

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 37, No. 3, pp. 827–844

LEARNING MONOTONE DECISION TREES IN
POLYNOMIAL TIME∗

RYAN O’DONNELL† AND ROCCO A. SERVEDIO‡

Abstract. We give an algorithm that learns any monotone Boolean function f : {−1, 1}n →
{−1, 1} to any constant accuracy, under the uniform distribution, in time polynomial in n and in
the decision tree size of f. This is the first algorithm that can learn arbitrary monotone Boolean
functions to high accuracy, using random examples only, in time polynomial in a reasonable measure
of the complexity of f. A key ingredient of the result is a new bound showing that the average sensi-
tivity of any monotone function computed by a decision tree of size s must be at most

√
log s. This

bound has proved to be of independent utility in the study of decision tree complexity [O. Schramm,
R. O’Donnell, M. Saks, and R. Servedio, Every decision tree has an influential variable, in Proceed-
ings of the 46th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Los Alamitos, CA, 2005, pp. 31–39]. We generalize the basic inequality and learning re-
sult described above in various ways—specifically, to partition size (a stronger complexity measure
than decision tree size), p-biased measures over the Boolean cube (rather than just the uniform
distribution), and real-valued (rather than just Boolean-valued) functions.

Key words. learning, monotone, decision trees

AMS subject classifications. 42A16, 68Q25, 68T05

DOI. 10.1137/060669309

1. Introduction.

1.1. Computationally efficient learning from random examples. In the
two decades since Valiant introduced the probably approximately correct (PAC) learn-
ing model [31], a major goal in computational learning theory has been the design
of computationally efficient algorithms for learning Boolean functions from random
examples. The original distribution-free PAC learning model of Valiant required that
for any distribution D over the domain of examples (which throughout this paper is
{−1, 1}n), the learning algorithm must with high probability succeed in generating
a hypothesis for the unknown target function which is highly accurate relative to D.
Despite much effort over a twenty year span, very few efficient learning algorithms
have been obtained in this demanding model. Thus the focus of much work has shifted
to the natural uniform distribution PAC learning model, in which the examples used
for learning are uniformly distributed over {−1, 1}n (we give a precise definition of
this learning model in section 2).

An easy information-theoretic argument shows that no poly(n)-time algorithm
can learn arbitrary Boolean functions f : {−1, 1}n → {−1, 1} to accuracy nonnegli-
gibly better than 1/2. Consequently, the most ambitious conceivable goal in uniform

∗Received by the editors September 7, 2006; accepted for publication (in revised form) January
22, 2007; published electronically July 27, 2007.

http://www.siam.org/journals/sicomp/37-3/66930.html
†Theory Group, Microsoft Research, Redmond, WA 98052. Current address: Department of

Computer Science, Carnegie Mellon Univeristy, Pittsburgh, PA 15213 (odonnell@microsoft.com,
odonnell@cs.cmu.edu). Some of this work was done while this author was at the Institute for Ad-
vanced Study, supported by the National Science Foundation under agreement CCR-0324906. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

‡Department of Computer Science, Columbia University, New York, NY 10027 (rocco@cs.
columbia.edu). This author’s research was supported in part by NSF CAREER award CCF-0347282
and a Sloan Foundation Fellowship.

827

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

828 RYAN O’DONNELL AND ROCCO A. SERVEDIO

distribution learning is to obtain an algorithm that can learn any Boolean function
f : {−1, 1}n → {−1, 1} in time polynomial in n and in a reasonable measure of the
“size” or complexity of f . Different complexity measures for Boolean functions thus
give rise to different notions of efficient learnability; for example, one might hope for an
algorithm that can learn any Boolean function f in time polynomial in n and DT (f)
the number of leaves in the smallest Boolean decision tree that computes f (this is the
well-studied—and notoriously difficult—problem of “learning decision trees under the
uniform distribution”). A more ambitious goal would be to learn in time polynomial
in DNF (f), the number of terms in the smallest disjunctive normal form formula for
f , or AC0

d(f), the size of the smallest depth-d AND/OR/NOT circuit for f.

Unfortunately, learning arbitrary Boolean functions in polynomial time in this
sense has proved to be intractably difficult for all “reasonable” size measures. For
the strongest reasonable size measure (Boolean circuit size), Valiant already observed
in [31] that the existence of cryptographic pseudorandom functions [11] implies the
nonexistence of uniform distribution algorithms that can learn any function f in time
polynomial in the Boolean circuit size of f. This negative result was strengthened by
Kharitonov [20], who showed that (under a strong but plausible assumption on the
hardness of integer factorization) no uniform distribution algorithm can learn every
f in time polynomial in AC0

d(f) for some fixed constant d. In fact, despite intensive
research, no algorithm is currently known that learns arbitrary Boolean functions in
time polynomial in any reasonable size measure; such an algorithm would constitute a
tremendous breakthrough in computational learning theory; see, e.g., [2]. (We stress
that simple arguments such as those in [5] show that there is no information-theoretic
impediment to learning from a polynomial number of examples; the apparent difficulty
is in designing a polynomial-time algorithm.)

1.2. Background: Learning monotone functions. Confronted with the dif-
ficulties described above, researchers have tried to learn various restricted classes of
Boolean functions. The most natural and intensively studied such class is the class of
all monotone functions f : {−1, 1}n → {−1, 1}, i.e., functions that satisfy f(x) ≥ f(y)
whenever x ≥ y in the partial order on {−1, 1}n.

Many partial results on learning restricted subclasses of monotone functions under
the uniform distribution have been obtained. Sakai and Maruoka [27] gave a poly(n)-
time algorithm that can learn any monotone size-O(log n) disjunctive normal form
(DNF) under the uniform distribution; this result was subsequently generalized by
Bshouty [6] to a somewhat broader class than the O(log n)-term DNF. The main
result of Bshouty and Tamon in [7] is a proof that any monotone function can be

learned to accuracy ε in 2Õ(
√
n/ε) time; they used this result to obtain a poly(n)-time

algorithm (for ε constant) that can learn a class of functions that includes monotone
O(log2 n/(log log n)3)-term DNF. More recently, Servedio [30] showed that monotone

2O(
√

logn)-term DNF can be learned to constant accuracy ε in poly(n) time. Other
researchers have also studied the problem of learning monotone functions under the
uniform distribution (see, e.g., [18, 3, 34, 12, 21]), but prior to the current work no
algorithms were known for learning arbitrary monotone functions in time polynomial
in a reasonable size measure.

1.3. The main learning result. We give the first algorithm that learns any
monotone Boolean function f , under the uniform distribution, in time polynomial in a
reasonable measure of the size of f . Given a Boolean function f : {−1, 1}n → {−1, 1},
the partition size P (f) of f is the minimum size partition of the Boolean cube {−1, 1}n

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MONOTONE DECISION TREES 829

into disjoint subcubes such that f is constant on each subcube. Note that this is a
strictly stronger measure of complexity than decision tree size; i.e., P (f) ≤ DT (f).
Our main learning result is the following.

Theorem 1. There is an algorithm that (with confidence 1 − δ) can learn any
monotone Boolean function f : {−1, 1}n → {−1, 1} to accuracy ε, given uniform

random examples (x, f(x)), in time poly(n, P (f)1/ε
2

) · log(1/δ).
For any constant accuracy ε = Θ(1), the algorithm runs in time polynomial in

the partition size of f and hence also in the decision tree size of f . We feel that
this constitutes progress toward learning monotone functions in time polynomial in
their DNF size, an open problem in computational learning theory (see, e.g., the open
questions posed in [15, 3, 1]).

1.4. The approach: Bounding average sensitivity of monotone func-
tions. The main ingredient of our learning algorithm is a new inequality bounding
the average sensitivity (sum of influences of all coordinates) of monotone Boolean
functions. We give here a simplified version of the theorem (the full result is given in
Theorem 3).

Theorem 2. Every monotone Boolean function f has average sensitivity at most√
logP (f).1

This edge-isoperimetric-type result is of independent interest; indeed, our most
general version of it, Theorem 7, recently played a critical role in a new lower bound
on the randomized decision tree complexity of monotone graph properties—see [29].

Combining this new inequality with a result of Friedgut [8] that says that Boolean
functions with low average sensitivity essentially depend on only a small number of
coordinates, we can show that (i) there is a set of P (f)O(1/ε2) many Fourier coeffi-
cients of f which contain all but ε of the “Fourier weight” of f , and (ii) this set of
Fourier coefficients can be efficiently identified from uniform random examples only.
Applying standard machinery on approximating Boolean functions via their Fourier
representations, we obtain Theorem 1.

Our approach seems quite robust. We generalize the basic scenario described
above by (i) considering real-valued monotone functions that map {−1, 1}n into the
continuous interval [−1, 1] rather than the discrete range {−1, 1}, and (ii) considering
general p-biased product measures over {−1, 1}n rather than the uniform distribution.
We show that suitable variants of all of our intermediate results hold and that our
main learning result holds exactly as before (i.e., runs in time P (f)O(1/ε2)) in these
generalized scenarios.

2. Preliminaries.

2.1. Boolean functions and complexity measures. As is standard in com-
plexity theory and learning theory, we will be interested in complexity measures for
Boolean functions f given by the syntactic size of the smallest representation of f
under various natural representation schemes. We will chiefly be concerned with
partition size and decision tree size, two complexity measures that we now define.

Given a Boolean function f : {−1, 1}n → {−1, 1}, the decision tree size of f ,
denoted DT (f), is the number of leaves in the smallest Boolean decision tree (with
variables x1, . . . , xn at the internal nodes and bits −1, 1 at the leaves) that computes
f . The partition size P (f) of f is the minimum number of disjoint subcubes that the
Boolean cube {−1, 1}n can be partitioned into such that f is constant on each subcube.

1Here and throughout the paper “log” denotes logarithm to the base two.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

830 RYAN O’DONNELL AND ROCCO A. SERVEDIO

Since any s-leaf decision tree induces a partition of {−1, 1}n into s disjoint subcubes
(corresponding to the root-to-leaf paths in the tree), we have that P (f) ≤ DT (f) for
all f. In fact, P (·) is known to be a superpolynomially stronger measure than DT (·)
even for monotone functions; Savický [28] has given a monotone Boolean function

g : {−1, 1}n → {−1, 1} which has P (g) = poly(n) and DT (g) = 2Ω(log1.26(n)).

2.2. Background: Uniform distribution learning. A concept class F is
a collection ∪n≥1Fn of Boolean functions where each f ∈ Fn is a function from
{−1, 1}n to {−1, 1}. Throughout this paper we consider the concept class consisting
of all monotone Boolean functions.

The uniform distribution probably approximately correct (PAC) learning model
has been studied by many authors; see, e.g., [4, 7, 13, 14, 20, 22, 24, 27, 30, 33]. In
this framework a learning algorithm has access to an example oracle EX(f), where
f ∈ Fn is the unknown target function the algorithm is trying to learn. The oracle
EX(f) takes no inputs and, when queried, in one time step outputs a labeled example
(x, f(x)), where x is drawn from the uniform distribution U over {−1, 1}n.

We say that a Boolean function h : {−1, 1}n → {−1, 1} is an ε-approximator for
f if it satisfies Prx∈U [h(x) = f(x)] ≥ 1 − ε. The goal of a uniform distribution PAC
learning algorithm is to generate an ε-approximator for the unknown target function
f. More precisely, an algorithm A is a learning algorithm for concept class F if the
following condition holds: for all n ≥ 1, all f ∈ Fn, and all 0 < ε, δ < 1, if A is given ε
and δ as input and has access to EX(f), then with probability at least 1−δ algorithm
A outputs an ε-approximator for f . We further say that A PAC learns F in time t if
A runs for at most t time steps and outputs a hypothesis h which can be evaluated
on any point x ∈ {−1, 1}n in time t. Here t will depend on the dimension n and the
size s of f under some complexity measure, as well as on ε and δ. We note that for
the learning algorithm presented and analyzed in this paper, the dominant ingredient
in the running time t is collecting a sample of essentially t labeled examples using the
oracle EX(f); the computation that is performed after this sample has been obtained
is relatively simple and inexpensive.

2.3. Fourier representation. Fourier techniques have proven to be a powerful
tool for obtaining uniform distribution learning algorithms; see the survey of Mansour
[23] for an overview.

Except in section 5, we will always view {−1, 1}n as a probability space under the
uniform distribution which we denote by U . Let f : {−1, 1}n → R be a real-valued
function. Recall that the Fourier expansion of f is

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where χS(x) denotes
∏

i∈S xi and f̂(S) denotes Ex∈U [f(x)χS(x)]. It is well known
that every f has a unique Fourier expansion. Parseval’s theorem states that for any
f : {−1, 1}n → R we have

∑
S⊆[n] f̂(S)2 = Ex∈U [f(x)2], which is clearly 1 if f ’s range

is {−1, 1}.
For Boolean-valued functions f : {−1, 1}n → {−1, 1}, the influence of coordinate

i on f is defined as Infi(f) = Prx∈U [f(x) �= f(x(⊕i))], where x(⊕i) denotes x with the

ith bit flipped. In general we have Infi(f) =
∑

S	i f̂(S)2; it is also well known (see,

e.g., [17]) that if f is monotone then Infi(f) = f̂({i}). For notational ease we will

henceforth write f̂(i) in place of f̂({i}). The average sensitivity of a Boolean function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MONOTONE DECISION TREES 831

f is I(f) =
∑n

i=1 Infi(f); this is the expected number of sensitive coordinates for a

random input x ∈ {−1, 1}n. Note that I(f) =
∑n

i=1 f̂(i) for monotone f.

3. The average sensitivity of monotone functions. A well-known, folk-
loric edge-isoperimetric inequality for the Boolean cube states that for any monotone
function f : {−1, 1}n → {−1, 1}, we have I(f) ≤ I(Majn) = Θ(

√
n). (This follows

from, e.g., the Kruskal–Katona theorem; see [9] for an explicit proof.) This bound
I(f) ≤ O(

√
n) is the key to the main result of [7] that any monotone Boolean function

can be learned to accuracy ε in time 2Õ(
√
n/ε).

In this section we give a more refined bound on I(f) that depends on P (f), the
partition size of f . Our new bound states that I(f) ≤

√
logP (f) for any monotone

f . This yields the usual isoperimetric inequality mentioned as a special case but is
much stronger for functions f which have partition size P (f) = 2o(n).

3.1. Subcube partitions. Let f : {−1, 1}n → {−1, 1} be a Boolean function
and let C = {C1, . . . , Cs} be a subcube partition for f , so C1, . . . , Cs partition
{−1, 1}n into s subcubes on each of which f is constant. By abuse of notation we will
also identify a cube Ct with a length-n vector over {−1, 0, 1} in the obvious way; i.e.,
the ith coordinate of the string Ct is

(Ct)i =

⎧⎪⎨
⎪⎩

1 if xi = 1 for all x ∈ Ct,

−1 if xi = −1 for all x ∈ Ct,

0 otherwise.

Let us also introduce notation for the sets of coordinates which cubes fix:

pluses(Ct) = {i : (Ct)i = 1}, minuses(Ct) = {i : (Ct)i = −1},

fixed(Ct) = pluses(Ct) ∪ minuses(Ct).

Given an input x ∈ {−1, 1}n, we write C(x) to denote the subcube Ct in C to
which x belongs. We also write δi to denote Prx∈U [i ∈ fixed(C(x))], the probability
that the subcube partition “queries” xi. Note that

∑n
i=1 δi equals Ex∈U [|fixed(C(x))|],

the average number of coordinates C “queries.”
When we draw x ∈ U , this determines C(x). However, we can equally well view

the random determination of (x,C(x)) the other way around. Indeed, we will almost
always consider choosing a uniformly random string x as follows:

1. Pick a random subcube R from C by choosing each Ct with probability
2−|fixed(Ct)|. In general we will write R ∈ C to indicate that R is a ran-
dom variable given by choosing a subcube from among C1, . . . , Cs according
to this natural probability distribution on subcubes.

2. Now choose x uniformly at random from the strings in R. We will write
x ∈ R to indicate that x is chosen randomly in this way.

After this procedure, x indeed has the uniform distribution. Furthermore, note that
the value f(x) is determined as soon as R is chosen; thus we may abuse notation and
write f(R) for this quantity.

We will require the following very easy lemmas.
Lemma 1. Let R be any subcube and let i �= j be in [n]. Then Ex∈R[xi] = Ri

and Ex∈R[xixj] = RiRj.
Proof. The proof is immediate from the definitions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

832 RYAN O’DONNELL AND ROCCO A. SERVEDIO

Lemma 2. Let i �= j be in [n]. Then ER∈C [Ri] = 0 and ER∈C [RiRj] = 0.
Proof. We prove the second statement, with the first being even easier:

0 = E
x∈U

[xixj] = E
R∈C

E
x∈R

[xixj] = E
R∈C

[RiRj],

where in the last step we used Lemma 1.

3.2. Proof of the main inequality. The proof requires one basic lemma.
Lemma 3. Let f : {−1, 1}n → {−1, 1} be a Boolean function with a subcube

partition C = {C1, . . . , Cs}. Then for each i = 1, . . . , n we have f̂(i) = ER∈C [f(R)Ri],

and hence we have
∑n

i=1 f̂(i) = ER∈C [f(R) ·
∑n

i=1 Ri].
Proof. Fix any i in {1, . . . , n}. We have

f̂(i) = E
x∈U

[f(x)xi] = E
R∈C

E
x∈R

[f(x)xi] = E
R∈C

[
f(R) E

x∈R
[xi]

]
= E

R∈C
[f(R)Ri],

where in the last step we used Lemma 1.
With this lemma in hand we can give the proof that I(f) ≤

√
logP (f) for mono-

tone f .
Theorem 3. Let f : {−1, 1}n → {−1, 1} be a Boolean function with a subcube

partition C = {C1, . . . , Cs}. Then we have

n∑
i=1

f̂(i) ≤

√√√√ n∑
i=1

δi ≤
√

log s,

and if f is monotone we may thus write I(f) ≤
√

log s.
Proof. Since f is ±1-valued, from Lemma 3 we have

n∑
i=1

f̂(i) ≤ E
R∈C

[∣∣∣ n∑
i=1

Ri

∣∣∣](1)

with equality iff f(x) = sgn(
∑n

i=1 C(x)i) for all x, i.e., f(x) is the majority of the bits
that are set in C(x). Applying Cauchy–Schwarz, we have

E
R∈C

[∣∣∣ n∑
i=1

Ri

∣∣∣] ≤

√√√√ E
R∈C

[(n∑
i=1

Ri

)2]
=

√√√√ E
R∈C

[n∑
i=1

R2
i + 2

∑
i<j

RiRj

]

=

√
E

R∈C

[
|fixed(R)|

]
(2)

=

√
E

x∈U

[
|fixed(C(x))|

]
=

√√√√ n∑
i=1

δi,

where (2) uses Lemma 2.
This proves the first inequality; to finish the proof we must show that

∑n
i=1 δi ≤

log s. We have

n∑
i=1

δi = E
R∈C

[|fixed(R)|] =

s∑
t=1

2−|fixed(Ct)| · |fixed(Ct)| = H(R),

where H(R) denotes the binary entropy of the random variable R ∈ C. Since C, the
support of R, is of cardinality s, this entropy is at most log s.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MONOTONE DECISION TREES 833

Remarks.
1. We note that our proof can easily be used to recover the standard upper bound

I(f) ≤ I(Majn) for any monotone Boolean function f on n variables. (Recall

that I(Majn) ∼
√

2
π

√
n.) This is because in upper-bounding ER∈C [|

∑n
i=1 Ri|],

we may assume without loss of generality that each subcube Ct ∈ C fixes
exactly n bits. (To see this, suppose that Ct fixes n′ < n bits and we subdivide
Ct into two subcubes each fixing one more bit. If

∑n
i=1(C

t)i �= 0 then the
contribution of Ct to ER∈C [|

∑n
i=1 Ri|] is unchanged by this subdivision, and

if
∑n

i=1(C
t)i = 0 then the contribution increases.) But now observe that

equality occurs in inequality (1), as noted above, if f(x) always equals the
majority of the bits set in C(x), i.e., if f(x) = Majn(x) for all x.

2. The bound I(f) ≤
√

logP (f) need not hold for nonmonotone f ; an easy
example is the parity function on n variables for which I(f) = logP (f) = n.

4. Learning monotone Boolean functions.

4.1. Spectral concentration. In this subsection we show that any monotone
Boolean function has all but ε of its Fourier spectrum concentrated on a set of
P (f)O(1/ε2) many Fourier coefficients.

In [8] Friedgut showed that any Boolean function with “low” average sensitiv-
ity is well approximated by a function that depends only on a “small” number of
coordinates. In particular, the proof of Corollary 3.2 in [8] yields the following.

Theorem 4. There is a universal constant K < ∞ such that for all f : {−1, 1}n →
{−1, 1} and ε > 0, if

t = 2I(f)/ε, J = {i : Infi(f) ≥ K−t}, S = {S : S ⊆ J, |S| ≤ t},

then
∑

S �∈S f̂(S)2 ≤ ε.
Combining this result with Theorem 3, we obtain the following theorem.
Theorem 5. Let f : {−1, 1}n → {−1, 1} be a monotone function, ε > 0, and

t = 2
√

logP (f)/ε. Let J and S be as in Theorem 4. Then |S| = P (f)O(1/ε2) and∑
S �∈S f̂(S)2 ≤ ε.

Proof. The second part of the conclusion follows immediately from combining
Theorems 3 and 4. As for bounding |S|, we have |S| =

∑t
i=0

(|J|
i

)
≤ O(|J |t). But we

also have |J | ≤ I(f)Kt ≤ tKt using Theorem 3, and so |J |t ≤ 2O(t2) = P (f)O(1/ε2),
as claimed.

4.2. Approximating Boolean functions with spectral concentration. The
following proposition is a straightforward generalization of the “low-degree” algorithm
of Linial, Mansour, and Nisan [22].

Proposition 4. There is an algorithm A with the following property: Let f :
{−1, 1}n → [−1, 1] and let S ⊆ 2[n] be a collection of subsets of [n] with the property

that
∑

S∈S f̂(S)2 ≥ 1 − ε. Then if A is given S, access to EX(f), and parameters
δ, θ > 0, it runs in poly(n, |S|, 1/θ) · log(1/δ) time and with probability 1 − δ outputs
a real-valued function g : {−1, 1}n → R of the form g(x) =

∑
S∈S cSχS(x) such that

Ex∈U [(f(x) − g(x))2] ≤ ε + θ.
Proof sketch. Algorithm A draws a sample of m labeled examples from EX(f)

and uses them to empirically estimate each of the Fourier coefficients f̂(S) for S ∈
S, using the fact that f̂(S) = E[f(x)χS(x)]; the coefficients cS are the empirical
estimates thus obtained. A standard analysis (see, e.g., Theorem 4.3 of [23]) shows
that m = poly(|S|, 1/θ) · log(1/δ) suffices to give the proposition.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

834 RYAN O’DONNELL AND ROCCO A. SERVEDIO

We remark that if f : {−1, 1}n → {−1, 1} is Boolean-valued, and g : {−1, 1}n →
R satisfies Ex∈U [(f(x) − g(x))2] ≤ ε′, then defining h : {−1, 1}n → {−1, 1} by
h(x) = sgn(g(x)), it is easily seen that Prx∈U [h(x) �= f(x)] ≤ ε′ (see, e.g., [22, 23]).

4.3. Learning monotone Boolean functions in polynomial time. We now
give the proof of Theorem 1. Given Theorem 5 and Proposition 4, the idea behind our
main learning algorithm is obvious: Given uniform examples from a target function

f , identify all coordinates with influence at least 2−O(
√

logP (f)/ε), and then run the
algorithm from Proposition 4 using the set S from Theorem 5. (We note that a similar
algorithm is used by Servedio in [30], though the analysis is completely different.)

By a standard doubling argument, we may assume the partition size P (f) is
known to the learner (see Exercise 1.5 of [19]). We now show that the learner can ac-
tually identify the sufficiently influential coordinates. This is because f is monotone,
and consequently Infi(f) = f̂(i) = Ex∈U [f(x)xi]. Since the learner can empirically
estimate this latter quantity to within ±θ in time poly(n, 1/θ) · log(1/δ) (with con-
fidence 1 − δ) by sampling, the learner can determine each influence Infi(f) of f to

within an additive 2−O(
√

logP (f)/ε) in poly(n, 2O(
√

logP (f)/ε)) time steps, and it is easy
to see this is sufficient to maintain correctness and the same time bounds. Complete
details can be found in a more general setting in Appendix B.

5. Generalizations: Real-valued functions and p-biased measures. In
this section we extend our learning result to real-valued functions f : {−1, 1}n →
[−1, 1] on the p-biased discrete cube. As in the Boolean case, we say a real-valued
function f is monotone if f(x) ≥ f(y) whenever x ≥ y. The partition size P (f) of
f : {−1, 1}n → [−1, 1] is still defined as the minimum number of disjoint subcubes
that {−1, 1}n can be partitioned into such that f is constant on each subcube.

The p-biased measure on {−1, 1}n is the probability distribution assigning prob-
ability p|pluses(x)|q|minuses(x)| to the input x ∈ {−1, 1}n. (Here and throughout q
denotes 1−p.) We will write {−1, 1}n(p) to indicate that {−1, 1}n is endowed with the

p-biased measure and write Prp[·] and Ep[·] to denote probabilities and expectations
over x ∈ {−1, 1}n(p).

We use standard notions of PAC learning for functions f : {−1, 1}n(p) → [−1, 1].
This involves only slightly altering the definitions from section 2.2. Specifically, ex-
amples are now from the p-biased distribution {−1, 1}n(p) instead of the uniform dis-

tribution;2 and, the definition of an ε-approximator is a function h : {−1, 1}n(p) → R

satisfying Ep[(h− f)2] ≤ ε (note that we use the “square loss” as is common in learn-
ing or approximating real-valued functions). For other work studying PAC learning
under the p-biased distribution, see, e.g., [10, 12, 25, 30].

Our main learning theorem completely extends to the p-biased, real-valued case,
as follows.

Theorem 6. There is an algorithm that (with confidence 1 − δ) can learn any
monotone Boolean function f : {−1, 1}n(p) → [−1, 1] to accuracy ε, given p-biased

random examples (x, f(x)), in time poly(n, P (f)1/ε
2

) · log(1/δ).
Again, note that for any constant accuracy ε = Θ(1), the algorithm runs in

polynomial time in the partition size of f . Further note that unlike some p-biased PAC
learning algorithms such as [10, 30], our algorithm’s running time has no dependence

2There is a question as to whether or not the learning algorithm “knows” the value of p in
advance. We show in Appendix B that we may assume without loss of generality that the learning
algorithm knows p.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MONOTONE DECISION TREES 835

on p and thus we have the claimed runtime bound even if p depends on n or P (f),
such as p = 1/

√
n.

5.1. Background: Fourier analysis under p-biased measures. Given two
functions f, g : {−1, 1}n(p) → R, the p-biased inner product is defined as 〈f, g〉p =

Ep[f(x)g(x)]. For S ⊆ [n] the function φS(x) : {−1, 1}n(p) → R is defined by

φS(x) =
∏
i∈S

φ(xi), where φ(xi) =

{√
q/p if xi = 1,

−
√
p/q if xi = −1.

The functions {φS}S⊆[n] form an orthonormal basis with respect to 〈·, ·〉p. The p-

biased Fourier expansion of f : {−1, 1}n(p) → R is f(x) =
∑

S⊆[n] f̃(S)φS(x), where

f̃(S) = Ep[f(x)φS(x)]; note that we write f̃ rather than f̂ to denote p-biased Fourier

coefficients. Parseval’s identity continues to hold: Ep[f
2] =

∑
S f̃(S)2.

We define the operator Di on functions f : {−1, 1}n(p) → R by (Dif)(x) =
√
pq (f(x(i=1)) − f(x(i=−1))), where x(i=b) denotes x with the ith bit set to b. It is

not difficult to verify that (Dif)(x) =
∑

S	i f̃(S)φS\i(x). We now give the definition
of p-biased influence.

Definition 1. The p-biased influence of the ith coordinate on f : {−1, 1}n(p) → R
is

Inf
(p)
i (f) = Ep[(Dif)2] =

∑
S	i

f̃(S)2.

Note that if f : {−1, 1}n(p) → {−1, 1}, then Inf
(p)
i (f) = 4pqPrp[f(x) �= f(x⊕i)].

We remark that this definition differs from the ones in [8, 9] by a multiplicative fac-

tor of 4pq. We define the p-biased average sensitivity to be I(p)(f) =
∑n

i=1 Inf
(p)
i (f) =∑

S⊆[n] |S|f̃(S)2. Note that in the case when p = 1/2 and f ’s range is {−1, 1}, these
definitions agree with the standard uniform distribution definitions from section 2.3.

We conclude this section with a useful relationship in the p-biased case between
influences of monotone real-valued functions and singleton Fourier coefficients.

Fact 5. For any monotone f : {−1, 1}n → [−1, 1] we have Inf
(p)
i (f) ≤ 2

√
pq·f̃(i),

with equality iff the range of f is {−1, 1}.
Proof. We have Inf

(p)
i (f) = Ep[(Dif)2]. Since f is monotone and has range [−1, 1]

it is easy to see that 0 ≤ (Dif)(x) ≤ 2
√
pq for all x. Thus (Dif)2 ≤ 2

√
pq · (Dif)

with equality iff f ’s range is {−1, 1}, and hence Inf
(p)
i (f) ≤ 2

√
pq · Ep[Dif] = 2

√
pq ·

f̃(i).

5.2. Bounding influence in monotone real-valued functions under p-
biased measures. In this section we describe our analogue of Theorem 3 for real
functions under p-biased measures. We first set up some p-biased preliminaries before
proving the theorem. Let C = {C1, . . . , Cs} be a subcube partition of {−1, 1}n. We
now identify the Ct’s with length-n vectors in a way compatible with the φ-basis, i.e.,

(Ct)i =

⎧⎪⎨
⎪⎩
φ(1) =

√
q/p if xi = 1 for all x ∈ Ct,

φ(−1) = −
√
p/q if xi = −1 for all x ∈ Ct,

0 otherwise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

836 RYAN O’DONNELL AND ROCCO A. SERVEDIO

The definitions of pluses(Ct), minuses(Ct), and fixed(Ct) are as before. We now

define δ
(p)
i to be the p-biased version of δi:

δ
(p)
i = Pr

x∈{−1,1}n
(p)

[i ∈ fixed(C(x))].

The observation that choosing x ∈ {−1, 1}n(p) and considering (x,C(x)) can be
viewed as choosing R ∈ C and then x ∈ R still holds with the obvious p-biased
interpretation. Specifically, the random choice R ∈ C means selecting the cube Ct

with probability p|pluses(Ct)|q|minuses(Ct)|; then the choice x ∈ R means picking the
unfixed coordinates according to the p-biased distribution.

The analogue of Lemma 2 and the analogue of Lemma 3 (for functions f :
{−1, 1}n(p) → R) now hold with no changes in the statements. To prove them we
simply repeat their proofs and also the statement and proof of Lemma 1, everywhere
replacing xi and xj with φ(xi) and φ(xj). As a consequence, we have the following
additional lemma.

Lemma 6. Given α, β ∈ R, the quantity ER∈C [α · |pluses(R)| + β · |minuses(R)|]
depends only on pα + qβ.

Proof. Sum the first statement of the p-biased analogue of Lemma 2 over all i,
and then expand the definition of Ri; one gets

E
R∈C

[√
q/p · |pluses(R)| −

√
p/q · |minuses(R)|

]
= 0

⇒ E
R∈C

[|minuses(R)|] = (q/p) · E
R∈C

[|pluses(R)|].(3)

So substituting this in, we get

E
R∈C

[α · |pluses(R)| + β · |minuses(R)|] = E
R∈C

[α · |pluses(R)| + (q/p)β · |pluses(R)|]

= (1/p) E
R∈C

[(pα + qβ) · |pluses(R)|],

completing the proof.

With this preparation in hand, we now give our p-biased, real-valued generaliza-
tion of Theorem 3.

Theorem 7. Let f : {−1, 1}n(p) → R be a function with subcube partition C =

{C1, . . . , Cs}. Then we have

n∑
i=1

f̃(i) ≤ ‖f‖2 ·

√√√√ n∑
i=1

δ
(p)
i ≤ ‖f‖2 ·

√
log s/

√
H(p),

where H(p) = p log(1/p) + q log(1/q). If f : {−1, 1}n(p) → [−1, 1] is monotone then by

Fact 5 we may write I(p)(f) ≤
√

4pq/H(p)
√

log s.

Proof. Applying Cauchy–Schwarz directly to the analogue of Lemma 3, we have

n∑
i=1

f̃(i) ≤
√

E
R∈C

[
f(R)2

]
·

√√√√ E
R∈C

[(n∑
i=1

Ri

)2]
= ‖f‖2 ·

√√√√ E
R∈C

[n∑
i=1

R2
i

]
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MONOTONE DECISION TREES 837

where we used the p-biased analogue of the second statement of Lemma 2 in the
equality, just as in the proof of Theorem 3. Let us now consider the quantity inside
the square root. By definition,

(4) E
R∈C

[n∑
i=1

R2
i

]
= E

R∈C

[
(q/p) · pluses(R) + (p/q) · minuses(R)

]
.

Using (3) twice, we have

E
R∈C

[
(q/p) · pluses(R) + (p/q) · minuses(R)

]
= E

R∈C
[pluses(R) + minuses(R)]

= E
R∈C

[|fixed(R)|] =

n∑
i=1

δ
(p)
i ,

completing the proof of the first inequality. As for the second inequality, note that
the binary entropy H(R) of the random variable R ∈ C is

H(R) = E
R∈C

[
log(1/Pr[R])

]

= E
R∈C

[
log(1/p) · pluses(R) + log(1/q) · minuses(R)

]

= H(p) · E
R∈C

[
log(1/p)

H(p)
· pluses(R) +

log(1/q)

H(p)
· minuses(R)

]
.

But since p log(1/p)
H(p) + q log(1/q)

H(p) = 1 as well, applying Lemma 6 again yields

(4) = H(R)/H(p).

But H(R) ≤ log s as observed in the proof of Theorem 3, and the proof is
complete.

Using the bound pq log(1/pq) ≤ H(p), we have the following corollary.
Corollary 7. If f : {−1, 1}n(p) → [−1, 1] is monotone then I(p)(f) ≤ 2

√
logP (f)/√

log(1/pq).

5.3. Spectral concentration under p-biased measures. We now need to
extend Friedgut’s result to the p-biased, real-valued case. There are some difficulties
involved. In [8], Friedgut gave a p-biased version of Theorem 4; however, he left the
quantitative details of the dependence on p unspecified. More seriously, Friedgut’s
theorem is simply not true for [−1, 1]-valued functions, even in the p = 1/2 case. (See
Appendix A for an example demonstrating this.)

However, we are able to circumvent this problem. The necessary insight is the
following: A real-valued function with small average sensitivity depends on only a
small number of coordinates if its range is sufficiently “discrete.” And for the purposes
of learning an unknown function to some prescribed accuracy, we do not lose much
by “rounding” the function’s values to a discrete range.

For γ > 0, let γZ denote the set of real numbers of the form γm, where m is an
integer. By making some small changes to Friedgut’s proof we can derive the following
result (the proof is in Appendix A).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

838 RYAN O’DONNELL AND ROCCO A. SERVEDIO

Theorem 8. There is a universal constant K < ∞ such that for all 0 < ε, γ < 1/2
and all f : {−1, 1}n(p) → [−1, 1] ∩ (γZ), if

t = 2I(p)(f)/ε, τ = γK(pq)Kt, J = {i : Inf
(p)
i (f) ≥ τ}, S = {S : S ⊆ J, |S| ≤ t},

then
∑

S �∈S f̃(S)2 ≤ ε.
We now combine Theorem 8 with Corollary 7, exactly in the manner of Theorem 5.

The
√

log(1/pq) saved in Corollary 7 cancels with the pq paid in the τ from Theorem 8,
and the factor of γO(1) becomes negligible if we take γ = ε (indeed, even γ = 2−O(1/ε)

would be negligible). We get the following theorem.
Theorem 9. Let ε > 0, f : {−1, 1}n(p) → [−1, 1] ∩ (εZ) be a monotone function,

and let t = 4
√

logP (f)/(ε
√

log(1/pq)). Let J = {i : Infi(f) ≥ (K ′)−t log(1/pq)},
where K ′ < ∞ is a universal constant, and let S = {S : S ⊆ J, |S| ≤ t}. Then

|S| = P (f)O(1/ε2) and
∑

S �∈S f̃(S)2 ≤ ε.

5.4. Learning monotone real-valued functions under p-biased measures.
With Theorem 9 in hand, the proof of our main learning result Theorem 6 is now not
very difficult. Given an unknown target function f : {−1, 1}n(p) → [−1, 1] and ε > 0,
let fε denote f with its values “rounded” to the nearest integer multiples of ε. Clearly,
given examples from EX(f, p), we can simulate examples from EX(fε, p). We now
simply try to learn fε. It is easy to check that an ε-approximator hypothesis for fε
is also an O(ε)-approximator for f . Further, we have P (fε) ≤ P (f) so a P (fε)

O(1/ε2)

runtime is also P (f)O(1/ε2) as desired. The p-biased analogue of Proposition 4 holds
with essentially the same proof. The only new difficulty is that we cannot exactly
estimate the quantities Infi(fε). However from Fact 5, the quantities f̃(i)—which we
can estimate empirically—are upper bounds on the influences; so by taking all the
coordinates i with f̃(i) ≥ τ , we get all the sufficiently influential coordinates. There
cannot be too many coordinates with large f̃(i), since

∑n
i=1 f̃(i)2 ≤ 1.

For completeness, we give all the details of the proof of Theorem 6 in Appendix B.

6. Extension to stronger complexity measures?. It is natural to wonder
whether our results can be extended to stronger complexity measures than decision
tree size and partition size. An obvious next complexity measure to consider is the
minimum number of (not necessarily disjoint) subcubes that cover {−1, 1}n and are
such that f is constant on each subcube. We refer to this as the subcube covering
complexity of f and denote it by CDNF (f), since it is equal to the minimum number
of terms in any DNF formula for f plus the minimum number of clauses in any CNF
formula for f .

The following theorem shows that Theorem 3 does not hold for subcube covering
complexity.

Theorem 10. There is a monotone Boolean function g : {−1, 1}n → {−1, 1} for

which I(g) = Ω(nlog4(6−2
√

5)) = Ω(n0.305) but
√

logCDNF (g) = O(n1/4).
The proof is by the probabilistic method. We define a distribution D over mono-

tone Boolean functions and show that some function g that is assigned nonzero weight
under D must satisfy the bounds of the theorem. See Appendix C.

7. Conclusion. In this paper we established a new bound on average sensitivity
of monotone functions and used this bound to give the first algorithm that uses random
examples to learn any monotone function to high accuracy in time polynomial in the
function’s decision tree or partition size.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MONOTONE DECISION TREES 839

A natural goal for future work is to obtain even stronger learning results for
monotone functions. Can the boosting methods used by Jackson in his harmonic
sieve algorithm [13] be applied here? We note that while the harmonic sieve algorithm
makes essential use of membership queries, related algorithms that combine boosting
with Fourier techniques have been successfully developed for the framework of learning
from random examples only [14].

Appendix A. Proof of Theorem 8 and a counterexample.
Proof of Theorem 8. Recall that we have

Dif(x) =
√
pq(f(x(i=1)) − f(x(i=−1))) =

∑
S: i∈S

f̃(S)φS\i(x)

and that Inf
(p)
i (f) = Ep[(Dif)2] = ‖Dif‖2

2, where throughout this section ‖·‖ denotes
the norm induced by the p-biased measure.

Since I(p)(f) =
∑

S |S|f̃(S)2, Markov’s inequality immediately gives that∑
S: |S|>t f̃(S)2 < ε/2. Let J ′ = [n] \ J . It now suffices to show that

∑
S: S∩J ′ �=∅,|S|≤t

f̃(S)2 ≤ ε/2.(5)

Certainly the left side of (5) is at most

(6)
∑
i∈J′

∑
S: i∈S,|S|≤t

f̃(S)2 =
∑
i∈J′

‖Dif
≤t‖2

2 =
∑
i∈J′

〈Dif
≤t, Dif〉,

where we use the notation f≤t to denote the function f≤t(x) =
∑

|S|≤t f̃(S)φS . Now
we have

〈Dif
≤t, Di〉 ≤ ‖Dif

≤t‖4 ‖Dif‖4/3(7)

≤ (1 + 1/
√
pq)t/2 ‖Dif

≤t‖2 ‖Dif‖4/3(8)

≤ (1/pq)t Inf
(p)
i (f)1/2 E[|Dif |4/3]3/4.(9)

Here (7) is Hölder’s inequality, inequality (8) follows from a p-biased version of
Bonami–Beckner (here with the best bounds provided by [26]), and inequality (9)
uses the generous bound (1 + 1/

√
pq)1/2 < (1/pq) and also ‖Dif

≤t‖2 ≤ ‖Dif‖2 =

Inf
(p)
i (f)1/2.
We now observe that by virtue of the assumption that f ’s range is contained in

γZ, we have that |Dif(x)| is always either 0 or at least γ
√
pq. This implies that (9)

is at most

(1/pq)t Inf
(p)
i (f)1/2 Ep[(γ

√
pq)−2/3 · |Dif |2]3/4 = (1/pq)t+1/4 γ−1/2 Inf

(p)
i (f)5/4

≤ (1/pq)t+1/4 γ−1/2 Inf
(p)
i (f) τ1/4,(10)

where we have used the definitions of Inf
(p)
i (f) and τ . Using the fact that

∑
i∈J′

Inf
(p)
i (f) ≤ I(p)(f), we can sum (10) and conclude that (6) is at most

(1/pq)t+1/4 γ−1/2 I(p)(f) τ1/4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

840 RYAN O’DONNELL AND ROCCO A. SERVEDIO

Thus to ensure (5) holds we need only

t(1/pq)t+1/4 γ−1/2 τ1/4 ≤ 1;

upper-bounding t(1/pq)t+1/4 by (1/pq)O(t) (acceptable for all t ≥ 0), we see that
τ = γO(1)(pq)O(t) suffices. Thus the choice of τ given in the definition of Theorem 8
suffices and the proof of this theorem is complete.

We now justify the remark from section 5.3 indicating that Friedgut’s theorem
does not in general hold for real-valued functions; in other words, the condition that
f ’s range is contained in γZ cannot be removed.

To see this, consider (in the uniform measure case) the function f : {−1, 1}n →
[−1, 1] defined by

f(x) =

{
sgn(

∑n
i=1 xi) if |

∑n
i=1 xi| >

√
n,

1√
n

∑n
i=1 xi if |

∑n
i=1 xi| ≤

√
n.

It is easy to see that for each i = 1, . . . , n, Dif(x) is always either 0 or 1/
√
n and is

1/
√
n for a Θ(1) fraction of all x’s. Consequently we have Infi(f) = Θ(1/n) and thus

I(f) = Θ(1). In addition, it is clear that both E[f(x)] = 0 and |f(x)| ≥ 1/2 for a

Θ(1) fraction of all x’s; hence we have
∑

|S|>0 f̂(S)2 ≥ Ω(1). But now if we take ε to

be any constant smaller than this Ω(1), then we get a contradiction, since the choice
of τ in Theorem 8 will be a constant, and so J and hence S will be empty (for all n
sufficiently large).

Appendix B. Technical details for learning. We begin with some basic
learning details for the p-biased measure. First, as mentioned earlier, we may assume
without loss of generality that the learning algorithm “knows” p. The proof is quite
similar to the proof that a noise-tolerant learning algorithm can be assumed to know
the exact noise rate (see [19]). The basic idea is that we can run the learning algorithm
repeatedly using successively finer estimates (easily obtained from sampling) for the
value of p. If the original algorithm runs for T time steps, then if the guessed value
for p is within Δ/T of the true value, the statistical distance between the algorithm’s
output when run with the guessed value versus the true value will be at most Δ. It
can be shown that at most a polynomial factor runtime overhead is incurred in coming
up with a sufficiently accurate guess.

Next, we remark that low-degree algorithm of Linial, Mansour, and Nisan, Propo-
sition 4, easily carries over to the real-valued p-biased case with essentially the same
proof.

Proposition 8. There is an algorithm A with the following property: Let f :
{−1, 1}n(p) → [−1, 1] and let S ⊆ 2[n] be a collection of subsets of [n] with the property

that
∑

S:S/∈S f̃(S)2 ≤ ε. Then if A is given p, S, access to a source EX(f, p) of p-
biased random examples, and parameters δ, θ > 0, it runs in poly(n, |S|, 1/θ) · log(1/δ)
time and with probability 1− δ outputs a real-valued function g : {−1, 1}n → R of the
form g(x) =

∑
S∈S cSφS(x) such that Ep[(f − g)2] ≤ ε + τ .

We now proceed to discuss the proof of Theorem 6. Let f : {−1, 1}n(p) → [−1, 1]
be the target function. Given ε > 0, let fε denote the “rounded” version of f in
which each of its values is rounded to the nearest integer multiple of ε. It is clear
that given access to EX(p, f) we can simulate access to EX(p, fε). Our algorithm

will use EX(p, fε) to learn fε in time poly(n, P (fε)
O(1/ε2)) · log(1/δ). This is sufficient

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MONOTONE DECISION TREES 841

for learning f in the same time bound, because P (fε) ≤ P (f) and because if Ep[(h−
fε)

2] ≤ ε then

Ep[(h− f)2] = Ep[((h− fε) + (fε − f))2] ≤ 2Ep[(h− fε)
2] + 2Ep[(fε − f)2]

≤ 2ε + ε2/2 = O(ε).

Our goal is now essentially to use Proposition 8 given Theorem 9. As mentioned in
section 5.4, unlike in the algorithm for Boolean-valued functions, we cannot estimate

the influences of fε directly since the relationship Inf
(p)
i (fε) = f̃ε(i) does not hold in

the real-valued case. We may, however, use Fact 5 which says that f̃ε(i)—a quantity

we can empirically estimate—is an upper bound on Inf
(p)
i (fε).

We now describe the algorithm to learn fε using EX(p, fε). As in section 4.3 we
may assume that the partition size P (fε) is known. The algorithm is as follows:

1. For i = 1, . . . , n empirically estimate f̃ε(i) = Ep[fε(x)φi(x)] to within an

additive ±τ/4 (with confidence 1 − δ), where τ = (C ′)−t log(1/pq) and t is
defined in Theorem 9. Let J ⊆ [n] be the set of those i for which the obtained
estimate is greater than τ/2.

2. Now run algorithm A from Proposition 8 with S = {S : S ⊆ J, |S| ≤ t} and
θ = ε, outputting its hypothesis g.

Let us first confirm the running time of this algorithm. In step 1, standard sam-
pling bounds ensure that poly(n, 1/τ) · log(1/δ) samples suffice. We may then con-
clude that |J | ≤ O(1/τ2), since

∑n
i=1 f̃ε(S)2 ≤ 1. It follows that |S| ≤ poly(1/τ t) =

P (fε)
O(1/ε2), as necessary to bound the running time. Finally, we still have

∑
S �∈S f̃ε(S)2

≤ ε because (with confidence 1−δ) the J the algorithm finds is a superset of the J from
Theorem 9. Hence the algorithm correctly gives an O(ε)-approximator hypothesis g
with confidence 1 −O(δ), and the proof of Theorem 6 is complete.

Appendix C. Proof of Theorem 10. Let n = 4k. Let f1(a, b, c, d) be the
“AND/OR” function on four Boolean variables f1(a, b, c, d) = (a ∧ b) ∨ (c ∧ d). An
important property of f1 is that if each of its four arguments is independently set to
be 1 (true) with probability p, then Pr[f1 = 1] equals 2p2 − p4. For i = 2, 3, . . . , we
define the function fi on 4i variables to be fi = f1(f

1
i−1, f

2
i−1, f

3
i−1, f

4
i−1), where the

superscripts indicate distinct copies of fi−1 on disjoint sets of variables. Thus fk is
a function on n variables computed by a read-once Boolean formula that is a tree of
ANDs and ORs at alternating levels.

We now define distributions D1, . . . ,Dk over monotone Boolean functions, where
Di is a distribution over functions from {−1, 1}4i

to {−1, 1}. The distribution Di is
defined in the following way: a random draw from Di is obtained by independently
substituting 1 for each of the 4i Boolean arguments to fi with probability α, where
α =

√
5 − 2 ≈ 0.236. (This construction and some of the subsequent analysis are

reminiscent of [32].) Note that for a random g drawn from D1 and a random x
drawn uniformly from {−1, 1}4, we have that each of the four arguments to f1 is

independently 1 with probability 1
2 + α

2 =
√

5−1
2 ; we denote this value by ρ. Con-

sequently we have Prg∈D1,x∈{−1,1}4 [g(x) = 1] = 2ρ2 − ρ4, but this is easily seen to
equal ρ. It follows from the recursive definition of fi that for all i = 1, 2, . . . we have
Prg∈Di,x∈{−1,1}4i [g(x) = 1] = ρ.

It is not difficult to show (see Theorem 2.4 of [16]) that CDNF (fk) ≤ 22k+1; as an

immediate consequence we have that CDNF (g) ≤ 22k+1 (and thus
√

logCDNF (g) =
O(2k/2) = O(n1/4)) for every g that is in the support of Dk. But by Lemma 9 below

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

842 RYAN O’DONNELL AND ROCCO A. SERVEDIO

we have that Eg∈Dk
[I(g)] = Θ((6 − 2

√
5)k); clearly this implies that there is some g

in the support of Dk for which I(g) is Ω((6 − 2
√

5)k) = Ω(nlog4(6−2
√

5)). This proves
Theorem 10.

Lemma 9. For i = 1, 2, . . . we have Eg∈Di
[I(g)] = (3 −

√
5)(6 − 2

√
5)i.

Proof. It is clear from symmetry that Eg∈Di [I(g)] = 4i · Eg∈Di
[Inf1(g)]. We have

Eg∈Di [Inf1(g)] = Eg∈Di,x∈{−1,1}4i [Pr[g(1, x2, . . . , x4i) �= g(−1, x2, . . . , x4i)]]

= Pr
g∈Di,x∈{−1,1}4i

[g(1, x2, . . . , x4i) �= g(−1, x2, . . . , x4i)].

From the definition of Di, we have that with probability α =
√

5 − 2 the con-
stant 1 is substituted for the first argument of fi in g; if this occurs, then clearly
g(1, x2, . . . , x4i) = g(−1, x2, . . . , x4i) for all x since g does not depend on its first ar-
gument. If this does not occur, then we have (for a random g ∈ Di and a uniform

x ∈ {−1, 1}4i

) that each of the other 4i−1 arguments to fi independently takes value

1 with probability ρ =
√

5−1
2 .

Under the distribution on inputs to fi described in the previous paragraph, if
i = 1 it is easy to see that flipping the first argument of f1 flips the value of f1

iff the second argument is 1 (probability ρ) and the AND of the third and fourth
arguments is 0 (probability 1 − ρ2). Thus flipping the first argument of f1 flips the
value of f1 with probability precisely ρ(1 − ρ2) which is easily seen to equal 1 − ρ,
using the fact that 2ρ2 − ρ4 = ρ. Similarly, if i = 2, then flipping the first of the
16 arguments to f2 = f1(f

1
1 , f

2
1 , f

3
1 , f

4
1) (again under the distribution of inputs to fi

described above) will flip the value of f2 iff the value of f1
1 flips (probability 1 − ρ as

shown above), f2
1 equals 1 (probability ρ), and f3

1 ∧f4
1 equals 0 (probability 1−ρ2). We

thus have that flipping the first argument of f2 flips the value of f2 with probability
(1−ρ)ρ(1−ρ2) = (1−ρ)2. An easy induction in this fashion shows that for all i, under
the distribution of inputs described above flipping the first argument of fi causes fi
to flip with probability (1 − ρ)i.

We thus have that

Pr
g∈Di,x∈{−1,1}4i

[g(1, x2, . . . , x4i) �= g(−1, x2, . . . , x4i)] = (1 − α)(1 − ρ)i

= (3 −
√

5)

(
3 −

√
5

2

)i

,

which proves the lemma.

Acknowledgment. We are grateful to an anonymous referee for several sugges-
tions for simplifications of the proof of Theorem 3.

REFERENCES

[1] A. Blum, Machine learning: A tour through some favorite results, directions, and open prob-
lems, Tutorial slides, in the 44th IEEE Symposium on Foundations of Computer Science,
Cambridge, MA, 2003, http://www-2.cs.cmu.edu/∼avrim/Talks/FOCS03/tutorial.ppt,
2003.

[2] A. Blum, Learning a function of r relevant variables (open problem), in Proceedings of the
16th Annual Conference on Learning Theory, Washington, D.C., 2003, pp. 731–733.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LEARNING MONOTONE DECISION TREES 843

[3] A. Blum, C. Burch, and J. Langford, On learning monotone Boolean functions, in Proceed-
ings of the Thirty-Ninth Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society, Los Alamitos, CA, 1998, pp. 408–415.

[4] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich, Weakly learning
DNF and characterizing statistical query learning using Fourier analysis, in Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, ACM, New York,
1994, pp. 253–262.

[5] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth, Occam’s razor, Inform.
Process. Lett., 24 (1987), pp. 377–380.

[6] N. Bshouty, Exact learning via the monotone theory, Inform. and Comput., 123 (1995),
pp. 146–153.

[7] N. Bshouty and C. Tamon, On the Fourier spectrum of monotone functions, J. ACM, 43
(1996), pp. 747–770.

[8] E. Friedgut, Boolean functions with low average sensitivity depend on few coordinates, Com-
binatorica, 18 (1998), pp. 474–483.

[9] E. Friedgut and G. Kalai, Every monotone graph property has a sharp threshold, Proceedings
of the AMS, 124 (1996), pp. 2993–3002.

[10] M. Furst, J. Jackson, and S. Smith, Improved learning of AC0 functions, in Proceedings of
the Fourth Annual Workshop on Computational Learning Theory, Cambridge, MA, 1991,
pp. 317–325.

[11] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions, J. Assoc.
Comput. Mach., 33 (1986), pp. 792–807.

[12] T. Hancock and Y. Mansour, Learning monotone k-μ DNF formulas on product distribu-
tions, in Proceedings of the Fourth Annual Conference on Computational Learning Theory,
Santa Cruz, CA, 1991, pp. 179–193.

[13] J. Jackson, An efficient membership-query algorithm for learning DNF with respect to the
uniform distribution, J. Comput. System Sci., 55 (1997), pp. 414–440.

[14] J. Jackson, A. Klivans, and R. Servedio, Learnability beyond AC0, in Proceedings of the
34th ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 776–784.

[15] J. Jackson and C. Tamon, Fourier analysis in machine learning, Tutorial slides, ICML/COLT
1997, http://learningtheory.org/resources.html, 1997.

[16] S. Jukna, A. Razborov, P. Savický, and I. Wegener, On P versus NP∩co-NP for decision
trees and read-once branching programs, Comput. Complexity, 8 (1999), pp. 357–370.

[17] J. Kahn, G. Kalai, and N. Linial, The influence of variables on Boolean functions, in Pro-
ceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Los Alamitos, CA, 1988, pp. 68–80.

[18] M. Kearns, M. Li, and L. Valiant, Learning Boolean formulas, J. ACM, 41 (1994), pp. 1298–
1328.

[19] M. Kearns and U. Vazirani, An Introduction to Computational Learning Theory, MIT Press,
Cambridge, MA, 1994.

[20] M. Kharitonov, Cryptographic hardness of distribution-specific learning, in Proceedings of
the Twenty-Fifth Annual ACM Symposium on Theory of Computing, ACM, New York,
1993, pp. 372–381.

[21] L. Kučera, A. Marchetti-Spaccamela, and M. Protassi, On learning monotone DNF
formulae under uniform distributions, Inform. and Comput., 110 (1994), pp. 84–95.

[22] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform and learn-
ability, J. ACM, 40 (1993), pp. 607–620.

[23] Y. Mansour, Learning Boolean Functions via the Fourier Transform, Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1994, pp. 391–424.

[24] Y. Mansour, An O(nlog log n) learning algorithm for DNF under the uniform distribution, J.
Comput. System Sci., 50 (1995), pp. 543–550.

[25] Y. Mansour and M. Parnas, Learning conjunctions with noise under product distributions,
Inform. Process. Lett., 68 (1998), pp. 189–196.

[26] K. Oleszkiewicz, On a nonsymmetric version of the Khinchine-Kahane inequality, in Stochas-
tic Inequalities and Applications, Prog. Probab. 56, Birkhäuser, Basel, 2003, pp. 156–168.

[27] Y. Sakai and A. Maruoka, Learning monotone log-term DNF formulas under the uniform
distribution, Theory Comput. Syst., 33 (2000), pp. 17–33.

[28] P. Savický, On Determinism versus Unambiguous Nondeterminism for Decision Trees, ECCC
report TR02-009, University of Trier, Trier, Germany, available from http://eccc.uni-
trier.de/eccc-reports/2002/TR02-009/, 2002.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

844 RYAN O’DONNELL AND ROCCO A. SERVEDIO

[29] O. Schramm, R. O’Donnell, M. Saks, and R. Servedio, Every decision tree has an influ-
ential variable, in Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society, Los Alamitos, CA, 2005, pp. 31–39.

[30] R. Servedio, On learning monotone DNF under product distributions, Inform. and Comput.,
193 (2004), pp. 57–74.

[31] L. Valiant, A theory of the learnable, Commun. ACM, 27 (1984), pp. 1134–1142.
[32] L. Valiant, Short monotone formulae for the majority function, J. Algorithms, 5 (1984),

pp. 363–366.
[33] K. Verbeurgt, Learning DNF under the uniform distribution in quasi-polynomial time, in

Proceedings of the Third Annual Workshop on Computational Learning Theory, ACM,
New York, 1990, pp. 314–326.

[34] K. Verbeurgt, Learning sub-classes of monotone DNF on the uniform distribution, in Pro-
ceedings of the Ninth Conference on Algorithmic Learning Theory, Otzenhausen, Germany,
1998, pp. 385–399.

