . . . , Z2,N . We
shall prove Lemma 29 by showing that

b(x)N (1 − b(x))N ≥ 0.0002244 for all x ∈ R
n such that‖x‖ ∈ [

√
n,

√
n + 1]. (14)

For X ∼ N , the random variable‖X‖2 is distributed according to a chi-squared distributionχ2
n which

has meann and variance2n. The Central Limit Theorem implies that asn → ∞, the random variable
(‖X‖2−n)/(

√
2n) converges to the standard normal distributionN(0, 1). SinceN(0, 1) assigns probability

≈ 0.421 to the interval[0,
√

2], it follows that forn sufficiently large we have

PrX∼Nn [‖X‖2 ∈ [n, n + 2
√

n + 1]] ≥ 0.42

which, together with (14), shows thatE[d(f1, f2)] ≥ 0.0002244·0.42 ≥ 0.000094 > 1
11000 and proves Lemma 29.

Now we prove (14). Let

N
def
=

1

cap(ρ/
√

n)
. (15)

We pause at this point to observe that using the easy boundcap(t) ≤ e−nt2/2, we haveN ≥ eρ2/2. In fact,
as we now showN is not much larger than this value. We have

cap(ρ/
√

n) = rn ·
∫ 1

ρ/
√

n

(√
1 − z2

)n−3
dz

> rn ·
∫ ρ/(

√
n−1)

ρ/
√

n

(√
1 − z2

)n−3
dz

> rn · A · B, whereA =
ρ√

n − 1
− ρ√

n
andB =

(
1 −

(
ρ√

n − 1

)2
)(n−3)/2

.

Known bounds givern ≥ 1
3

√
n; an easy computation shows thatA ≥ ρ/n; and some routine asymptotic

analysis (using the bound(1−1/m)m ≥ exp(−1− 1
m) together with the fact thatρ ≤ n1/4) gives thatB ≥

1
4e−ρ2/2. (All these inequalities are forn sufficiently large.) We thus havecap(ρ/

√
n) ≥ 1

12 ·(ρ/
√

n)·e−ρ2/2,
which implies

N ≤ 12 · (√n/ρ) · eρ2/2. (16)

(Note that with this upper bound onN , we are indeed considering intersections of2O(ℓ) halfspaces as
claimed in the statement of Theorem 26.) Finally, we assume w.l.o.g. in the sequel that the valueN defined
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by (15) is an integer; the reader can check that there is adequate slack in the bounds to handle roundingN
to the nearest integer.

With (15) as our choice ofN , for any‖x‖ =
√

n we haveb(x)N = (1− 1/N)N ≤ e−1. Sinceb(x) is a
decreasing function of‖x‖, we haveb(x)N ≤ e−1 for all ‖x‖ ∈ [

√
n,

√
n + 1]. We will show below that

for all ‖x‖ ∈ [
√

n,
√

n + 1], we haveb(x)N ≥ 0.0002245. (17)

(Note that for‖x‖ =
√

n, we actually haveb(x)N ≈ e−1.) Given this, we have

for all ‖x‖ ∈ [
√

n,
√

n + 1], b(x)N (1 − b(x)N ) ≥ 0.0002245 · (1 − .0002245) > .0002244.

Sinceb(x) is decreasing in‖x‖, to prove (17) it is enough to give a lower bound onb(x′) for ‖x′‖ =√
n + 1. We will show that

cap

(
ρ√

n + 1

)
≤ 8.4

N
. (18)

This gives

b(x′)N =

(
1 − cap

(
ρ√

n + 1

))N

≥ (1 − 8.4/N)N ≥ 0.0002245

as desired (the last inequality holds forN sufficiently large). Now we prove (18). First recall that

cap

(
ρ√

n + 1

)
= rn

∫ 1

ρ√
n+1

(1 − z2)(n−3)/2dz

= rn

∫ ρ√
n

ρ√
n+1

(1 − z2)(n−3)/2dz + cap(ρ/
√

n)

= rn

∫ ρ√
n

ρ√
n+1

(1 − z2)(n−3)/2dz +
1

N
. (19)

Now observe that

rn

∫ ρ√
n

ρ√
n+1

(1 − z2)(n−3)/2dz ≤ rn ·
(

1 −
(

ρ√
n + 1

)2
)(n−3)/2

·
(

ρ√
n
− ρ√

n + 1

)
(20)

Using Taylor series expansion one can verify that for0 ≤ ρ ≤ n1/4, we have

lim
n→∞

(
1 −

(
ρ√
n+1

)2
)(n−3)/2

(
1 −

(
ρ√
n−1

)2
)(n−3)/2

≤ e2 < 7.39

(the inequality is an equality forρ = n1/4) and consequently

(
1 −

(
ρ√

n + 1

)2
)(n−3)/2

≤ 7.4 ·
(

1 −
(

ρ√
n − 1

)2
)(n−3)/2

(21)

for n sufficiently large. Moreover we trivially have
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ρ√
n
− ρ√

n + 1
≤ ρ√

n − 1
− ρ√

n
. (22)

Combining (21) and (22), we have that

(20) ≤ rn · 7.4 ·
(

1 −
(

ρ√
n − 1

)2
)(n−3)/2

·
(

ρ√
n − 1

− ρ√
n

)

≤ 7.4 · rn

∫ ρ√
n−1

ρ√
n

(1 − z2)(n−3)/2dz

< 7.4 · rn

∫ 1

ρ√
n

(1 − z2)(n−3)/2dz = 7.4 · cap(ρ/
√

n) =
7.4

N
. (23)

Combining (19), (20) and (23) we obtain (18). This concludesthe proof of Lemma 29 and hence of
Theorem 27, and so our sample complexity bound, Theorem 26, is proved.

E Boolean surface area
E.1 Motivation Given the very useful connection between noise sensitivityand surface area in Gaussian
space, Corollary 14, it is natural to wonder if there is a similar connection in the setting of the Boolean
cube under the uniform distribution. In some senses the caseof {−1, 1}N is ageneralizationof the case of
(Rn,N n): this is because we can simulate a Gaussian random variable with Boolean ones:

∑m
i=1 xi√
m

≈ N

when the stringx ∈ {−1, 1}m is drawn from the uniform distribution. There is a long history of proving
results in Gaussian space by first deriving them in the Boolean case and then making a limiting argument;
notable examples of this include Gross’s work on the logarithmic Sobolev and hypercontractive inequali-
ties [Gro75] and Bobkov’s proof of the Gaussian isoperimetric inequality [Bob97].

The notions of noise stability and sensitivity for Boolean functionsf : {−1, 1}n → R are well-known
[BKS99]. In place of the Ornstein-Uhlenbeck operator we have theBonami-Beckneroperator, also denoted
Tρ, acting as

(Tρf)(x) = E
y∼ρx

[f(y)];

herey ∼ρ x means thaty is chosen by keeping each bit ofx fixed with probabilityρ and randomizing it with
probability1− ρ, independently across coordinates. The noise stability and sensitivity off are now defined
by formally repeating the definitions in the Gaussian case. The analogous expression to (2) forTρf in terms
of f ’s Fourier (Walsh) coefficients continues to hold. As a result, we have the same relationship between
low-degree Fourier concentration, noise sensitivity, andlearning as in Section 2.2; see [KOS04, KKMS05].

Unfortunately for learning purposes, it is somewhat difficult to prove noise sensitivity upper bounds for
natural classes of Boolean functions. The work [KOS04] relied on a clever theorem of Peres [Per04] which
states thatNSδ(f) ≤ O(

√
δ) for any Boolean halfspacef . This immediately implies that an intersection

of k halfspaces has noise sensitivity at mostk · O(
√

δ). [KOS04] conjectured that in fact the much better
upper bound of

√
log k · O(

√
δ) should hold. We now know, via Corollary 14 and Nazarov’s Theorem 20,

that the conjecture holds in Gaussian space. This provides significant motivation for seeking a connection
between noise sensitivity and “surface area” in the Booleansetting. In fact, we find the desired connection;
unfortunately, it does not prove to be quite as useful as hoped.
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E.2 Overview of Boolean surface areaThere is a likely candidate for the proper analogue of “surface
area” in the Boolean setting. The proof of Theorem 13 uses

∫
|∇f | as a surrogate for surface area (cf.

the discussion after its statement), and there is a well-known notion of “gradient” in the Boolean cube (see
e.g. [Bob97]): forf : {−1, 1}n → R, this is:

∇f(x) = (D1f(x), . . . ,Dnf(n)),

whereDi is the “ith discrete derivative operator”, defined by

Dif(x) =
f(x(i=1)) − f(x(i=−1))

2
,

with x(i=b) denoting the stringx with its ith coordinate changed tob. Note that whenf : {−1, 1}n →
{−1, 1},

(Dif(x))2 =

{
1 if f is “sensitive” to theith coordinate ofx,

0 else,

and hence the “length of the gradient” is

|∇f(x)| =

√√√√
n∑

i=1

(Dif(x))2 =
√

# of sensitive coordinates forf onx.

Thus the following definition is natural:

Definition 30. The “Boolean surface area” of a functionf : {−1, 1}n → {−1, 1} is defined to be

Γ(f) = E[|∇f |] = E
x
[
√

# of sensitive coordinates forf onx].

Here and throughout this section,E[·] is with respect to the uniform probability distribution on{−1, 1}n.

The Boolean surface area appears to have been first introduced and studied by Talagrand [Tal93]. (Ac-
tually, Talagrand studied a variant,

E
x
[
√

1f(x)=1 · # of sensitive coordinates forf onx],

which is slightly different forf with |E[f ]| very close to1.) He connected it to various topics, includ-
ing discrete isoperimetry, logarithmic Sobolev equations, percolation, and Banach space inequalities. It
was also used by Bobkov [Bob97] in his proof of the Gaussian isoperimetric inequality and by Tillich and
Zémor [TZ00] in the context of coding theory.

One basic fact about Boolean surface area is the following:

Γ(f) = E[
√

|∇f |2] ≤
√

E[|∇f |2] =
√

I(f),

whereI(f) =
∑

S |S|f̂(S)2 is the “total influence” off . Forf : {−1, 1}n → {−1, 1} this is also called the
“average sensitivity” off , since

I(f) = E
x
[# of sensitive coordinates forf onx].

In this case we also write

Infi(f) = Pr
x

[f is sensitive to theith coordinate ofx],

22



for the “influence” of theith coordinate onf , and we haveI(f) =
∑

i Infi(f). For monotone functions,
Infi(f) = f̂(i).

It is well-known thatI(f) ≤ O(
√

n) wheneverf is a monotone Boolean function, and thusΓ(f) ≤
O(n1/4) for monotonef . This seems to be the analogue of Ball’s upper bound for Gaussian surface area
of convex sets. As further evidence, Talagrand [Tal96] exhibited a monotone Boolean functionf with
Γ(f) ≥ Ω(n1/4), and his construction strongly prefigures the lower bound ofNazarov: it can be viewed as
the intersection of2Θ(

√
n) random disjunctions. As more evidence that we are on the right track, the two

Boolean halfspaces which are arguably most natural — namelyDictator (f(x) = xi) and Majority — both
haveO(1) Boolean surface area, just as in the Gaussian case. In Majority’s case, this bound holds because
a Θ(1/

√
n) fraction of inputs have sensitivityn/2 and the remaining inputs have sensitivity 0. (Bobkov,

Götze, and Houdré [SBH01] generalized this to arbitrary symmetric threshold functions.)

E.3 The Boolean version of Corollary 14In this section we provide the Boolean analogue of Corol-
lary 14:

Theorem 31. For anyf : {−1, 1}n → {−1, 1} and any0 ≤ δ ≤ 1,

NSδ(f) ≤
√

π
2

√
δ · Γ(f).

The result relies on the following theorem of Bobkov and Götze [BG99]:

Theorem 32. Let (Ωi, µi) be probability spaces,i = 1 . . . n, and write(Ω, µ) for the product probability
space. Assumingf : Ω → [0, 1] is measurable, we have

U(E
µ
[f ]) ≤ E

µ

[√
U(f)2 + 2‖∇f‖2

µ

]
. (24)

HereU is the Gaussian isoperimetric function, and

‖∇f‖2
µ

def
=

n∑

i=1

Varµi [f ].

We now prove Theorem 31:

Proof. Consider the Bobkov-Götze inequality (24) in the special case thatf ’s range is{0, 1}; sinceU(0) =
U(1) = 0, this eliminates theU(f)2 in the right-hand side of (24). We will also eliminate theU on the
left-hand side of (24) by using the elementary inequality

U(t) ≥
√

2/π(1
2 − 2(1

2 − t)2).

Thus forf : Ω → {0, 1} we have
√

2/π(1
2 − 2(1

2 − E
µ
[f ])2) ≤ E

µ
[
√

2‖∇f‖µ] ⇒ 1
2 − 2(1

2 − E
µ
[f ])2 ≤ √

π E
µ
[‖∇f‖µ] (25)

Suppose we fix anx ∈ {−1, 1}n and aρ ∈ [0, 1]. We defineΩi = {−1, 1} andµi to be the biased
measure which gives probability12 + 1

2ρ to xi and probability1
2 − 1

2ρ to−xi. Note that with this choice one
can easily check thatEµ[f ] = (Tρf)(x) and that

Varµi [f(y)] = (1 − ρ2) · (Dif(y))2.
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Hence

‖∇f(y)‖2
µ =

n∑

i=1

Varµi [f(y)] = (1 − ρ2)|∇f(y)|2,

where on the right side we have the usual, uniform-distribution discrete gradient on{−1, 1}n. Substituting
into (25) we get

1
2 − 2(1

2 − (Tρf)(x))2 ≤ √
π
√

1 − ρ2(Tρ[|∇f |])(x).

We now revertf ’s range to{−1, 1}, replacingf by 1
2 + 1

2f in the above. This yields

1
2 − 1

2((Tρf)(x))2 ≤
√

π
2

√
1 − ρ2(Tρ[|∇f |])(x).

Finally, if we take the expectation of this inequality over auniform choice ofx ∈ {−1, 1}n, we get precisely

NS1−ρ2(f) ≤
√

π
2

√
1 − ρ2 E[|∇f |].

Settingρ2 = 1 − δ completes the proof.

By the Fourier concentration method, we now conclude that our main Theorem 5 holds in the Boolean
setting:

Theorem 33. Let C denote the class of all Boolean functionsf : {−1, 1}n → {−1, 1} with Γ(f) ≤ s.
Then under the uniform distribution,C is PAC learnable to accuracyǫ in timenO(s2/ǫ2) and agnostically
learnable in timenO(s2/ǫ4).

We recall that Bshouty and Tamon [BT96] showed that any Boolean functionf has Fourier concen-
tration I(f)/ǫ, and hence can be learned under the uniform distribution in time nI(f)/ǫ. Our bound is an
improvement on theirs in so far asΓ(f)2 ≤ I(f) for every Boolean functionf (and the difference can be
substantial, as for the Majority function which hasΓ = O(1) andI = Θ(

√
n)); however our bound has an

additional factor of1/ǫ in the exponent.

E.4 Boolean surface area of halfspacesThus far it seems the Boolean theory is matching the Gaussian
theory perfectly. Since halfspaces have Gaussian surface areaO(1) it is natural to expect that the same
bound holds for Boolean surface area; this would allow us to recover the results of [KOS04]. Bobkov,
Götze, and Houdré [SBH01] considered this statement but commented that they did not know how to prove
it.

Surprisingly, the statement turns out to be false. The correct answer for the maximum Boolean surface
area of anyn-variable halfspace isΘ(

√
log n), and the halfspace that achieves the maximum — essentially

sgn(
∑

xi/
√

i) — is an unusual example.

Theorem 34.

1. Every Boolean halfspacef(x) = sgn(
∑

i aixi − θ) satisfiesΓ(f) ≤ O(
√

log n).

2. Let ηj denote
√

j + 1 − √
j, so ηj ∼ 1

2
√

j
. Then for evenn, the Boolean halfspacef(x) =

sgn(
∑n

i=1 η⌈i/2⌉xi) satisfiesΓ(f) ≥ Ω(
√

log n).

We expect that the slightly simpler halfspacesgn(
∑

xi/
√

i) also has Boolean surface area at least
Θ(

√
log n), but we have not verified this. Since Theorem 34 is somewhat tangential to our main concerns

in this paper, we defer its proof to the full version.
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We conclude this section by commenting that although we onlyhaveΓ(f) ≤ O(
√

log n) for Boolean
halfspaces, the approach of bounding noise sensitivity by surface area may still prove useful for learn-
ing. It may possibly be easier to prove that the intersectionof k Boolean halfspaces has surface area
O(

√
log k

√
log n) than to prove the conjecturedO(

√
log k

√
δ) bound on noise sensitivity. If this surface

area bound could be established it would yield annO(log k log n/ǫ2)-time learning algorithm, which would
still be quite strong.
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