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Abstract

We study the learnability of sets " under the Gaussian distribution, taking Gaussiarfiace area
as the “complexity measure” of the sets being learned.Ckedenote the class of all (measurable) sets
with surface area at most. We first show that the clasS is learnable to any constant accuracy in
time n°(5*), even in the arbitrary noise (“agnostic”) model. Completmanthis, we also show that any
learning algorithm foiCg information-theoretically require%“(52> examples for learning to constant
accuracy. These results together show that Gaussian swafaa essentially characterizes the computa-
tional complexity of learning under the Gaussian distriut

Our approach yields several new learning results, inclyittie following (all bounds are for learning
to any constant accuracy):

e The class ofall convex sets can be agnostically learned in t2fléV™) (and we prove @7
lower bound for noise-free learning). This is the first sydmnential time algorithm for learning
general convex sets even in the noise-free (PAC) model.

e Intersections ok halfspaces can be agnostically learned in tin¥'°2¥) (cf. Vempala’sn©®*)
time algorithm for learning in the noise-free model [Vem04]

e Arbitrary cones (with apex centered at the origin), and sphe&vith arbitrary radius and center,
can be agnostically learned in timpely(n).

*Supported in part by NSF award CCF-0347282 and by NSF awaf@323664.

0



1 Introduction

1.1 Motivation: What is the right measure of complexity for learning? The primary goal of compu-
tational learning theory is to understand how the resouregsired by learning algorithms (running time,
number of examples, etc.) scale with the complexity of thefions being learned. For sample complexity
our understanding is quite good: it has been known for ne2zBlyears that for any clags of Boolean
functions, the Vapnik-Chervonenkis dimensionCogives essentially matching upper and lower bounds on
the number of examples needed for learnihgith respect to an arbitrary (unknown) probability distrib
tion over the space of examples [BEHW89, EHKV89]. Unfortigha it has proved much more difficult
to characterize theomputationalcomplexity of learning problems. This difficulty is partlady acute in
distribution-independent learning models such as Vatiamiginal PAC learning model [Val84]; as one
example of this, our current state of knowledge is considieth with the possibility that learning an inter-
section of twon-dimensional halfspaces (under arbitrary distributiazes) be done i) (n?) time, and with

the possibility that this learning problem requires ti?%é™. In general, research progress on computation-
ally efficient distribution-independent learning has besdatively slow, and for this reason many researchers
have considered learning with respect to specific natustlibutions such as the uniform distribution on the
n-dimensional Boolean hypercube and the uniform distrdwutin the unit Euclidean sphereli¥.

In this work we consider learning with respect to the staddaaussian distribution oR”. This is
arguably one of the most natural, and certainly one of thet stoslied, distributions ofR™. We note that
the commonly studied scenario of learning with respect ¢gouhiform distribution on thex-dimensional
Euclidean sphere (see e.g. [BK97, VemO04, Lon94, Lon95, KKB]pis essentially equivalent to learning
under the standard Gaussian distribution whes large. (As we shall see in Section 4.5, almost all of our
learning results actually hold for arbitrary Gaussianribstions onR™).

As our main contribution, we propose a new and very naturaipiexity measure for geometric con-
ceptsA C R”, their Gaussian surface areand show that this measure characterizes the computationa
complexity of learning with respect to the Gaussian digtidn in a rather strong sense. We do this by giv-
ing essentially matching upper bounds (via an explicit afgm) and lower bounds (information-theoretic)
on the running time of algorithms for learning sets” R”™ in terms of their Gaussian surface area. Further-
more (and perhaps most importantly), this approach yidhildrey new applications for learning important
concept classes such as arbitrary convex sets and interseof halfspaces.

1.2 The new complexity measure: Gaussian Surface Ared.he formal definition of Gaussian surface

area is as follows:
Definition 1. For a Borel setA C R", its Gaussian surface area
1(As \ A
I'(A) d:efhgn inf w

Here A; denotes thé-neighborhood of4, {z : dist(z, K) < 0}, andvol(A) denotes the probability mass
of A with respect to the standard Gaussian distributionRih

This is very similar to the usual formal definition of surfarea, except that Gaussian measure replaces
Lebesgue measure. For most “nice” sdte/e can take an equivalent definition (see [Naz03b]):

Definition 2. If A C R" is sufficiently regular — e.g., has smooth boundary or is eprv then we have

P = [ (o) doo) @
DA
wheredo (z) is the standard surface measureRft and

def

on(@) E o),  wherep(z) = o1 (x) & —— exp(—2?/2),
=1

1
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is the standarch-dimensional Gaussian density function.

It is straightforward to see from Definition 1 that the Gaasssurface area of a set is smaller than its
usual surface area by at least an exponential factor:

Fact 3. If A C R” is any measurable set andirf(A) denotes its usual surface area, théA) <

WSUFf(A).

In fact, the Gaussian surface areaids often far smaller even than this; many natural setgveinfinite
surf(A) but small finite Gaussian surface aié@l). The most notable example is that of halfspaces:

Fact 4. Every halfspace iiR" has Gaussian surface area at mggb) = /2/7 ~ 0.8.

This is a classical fact because of the “Gaussian isopaitnieequality” [Bor75, ST78] (see also [Bob97]),
which states that halfspaces minimizeA) among all sets! with fixed Gaussian volume.

In the remainder of this paper we will use the phrase “surfaeeea” exclusively to mean Gaussian
surface area'. The following table gives the surface area of some basic g&wrsets:

\ Sets | (Gaussian) Surface area upper bound Source \
Halfspaces 2/ direct computation
Intersections ok halfspaces O(V1ogk) Nazarov [Naz03a] (see Section 4)
Arbitrary convex sets O(n'/?) K. Ball [Bal93]
Balls 1 Section 4
Cones with apex at the origin 1 Section 4

We believe that surface area is a very natural complexitysomeafor sets ifR™. First, it is a universal
measure: it assigns a complexity to all sets. Second, istsial@eometric notion befitting geometric sets.
Third, surface area seems to address the difficulty of legreéts in a fair way: if a set’s boundary is very
“wiggly”, it is reasonable that many examples will be neettedccurately delineate it. Finally, it is a very
stringent measure: as discussed above Gaussian surfads argeneral very low.

1.3 Our main results. We give upper and lower bounds for learning sets of surfaea &runder the
Gaussian distribution dR™. Our algorithmic result is an agnostic learning algoritmming in timen©(5%).
More precisely, the time is°(5*/<") for agnostic learning to accuraeyand timenC(5*/<*) for PAC learning.
(Agnostic learning may be thought of as a challenging motilarning in the presence of noise.) We give
precise definitions of the learning models in Section 2.8,@ecise statements of the algorithmic results as
Theorem 25 in Section 4.5.

Our lower bound is information-theoretic and applies exeRAC learning algorithms under the Gaus-
sian distribution (no noise) which have membership quepess to the function being learned. We show
that there is a universal constagt> 0 such that any algorithm for learning sets of surface areaoat to
accuracy, requires at least(5*) examples. This holds for anylogn/ey < S < egn'/4, and is true even
if the sets are promised to be intersectiong®f”) halfspaces. We give this lower bound in Section 5.

We believe the main applications of our results are theiolig two algorithmic consequences, Theo-
rems 5 and 6:

Theorem 5. The class of all convex sets is agnostically learnable uragGaussian distribution ofR™ in
subexponential time20(™"/?/<) Further, 22("'/*) examples and hence time is necessary.

We view Theorem 5 as somewhat surprising, since the genlass of convex sets is extremely broad.
(We recall that simple VC-dimension arguments can be usslddw that for distribution-independent learn-
ing, no a priori running time bound —2%, 22", etc. — can be given for learning arbitrary convex sets, see
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e.g. Chapter 4 of [KV94].) Theorem 5 is the first subexporanime algorithm for either agnostically or
PAC learning arbitrary convex sets with respect to a nosialrclass of high-dimensional distributions. We
note that Theorem 5 can be extended to leam-convexconcepts such as finite unions of convex sets; we
defer statements of these results to Section 4.

Theorem 6. Intersections of halfspaces are agnostically learnable undery Gaussian distribution on
R" in timenOUosk/c").

Theorem 6 should be compared with Vempa(ai$e)0(’“) time PAC learning algorithm (under nearly-
uniform distributions on the sphere). Vempala’s dependete is better than ours ifog(1/¢) > logk,
but otherwise our algorithm has a much better dependeneg amd also works in the agnostic setting.

The fact that Theorems 5 and 6 hold for any Gaussian disimiibuas opposed to just the standard one,
is an immediate easy consequence of the fact that conveasetsitersections ot halfspaces are closed
under linear transformations; see Section C. We give skwtrer new learning results in Section 4 as well.

Uniform Distribution over {—1,1}". Itis natural to ask whether our approach can be translatéaeto
Boolean setting with respect to the uniform distributiortioehypercube. We establish a general connection
between Boolean perimeter and learnability, and give tighinds on the perimeter of Boolean halfspaces
(e.g., we show that Boolean halfspaces have Boolean pexit®¢t/logn)). At this stage, however, this
approach does not (yet) lead to new learning results for aglifstudied concept classes, so we defer this
discussion to Appendix E.

1.4 Ourtechniques. To broadly outline the proof of our main results, we begirtwtite result of Kalai et
al. [KKMSO05], which uses a type of polynomial regression is@egan agnostic learning algorithm for func-
tions that can be approximated well by low-degree polynsni@o use this result, we need to understand
how well sets inR™ can be approximated (ify) by polynomials with respect to the Gaussian distribution.
This task can be separated into two parts:

First, we establish a new connection between the Hermiteesdration of the characteristic function
of a set (which captures the approximability by low-degre&/momials) and the set's Gaussian surface
area. This reduction from learning to bounding surface arakes use of some powerful tools in geometry;
especially, the use of semigroup tools in the study of iSopetry.

Secondly, with this reduction in hand, we can translate deuwsn Gaussian surface area to learning
results. For example, K. Ball [Bal93] (and subsequently &&ov [Naz03b]) has shown that the surface
area ofany convex set im dimensions is at mog(n'/4). Ball’s result, combined with Theorem 25, gives
us Theorem 5. We also prove new results on Gaussian surfeadaarvarious classes (see the table above)
and obtain corresponding learning results for those ctasse

Our lower bound is proved by analyzing geometric properfdaatersections of randomly chosen half-
spaces via concentration inequalities and may be of indkgrerinterest.

1.5 Relationship with Fourier-Based Learning. Our main result can be viewed as a statement regarding
the approximability of characteristic functions of sets liw-degree orthogonal (Hermite) polynomials with
respect to Gaussian distributions. More specifically, wav@rthat every indicator function of a (Borel) set
with surface are& can be approximated (ify) by a multivariate polynomial of degre®(S?).

Since we are considering approximabilitydnwith respect to a family of orthogonal polynomials, our
algorithm can be viewed as a Fourier-type algorithm d/r A relevant paper for comparison is the work
of Klivans et al. [KOS04], which also learned intersectiarishalfspaces— although with respect to the
uniform distribution ovef —1, 1}"— by showing that these concepts can be approximated we}iover
{-1,1}" by low-degree polynomials.



The Klivans et al. result [KOS04] bounds the Fourier coneditn of a Boolean function (approxima-
bility by low-degree polynomials) in terms of the noise dlisbof that function. They then apply (simple)
bounds on the Boolean noise stability of halfspaces to olteiir main algorithmic results.

Similar to the strategy of Klivans et al., as one part of oanfework here we bound the Hermite
concentration of the characteristic function of a sékfhin terms of that function’s Gaussian noise stability.
In this work, however, we then face a significant stumblingckl we do not know how to directly bound
the Gaussian noise stability of any interesting classeetsf imR™. (In contrast, [KOS04] gives direct
and elementary proofs of upper bounds on the Boolean nabditt of halfspaces and intersections of
halfspaces.) To get around this, we must appeal to deepetimsoin convex geometry to show that the
Gaussian noise stability of a set’s characteristic fumatian in fact be bounded by the set's Gaussian surface
area. Moreover, some of the actual bounds on Gaussian suafaea that we subsequently use are highly
non-trivial (e.g. [Bal93]). While we do not establish deepftinical results in convex geometry in this paper,
we do give the first bounds on Gaussian surface area for siogpleept classes, such as balls, that may
be of independent interest. We also believe that the link stabdish between Gaussian surface area and
learnability will likely lead to further algorithmic leanmg results beyond those presented in this paper.

1.6 Comparison with Previous Work. Let us briefly discuss prior algorithmic results for the sfiec
learning problems we address. We note that learning irdéoss of halfspaces is one of the most well-
studied problems in computational learning theory, see [8gu90a, BK97, KP98, KOS04, KS04, KS06,
VemO04]. In particular, the work of Blum and Kannan [BK97] asubsequently Vempala [VemO04] specifi-
cally addressed the problem of PAC learning an intersectidnhalfspaces to accuraeyunder the uniform
distribution on then-dimensional Euclidean sphere (very similar to the sphé@aussian distribution).
The algorithms of [BK97], [Vem04] are not known to work in thgnostic setting. Kalai et al. [KKMSO05]
gave the first polynomial-time algorithm for agnosticalBaitning a single halfspace with respect to any
Gaussian distribution iR™. We note here that the Kalai et al. result follows easily fraun framework and
the classicaD(1) bound on the Gaussian surface area of a halfspace.

Learning general convex sets is well known to be a broad dfidutti problem, and we are not aware of
any prior positive results for learning arbitrary convetissa R". As far as we can tell, our result is the first
non-trivial algorithm for learning convex sets with resp&tan interesting distribution. Baum [Bau90b]
gave a simple algorithm for learning convex subsets of tliesguiare]0, 1]? under the uniform distribution
based on “gridding”; it is possible to extend this to an aikipon for learning convex subsets [0f 1] under
the uniform distribution, but the resulting algorithm hasming time at leas2™.

It is straightforward to see that arbitrary balls (or evdipsbids) inn dimensions can be PAC learned in
polynomial time. The problem of agnostically learning balowever, is known to be NP-hard if the output
hypothesis must also be a ball (that is, the proper agn@sining problem is NP-hard) [BDELO3, BBO5].
We give the first polynomial-time algorithm for agnostigaléarning balls (of arbitrary radius and center);
our output hypothesis is the sign of a low-degree polynamial

1.7 Organization. In Section 2 we review Fourier and Hermite analysis, legrmrodels, and Gaussian
surface area. In Section 3 we establish a connection bettteanite concentration and Gaussian surface
area. In Section 4, we show how to bound the surface areaiofigaronvex sets and state our new learning
results. In Section 4.5 we extend our results to non-spile@aussians, and state our most general positive
result establishing agnostic learnability of a class otfioms in terms of the surface area of the correspond-
ing sets. In Section 5, we prove our main lower bound whiclwshihat several of our positive results are
essentially optimal. We give results on the Boolean settimyppendix E.

2 Preliminaries



2.1 Gaussian distributions, Hermite analysis, Ornstein-lllenbeck, Perimeter

Gaussian distributions. We will be working with Gaussian probability distributioos R™. For the most
part we will restrict attention to the standaredimensional Gaussian distributioh/(0, 7,,), with mean0
and independent, variandeeoordinates. This has density functign (z) as defined in Section 1.2. As
discussed in Section 4.5, most of our results generalizltitrary n-variate Gaussian distributions, even
with singular covariance matrices. Unless otherwise $igelcithough, all integrals and expectations in this
paper are with respect to the standard distribution, whietalbreviate byv™.

Hermite analysis. We will work within L2(R"™, '), the vector space of all functiorfs: R” — R such
that E[f?] < oco. This is an inner product space under the inner prodfigi) = E, .~ [f(z)g(x)]. This
inner product space has a complete orthonormal basis givérelbiermite polynomialsin the case: = 1,
these are the polynomialg (z) =1, hi(z) =z, ho(z) = ””ffl, hs(z) = m"f“,

For generah, the basis for.?(R™, N™) is formed by all products of these polynomials, one for each
coordinate. l.e., for each-tuple S € N™ we define then-variate Hermite polynomiaHg : R” — R
by Hs(x) = [[;—, hs,(z;); then the collection Hs)senn is a complete orthonormal basis for the inner
product space. All of the “standard” facts of Fourier analy®ld here: every functioif € L? can be

written uniquely asy" gy f(S)Hs(z) and we haveim,_, E [(f(:n) —>251<d f(S)Hs(a:))1 .

(here|S| = >, S; is the total degree offs(x) as a polynomial). Each coefficient(S), is the Fourier
or Hermite coefficient of f and is equal t&,..a~[f(x)Hgs(z)]. We also have Parseval’s and Plancherel’s
identity. For a few more details see Appendix A.

Ornstein-Uhlenbeck. Foreach) < ¢t < oo one can define a (bounded) linear operdtoon L?(R", N'*),
the Ornstein-Uhlenbecloperator. These operators map a functfonR™ — R to another functionP; f :
R™ — Rvia

(Pf)(@) & Bynn [f(e™'x + V1= ey)]
The parameterization here with' is traditionally chosen so that the operators form a semijgrd, o
P, = P, +4,. Since we will not use this property, we prefer to redefine dperators as follows: For

p € [0,1],
def
(T, f)(x) = Bynen[f (pz + /1 = p2y)).
We thus haveP;, = T,-.. Alternately stated], f(z) is the average value gf under the shifted and scaled
Gaussian distributioN (pz, \/1 — p%I,,). The factthafl, is a linear operator —i.€T,,(f+g) = T, f+1,9
— follows immediately from linearity of expectation.

A key property of7, that we will use is how it operates with respect to the Hermiggansion. Specifi-
cally, it can be shown thaf, s = p!°/ Hg, and hence (by linearity)

T,f = Y p¥If(S)Hs. 2)
SeNn

For proofs and more details on Hermite analysis and the @m&thlenbeck operators, the reader may
consult the books of Bakry [Bak94], Janson [Jan97] or Ledanok Talagrand [LT91].

Gaussian surface area. Given a (Borel) sefl C R”, the Gaussiamolumeof K is defined to be simply

vol(K)= Pr [ze K]= E [l,ck]

T~ N T~ N

We will be especially interested in the Gaussian surfaca afeg<, sometimes referred to &aussian
perimeter which was defined in Section 1.2. In this paper we will worklagively with setsk satisfying

5



vol(OK) = 0, wheredK denotes the boundary @. We may then make the convenient assumption that
our setsK are also always closed; this is no restriction sificand K have the same boundary and hence
surface area.

2.2 Learning Models We now describe the framework of agnostically learning astfawith respect to a
fixed distributionD overRR™. In this scenario there is an unknown distributibhoverR™ x {—1, 1} whose

marginal distribution oveR" is D. Letopt def inf rec Pr(y )~ [f(z) # y]; i.€. opt is the minimum error
of any function fromC in predicting the labelg. The learner must output a hypothesis whose error is within
€ of opt:

Definition 7. LetD’ be an arbitrary distribution orR™ x {—1,1} whose marginal oveR" is D, and let
C be a class of Boolean functions: R" — {—1,1}. We say that algorithnB is an agnostic learning
algorithm forC with respect tdD if the following holds: for anyD’ as described above, B is given access
to a set of labeled examplés, y) drawn fromD’, then with probability at least — § algorithm B outputs
a hypothesig : R" — {1, 1} such thatPr(, ). [h(z) # y| < opt + €.

Agnostic learning is a challenging model for which, untiteetly, few nontrivial learning algorithms
were known. Intuitively one can think of the unknown distion D’ over labeled examples as corre-
sponding to an unknown functigh € C whose outputs are adversarially corrupted with overalbability
opt.

The usual (noise-free) model of PAC learning with respeet tlistributionD is the special case of the
above definition in which we require thapt = 0, i.e. there is an unknown target functigne C such that
all examples are labeled accordingjto

Agnostic Learning via Hermite Concentration. Here we explain how to learn concept classes that can
be approximated well by low-degree polynomials.

Definition 8. Leta(e, n) be a functionw : (0,1/2) x N — N. We say that a class of functio@sover R™
has aHermite concentration bounof a(e,n) if, forall n > 1,all 0 < € < %, and all f € C we have

27
> i83a(en) F(9)? < e
Our main tool for agnostic learning undaf” is the L; polynomial regression algorithm of Kalai et
al. [KKMSO05]. To agnostically learn a concept cl@ssheir algorithm approximately minimizdsy,, ... p [|[p(z)—
y|] over all multivariate polynomialg of degreed and outputs a thresholded polynomial as its hypothesis.
The algorithm runs in time©(4) whered is chosen according to the Hermite concentration of the goinc
classC:

Theorem 9([KKMSO05]). LetC be a class of functions ov&™ with Hermite concentration bound(e, n).
TheL; polynomial regression algorithm is an agnostic learningaithm forC with respect toV™. It runs
in time poly (n*(<*/2™) L 1og 1) to learn to accuracy with confidence — 4.

PAC Learning via Hermite Concentration. The following theorem is implicit in [KKMSO05]:

Theorem 10. LetC be a class oft1-valued functions oveR™ with Hermite concentration bound(e, n).
Then there exists an algorithm for learnidgyiven data labeled according thand drawn from the standard
Gaussian distributionV™ onR™ that runs in timepoly (n®(</27), L log 1) and outputs, with probability at
leastl — 4, a polynomialp of degree at most(e/2,n) such thatPr,.an[sgn(p(z)) # f(z)] <e.

The algorithm of this theorem perfornis, polynomial regression, i.e. it approximately minimizes
Eq y~pl(p(z)— y)?] over all multivariate polynomialg of degreel and outputs a thresholded polynomial
as its hypothesis.

To summarize, a concept claSsan be both PAC and agnostically learned in time exponeintitiie
Hermite concentration boundse/2,n) anda(e?/2, n) respectively.
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3 Bounding Hermite Concentration in Terms of Surface Area
In this section we give our main connection between Hernoteentration and Surface Area.

Definition 11. We defineS,(f, g) def (f,Tp9) = (T,f,9). In the special cas¢ = g we writeS,(f) def

(f,T,f)and call this the “noise stability of at p.”

It is easy to check that the above definition is symmetri¢ andg; i.e.,S,(f,g) = S,(g, f). Further,
by combining (2) with Plancherel’s identity, we have

Sp(fr9) =D p*1F(9)4(9). (3)

SeNn

We are particularly interested in functions which are iatlics of setd<’ C R"; as is usual in learning
theory, we uset1 indicators. For notational simplicity, we identify a setthwits indicator; i.e.,

K(z) def | +1 if x € K, the “positive region”,
xTr) =
—1 if z € K¢, the “negative region”.

In this case, we define:

Definition 12. GivenK C R", the “noise sensitivity o atd € [0,1]” is

Q.
=

e

NSs(K) =1 - WK, T\_;K) =1 — 1S;_5(K).

By definition of 77 _s, we have that

NS§(K) = 35— 3(K Ti5K)
= 33, B [K@K@),  wherey® (1-5)z+ 25z
= PrK(z) # K(y)]; (4)

)

i.e.,NS;(K) is the probability that two (‘1 — §)-correlated” Gaussians land on opposite “sidesKofFrom

this interpretation, it is intuitive that, at least for sinéd) the quantityNSs(K) should be in some way
comparable to the Gaussian surface are& ofThe critical theorem we need in this regard was proven by
Ledoux [Led94] (who mentioned it was implicitly proven byskir [Pis86]):

Theorem 13(Ledoux-Pisier) Let K C R be a set with smoothboundary, and let > 0. Then

arccos(e™?)
V2T
We now manipulate Theorem 13 slightly to state it in terms ofs@ sensitivity. First, we replace
P, by T} _s and use the fact thatrccos(l — §) < %\/3 Next, we compute easily by linearity that
(1k, Ti—s1lke) = £NSs(K). Putting these together we conclude:

(1k, Plge) < ['(K).

Corollary 14. Let K C R™ be a Borel set, and let > 0. ThenNSs(K) < /73 - I'(K).

A technical remark: We would like to apply Theorem 13 to gaheonvex sets, which need not have smooth boundary.
However the arguments in [BH97, proof of “Theorem 1.1,-b)a)"] straightforwardly imply that Theorem 13 extends tbBxdrel
sets (and hence convex sets) [Led06].



Next, using (3) we have the formulSs(K) = 3 — 1 g (1 — 8)ISIK(S)2. Using this, and
Y5 I?(S)2 = 1 (by Parseval), it is easy to check (see Proposition 16 of [B@)Shat

K 2
SIZ;/& K5y < 1—71/621\185(1")-

Combining this with Corollary 14 we obtain

> K(S)?<5-V5-T(K),

|S|>1/6
and hence we conclude our main Hermite concentration boasedon surface area:

Theorem 15. Let K C R"™ be a Borel set. Then the1 indicator function ofK has Hermite concentration
bounda(e,n) = O(T'(K)?/€?).

4 Gaussian Surface Area Calculations and New Learning Restsl

Theorems 9, 10 and 15 reduce the problem of PAC and agndgtieatning a concept class under the
standard Gaussian distribution to the problem of boundiegsurface area of the corresponding sets. The
specific surface area upper bounds stated in this sectidifferent classes of sets yield a wealth of efficient
learning results for the corresponding function classes.

Up through Section 4.4 we consider only the standard spiegaussian distribution. In Section 4.5 we
show how our learning results for the standard Gaussiarihiisbn extend to arbitrary Gaussian distribu-
tions, and state our most general learning results.

We begin by stating a few basic facts about perimeter andlireg¢he classical example of halfspaces.

4.1 Basic Facts and Examples
Convex sets not containing the origin. In order to upper bound the Gaussian surface area of a convex
set, we can always assume it contains the origin, via theviillg observation (see [Naz03b]):

Fact 16. Supposds< C R" is a convex set not containing the origin. Then it possiblegoslate K in such
a way that (a) the origin is on the boundary &f, and (b) each point on the boundary &f (in fact, each
point in K) moves closer to the origin. Sings,(y) is a decreasing function dfy||, this translation only
increases the surface area Af (see formulga1)).

Intersections, unions, etc.
Fact 17. Given setds;, K, we havel'(K; N K»),['(K; U Ky) < T'(K;) + T'(K>).

This follows from the simple observation that b@ttk; N K3) andd(K; U K,) are subsets a¥ K U
OKs. More generally, givenky,..., K, if K(z) = f(Ki,...,K;) for any Booleanf : {-1,1}} —
{—1,1}, thenT(K) < >'_ T(K;).

Halfspaces. Thisis the main classical example. L§tC R" be a halfspace whose boundary is at distance
t from the origin. By rotational symmetry of the Gaussian ritisttion, we may assume thdt is the
halfspace whose boundafiyK is the planer; = t. This reduces the calculation to a one-dimensional
problem, and we immediately obtal(K) = ¢(¢). In particular,T'(K) < 1/v/27 < O(1) for every
halfspacek’. The well-known “Gaussian isoperimetric inequality” [B&;, ST78] (see also [Bob97]) states
that among all set&” with vol(K) fixed, halfspacesinimizel'(K).

Applying Theorem 15 and Theorem 9 with the above bound on tinlace area of a halfspace, we
immediately obtain one of the main results of Kalai et al. MBO05], namely that a single halfspace can be
agnostically learned with respectA§” in time nO(/<").
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4.2 General Convex SetsBall gave the following fundamental bound on the surfaca afeconvex sets,
solving the “reverse Gaussian isoperimetric inequality”:

Theorem 18. [Bal93] The Gaussian surface area of any convex sé'iris at mostin'/4.

By applying the above bound with Theorem 15 and Theorem 9 wairobur main result for learning
arbitrary convex sets:

Corollary 19. The clas of all convex sets Rt is PAC learnable in time©(™)/<* and agnostically learn-
able in timen®V™/<* under N*. The same bound holds for learning any union(fl) many convex
sets.

As we describe in Section 5, Nazarov [Naz03b] later showatlttie bound in Theorem 18 is tight (up
to a constant factor) by considering the intersection oghbyiexp(/n) randomly chosen halfspaces with
boundary at distance!/* from the origin.

4.3 Intersections ofk halfspaces.In addition to showing that Ball's estimate is tight, Nazaatso gave a
different proof of Ball's upper bound result (with a bettenstant), and in doing so he proved an inequality
that is useful for bounding the Gaussian surface area ofecosw®ts.

To state this bound we introduce some notation from [NazO3&| X' C R™ be a convex set containing
the origin, and ley € 0K. We writev, for the unit normal vector to K aty (which is well-defined except
on a set of(n — 2)-dimensional measur@ We also writea(y) for cos(y - 1), andh(y) for |jy[|a(y); in
other wordsh(y) is the distance from the origin of the tangent {9 hyperplane containing. Nazarov’s
bound is

/aK <m> on(y)do(y) <1—vol(K) < 1. (5)

Recalling thal'(K) = [, ¢n(y) do(y), for convex setdy, this bound implies that there is little contribu-
tion to I'(K') from pointsy where the tangent hyperplane is near to the origin.

This formula is useful for bounding the Gaussian surfaca aféntersections of halfspaces. In particu-
lar, the following bound on the surface area of the intersraif £ halfspaces and proof was communicated
to us by Nazarov [Naz03a]:

Theorem 20.Let K C R™ be an intersection of up tohalfspaces. Theh(K) < v2Ilnk+2 < O(y/log k).

To prove this, one first observes th&t can be assumed to contain the origin. Then one splits up
I(K) = [y ¥n(y)do(y) into the contribution from thosg whereh(y) > v2Ink and thosey where
h(y) < v2Ink. The former parts contribute at mast ¢(v2Ink) < 1. The latter parts contribute at
mostv/21In k + 1, using (5). In particular, Theorem 20 implies that any boyarallelopiped ifR™, in any
orientation, has Gaussian surface area at @¢gtlog ). Ball made a similar observation earlier for boxes.

Applying our machinery relating learning to surface area,abtain

Corollary 21. Any intersection of up tb halfspaces ifiR™ is PAC learnable in time©(og k)/<* and agnos-
tically learnable in timenC(osk)/€* ynder ™.

As noted in the introduction, compared with Vempal@g'¢)°(¥)-time PAC learning algorithm (with
respect to nearly-uniform distributions on the sph&rhjs dependence anis better iflog(1/¢) > logk,
but otherwise our algorithm has a much better dependeneecama works in the agnostic setting.

We can also use Nazarov’s inequality to bound the Gaussi&csuarea of certain cones:

Vempala [Vem97] claims a running time pbly (n)k* (1)* for the algorithm but this was amended(io/c)°* in [Vem04].
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Theorem 22. Let K be a cone with apex at the origin (i.e. an intersection of tébily many halfspaces
all of whose boundaries contain the origin). Th&nhas Gaussian surface area at most 1.

This follows immediately from Equation (5) sincef is a cone as described then we hayg) = 0
for everyy € 0K. As a corollary we have that cones with an apex at the origgnlP&C and agnostically
learnable with respect &" in time n°(1/<) andn®(/<") | respectively.

4.4 Balls. Let B} denote the ball of radiusin R", centered at the origin. Ball [Bal93] gave the formula

n—1

(Br) = W He noted that this is maximized at= \/n — 1 where the surface area is
asymptotic tol //.

It is tempting to believe that the origin-centered ball hasimum surface area for any raditsbut this
is not always true; consider, for example, a ball of radius), wherer(n) grows very rapidly relative to
n. If such a ball is centered at the origin, its surface arebapiproach 0 very rapidly (exponentially fast in
r(n)?). But, if the ball is displaced so that the origin lies on itsface, then the Gaussian surface area will
be nearly that of an origin-centered halfspace, which iscsolate constant/+/27 independent of..

Since Ball's argument uses the radial symmetry of the Ganssid explicitly computes the integral of
the Gaussian density over the surface of the ball, it is redrchow to extend the argument to non-origin
centered balls. In Appendix B we give an alternate proof df8eesult for origin-centered balls that does
not rely on computing surface integrals. Instead, we mazéricorresponding probability density function;
this approach allows us to show that any ball, origin-cesttear not, has surface area at most a constant:

Theorem 23. The Gaussian surface area of any ballRf is at mostl.
Applying Theorem 15 and Theorem 9 we have the following dargi

Corollary 24. The class of balls ifR" is agnostically learnable in time®(/<") with respect to\V™.
Again we remark that the same time bound holds even for ubasonstant number of balls.

4.5 Learning under Arbitrary Gaussian Distributions. We can show that (almost all of) our learning
results extend to arbitrary Gaussian distributions. Theaments of this section, together with Theorems 15,
10, and 9, give Theorem 25, our most general learning result:

Theorem 25. Let C be a class of Borel sets IR", each of which has Gaussian surface area at most
Assume thaf is closed with respect to affine transformations. Taa PAC learnable to accuracywith
respect to any Gaussian distribution &% (with nonsingular covariance matdx in time nO*/<*) and
agnostically learnable in tima©(s*/¢").

Due to space considerations we defer this section to Appendi

5 Lower Bounds for Learning under Gaussian Distributions

In this section we prove a sample complexity lower bound éarming intersections & halfspaces under
the standard:-dimensional Gaussian distributioxi™ (recall that by Theorem 20, any such intersection of
2! halfspaces has Gaussian surface &éd?)).

Theorem 26. There is a fixed constaag > 0 such that the following holds:

Let/ = ¢(n) be such thatog n < ¢ < n'/2¢2. Let’H, be the class of all intersections 2(*) halfspaces
overR". Let A be any algorithm which learn®(, to confidence = 1/2 and accuracy, with respect to
N ThenA must use?®) examples. This lower bound holds even for algorithms whiaf make black-
box queries to the target functiohand suffer no noise.

3As discusssed in Section 4.5, if the clasis closed under intersections with lower-dimensional pabss then we can drop
the requirement that the covariance matrix be nonsingular.
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Discussion. This theorem implies that for a wide range of parametersatgorithm of Corollary 21,
which can learn intersections 2f halfspaces to constant accurady time n©¢/ <) is essentially optimal
in its dependence on the number of halfspaces. The theoraitardy implies that our positive results
for learning general convex sets and learning sets with éedisaussian surface area are also essentially
optimal. We remind the reader that while the lower bound $i@den for learning under the standard
Gaussian distribution with membership queries, our pasitesults for these classes all hold for learning
from random examples generated from any Gaussian distnihwiithout using queries.

We briefly sketch the approach. Given two functiofyg : R" — {0,1} we write d(f, g) to denote
Pryx.a»[f(X) # g(X)]; we extend the notion to subsets B of R", writing d(A, B) = d(14,15). We
prove Theorem 26 by establishing the following:

Theorem 27. Let/, ¢g be as in Theorem 26. There exists aGet= {f1,..., fm} of M = 922 many
functionsf; € H, such that for anyl <i < j < M, we havel(f;, f;) > 2¢.

By results of Benedek and Itai [BI88], this implies that argaaithm (even allowing membership
queries) for learning the clag under distribution\/” with confidence parametér= 1/2 and accuracy
parametek, must have sample complexity at le&st M/ = 2249 To prove Theorem 26 it thus suffices to
prove Theorem 27.

We prove Theorem 27 using the probabilistic method. The idda consider an intersection ¥
halfspaces (we specifyy later) in which each halfspace is chosen uniformly at ranétmm all halfspaces
tangent to an origin-centered ball of a certain radius, eh@® that the resulting convex body is likely to have
Gaussian volume bounded away from 0 and 1 by a con$taising the “method of bounded differences”
we show that that two convex bodies that are independentigrgéed in this way are extremely likely to be
far from each other; together with a union bound, this giviesdrem 27. The proof is given in Appendix D.
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A Review of Hermite Analysis

We will work within L2?(R™, ™), the vector space of all functiorfs: R” — R such thatE[f?] < co. This
is an inner product space under the inner product

(f.9) = B, @)

This inner product space has a complete orthonormal basia gy theHermite polynomials In the case
n = 1, this basis is the sequence of polynomials

z?2—1 x® — 3z
ho(x) =1, hi(x) =2z, ho(x)=———, hzx)= ,
o(z) 1(x) 2(2) 7 3(2) 7
There are several equivalent ways to define this sequence:
RO
exp(Ax — \°/2) =: —=h;(z);
=
(y! @
hi(z) = ————  ——(2);
J(:L') \/agp(x) dxj(p(l')’
LS SV | N v/ S SR/
@) = o T Gt T Gy’ G_enp” Tt

For generaln, the basis forL?(R™, N™) is formed by all products of these polynomials, one for each
coordinate. l.e., for each-tuple S € N™ we define then-variate Hermite polynomialg : R® — R by

n

Hs(x) = [] hs, (22);

1=1

then the collectiof Hs)senr is @ complete orthonormal basis for the inner product spgerthonormal

we mean that
1 ifS=T,

(Hs, Hr) = {o if S 4T,

By complete, we mean that every functigre L2 can be uniquely expressed as

where the coefficientsg are real numbers and the infinite sum converges in the seatse th

2
Jim E (f(x) -y CSHs(x)) ] =0;

|S|<d
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here we have used the notation .
‘S‘ = Z Si7
=1
which is also the total degree éfs(x) as a polynomial.

Given f, instead ot:g, we will write f(S), and call this thes' Hermite coefficient of . By orthonormal-
ity of the basig Hg)senn, We have the following:

f(8) = (f, Hs) = E[f(2) Hs());

1712 ¢, 1) = > f(S)*  (“Parseval’s identity”)

SeNn

(f.9)=>_ f(9)a(S)  (“Plancherels identity")

SeNn

In particular, if f : R — {—1,1}, then" f(5)2 = 1 (when no range for a sum ovéris specified, we
assumeN™).

B Bounding the Gaussian surface area of an arbitrary ball

Our approach to bounding the Gaussian surface area of asbal analyzing an appropriate probability
density function.
Recall thechi-square distribution witlt degrees of freedom

k
2 2
Xk = Z X;
i=1

where eachX; is a random variable distributed according\fq0, 1). Notice that for an origin-centered ball
K of radiusr, the Gaussian volume df is equal to

Pr[x2 < 7).

Since they-neighborhood of a ball of radiusis a ball of radius- + §, by the definition of Gaussian surface
area we have that the Gaussian surface area of a ball of raiexjual to

i PTG < (r +6)%) = Prix <r?]

6—0 1)
Consequently, differentiating the cdf and applying theithale, we have that the Gaussian surface area of
an origin-centered ball is equal 20 - f,,(r?) wheref, is the pdf ofy2. It is well known [Fel68] that the pdf
of x2 is given by

xn/2—1
fu(z) = P(n/2)2n/2ex/2'
It is straightforward to verify tha?r - f,,(r?) agrees with Ball's formula for the surface area of an origin-
centered ball of radius.
To bound the surface area of non-origin-centered balls, Weneed to consider th@on-central chi-
square distribution
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Definition 28. We say that), ) is a non-central chi-square distribution with degrees of freedom and
non-centrality parameteh if Q(, ) = >_iL; Y;? where eacl; is an independent/(a;, 1) Gaussian and

/\22?:1‘1@2-

To compute the surface area of a ball, we can first assumeuwtiibes of generality (due to the rotational
symmetry of the Gaussian) that the ball is centered ontheis. Next we observe that the Gaussian volume
of a ball of radius- centered at distanaéfrom the origin is given by

Pr[Q(n,dQ) < 7"2].

Let g(,,,42) denote the pdf of the random varialglg,, ;2. Although there is no simple closed form for
9(n,q2), Patnaik [Pat49] has observed that

oo 1 1
I\ = Z 2% exp(—A/2) fnt2; (6)
j=0
where eacly,,o; is the pdf ofy? 424+ This means that the non-central chi-square distributoa convex
combination of standard chi-square distributions, siteeweights in the above formula are exactly the
probabilities of a Poisson distribution with expected ealy2.

We can now bound the surface area of a non-origin-centerkdsimllows. From the above discussion
it suffices to show that for anythe quantity2r - g(n,dz)(rz) is at mostl. From Equation (6), we see that the
function2r - g(n7d2)(7“2) is a convex combination of functions of the foém- f;(r?) across different values
of j. Itis not difficult to verify that that for allj, the value ofr - f;(r?) is always at most 1 (recall that for
a givenj the maximum is at = /7 — 1). Thus,2r - 9(n7d2)(7“2) is at mostl as well.

C Learning with Respect to Arbitrary Gaussians

Here we sketch how (almost all of) our learning results caextended to arbitrary Gaussian distributions.

Recall that an arbitrary Gaussian distributibroverR™ can be generated by first drawimg~ A" and
then outputting: + Bz, wherey is a fixed vector (the mean @) and B is a fixed square matrix, possibly
not of full rank (the matrix square-root of the covariancetnm@ Let 1" denote the affine transformation
T +— i+ Bz.

Let us assume for a moment that the mafsixas full rank so thal” is invertible. Given a sek’ C R™,
let K’ denote the sef' ' K. Now if there is a polynomiap’ overR"™ with degree at most satisfying

B 0/@) - K@) < e

(again we identifyK’ with its &1 indicator function), then we immediately have

BTy - Kl <e

But7~! is an affine transformation, go= p’ o T~ also has degree at mastin other words, the existence
of a good approximating polynomial for K’ implies the existence of a good approximating polynomial
for K. It follows that our learning algorithms in Section 2.2 wilbrk at least as well when run as under
D as they do when run oR” underN™. (Note that we do not have to assume the learning algorithowgn
the parameters of the Gaussian distributloyit always runs the same polynomial regression algorithm.)

In the case whe® is not invertible, the distributio® is equivalent to a nonsingular Gaussian distribu-
tion £ supported on an affine subspake It is easy to see that the above argument lets us derive x@ppro
mating polynomials folk’ underD that are at least as good as approximating polynomial&forH under
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& (which in turn are at least as good as approximating polyatmior some affine transformation 8fN H
underAN™ for m = dim(H)).

We now observe that many classésf subsets olR™ that we have considered for learning are closed
under taking affine transformations and intersections affine subspaces. For instance, the class of convex
sets has this property, as does the class of intersectionfafspaces. Thus our learning results for these
classes immediately extend to all Gaussian distributiQues are closed under linear transformations and
intersections with subspaces, and thus our learning sefarlcones extend to all Gaussian distributions so
long as the cones have their apex at the Gaussian’'s mean.

Unfortunately, the class of balls is not closed under lintesmsformations. We strongly believe that all
ellipsoids inR™ have Gaussian surface ar@4l); however we have not yet proved this. If this holds then
our learning results for balls would also generalize to @u€sian distributions.

D Proof of Theorem 27

Let us state Theorem 27 a bit more precisely, revealing thadbone:

Theorem 27.Fix ¢ to be any constant between 0 aht4000. Let? be as in Theorem 26. There exists a
setC, = {f1,...,fm}of M = 927 many functions; € H, such that for anyl <i < j < M, we have

d(fi, fj) > 2eo. (27)

Let Z1, Z2,... be independent uniformly distributed random vectors drém the unit ballS™—! =
{z € R*: ||z]| = 1}. Letp = ¢'/2/¢;; observe that by the assumptions 6m we havep < n'/%. Let
A(Z',...,Z"N) denote the intersection of halfspaces

AZY .z eR i Zi < pforalli=1,...,N}

(we will specify N soon). Theorem 27 is proved by showing tha{#"'}, ;< 1<:<n are M N inde-
pendent uniform random unit vectors as described above, hh nonzero probability, for every <
i < j < M the functionsf; and f; satisfy (27), wheref;(x) is defined to be the indicator function of
A(ZbY ..., Z%N). We do this by showing that for each pdir j) the functionsf;, f; satisfy (27) with
probability at least — 1/M?2. Since there are fewer thavi? distinct pairs, a union bound then gives The-
orem 27.

Soletf; be the indicator function ol (Z%!,. .. Z1¥) andf, be the indicator function ol (221, ..., Z%V)
forrandomz'1, ... Z%" as described above. The key to showing fhaind f, are w.v.h.p. at leafk,-far
apart is the following lemma showing that teepectedlistance betweefy, and fs is large (the expectation

is taken over the random choice 8t1, ..., Z>):
Lemma 29. E[d(f1, f2)] > Traq5-

We will prove this lemma later. Now we show how this lower bdwm expectation may be combined
with the “method of bounded differences” to show thigif;, f2) < 2¢y holds with probability at most
1/M?. Recall McDiarmid’s inequality:

McDiarmid bound [McD89]: Let X;,...X,, be independent random variables taking values in &Xxet
Let F': Q™ — R be such that for alf € [m] we have

|F(x1,. . 2m) — F(21, . @1, T i1y )| < ¢

forall zy,...,z, andz} in Q. Lety = E[F(Xy,...,X,,)]. Then forallr > 0,

-2
Pr[F(X1,...,Xm) <p—7] <exp (—W> .
i=1Ci
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We let the2N independent random uniform vectofs-!, ..., Z%" play the role ofXy,...,X,, in
McDiarmid’s bound, and we let the functiai{ f1, f2) play the role of F(X,..., X,,). Given any fixed
setting ofZ1, ..., Z>V | the change in magnitude if{ f1, f») that results from replacing sonig-* by any
other unit vectoZ’ € S”~! is at most

Prynn[X -u' > p] + Pryoam([X -u? > p] = 2Pry, no1)[X1 > g (7)
20(p)/p =2/ p e/ ®)

In (7) the vectors.! andu? are arbitrary fixed unit vectors, and the equality holds leysipherical symmetry
of N™*. The bound (8) follows from the standard bound®(t) < ¢(t)/t, which holds fort > 0 where®(t)
is the c.d.f. andy(t) = \/_ exp(—t2/2) is the p.d.f. ofN (0, 1). We thus may take eaeh in McDiarmid’s

bound to be the bound (8) above. The m&dd( f;, fg)] is at Ieastn(l]OO by Lemma 29. As we show in (16)
below, we haveN < 12(n'/2/p)e?*/2. TakingT = 5555 in McDiarmid’s bound, we thus have

IN

Pr(d(fi1, f2) <2¢) < Prld(fi, f2) < =m=]

22000

= exp

< —(1/22000)
24 n1/2/p eP*12 . (/2] p=1 - e=P?/2)2
ooy i o .

We define) to be such that /A2 %' (9). Sincep? = /e > 2logn by our assumptions ofiandp,
we have that9) < exp(—29(P2)), and hencel/ = 22" _ It remains only to prove Lemma 29.

D.1 Proof of Lemma 29 First some notation. We writd! to denoted(Z%!, ..., Z"") and A% to denote
A(Z*Y, ..., Z%N). Recall thatp,, (z) denotes the density function of the standardimensional Gaussian
distribution. Let us write Z ~ S” to indicate that” is a random unit vector distributed uniformly over the
unit ball S*~! in R”™. Givenz € R™, let us writeb(x) to denote

b(x) d:efPrZNg[a: -Z < pl.

Let a,,_; denote the surface area of the unit sphgte’. It is well known thata,,_3/a,_1 = ©(n'/?);
for conciseness we writg, to denotea,, »/a,,_1. Forn > 3, for any fixed unit vector € S"~!, we have

B

<\/ 1-— z2>n ’ dz.

PrZNS[agu'Zgﬂ]:rn/

«

Let us writecap(t) to denote the fractional surface area of the spherical®¢apg N {z : z; > t}:

cap(t) B Prys[Z1 > ] = 1 /t 1 <\/1 - z2)"_3 dz. (10)

Consequently for ald # = € R", we have

1

B

b(z) =1-Prz.s [H ” -Z > m] =1—cap(p/|z])=1—-mry /f” (\/ 1-— 22)n_3 dz.  (11)
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Now we turn to the proof of Lemma 29. We have the following @ipectations are taken over the
random choice o1, ... Z2N):

EPrx[fi(X) # fo(X)]] = 2E[Prx.yn[X € (A"\ 4?)]

= E |:/ 1IE(A1\A2)(,DH(I')CZI'
zeR™

(Fubini)

/ E[lme(Al\AQ)](Pn(w)dw
z€R™

= / Pr(z € AY(1 — Pr[z € A%))p,(z)dx (12)
TzeR™
- / . B@)" (1= (@) V)en(@)da 13)

Here equations (12) and (13) are by the independence of tidemaly chosen vectorg!, ... 22N We
shall prove Lemma 29 by showing that

b(z)N (1 - b(z))N > 0.0002244 for all z € R™ such that|z|| € [v/n, v/ + 1]. (14)

For X ~ N, the random variablég X ||? is distributed according to a chi-squared distributigh which
has meam and varianc&n. The Central Limit Theorem implies that as— oo, the random variable
(]| X112 —n)/(v/2n) converges to the standard normal distributh(0, 1). SinceN (0, 1) assigns probability
~ 0.421 to the interval0, /2], it follows that forn sufficiently large we have

Pry v« [| X2 € [n,n+2v/n + 1]] > 0.42

which, together with (14), shows thB{d( f1, f2)] > 0.0002244-0.42 > 0.000094 > 1255 and proves Lemma 29.

Now we prove (14). Let

def 1
N = v (13)

We pause at this point to observe that using the easy beund) < e~"t/2 \we haveN > ¢#”/2. In fact,
as we now showV is not much larger than this value. We have

cap(p/y/n) = rn-/pl (\/1 —22>n_3d2

e
p/(vn—1) n—3
> rn-/ (\/1—732) dz
p/vn
p p p 2\
> rn-A-B,WhereA:\/ﬁ_l—ﬁandB:<1—<ﬁ_l>) .

Known bounds give-,, > %ﬁ; an easy computation shows th&t> p/n; and some routine asymptotic
analysis (using the bour{d — 1/m)™ > exp(—1— %) together with the fact that < n!/4) gives thatB >
%e‘fﬂ/z. (Allthese inequalities are for sufficiently large.) We thus havep(p/y/n) > 1—12'(p/\/ﬁ)'e‘f’2/2,
which implies

N <12- (Va/p) - e/, (16)

(Note that with this upper bound oV, we are indeed considering intersections26f” halfspaces as
claimed in the statement of Theorem 26.) Finally, we assurhe.g. in the sequel that the valié defined
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by (15) is an integer; the reader can check that there is atieglack in the bounds to handle roundiNg
to the nearest integer.

With (15) as our choice alV, for any||z| = /n we haveb(z)" = (1 —1/N)" < e~!. Sinceb(z) is a
decreasing function dfz||, we haveb(z)"N < e~! for all ||z|| € [v/n, /7 + 1]. We will show below that

for all ||z|| € [v/n, v/n + 1], we haveb(z)Y > 0.0002245. 17)
(Note that for||z| = v/n, we actually havé(z)" ~ e~1.) Given this, we have
forall ||z| € [v/n,vn 4+ 1], b(z)N (1 —b(z)™) > 0.0002245 - (1 — .0002245) > .0002244.

Sinceb(z) is decreasing iz, to prove (17) it is enough to give a lower boundgn’) for ||2/|| =
v/n + 1. We will show that

p 8.4

This gives

b(a')N = <1 — cap (\/ﬁi 1>>N > (1—8.4/N)N > 0.0002245

as desired (the last inequality holds f§rsufficiently large). Now we prove (18). First recall that

1
S _ 2\(n=3)/2
cap <\/ﬁ+1> rn/p(l z%) dz

— o [ (= 22z 4 cap(p/ V)

_P_
= rn/ﬁ (1 —zz)("_g)/zdz—l—i. (19)
P N

Now observe that

v 2\ (n—3)/2
N RN (S ) e p Y
|0, (1 <\/ﬁ+1>> (F-vn) @

Ve

Using Taylor series expansion one can verify thatfet p < n'/4, we have

(n=3)/
(-=))"
)

(the inequality is an equality fgr = n'/4) and consequently

p 2\ (n—3)/2 ) 9\ (n—3)/2
(- (o)) e (- () o

for n sufficiently large. Moreover we trivially have

<e? <1739
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p p

p p
S < -
VA V1S Va-1 ym (22)
Combining (21) and (22), we have that
o N\ p p
20) < rp-T4-[1- : _ 2
= et ( <\/ﬁ—1>> (i)
P
< 7.4.74”/\/51(1 _ 22)(n—3)/2dz
ﬁ
! 2\ (n—3)/2 7.4
< T4d-ry | (1-2°) dz =T.4-cap(p/v/n) = N (23)
P
v

Combining (19), (20) and (23) we obtain (18). This concluties proof of Lemma 29 and hence of
Theorem 27, and so our sample complexity bound, Theorens 28oved.

E Boolean surface area

E.1 Motivation Given the very useful connection between noise sensitanty surface area in Gaussian
space, Corollary 14, it is natural to wonder if there is a Emconnection in the setting of the Boolean
cube under the uniform distribution. In some senses theafagel, 1} is ageneralizatiorof the case of
(R™, N'™): this is because we can simulate a Gaussian random variébl®wolean ones:

Z?ll i ~N
vm
when the stringc € {—1,1}" is drawn from the uniform distribution. There is a long higtof proving
results in Gaussian space by first deriving them in the Bootease and then making a limiting argument;
notable examples of this include Gross’s work on the lobarit Sobolev and hypercontractive inequali-
ties [Gro75] and Bobkov’s proof of the Gaussian isoperimeatrequality [Bob97].

The notions of noise stability and sensitivity for Booleamdtionsf : {—1,1}" — R are well-known
[BKS99]. In place of the Ornstein-Uhlenbeck operator weehtheBonami-Beckneoperator, also denoted
T,, acting as

(1) (x) = E [f(y)];

Y~pT
herey ~, = means thay is chosen by keeping each bit:ofixed with probabilityp and randomizing it with
probability 1 — p, independently across coordinates. The noise stabildysansitivity of f are now defined
by formally repeating the definitions in the Gaussian case dnalogous expression to (2) fgyf in terms
of f's Fourier (Walsh) coefficients continues to hold. As a resuk have the same relationship between
low-degree Fourier concentration, noise sensitivity, i@agning as in Section 2.2; see [KOS04, KKMSO05].

Unfortunately for learning purposes, it is somewhat diffi¢o prove noise sensitivity upper bounds for
natural classes of Boolean functions. The work [KOS04Eckbn a clever theorem of Peres [Per04] which
states thaNSs(f) < O(+/9) for any Boolean halfspacg. This immediately implies that an intersection
of k halfspaces has noise sensitivity at mbstO(+/d). [KOS04] conjectured that in fact the much better
upper bound of/Tog & - O(+/9) should hold. We now know, via Corollary 14 and Nazarov’s Treeo 20,
that the conjecture holds in Gaussian space. This providagfisant motivation for seeking a connection
between noise sensitivity and “surface area” in the Boossting. In fact, we find the desired connection;
unfortunately, it does not prove to be quite as useful asdhope
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E.2 Overview of Boolean surface arealhere is a likely candidate for the proper analogue of “sigrfa
area” in the Boolean setting. The proof of Theorem 13 ufé€ f| as a surrogate for surface area (cf.
the discussion after its statement), and there is a wellvknuotion of “gradient” in the Boolean cube (see
e.g. [Bob97]): forf : {—1,1}" — R, this is:

Vf(z) = (D1f(z),...,Dnf(n)),
whereD; is the “ith discrete derivative operator”, defined by

f@l=Y) - fat="Y)
2 Y

Dif(z) =

with (=Y denoting the string: with its ith coordinate changed o Note that whenf : {-1,1}" —
{_17 1}’

1 if fis“sensitive” to theith coordinate of,
(Dif(2))? = { /
0 else

and hence the “length of the gradient” is

n

IVf(@)| = | > _(Dif(x))? = \/# of sensitive coordinates fgfonz.
=1

Thus the following definition is natural:

Definition 30. The “Boolean surface area” of a functiofi: {—1,1}" — {—1, 1} is defined to be

I'(f) = E[|Vf|] = E[\/# of sensitive coordinates fgron z].
Here and throughout this sectid]-| is with respect to the uniform probability distribution ¢a1,1}".

The Boolean surface area appears to have been first intrdumcestudied by Talagrand [Tal93]. (Ac-
tually, Talagrand studied a variant,

E}[\/lf(x):l - # of sensitive coordinates fgron z],

which is slightly different forf with | E[f]| very close tol.) He connected it to various topics, includ-
ing discrete isoperimetry, logarithmic Sobolev equatigmsrcolation, and Banach space inequalities. It
was also used by Bobkov [Bob97] in his proof of the Gaussiapggmetric inequality and by Tillich and
Zémor [TZ00] in the context of coding theory.

One basic fact about Boolean surface area is the following:

L(f) = EVIVFP? < VE[VF? = VI(f),

wherel(f) = ¢ 1S|£(S)? is the “total influence” off. For f : {—1,1}* — {—1,1} this is also called the
“average sensitivity” off, since

I(f) = E[# of sensitive coordinates fgron z|.

In this case we also write

Inf;(f) = Pr[f is sensitive to théth coordinate ofz],
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for the “influence” of theith coordinate oryf, and we havéd(f) = ), Inf;(f). For monotone functions,

Infi(f) = f(i).

It is well-known thatl(f) < O(y/n) wheneverf is a monotone Boolean function, and thogf) <
O(n'/*) for monotonef. This seems to be the analogue of Ball's upper bound for Gaussirface area
of convex sets. As further evidence, Talagrand [Tal96] leitkil a monotone Boolean functigh with
I'(f) > Q(n1/4), and his construction strongly prefigures the lower boundaxarov: it can be viewed as
the intersection 02°(v™) random disjunctions. As more evidence that we are on the tigbk, the two
Boolean halfspaces which are arguably most natural — naBiehator (f (x) = x;) and Majority — both
haveO(1) Boolean surface area, just as in the Gaussian case. In iaarase, this bound holds because
a©(1/y/n) fraction of inputs have sensitivity /2 and the remaining inputs have sensitivity 0. (Bobkov,
Gotze, and Houdré [SBHO1] generalized this to arbitrgmmetric threshold functions.)

E.3 The Boolean version of Corollary 141In this section we provide the Boolean analogue of Corol-
lary 14:

Theorem 31. Forany f : {—1,1}" — {—1,1}and any0 < § < 1,
NS;(f) < V3 -T(f).
The result relies on the following theorem of Bobkov and 2edBG99]:

Theorem 32. Let (€2, u;) be probability spaces, = 1...n, and write (€2, 1) for the product probability
space. Assuming : Q@ — [0, 1] is measurable, we have

UELS) <E [ U2 +2VfI2]. (24)
H M
HereU is the Gaussian isoperimetric function, and

o def

IVFI7 = Vary, [f].
i=1

We now prove Theorem 31.:

Proof. Consider the Bobkov-Gotze inequality (24) in the spedalecthatf’s range is{0, 1}; sinceU (0) =
U(1) = 0, this eliminates thé/(f)? in the right-hand side of (24). We will also eliminate theon the
left-hand side of (24) by using the elementary inequality

Ut) = V2/n(3 - 2(3 - t)?).
Thus forf : @ — {0, 1} we have
V2/r(3 -2 -BUD) <EV2IVALL = 326G -EU) < VRE(IVAL)  (29)

Suppose we fix an € {—1,1}" and ap € [0,1]. We defineQ; = {—1,1} andy; to be the biased

measure which gives probabilify+ 3 to z; and probability — £ p to —x;. Note that with this choice one

2 2
can easily check thd,[f] = (T, f)(z) and that

Var,, [f(y)] = (1 — p?) - (Di f(y))*.
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Hence

IVFW)l2 = ZVarm = (1-p) VI

where on the right side we have the usual, uniform-distidoutiiscrete gradient ofi—1, 1}™. Substituting

into (25) we get
32— (T, 2 <VEV1 = ATV
We now revertf’s range to{ —1, 1}, replacmgf by 5+ §f in the above. This ylelds

L LT, f)()? < V1= pH TV A

Finally, if we take the expectation of this inequality ovarraform choice ofr € {—1,1}", we get precisely

NS_p2(f) < ¥V/1 - 2BV S|
Settingp? = 1 — § completes the proof. O

By the Fourier concentration method, we now conclude thatmain Theorem 5 holds in the Boolean
setting:

Theorem 33. Let C denote the class of all Boolean functiofis: {—1,1}" — {—1,1} with T'(f) < s.
Then under the uniform distributiod, is PAC learnable to accuracy in time nO*/<*) and agnostically
learnable in timenO(s*/<"),

We recall that Bshouty and Tamon [BT96] showed that any Baoleinction f has Fourier concen-
tration I(f) /e, and hence can be learned under the uniform distributioirrie £'(/)/¢. Our bound is an
improvement on theirs in so far &% f)? < I(f) for every Boolean functiorf (and the difference can be
substantial, as for the Majority function which has= O(1) andI = ©(y/n)); however our bound has an
additional factor ofl /¢ in the exponent.

E.4 Boolean surface area of halfspace$hus far it seems the Boolean theory is matching the Gaussian
theory perfectly. Since halfspaces have Gaussian surfaea(d1) it is natural to expect that the same
bound holds for Boolean surface area; this would allow usetmver the results of [KOS04]. Bobkov,
Gotze, and Houdré [SBHO1] considered this statementdmmteented that they did not know how to prove

it.

Surprisingly, the statement turns out to be false. The coamswer for the maximum Boolean surface
area of anyr-variable halfspace i®(1/log n), and the halfspace that achieves the maximum — essentially
sgn(3>_ x;/+/i) — is an unusual example.

Theorem 34.

1. Every Boolean halfspac(x) = sgn(}_, a;z; — 0) satisfied'(f) < O(y/logn).
2. Letn; denote/j +1 — /4, son; ~ ﬁ Then for evem, the Boolean halfspacg (z) =
sgn (D i, 1pij2) i) satisfies(f) > Q(v/logn).

We expect that the slightly simpler halfspagen(>_ z;/1/i) also has Boolean surface area at least
©(y/logn), but we have not verified this. Since Theorem 34 is somewhaetatial to our main concerns
in this paper, we defer its proof to the full version.
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We conclude this section by commenting that although we baleI'(f) < O(y/logn) for Boolean
halfspaces, the approach of bounding noise sensitivityusfase area may still prove useful for learn-
ing. It may possibly be easier to prove that the intersectibi: Boolean halfspaces has surface area

O(y/Tog k+/Tog n) than to prove the conjectured(./Tog k+v/8) bound on noise sensitivity. If this surface
area bound could be established it would yieldrétiloe ¥logn/<*) time learning algorithm, which would

still be quite strong.
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